
DEVELOPMENT OF MULTICORE AND
TAPERED CHALCOGENIDE FIBERS FOR

SUPERCONTINUUM GENERATION

a thesis submitted to

the graduate school of engineering and science

of bilkent university

in partial fulfillment of the requirements for

the degree of

master of science

in

materials science and nanotechnology

By

Abba Usman Saleh

December 2016



DEVELOPMENT OF MULTICORE AND TAPERED CHALCO-

GENIDE FIBERS FOR SUPERCONTINUUM GENERATION

By Abba Usman Saleh

December 2016

We certify that we have read this thesis and that in our opinion it is fully adequate,

in scope and in quality, as a thesis for the degree of Master of Science.

Bülend Ortaç(Advisor)
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ABSTRACT

DEVELOPMENT OF MULTICORE AND TAPERED
CHALCOGENIDE FIBERS FOR SUPERCONTINUUM

GENERATION

Abba Usman Saleh

M.S. in Materials Science and Nanotechnology

Advisor: Bülend Ortaç

December 2016

The dramatic spectral broadening of an electromagnetic radiation as it propa-

gates through a nonlinear medium is called Supercontinuum generation. Super-

continuum generation is indeed regarded as one of the prominent phenomenon

in nonlinear optics and photonics with burgeoning applications in various fields

such as spectroscopy, early cancer diagnostics, gas sensing, food quality control,

fluorescence microscopy e.t.c.

Supercontinuum generation in optical fibers is however associated with three

fundamental challenges: minimization of input power threshold, maximization

of output power as well as output spectrum of a supercontinuum. Two unique

fabrication approaches namely ”Direct tapering” and ”Multicore fibers” were

proposed to address the aforementioned challenges.

Chalcogenide nanowires were fabricated via direct tapering of chalcogenide

glasses, and spectral broadening with extremely low peak power of ∼ 2 W was

demonstrated. Multicore array of chalcogenide step index fibers were also fabri-

cated using a new method. The fabricated step index fiber has a diameter ∼ 1.35

µm which was engineered to have a zero dispersion wavelength (ZDW) around

1100 nm with a pump of center wavelength at 1550 nm .Using split step Fourier

method, it was shown that the fiber possesses a great potential for severe spec-

tral broadening. Supercontinuum generation with the as drawn fiber, encountered

challenges as well as proposed solutions were demonstrated and discussed.

Keywords: supercontinuum generation, zero dispersion wavelength (ZDW),

chalcogenide, step index fiber, tapering.
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ÖZET

SÜPERKESİNTİSİZ TAYF ÜRETİMİ İÇİN ÇOKLU
ÇEKİRDEKLİ VE İNCELTİLMİŞ KALKOJEN

FİBERLERİN GELİŞTİRİLMESİ

Abba Usman Saleh

Malzeme Bilimi ve Nanoteknoloji, Yüksek Lisans

Tez Danışmanı: Bülend Ortaç

Aralık 2016

Elektromanyetik radyasyonun, doğrusal olmayan bir ortamdan geçerken

tayfının olağanüstü bir genişlikte açılmasına süperkesintisiz tayf üretimi denir.

Süperkesintisiz tayf üretimi spektroskopi, erken kanser teşhisi, gaz tespiti, gıda

kalite kontrolü, floresan mikroskopisi gibi farklı alanlarda çok sayıda uygulama

olanağı sağlayan fotonik ve doğrusal olmayan optik bilimlerinde en öne çıkan

olgulardan biri olarak kabul edilmektedir.

Optik fiberlerde süperkesintisiz tayf üretimi 3 temel sorun ile karşı karşıyadır:

Tayf genişliğinin artırılmasının yanında giriş güç eşiğinin azaltılması ve çıkış

günün artırılmasıdır. Söz konusu engellerin aşılması konusunda, iki yeni yaklaşım

olarak “Direk inceltilmiş fiber”ve “Mikroyapılı fiber”üretimi önerilmiştir.

Kalkojen camların direk çekilmesiyle kalkojen nanoteller üretilmiş ve 2W

gibi oldukça küçük optik güçlerde tayf genişlemesi gözlemlenmiştir. Yeni bir

yöntemin kullanılmasıyla, ayrıca çok çekirdekli adım indeksli kalkojen fiber-

ler üretilmiştir. Sıfır yayılım dalgaboyu (ZDW), pompalama dalga boyu olan

1550nm’de olacak şekilde tasarlanan adım indeksli fiberlerin çapları 1.3µm’dur.

Ayrık adımlı Fourier sayısal yöntemi kullanılarak, üretilen fiberlerin oldukça geniş

tayf yaratmada büyük potansiyelleri olduğu gösterilmiştir. Çekilen fiberlerde

süperkesintisiz tayf üretimi gösterilmiş ve bu sırada yaşanan zorluklar, aynı za-

manda çözüm önerileri tartışılmış ve uygulamalı gösterilmiştir.

Anahtar sözcükler : Süperkesintisiz tayf üretimi, ZDW, kalkojen camlar, adım

indeksli fiber, fiber inceltilmesi.
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Chapter 1

Introduction

A physical phenomenon leading to a dramatic spectral broadening of laser pulses

propagating through a nonlinear medium is referred to as Supercontinuum gen-

eration (SCG). It was first demonstrated in bulk glass by Alfano and Shapiro in

early 1970s [1] (for an overview of early experiments on supercontinuum genera-

tion one can refer to [2]), and has since become the subject of various investiga-

tions in broad range of nonlinear media, including solids, organic and inorganic

liquids, gases, and various types of waveguide. In a decade, the field of non-

linear optics went from inception to powerful demonstrations with burgeoning

applications. SCG posses wide range of applications in such diverse fields as

pulse compression, spectroscopy, early cancer diagnostics [3], gas sensing [4, 5],

food quality control [6], fluorescence microscopy [7] and the design of tunable

ultrafast femtosecond laser sources.These developments were due, in large part,

to the emergence of highly efficient nonlinear systems and high intensity lasers.

Starting with the laser side, several systems have been developed to provide high

intensities required to drive the nonlinear processes underlying supercontinuum

generation including Q-switched lasers [8], gain-switched lasers [9], and mode-

locked lasers [10]. Mode-locked lasers in particular have become popular pump

sources for supercontinuum due to their high peak power outputs (KW - MW),

small footprint, low energy consumption, and high coherence properties. Progress

on building enhanced nonlinear media has been equally impressive [11–13]. While
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the first nonlinear optics demonstrations relied mainly on non-inversion symmet-

ric crystalline media with χ2 nonlinearity, with the invention of low loss optical

fibers in early 1970s, it then became possible for amorphous materials such as

silica to display strong χ3 optical nonlinearity, due to the provision of sufficient

interaction lengths of orders of magnitude in optical fibers as opposed to con-

ventional nonlinear crystals. Hence, relatively low χ3 nonlinearity materials like

silica, can still demonstrate Strong nonlinear effects due to this enhanced inter-

action length. Consequently, experimental demonstration of the usefulness of

optical fibers for nonlinear optics became feasible soon after [14–16].

In this study we focus on developing new fabrication techniques to address

the fundamental challenges associated with supercontinuum generation in opti-

cal fibers, which are; minimization of input power threshold for supercontinuum

generation, maximization of output power as well as output spectrum of a su-

percontinuum. To address these primary challenges, two unique approaches were

developed, namely; direct tapering of chalcogenide glasses, and multicore chalco-

genide fibers.

One may wonder why chalcogenide glasses? perhaps, the answer to this ques-

tion can be extremely broad. The promising properties of chalcogenide materials,

such as large transparency window of ∼ 25 µm (as compared to silica which shows

strong vibrational absorption in the near/mid infrared region) and strong optical

nonlinearities (about ∼ 2-3 orders of magnitude greater than that of silica) [17].

Also low melting temperature [18] as well as flexibility are among the facts that

made chalcogenide the material of choice for our techniques. The organization of

the thesis is as follows: Chapter 2 gives a theoretical background regarding non-

linear optics in general, as well as numerical modelling of the the supercontinuum

phenomena. Chapter 3 talks about the new novel technique for direct tapering

of chalcogenide materials, demonstration of spectral broadening with extremely

low input powers using this novel technique. Chapter 4 discusses a newly de-

veloped technique for fabricating multicore fibers, followed by demonstration of

SCG, some of the encountered challenges as well as proposed unique solutions.

Lastly, a comprehensive conclusion is given in Chapter 5.
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Chapter 2

Nonlinear optics theoretical

background

Light matter interaction has been an attractive topic for decades. Today it is

clearly understood that light enables matter to oscillate at atomic or molecular

level, which in turn re-emits light. In optics, intensity independent and intensity

dependent phenomena are referred to as linear and nonlinear respectively. More-

over, in linear fiber optics, the medium (i.e. fiber) properties do not depend on

the propagating signal. However, when the material properties are modified by

the propagating signal itself, then that is described as nonlinear optics.

Fundamentally, the anharmonic motion of bound electrons under the influence

of an applied field can be regarded as the origin of nonlinearity. Consequently, due

to this anharmonic motion, the total polarization P induced by electric dipoles

is not linear but rather satisfies more general relation as [19]

P = ε0χ
1E + ε0χ

2E2 + ε0χ
3E3 + .... (2.1)

where ε0 is the permittivity of a vacuum and χk (k = 1, 2, . . .) is kth order

susceptibility. The dominant contribution to P is provided by the first order

3



susceptibility (also known as linear susceptibility). The second order susceptibil-

ity is responsible for second harmonic generation and sum-frequency generation.

However, for a symmetric molecule like silica and other glasses, the second or-

der susceptibility contribution is very small, hence negligible. Therefore optical

fibers are not considered to exhibit second order susceptibility. Obviously, the

third order susceptibility is responsible for nonlinear effects such as (Self Phase

Modulation (SPM), Cross Phase Modulation (CPM), Four Wave Mixing (FWM),

etc. which will be discussed later) in fibers [20].

Thus, the refractive index and absorption coefficient of the medium in the pres-

ence of nonlinearity becomes

n = n0 + n2|E|2 (2.2)

α = α0 + α2|E|2 (2.3)

The total refractive index of the medium becomes both a function of frequency

and intensity. The first and second term on the right hand side of equation (2.2)

represents the linear refractive index due to the first order susceptibility and the

nonlinear refractive index due to the third order susceptibility respectively. The

term n2 is referred to as nonlinearity coefficient (also known as Kerr Nonlinearity),

and it is material dependent. Hence, the total absorption α also contains both

linear and nonlinear absorption terms α0 and α2 respectively as shown in equation

(2.3).

2.1 Nonlinear schrodinger equation

In order to make an analysis for the propagation of light inside an optical fiber in

the presence of nonlinearity, one has to modify the Maxwell equation in order to

include the nonlinear term in the polarization (which is related to the displace-

ment) which will affect the wave equation. Generally, Maxwell equations can be

expressed as

4



∇× ~E = −∂
~B

∂t
(2.4)

∇× ~H = ~J +
∂ ~D

∂t
(2.5)

∇ · ~D = ρ (2.6)

∇ · ~B = 0 (2.7)

where ~E and ~H stands for electric and magnetic field vectors respectively, ~D and

~B are electric and magnetic flux densities, while ~J and ρ are current and charge

density respectively.

~D and ~B which are related to the propagating field, can be expressed using the

following equations [21]

~D = ε0 ~E + ~P = ε0n
2 ~E (2.8)

~B = µ0
~H + ~M (2.9)

~P = ε0χ
1 ~E + ε0χ

3 ~E3 = ~PL + ~PNL (2.10)

where ε0 and µ0 are dielectric permittivity and permeability of a vacuum (or

free space) respectively, ~M stands for magnetization (i.e. magnetic polarization

vector) and ~P is the induced electric polarization vector. Since optical fibers are

nonmagnetic, then ~M becomes 0.

Note: In an optical fiber, it is assumed that there is no conduction current

flowing. Therefore, ~J and ρ are taken to be 0. Hence, the Maxwell equation now

becomes:

∇× ~E = −∂
~B

∂t
(2.11)

∇× ~H =
∂ ~D

∂t
(2.12)
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∇ · ~D = 0 (2.13)

∇ · ~B = 0 (2.14)

Equation (2.2) can be rewritten as

n = n0 + δnNL. (2.15)

where δnNL represents change in refractive index due to nonlinearity, and by

substituting for n in (2.8), D becomes

D = ε0(n
2
0 + 2n0δnNL)E = ε(ω)E + PNL. (2.16)

ε(ω) = ε0n
2
0, PNL = 2ε0n0δnNL ~E, and δnNL = n2|a|2, where |a|2 stands for

intensity.

Remember, we assumed a source free and nonmagnetic medium, we also as-

sumed that the medium is uniform (i.e homogeneous) and isotropic. Therefore,

since the material property in an isotropic medium is same everywhere within

the medium, then we can solve for the fields in scalar form.

At this point, we can deduce a wave equation for an electromagnetic field

propagating in an isotropic medium based on the aforementioned approximations,

which takes the form

∇2E − µ0ε(ω)
∂2E

∂t2
= µ0

∂2

∂t2
PNL. (2.17)

In order to solve this equation, lets assume a time dependent formulation based

on an envelop function separated from the carriers for both nonlinear polarization

and the fields [22].

E =
1

2
[a(z, t)ei(ω0t−β0z) + c.c.] (2.18)

PNL =
1

2
[P̃NL(z, t)eiω0t + c.c.] (2.19)

6



A(z, ω) =

∫
a(z, t)e−iωtdt (2.20)

ω0 and β0 corresponds to center frequency and propagation constant respectively,

z is the propagation direction and ω̃ = ω − ω0. By substituting for (2.18), (2.19)

and (2.20) in (2.17) and multiplying the left side of the equation by 1
2

∫
dω̃
2π
eiω̃t,

we obtain

1

2

∫
dω̃

2π
eiω̃t[(β(ω)2 − β2

0)A− 2iβ0
∂A

∂z
+
∂2A

∂z2
]ei(ω0t−β0z)

=
µ0

2
[−ω2

0P̃NL + 2iω0
∂P̃NL
∂t

+
∂2PNL
∂t2

]eiωt
(2.21)

β(ω) = ω2µ0ε(ω), and now using slowly varying envelop approximation in both

space and time

|∂
2a

∂t2
| � |ω0

∂a

∂t
| � ω2

0|a| (2.22)

|∂
2a

∂z2
| � |β0

∂a

∂z
| � β2

0 |a| (2.23)

The second order term in left hand side of (2.21) and both first order and

second order terms in right hand side of (2.21) can be neglected, then we have

1

2

∫
dω̃

2π
eiω̃t[(β(ω)2 − β2

0)A− 2iβ0
∂A

∂z
] = −µ0

2
ω2
0P̃NLe

iβ0z (2.24)

The quantity β(ω) is very close to β0 since we are talking about narrow band

frequencies, therefore one can make an approximation

β(ω)2 − β2
0 = (β(ω)− β0)(β(ω) + β0) ≈ 2β0(β(ω)− β0) (2.25)

7



then equation (2.24) becomes

1

2

∫
dω̃

2π
eiω̃t[2β0(β(ω)− β0)A− 2iβ0

∂A

∂z
] = −µ0

2
ω2
0P̃NLe

iβ0z (2.26)

Since we are dealing with a band of frequencies β(ω) 6= β0 everywhere but rather

varies with respect to β0, therefore one can have a Taylors expansion series for

β(ω) around β0.

β(ω) = β0 + (ω − ω0)
∂β

∂ω
|(ω=ω0) +

(ω − ω0)
2

2

∂2β

∂ω2
|(ω=ω0) + .....− iα

2
(2.27)

βn ∼= ∂nβ
∂ωn
|(ω=ω0), for n = 1,2,3,.....

We added a loss term α because the pulse experience some losses as it prop-

agates along the fiber. Also as mentioned previously PNL = 2ε0n0n2|a|2E =

2ε0n0n2|a|2aei(ω0t−β0z), by substituting for PNL and multiplying both sides of the

equation by i
2β0

in (2.26), we obtain

∫
dω̃

2π
eiω̃t[

∂A

∂z
+ i(β1ω̃ +

β2
2
ω̃2 + ...)A+

α

2
A] = −iω

2
0

β0
µ0ε0n0n2|a|2a (2.28)

1

c
=
ω0

β0
µ0ε0n0 (2.29)

by substituting for (2.29) in (2.28) and solving the equation, we have

∂a

∂z
+ β1

∂a

∂t
− iβ2

2

∂2a

∂t2
+
α

2
a+ i

ω0

c
n2|a|2a = 0 (2.30)

So far we have been dealing with the pulse evolution along propagation di-

rection z, now lets include a transverse function U(x, y) which gives informa-

tion about the modal distribution of the field. The field now takes the form

8



a(z, t)ei(ω0t−β0z)U(x, y). An important approximation worth mentioning here, is

that the mode shape is independent of frequency. By including the tranverse func-

tion U in equation (2.30), multiplying by U∗ and integrating over the transverse

coordinate (dx, dy), we obtain

∫ ∫
dxdy[

∂a

∂z
+ β1

∂a

∂t
− iβ2

2

∂2a

∂t2
+
α

2
a] + i

ω0

c
n2|a|2a

∫ ∫
|U |4dxdy∫ ∫
|U |2dxdy

= 0 (2.31)

Lets write our equation interms of normalized power rather than intensity, such

that |ap|2 =
∫ ∫
|a|2dxdy. After substitution, (2.31) yields

∂ap
∂z

+ β1
∂ap
∂t
− iβ2

2

∂2ap
∂t2

+
α

2
ap + iγ|ap|2ap = 0 (2.32)

γ =
n2ω0

cAeff
Aeff =

(
∫ ∫
|U |2dxdy)2∫ ∫
|U |4dxdy

(2.33)

Equation (2.32) is referred to as Nonlinear Schrodinger Equation, where ∂ap
∂z

gives information about the pulse envelop evolution along the fiber, γ is the

nonlinearity parameter, Aeff is the effective area within which the light is confined

inside the fiber, c is speed of light, β1 is the group delay, β2 is the group velocity

dispersion and α represents losses.

2.2 Linear pulse propagation

When the intensity of a propagating signal in an optical fiber is insufficient to

trigger a nonlinear phenomenon, this type of propagation is term Linear Propa-

gation. Such type of propagation is associated with attenuation and Dispersion

phenomenon, which will be explained in details later in this chapter.

9



2.2.1 Dispersion

Dispersion is an effect originated from the frequency dependence of the refractive

index of a medium, and tend to disperse a pulse propagating inside the medium.

There are several types of dispersion namely Modal, Inter-modal and Chromatic

Dispersion. However, in this thesis our focus will be mainly on Chromatic Dis-

persion. In this regard, dispersion is classified into Material and Waveguide dis-

persion.

Material dispersion is associated with the frequency dependence of the re-

fractive index of the bulk material, while the effective index change due to modal

confinement is referred to as waveguide dispersion [23] which may vary depending

on the size and geometry of the waveguide.

Far from the medium resonances, the refractive index variation can be obtained

using Sellmeier equation [20]

n2 = 1 +
m∑
i=1

Biω
2
i

ω2
i − ω2

(2.34)

where ωi and Bi are the resonance frequency and strength of the ith resonance

respectively.

Using Taylor expansion series around the center frequency ω0 as shown above in

equation (2.27), we can obtain the propagation constant β

βn ∼= ∂nβ
∂ωn
|(w=w0) for n= 1,2,3,.....

β1 is related to the group velocity as,

β1 =
1

vg
=
ng
c

=
1

c
(n+ ω

∂n

∂ω
) (2.35)

where β2 stands for Group Velocity Dispersion (GVD), which shows frequency

dependence of the group velocity.

10



β2 =
∂

∂ω
[

1

vg
] =

1

c
(2
∂n

∂ω
+ ω

∂2n

∂ω2
) (2.36)

Higher order β parameters can also be observed, but their contribution is quite

negligible unless in the presence of extremely short pulses or while pumping at β2

= 0 (i.e. the zero dispersion wavelength (ZDW)). However, the term β2 happens

to be very crucial because its sign determines the dispersion regime. Where

β2 > 0 and β2 < 0 corresponds to Normal and Anomalous dispersion regimes

respectively. In the anomalous dispersion regime a negative frequency chirping

is observed while in the normal dispersion regime is vice verse. Either way, the

pulse experiences broadening in the temporal domain.

It is important to know that, there is a certain characteristic length at which

dispersion/nonlinear phenomenon is manifested.

LD =
T 2
0

|β2|
LNL =

1

γP0

(2.37)

LD and LNL are the dispersion and nonlinear length respectively, where T0 is the

pulse width, β2 is the group velocity dispersion, γ is nonlinear parameter and P0

is the peak power.

Now assuming loss α = 0 in the fiber and L is the fiber length, then we have

3 possibilities:

L� LD, L� LNL Fiber is just a medium to transport light.

L� LD, L� LNL Dispersion becomes dominant (pulse broadening).

L� LD, L� LNL Self Phase Modulation (and other nonlinearities).

11



2.2.2 Group velocity dispersion (β2)

The preceding subsection showed how the combined effect of Nonlinearity and

that of Group Velocity Dispersion(GVD) on an optical signal propagating inside

a fiber, can be studied via solving an envelope equation of the propagating signal.

We have also seen that, the sign of β2 determines the two dispersion regimes,

namely normal and anomalous dispersion regime (for positive and negative signs

respectively). Different frequency chirping behavior as well as pulse broadening

and compression occurs, depending on the input pulse parameters as well as the

dispersion regime of the optical waveguide.

Now assuming a pulse width greater than 5 ps, then we can use the Nonlinear

Schrodinger Equation in the form

∂ap
∂z

+
α

2
ap − i

β2
2

∂2ap
∂T 2

= iγ|ap|2ap (2.38)

where ap is the amplitude of the slowly varying envelope, T = t− z
vg

.

Let us introduce a normalized amplitude ’U’ as well as a normalized time scale

’τ ’ to the input pulse width, where ap(z, τ) =
√
P 0 exp−αz

2
U(z, τ) and τ = T

T0
.

Now by substituting these parameters into (2.38), and remember the effects of

GVD on an optical signal propagating inside a linear medium [24–28] can be

studied by setting α and γ (i.e. the loss and nonlinearity terms) to 0, then we

have

∂U

∂z
= −iβ2

2

∂2U

∂T 2
(2.39)

by taking the Fourier transform of the normalized amplitude ’U’ and solving

(2.39) we obtain

Ũ(z, ω) = Ũ(0, ω)ei
β2
2
ω2z (2.40)

This is the solution in the Fourier domain for the Nonlinear Schrodinger Equa-

tion when only the dispersion effect is present. The first term on the right is the
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initial amplitude spectrum of the pulse, while the second term with the exponen-

tial is responsible for phase change, hence, frequency chirping. Note that, during

GVD the amplitude spectrum of the pulse remains unchanged, only different fre-

quency components undergo a phase change. Furthermore, the spectrum in the

presence of GVD does not get modified, however, since different frequency com-

ponents will undergo a phase change, the function of the pulse gets modified, as

a result, the amplitude function or the pulse shape gets modified. One can take

an Inverse Fourier transform of (2.40) in order to find out what the pulse shape

would be in time domain. The inverse Fourier transform is given as

U(z, T ) =
1

2π

∫ +∞

−∞
Ũ(0, ω)exp(i

β2
2
ω2z−iωT )dω. (2.41)

For instance, consider a Gaussian pulse where the incident field takes the form [28]

U(0, T ) = exp[− T 2

2T 2
0

] (2.42)

for a Gaussian pulse TFWHM = 2(ln 2)
1
2T0 ≈ 1.665T0.

By substituting for the Gaussian pulse in (2.41) and solving the integral we obtain

U(z, T ) =
T0

(T 2
0 − iβ2z)

1
2

exp[− T 2

2(T 2
0 − iβ2z)

] (2.43)

T1(z) = T0[1 + (
z

LD
)2]

1
2 (2.44)

Equation (2.44) means at z = LD the pulse broadens by a factor of
√

2, at

LD � z the pulse undergoes no broadening at all, while at LD � z a severe

broadening of the pulse is observed in time domain. By comparing Eqs (2.42) to

(2.43) it can be seen that although the incident pulse is unchirped, the transmitted

pulse becomes chirped. And this can be clearly seen by writing U(z, T ) as

U(z, T ) = |U(z, T )|exp[iφ(z, T )] (2.45)
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where

φ(z, T ) = −
sgn(β2)(

z
LD

)

1 + ( z
LD

)2
T 2

2T 2
0

+
1

2
tan−1(sgn(β2)

z

LD
). (2.46)

The phase varies quadratically across the pulse at any distance z. The frequency

modulation or the frequency chirping δω can be obtained by taking the derivative

of the phase variation as a function of time as shown below

δω = − ∂φ
∂T

=
sgn(β2)(

z
LD

)

1 + ( z
LD

)2
T

T 2
0

(2.47)

Figure 2.1: (a) and (b)shows normalized intensity broadening and frequency
chirping as a function of time respectively for a Gaussian pulse at z = 2LD
and z = 4LD. Note dashed lines represents input profiles at z=0 [29]

As can be seen in Fig 2.1 (a), the incident pulse undergoes a temporal broad-

ening as it propagates along the fiber. And (b) shows the frequency chirping

where we have a positive or negative values for positive and negative frequency

chirping.

As we have seen for an initially unchirped Gaussian pulse in (2.42), GVD

induced broadening does not depend on the sign of β2 . Thus, the pulse broadens
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equally by the same magnitude in both normal and anomalous dispersion regimes

of the fiber with a given dispersion length of LD. However, this behavior changes

when the incident pulse is initially chirped [27]. An initially chirped incident

Gaussian pulse can be expressed by modifying equation (2.42) to include the

chirping parameter ’C’ as

U(0, T ) = exp[−(1 + iC)

2

T 2

2T 2
0

]. (2.48)

Using the same analysis as in the case of an initially unchirped Gaussian pulse

(as shown previously) for the initially chirped one, and replacing the initial ampli-

tude of the former by the latter, one will see that the frequency increases linearly

from the leading to the trailing edge (up-chirp) for C > 0. Meanwhile, the oppo-

site occurs (down-chirp) for C < 0. It is common to refer to the chirp as being

positive or negative, depending on whether C is positive or negative.

Moreover, similar scenario holds for other kind of pulses (such as hyperbolic

secant pulses) for the initially chirped and unchirped conditions. Also the effects

of higher order dispersion (such as third order dispersion and so on) should be

considered and be included in the Nonlinear Schrodinger Equation, especially

when pumping in/near the zero dispersion wavelength (i.e. where β2 ≈ 0) or

when using an ultra short pulse (with width T0 < 1ps).

2.3 Nonlinear pulse propagation

Nonlinear effects in optical fiber occur either due to the medium refractive index

dependence on intensity (which is referred to as Kerr effect) or due to inelas-

tic scattering phenomena [30]. The power dependence of the refractive index

is responsible for Kerr effect. The Kerr effect manifest itself in three different

nonlinear effects namely Cross Phase Modulation (CPM), Self Phase Modulation

(SPM) and Four Wave Mixing (FWM) depending upon the power of the inci-

dent pulse. The inelastic scattering phenomena comes into play at high power
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level, inducing stimulated effects such as Stimulated Raman Scattering (SRS)

and Stimulated Brillouin Scattering (SBS). The main difference between Stim-

ulated Raman Scattering (SRS) and Stimulated Brillouin Scattering (SBS) is

that, the phonons (acoustic) generated in SBS are coherent, consequently leads

to macroscopic acoustic wave in the fiber whereas the phonons (optical) in SRS

are incoherent, hence, no macroscopic wave is generated [30].

2.3.1 Self Phase Modulation (SPM)

An astonishing manifestation of Kerr effect in nonlinear optical media occurs

through self phase modulation (SPM), such a phenomenon leads to spectral

broadening of optical signal [31–35]. In order to have a better insight of SPM,

a clear understanding of nonlinear phase shift is absolutely crucial. Similar to

equation (2.39), lets assume there is no loss in the medium (i.e. α = 0) as well

as GVD is 0 but nonlinearity exists in the fiber (i.e. γ 6= 0), then we have

∂U

∂z
=
ie−αz

LNL
|U |2U (2.49)

where α is fiber loss and LNL = 1
γP0

which is the nonlinear length.

Equation (2.49) can be solved by using U = V eiφNL and equating the real and

imaginary parts so that

∂V

∂z
= 0

∂φNL
∂z

=
e−αz

LNL
V 2. (2.50)

As can be seen V remains constant across the fiber length, while the phase equa-

tion can be integrated analytically to get a general solution

U(L, T ) = |U(0, T )|eiφNL(L,T ) (2.51)

then

φNL(L, T ) = |U(0, T )|2Leff
LNL

(2.52)
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where U(0,T) is the initial amplitude at z = 0 and Leff = [ (1−e
−αL)
α

] is the effective

length of a fiber, which is smaller than the initial length L because of losses in

the fiber. However, in a lossless medium (i.e.α = 0), L = Leff . It is apparent

from (2.52) that SPM yields an intensity dependent phase shift. The maximum

phase shift occurs at the center of the pulse at (T = 0) which corresponds to

U(0, 0) = 1, where

φmax =
Leff
LNL

(2.53)

The time dependence of φNL leads to spectral changes induced by SPM. Similar

to (2.47), the temporally varying phase implies that the instantaneous optical

frequency differs across the pulse from its central value ω0. The difference δω

(frequency chirp) is given by

δω(T ) = −∂φNL
∂T

= −Leff
LNL

∂|U(0, T )|2

∂T
(2.54)

The frequency chirp induced by SPM leads to generation of new frequency compo-

nents as the pulse propagates along the fiber length which broadens the spectrum

of the initially unchirped pulse.

It is also important to mention that the output spectrum depends on the

input pulse shape as well as the initial chirping parameter of the pulse. For

instance, a pulse with steep leading and trailing edge such as a Super Gaussian

pulse, where the frequency range of the SPM induced chirp is larger compared

to that of a normal unchirped Gaussian pulse. An initial frequency chirp can

also lead to drastic changes in the SPM broadened pulse spectrum. Chirping

plays a critical role depending on the sign of the chirping parameter C. For

C > 0 spectral broadening increases and the oscillatory structure in the output

spectrum becomes less pronounced. However, C < 0 leads to spectral narrowing

through SPM because the two chirp contributions are of opposite signs.
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Figure 2.2: SPM-broadened spectra for an unchirped Gaussian pulse. Spectra
are labelled by the maximum nonlinear phase shift φmax.

So far in this section we have assumed relatively long pulses (T0 <50 ps) propa-

gating along the fiber, for which the dispersion length is much larger compared to

the fiber (L) and nonlinear length (LNL). As pulses become shorter, the disper-

sion length becomes comparable to the fiber length, then it becomes necessary

to consider the combine effects of GVD and SPM [35]. An interplay between

SPM and GVD in the anomalous dispersion regime of an optical fiber leads to a

phenomenon where the pulse propagates as an optical soliton [36,37] (which will

be discussed later in this chapter). However, the combined effect of SPM and

GVD in the normal dispersion regime leads to enhanced pulse broadening rate

compare to that of GVD alone.

2.3.1.1 Soliton

Assuming we maintain a certain pulse width and power sufficient enough to trig-

ger nonlinearity in an optical fiber, and pumping in the anomalous dispersion

regime. An interplay between SPM induced frequency chirping (which is linear

and positive) and that of GVD (which is negative) balanced each other, which
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leads to pulse propagating extremely long distances without any distortion. This

phenomenon is referred to as SOLITON [37].

Again lets consider the NLSE equation for a better understanding of the soliton

dynamics, but now assuming dispersion contribution is present where as that of

loss remains 0. By introducing some normalized parameters

ξ =
z

LD
, τ =

T

T0
, N2 =

LD
LNL

=
γP0T

2
0

|β2|
(2.55)

then NLS takes the form:

∂U

∂ξ
− isgn(β2)

1

2

∂2U

∂τ 2
+ iN2|U |2U = 0 (2.56)

The term N is defined as Soliton number or Order of a soliton, which governs

the relative importance of the GVD and SPM effects along fiber upon pulse

propagation. SPM related effects dominate for N >> 1 while GVD dominates

for N << 1, and for N ≈ 1 both SPM and GVD have equal contribution to the

propagating pulse.

Now lets define U = u
N

, and assuming pumping in the anomalous regime i.e.

β2 < 0, then sgn(β2) = −1 by substituting for these terms in equation (2.56) we

have

∂u

∂ξ
+ i

1

2

∂2u

∂τ 2
+ i|u|2u = 0. (2.57)

This needs to be solved using the inverse scattering method when N > 1 however,

for our case where N = 1 this equation can be solved rather easily since we are

looking for a phenomenon where the pulse shape remains intact (i.e. undistorted).

One can solve this equation by assuming

u(ξ, τ) = V (τ)eiφ(ξ,τ) (2.58)
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where V is a function of time but doesn’t change with propagation length and φ

is a phase constant which is both a function of time and space.

By substituting (2.58) into (2.57), separating real and imaginary parts, we will

be left with two equations

φ(ξ, τ) = −Kξ + δτ for δ = 0 then φ(ξ, τ) = −Kξ (2.59)

K stands for phsae constant and δ is the frequency shift. And the other equation

(i.e. for V ) can be obtained as

d2V

dτ 2
= 2V (K − V 2) (2.60)

the above equation can be solved by multiplying both sides by 2dV
dτ

and then

integrate it as a function of τ we have

∫
2
dV

dτ

d2V

dτ 2
dτ =

∫
2V (K − V 2)2

dV

dτ
dτ (2.61)

let

I =

∫
2
dV

dτ

d2V

dτ 2
dτ

using integration by part I can be solved as

I = 2(
dV

dτ
)2 − I

then

I = (
dV

dτ
)2

by substituting for I in (2.61) we have

20



(
dV

dτ
)2 =

∫
4V (K − V 2)dV

= 2KV 2 − V 4 + C

C is an integration constant, and can be obtained by applying boundary condition

V = 0,
dV

dτ
= 0, τ →∞

C = 0

Finally we obtain a solution to (2.61) as

(
dV

dτ
)2 = V 2 − V 4,

dV

dτ
= V
√

1− V 2

after integration we have

V = sech(τ) (2.62)

We obtain a final solution for the NLS equation as

u(ξ, τ) = sech(τ)e−
iξ
2 (2.63)

Remember we assumed LNL = LD which corresponds to N = 1 and this is

referred to as fundamental soliton, hence the above equation is an excellent mani-

festation of the pulse shape of a fundamental soliton. An important phenomenon

where higher order solitons breaks into fundamental solitons generating dispersive

waves, is termed Soliton fission [38].

2.3.2 Cross Phase Modulation (XPM)

So far we have considered just a single signal propagating inside the optical fiber,

and we have seen that the refractive index depends on the intensity inside the
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fiber. Assuming rather than a single signal, we have multiple signals propagating

simultaneously inside the optical fiber. Two different phenomena occur namely,

Cross phase modulation (XPM) and Four wave mixing (FWM). Both of these

phenomena are related to the third order susceptibility term χ3. In this subsection

we will be discussing XPM whereas FWM will be discussed in the subsequent

subsection. XPM is often accompanied by SPM, because both the signal intensity

itself and that of the co propagating signals contributes to the nonlinear refractive

index modulation. [39].

Assuming we have an electric field which has two frequency components:

E = E1e
iω1t + E2e

iω2t (2.64)

by substituting for the electric field into the polarization expression the nonlinear

polarization term (PNL) becomes

PNL = PNL(ω1)e
iω1t + PNL(ω2)e

iω2t + PNL(2ω1 − ω2)e
i(2ω1−ω2)t + ... (2.65)

where

PNL(ω1) = χ3{|E1|2 + 2|E2|2}E1

PNL(ω2) = χ3{|E2|2 + 2|E1|2}E2

Because of these nonlinearities, the change in refractive index ∆nj at any fre-

quency j takes the form

∆nj ≈ n2{|Ej|2 + 2|E3−j|2}. (2.66)

The first term in above equation represents the contribution of SPM and second

term that of XPM.The most important thing to note here is that the change in

refractive index due XPM has an enhancement factor of 2 compared to that of

SPM, which indicates that XPM is twice as effective as SPM for the same amount
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of power. Remember in a case where we have a propagating signal, the change

in phase is caused by the signal itself (i.e. via SPM). However, in the presence

of a co-propagating signal, the change in phase is not only caused by the signal

itself, but rather due to both the signal and the co-propagating signal. And this

phenomenon is referred to as Cross Phase Modulation (XPM). The nonlinear

phase change can be written as

φNL =
ωj
c

∆njz, where j = 1, 2, ...

.

In the absence of XPM that is when SPM acts alone, the induced spectral

broadening is symmetric in shape, however, when there is a group velocity mis-

match between the signals, the combined effects of SPM and XPM results in an

assymmetric spectral broadening.

Similarly, the field distribution in XPM can be written as

Ej = Uj(x, y)aj(z)e−iβ0jz (2.67)

by following the same procedure as we did previously for a single propagating

signal, the NLS takes the form

∂aj
∂z

+ β1j
∂aj
∂t
− iβ2j

2

∂2aj
∂t2

+
αj
2
aj = −in2ωj

c
{fjj|aj|2 + 2fjk|ak|2}aj (2.68)

The term fjk is referred to as the overlap integral, which is given by

fjk =

∫ ∫
|Uj(x, y)|2|Uk(x, y)|2dxdy∫ ∫

|Uj(x, y)|2dxdy
∫ ∫
|Uk(x, y)|2dxdy

(2.69)

for

j = k,
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fjk =
1

Aeff

then the NLS equation finally becomes

∂aj
∂z

+ β1j
∂aj
∂t
− iβ2j

2

∂2aj
∂t2

+
αj
2
aj = −iγ{|aj|2 + 2|ak|2}aj (2.70)

Note: XPM is effective only when the interacting signals superimpose in time.

2.3.3 Four Wave Mixing (FWM)

This phenomena is analogous to inter channel mixing or inter modulation prod-

ucts in electronic systems. We know that when an amplifier goes into saturation,

if you put two frequencies inside the amplifier a third frequency is generated.

Exactly same phenomena occurs in optical fibers which originates from the third

order susceptibility χ3. Now consider the nonlinear polarization term PNL for

three simultaneously propagating signals of different center frequencies as

PNL = ε0χ
3...E1E2E3 (2.71)

The three frequencies ω1, ω2 and ω3 co-propagating inside the fiber will generate

a fourth frequency ω4

ω4 = ω1 ± ω2 ± ω3

k4 = k1 ± k2 ± k3

where k and ω stands for phase constant and frequency respectively, several fre-

quency and phase combinations are possible. However, effective combination

during FWM process depends on the phase mismatch between electric field and
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polarization components. Significant FWM occurs only if the phase mismatch

nearly vanishes [40]. In quantum-mechanical context, FWM occurs when pho-

tons from one or more waves are annihilated and new photons are created at

different frequencies such that net energy and momentum are conserved during

the interaction.

There are two cases or types of FWM:

ω4 = ω1 + ω2 + ω3

ω4 + ω3 = ω1 + ω2

In the first case, three photons combine their energy to generate a new photon.

And when the frequencies ω1 = ω2 = ω3, the process leads to a phenomenon

known as third harmonic generation [40]. In general, it is difficult to satisfy

the phase-matching condition for such processes to occur in optical fibers with

high efficiencies. However, if ω1 = ω2 6= ω3 it is called frequency conversion.

In the second case, two photons of frequency ω1 and ω2 are annihilated, while

two photons of frequency ω3 and ω4 are generated simultaneously. Note that the

phase matching condition for this process is ∆k = 0.

In general case in which ω1 6= ω2, one must launch two pump beams for

FWM to occur, however, if ω1 = ω2 single photon can be used to initiate FWM,

which is termed Degenerate FWM and this is quite useful for optical fibers.

[40]. For instance, a strong pump at frequency ω1 creates two sidebands located

symmetrically at frequencies ω3 and ω4. Where ω3 and ω4 corresponds to low and

high frequency sidebands respectively.

2.3.4 Stimulated Raman Scattering (SRS)

Raman effect was discovered by Raman in 1928 [41], he articulated that Raman

scattering can lead to transfer of a small fraction of power (typically on the

order ∼ 10−6) from one optical signal to another, hence, leading to the signal
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frequency downshift by certain amount depending on the vibrational modes of

the medium [42]. From a practical point of view, the imposed light on the material

serves as a pump, which then leads to emission of a frequency modulated light

known as Stokes wave, which is indeed a vital spectroscopic tool. Moreover, it

can be elucidated from quantum mechanical perspective as energy conversion by

a molecule as it makes a transition from an excited virtual state of higher energy

to a vibrational state of lower energy as shown in Figure 2.3.

Figure 2.3: Molecule transition. A pump of photon energy h̄ωp excites the
molecule to a higher energy level (i.e. virtual state shown by a dashed line). Con-
sequently, a photon of reduced energy h̄ωs is generated as the molecules makes a
transition to the vibrational states.

For CW and quasi-CW signals, an expression for the initial growth of the

Stokes wave is given by [43]

dIs
dz

= gRIpIs (2.72)

where Is is the Stokes intensity, Ip is the pump intensity and gR (can also be

written as Ω) is the Raman gain coefficient, where gR is related to imaginary

part of the third order nonlinear susceptibility. The Raman gain coefficient gR
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can further be explained as the difference in frequency between the pump and

Stokes waves, that is Ω ≡ ωp − ωs, where ωp and ωs represents pump and Stokes

frequency respectively. In general, Raman gain depends on the core composition

as well as the state of polarization of both the pump and Stokes waves.

As pump signal is launched into an optical fiber (assuming CW), the pump

power doesn’t remain constant upon propagation along the fiber, therefore, equa-

tion (2.72) should be modified to include a loss. Also the nonlinear interaction

between the pump and stokes should be taken into consideration.

dIs
dz

= gRIpIs − αsIs (2.73)

dIp
dz

= −ωp
ωs
gRIpIs − αpIp (2.74)

Where αp and αs stands for fiber losses at the pump and Stokes frequencies

respectively.

Although it is absolutely vital to include pump depletion for a complete de-

scription of SRS, however, it can be neglected for the purpose of estimating the

Raman threshold [42], hence, by neglecting the first term in equation (2.74) and

solve for Ip, then by substituting for Ip in (2.73) we get

dIs
dz

= gRIp(0)exp(−αpz)Is − αsIs (2.75)

where Ip(0) is the incident pump intensity at z = 0, and the solution to this

equation is

Is(L) = Is(0)exp[gRIp(0)Leff − αsL] (2.76)

L is the fiber length and Leff is the effective length of the fiber. And an expression

for the Stokes power is obtained from the above equation as
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Ps(L) = Ps(0)exp[gRI0Leff − αsL] (2.77)

The Raman threshold is defined as the input pump power at which the Stokes

power becomes equal to the pump power at the fiber output [43] that is

Ps(L) = Pp(L) = Pp(0)exp(−αpL) (2.78)

where P0 = I0Aeff is the input pump power and Aeff is the effective core area.

And by assuming αP ≈ αs the threshold condition becomes:

Ps(0)exp[gRPp(0)
Leff
Aeff

] = Pp(0) (2.79)

The above equation provides the critical pump power required to reach the

Raman threshold. Once the threshold is reached, rapid power transfer from

pump to Stokes take place. In fact, in the absence of losses in the fiber, a

complete transfer of pump power is expected, according to theoretical predictions.

However, in practice, when the power of the generated Stokes wave is large enough

to satisfy (2.79), it can serve as a pump, thereby generating second order Stokes

wave [43]. Consequently, depending on the input pump power, multiple Stokes

wave can be generated due to cascaded SRS.

2.3.5 Stimulated Brillouin Scattering (SBS)

Stimulated Brillouin Scattering (SBS) is a nonlinear phenomena occurring in op-

tical fibers at much lower input power compared to Stimulated Raman Scattering

(SRS). Similarly, once the threshold is reached for SBS, Stokes waves are gener-

ated whose frequency is downshifted from that of the incident light [44]. However,

the generated Stokes wave propagates in backward direction, in contrast to SRS

that can occur in both directions. Furthermore, there are several differences be-

tween SBS and SRS, SBS seize to occur for short pulses, also its threshold is
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determined by the spectral width of the pump signal. As mentioned previously

SBS is associated with acoustical phonons whereas SRS is associated with optical

phonons.

The acoustic wave produced in SBS leads to change in density of the material,

which in turn alters the medium’s refractive index. As a result, the pump light

scatters via Bragg diffraction due to index grating induced by the pump [45].

Moreover, according to quantum mechanical perspective, such scattering can be

viewed as an annihilation of a pump photon which in turn simultaneously gener-

ates a Stokes wave and an acoustic phonon.

2.4 Supercontinuum generation in optical fibers

So far we have seen the basic physical phenomena that contributes to spectral

broadening in optical fibers, as outlined in the preceding sections of this chapter.

Although it is often convenient to describe supercontinuum generation in terms of

the group velocity dispersion regimes, namely normal and anomalous dispersion

regimes. However, supercontinuum generation is much more complicated than

that, hence, pulse parameters also plays an extremely important role when it

comes to spectral broadening. The goal of this section is to give a further insight

on some of the phenomena or interactions discussed in the preceding sections

in order to elucidate the commonly observed features of fibre supercontinuum

generation.

Herein, we consider two possible pump regimes in which the supercontinuum

generation is clearly distinguished, these are the short (i.e. femtosecond) and

long (i.e. nanosecond, picosecond and continuous wave) pump pulses [46].
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2.4.1 Supercontinuum generation in short pulse regime

To have a better insight of supercontinuum generation in the short pulse regime,

it is crucial to consider the case of pumping in the anomalous dispersion regime

close to the zero dispersion wavelength. Under typical pumping conditions, the

power of the pump pulses is high enough for the input pulses to be considered as

solitons of order N >> 1 which is referred to as higher order soliton. However, the

incident pulses undergo perturbation due to some physical effects such as higher

order dispersion, self steepening and stimulated raman scattering, which leads to

breaking up of the higher order soliton into fundamental solitons, and this phe-

nomenon is referred to as SOLITON FISSION [47]. Once soliton fission occured,

energy of the solitons ejected from the higher order soliton is shed through gen-

eration of dispersive waves in the normal dispersion regime. Consequently, such

dispersive wave components are responsible for spectral broadening in the short

wavelength regime. While further spectral broadening in the long wavelength

regime is attributed to Raman soliton self-frequency shift, and in some cases,

cross-phase modulation between dispersive waves and Raman solitons.

Observation of such processes is not apparent via simply measuring the spec-

trum at the fibre output, however, manifestation of such processes is quite feasible

via numerical modelling. Below in Figure 2.4 we have a very good example of a

numerical result illustrating both the effects of soliton fission as well as dispersive

waves generation.
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Figure 2.4: a) and b) density plot representations of supercontinuum generation
in the femtosecond regime in spectral and time domain respectively. The plots
highlight the point of soliton fission, the characteristic features of dispersive wave
radiation, and the frequency and time-domain evolution of an ejected soliton
undergoing the Raman soliton self-frequency shift.

These simulations correspond to the case of pumping in the anomalous dis-

persion regime of a PCF with a secant hyperbolic pump pulses of 50fs duration

(FWHM) and 10kW peak power at 835nm in a PCF with zero dispersion wave-

length around 780nm [46].

We can also define a characteristic length scale to describe the point at which

the soliton fission starts or takes place, which is coined fission length and is given

by Lfiss ≈ LD/N =
√
LDLNL. Approximately after such a propagation distance,

the split of the initial pulse begins.

So far we have assumed the input pulse is propagating in the anomalous dis-

persion regime, in the case of propagation in the normal dispersion regime the

initial spectral broadening is mainly due to self phase modulation. However, for
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pumping in the normal regime but near the zero dispersion wavelength (ZDW),

again the initial broadening is by SPM, but in this case some of the spectral con-

tents are tranfered into the vicinity of the ZDW and into the anomalous regime,

and once this happens, a spectral broadening similar to that of pumping in the

anomalous regime takes place [46].

2.4.2 Supercontinuum generation in long pulse regime

For long pump pulses in the anomalous dispersion regime, the soliton order be-

comes very large (i.e. N >> 10), hence soliton fission becomes less important,

because the characteristic fission length required for soliton fission to occur scales

with pump pulse duration. Therefore, at the initial propagation stage, the dom-

inant contribution is by spontaneous modulation instability (MI) and four wave

mixing (FWM). Under these conditions, the input pulse breaks into multiple

sub-pulses in the temporal domain. The subsequent evolution of these sub-pulses

leads to spectral broadening, hence supercontinuum generation via several mech-

anisms such as dispersive wave generation and Raman self frequency shift. For

pumping with long pulses in the normal dispersion regime, the initial spectral

broadening is attributed to four wave mixing and Raman scattering.

2.5 Numerical modelling

Generally, there isn’t any analytical solution to the nonlinear schrodinger equa-

tion (NLSE), even numerical solutions to NLSE are hard to implement due to

dimensionality of the problem. Therefore in order to have an approximate so-

lution to the scalar form of the NLSE, approximations based on experimental

results and propagation conditions are extremely crucial.

This section aims at familiarizing us with one of the most powerful technique in

numerically solving the NLSE, known as the split-step Fourier method (SSFM).
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The SSFM happens to be most preferable technique due to its easy implementa-

tion and speed compared to other numerical techniques such as finite difference

time domain (FDTD). SSFM provides solution using pseudo-spectral methods

whereas finite difference method solves the Maxwell’s wave equation in time do-

main (using the assumption of paraxial approximation) which is slower by an

order of magnitude compared to SSFM [48]. Another significant distinction be-

tween finite difference methods and SSFM is that, the former can account for both

forward and backward propagating waves, because it deals with all the electro-

magnetic components. However, the NLSE in the latter just deals with forward

propagating waves. Hence, it is quite apparent that the SSFM works efficiently

and accurately for describing pulse propagation in microstructured fibers.

2.5.1 Split-step Fourier method (SSFM)

∂a

∂z
= [−α

2
−

∑
m=2

im−1

2m−1
βm

∂m

∂tm
]a+ iγ[|a|2 +

i

ω0a

∂|a|2a
∂t

]a− TR
∂|a|2

∂t
a (2.80)

The above equation is referred to as Generalized nonlinear Schrodinger equa-

tion (GNLSE), where the first part on the right represents dispersion and losses,

the second part represents nonlinearity and the third part represents Raman ef-

fects. The split-step Fourier method as the name implies, is an iterative process

which presents a simple solution to the NLSE by propagating the pulse envelope

for small distances step by step throughout the entire length of the fiber.

Equation (2.80) above can be represented with two distinct operators D̂ and N̂

which stands for dispersion(including loss) and nonlinear operators respectively

[48].

D̂ = −α
2
−

∑
m=2

im−1

2m−1
βm

∂m

∂tm

N̂ = iγ[|a|2 +
i

ω0a

∂|a|2a
∂t

− TR
∂|a|2

∂t
]
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Now the GNLSE takes the form

∂a(z, t)

∂z
= (D̂ + N̂)a(z, t) (2.81)

Since the SSFM is an iterative process, therefore solution to the NLSE at any

step h of the fiber/waveguide becomes

a(jh, t) = exp[D̂ + N̂ ]a((j − 1)h, t) (2.82)

where j is an integer (j = 1, 2, ...). Note that the operator N̂ multiplies the field

solution a(z, t) whereas the operator D̂ is a differential that operates on a(z, t),

hence complicates and requires more time for simulation. For the sake of sim-

plicity, by taking Fourier transform of the operator D̂, the derivatives in time

domain transforms into multiplication in the frequency domain thereby minimiz-

ing computational time. The operator D̂ then becomes

D̂(iω) ≡ F [−α
2
−

∑
m=2

im−1

2m−1
βm

∂m

∂tm
] = −α

2
−

∑
m=2

βm
im−1

2m−1
(iω)m

The solution to the propagating pulse envelope A(z, t) per spatial step h at step

jh for the entire fiber length is given by the expression

a(jh, t) ≈ F−1[exp(hD̂(iω))F [exp(hN̂)a((j − 1)h, t)]] (2.83)

The corresponding procedure during each single step is illustrated in the figure

below :

As can be seen from figure (2.5) the incident pulse a(0, t) enters the fiber of

length L at z = (j − 1)h. The length L is split into SL = L/h steps of length h.

The nonlinearity is calculated at step midpoint 1 while dispersion is calculated at

point 2 (z = jh) that is over step h in the frequency domain. The iterations are

repeated until the fiber length L in order to obtain a corresponding final solution

at the fiber end.
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Figure 2.5: The SSFM for a single iteration of step h starting at z=(j-1)h.

2.5.2 Windowing and sampling (temporal/spectral)

Fast Fourier transform (FFT) provides a robust approach for computing Fourier

transforms, however, it does pose restrictions on the sample array format [48].

Therefore, number of points N = 2m is absolutely critical for FFT of a sample

array a(z, t) for each value of z. It is also crucial that the starting array a(0, t)

samples the initial pulse with same intensity and phase, also sufficient temporal

width and resolution are absolutely vital in order to prevent wrapping and aliasing

errors. Hence, proper diligence is required when deciding the format, length, and

resolution of the complex array. Adequate sampling rate can be determined by

Nyquist theorem, which states that the minimum sample frequency is twice the

highest frequency sinusoidal component of significant amplitude.

For an accurate sampling using the SSFM, one has to chose a temporal reso-

lution δt = 1/(2∗4∗∆ν) (where ν represents spectral width), such that the total

temporal window N ∗ δt will be at least twice the final pulse temporal FWHM

(∆t) at z = L. Similarly, the corresponding spectral resolution should be deter-

mined by δν = 1/N ∗ δt. Then determine if the corresponding spectral window

N ∗ δν will be at least twice the final spectral FWHM (∆ν) at z = L. Finally,

the choice for the value of N is at the expense of the computation time, hence

reasonable value for N should be chosen for a better result.
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2.5.3 Spatial step size

The spatial step size h for the SSFM can be chosen by first computing the dis-

persion length LD and nolinear lenght LNL (which are well discussed in chapter2)

to the fiber length L. For situations where, LD � L� LNL or LNL � L� LD,

the NLSE can be solved analytically as discussed in the preceding chapter. If L

is comparable to LD and LNL, a smaller value for h can be chosen. A value for

h should be chosen such that λ0 < h < LD and λ0 < h < LNL. The step-size

should be considerably smaller than both LD and LNL for the solution via the

SSFM to be meaningful. It is also important to compute the spectral energy

before and after propagation, again h can be made small if the energies are not

approximately equal.

2.5.4 Errors associated with SSFM

So far we have seen the necessity for proper choice of step-size and tempo-

ral/spectral windowing which are bound to the Nyquist theorem. It became

clear that a wrong choice of temporal/spectral windowing may lead to certain

errors, such as aliasing and wrapping error, while a wrong choice of step-size can

leads to spectral energy not being conserved [48].
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Chapter 3

Direct tapering of chalcogenide

materials for nonlinear

applications

Conventionally, a tapered fiber can be produced by cautiously stretching an opti-

cal fiber while being heated, such that the fiber becomes soft. This process leads

to a decrease in the fiber diameter over some length. Consequently, the fiber core

diameter also decreases by the same factor as the total fiber [49].

Due to substantial low melting temperature of chalcogenide glasses (∼ 300 C),

open flame tapering system can not be used. Therefore tapering chalcogenide

glasses has to be carried out via resistive heating or via any sort of controlled

heating system, that can melt chalcogenide glasses without evaporating it. An-

other complication arises when tapering step index chalcogenide core/cladding

fibers, where chalcogenide compositions are highly susceptible to interdiffussion

of the core and cladding material and volatilization of the glass constituents at

elevated temperatures [50].

Fiber tapering have been an important practical aspect of photonics, for in-

stance, silica nanowires with sub-wavelength diameters were made from bulk
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silica fiber [51], which are crucial for various photonics applications such as ab-

sorption spectroscopy [52], sensing [53]. Also, tapered sub-micron chalcogenide

fibers were shown to exhibit an ultrahigh nonlinearity which in turn minimizes

the supercontinuum generation input power threshold [54].

Herein, we developed a unique technique of fabricating nanowires/sub-micron

fibers directly from bulk chalcogenide materials which we referred to as ”Direct

tapering”. Furthermore, this direct tapering technique mitigates some of the

outlined challenges associated with tapering chalcogenide glasses. In the following

sections/subsections, we will be discussing; the fabrication steps, advantages of

the technique compared to conventional fiber tapering process, demonstration

of supercontinuum generation using the technique, and some of the important

results obtained.

3.1 Fabrication steps

3.1.1 Silica fiber tapering

Firstly, the conventional open flame tapering system was used to taper a sil-

ica fiber (which comprises of a germanium doped core, cladding and a polymer

jacket). Indeed before tapering the fiber, polymer jacket at the region to be ta-

pered was removed by simple stripping using a fiber stripper. The stripped region

of the fiber was cleaned with methanol to avoid any sort of contamination that

may temper with the tapering process. The fiber was then mounted upon a mo-

torized translating stage/clamp (Newport. Universal Motion Controller(Model

ESP300)/MFA-CC) and held firmly. A continuous wave(CW) laser source (San-

tec TLS-510) was butt coupled to the fiber at one end and the other end was

butt coupled to a power meter (Newport 1935C) in order to observe the power

transmission while tapering (as shown in figure 3.1.a)). A flame from a hydrogen

torch was placed right at the center just beneath the mounted stripped silica

fiber as shown in 3.1.b). After about 60 - 80 seconds of heating, a tilt in the
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firmly mounted fiber was observed. Tapering was immediately initiated using

a customized software, and the corresponding power transmission was recorded

in-situ. From the transmission spectrum one can be able to distinguish between

a lossy and an adiabatic tapering as shown in figure 3.1.c).

Figure 3.1: (a) shows a schematic representation of our setup for silica fiber
tapering, (b)is a picture of the tapering part of the setup, (c) shows the power
transmission against tapering length of the silica fiber and (d) compares the power
transmission before and after tapering.

Initially, the fiber comprises of a single mode core-cladding guided light. How-

ever, upon tapering down to certain diameters, the core eventually disappeared

leaving a multi mode air-clad silica fiber (remember as mentioned earlier the core

diameter of a tapered fiber decreases by the same amount as the whole fiber). Af-

ter some further tapering, a single mode air-cladding guided fiber was obtained.

Figure 3.1.d) shows the difference in transmission before and after tapering. It

can be clearly seen that an adiabatic low loss tapering was successfully obtained.
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3.1.2 Direct tapering of chalcogenide materials

After a successful adiabatic tapering of the silica fiber (with an air-cladding guided

single mode), using a blade (Ideal DualScribe S90R) placed right at the center of

the tapered silica fiber, the fiber was precisely cleaved under a microscope into

approximately two equal halves. The successfully cleaved silica fibers were pulled

apart using the motorized stage(Figure 3.2 a) 2) to provide enough space for

chalcogenide feeding. Using a setup as shown in Figure 3.2 a), bulk chalcogenide

on a glass slide was placed right in between the cleaved fibers ( Figure 3.2 a)

4 and 5), both the cleaved fbers and the bulk chalcogenide were enclosed by a

homemade electrical heater ( Figure 3.2 a) 1), which provides enough heat to

melt the bulk chalcogenide glass.

Figure (3.2, b)) is the home made electrical heater used for melting chalco-

genide glasses. And c) shows the corresponding temperature variation as a func-

tion of voltage. The heater was customized to have a saturation at 140 V, where

any further increase in voltage will be automatically limited to the melting tem-

perature of the chalcogenide materials.
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Figure 3.2: a) Shows the setup used for direct tapering of chalcogenide materi-
als, where 1 is the home made electrical heater, 2 is the motorized stage/clamp
upon which the silica fiber was mounted and held firmly on either sides, 3 is a
microscope for insitu observation of the tapering process, 4 is a glass slide for
chalcogenide feeding and 5 is the bulk chalcogenide. b) 1 is the home made elec-
trical heater which was used to melt the chalcogenide glasses and c) shows the
corresponding temperature of the homemade electrical heater at certain voltages.
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Figure 3.3: a) and b) shows the initial feeding of molten chalcogenide upon the
tip of tapered silica fiber.

After we have everything set as discussed, we then turn on the homemade

electrical heater and wait for a couple of minutes for the chalcogenide to melt.

Once chalcogenide is in the molten state, it can be transferred to both tips of the

cleaved tapered silica fibers, by simply dipping the tapered silica tips one at a

time into the molten chalcogenide and pulling it (as shown in Figure 3.3 a) and

b)).

By bringing both chalcogenide fed tips into contact with each other, the molten

chalcogenide at the two tips merges (Figure 3.4 a)). At this moment, we wait

a little while for the chalcogenide to have a smooth distribution and stabilise
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Figure 3.4: a) shows chalcogenide fed between the two tips of the tapered silica
fiber by simply bringing both tips into contact. b) A smooth distribution and
stabilization of chalcogenide between the tips and c) tapering begins by simply
pulling the fibers apart.

between the tips (Figure 3.4 b)). Once that is achieved, we begin tapering of

chalcogenide by cautiously pulling it apart using the motorized stage(Figure 3.4

c) ).

3.1.3 Results and discussion

Chalcogenide materials (As2Se3 and As2S3) were successfully tapered adia-

batically with tapered waist diameter as low as sub-micron as shown in Fig-

ure 3.5. a) and b) shows an adiabatically tapered chalcogenide fibers, and

c) shows sub micron diameter adiabatically tapered chalcogenide fiber. This

strongly demonstrates the remarkable ability of the technique to directly fabri-

cate nanowires/nanofibers from a bulk material.
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Figure 3.5: a), b) and d)shows an adiabatically tapered chalcogenide fibers. c)
Sub micron diameter adiabatically tapered chalcogenide fiber, e) and f) are the
corresponding optical microscopic image and thermal camera image.

We obtained a broadband transmission for the tapered ChG fiber (as shown in

Figure 3.6), which was drawn until we reached single mode regime at a nanoscale

waist diameter. Figure 3.7 compares the transmission spectrum of silica fiber

before and after tapering, and that of tapered chalcogenide fiber. The total

insertion loss was 21.1 dB, which was the sum of 6.4 dB silica to silica mechanical

coupling and propagation loss, 0.6 dB silica fiber tapering loss, 1 dB Fresnel loss

for both ChG/silica interface, 9.1 dB ChG tapering loss, and 4 dB loss due

to cleaving and mode mismatch. Most of the loss (∼ 14.1 dB) was caused by

the processes after silica fiber tapering, which was observed to be at least 8 dB

for the best case. Starting ChG fiber tapering with smaller diameter silica tips

(D < 20µm) is more favorable for adiabatic transition of the cladding guided

modes, and reducing mode mismatch. The ChG fiber tapering loss includes

losses due to nonadiabaticity, surface scattering, and Rayleigh scattering due to

density fluctuations caused by different evaporating rates for As and Se, changing

stoichiometry of the glass. In principle, angle cleaved silica fiber tips can eliminate

the Fresnel losses, and tapering under inert gas atmosphere can reduce oxidation

effects degrading ChGs.
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Figure 3.6: a) shows chalcogenide tapering in progress, while b) is the corre-
sponding transmission during the tapering process.

Figure 3.7: Transmission spectrum of silica fiber before and after tapering and
that of tapered chalcogenide fiber
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One of the major unique advantage of this technique is that an undesired

tapered chalcogenide fiber can be remelted (using the home made electrical

heater) and retapered several times until a desired tapering is achieved. How-

ever, it is important to mention that too much remelting is not advisable be-

cause after certain number of remelting, the chalcogenide glass crystallizes due

to thermal effects. Another important advantage is that the technique is simple,

also nanowires/nanofibers can be fabricated directly from a bulk material which

minimizes the number steps and complications compared to other conventional

techniques. Although we have used this technique with chalcogenide materials

(namely arsenic selenide and arsenic sulphide), other glasses with thermal and

mechanical properties compatible with the technique can also be used.

Such tapered chalcogenide fibers are proposed for various applications such

as evanescent couplers for critical coupling of light into micro resonators of high

refractive index [55], supercontinuum generation, e.t.c. However, in this thesis

our focus will be on supercontinuum generation.

3.2 Supercontinuum generation

Certain input power threshold is extremely crucial for supercontinuum genera-

tion, as discussed earlier in chapter 2, the nonlinear process itself is an intensity

dependent phenomenon. The input power threshold for supercontinuum genera-

tion can be minimized by simply tapering an optical fiber. In this section we will

demonstrate supercontinuum generation via direct tapering of chalcogenide fibers

(mainly As2Se3 and As2S3) with extremely low input power. Pulse characteri-

zation, third harmonic generation (THG) as well as some other results obtained

will be discussed.
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3.2.1 Pulse characterization

Pulse characterization is absolutely vital for supercontinuum generation, since

pulse parameters dictates supercontinuum generation. The femto second laser

source used in our experiment was FemtoFiber smart TOPTICA photonics whose

pulse was not transform limited and was positively chirped. Moreover, considering

our case where we have an air-clad tapered silica fiber (in the normal dispersion

regime) connected to the femto second laser source, will indeed lead to further

temporal broadening of the pulse, thereby decreasing the input power. And this

may perhaps undermine spectral broadening, therefore, to solve this problem,

a dispersion compensation is required for the positively chirped pulse. Figure

3.8 represents temporal distribution of the femtosecond laser pulse. As can be

seen, the pulse is extremely broad, with ∼ 2 ps FWHM. To compensate for

such chirping, a long fiber with 125 µm diameter silica cladding and a silica

germanium doped core of ∼ 8.5 µm in diameter which falls in the anomalous

dispersion regime, was butt coupled to the femtosecond laser. Note that negative

chirping exists in this regime. As a result, neagtive and positive chirping cancels

each other, and this yields dispersion compensation.

Figure 3.8: Temporal distribution of the positively chirped ultrashort pulse.

At first, the butt coupled fiber that was meant for compensation was extremely

long, as a result, arbitrary pulse shapes were observed in the autocorrelation trace.

However, by reducing the fiber length while observing the autocorrelation trace
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Figure 3.9: Autocorrelation trace data of the chirping compensated pulse. Where
blue is the autocorrelation trace data while red is the secant hyperbolic fit.

of the pulse, upon reaching a fiber length of about 5 m - 6 m, a nearly transform

limited pulse was obtained as shown in Figure 4.9.As can be seen in figure 3.9,

after chirping/dispersion compensation, a nearly secant hyperbolic pulse with ∼
250 fs FWHM was obtained. And one can see that the broad nature of the initial

pulse no longer exists, thus, compensation is verified. Vehemently, this pulse is

good enough for supercontinuum generation.
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3.2.2 Demonstration

In this subsection, demonstration of supercontinuum generation in both As2Se3

and As2S3, third harmonic generation and other observed effects will be discussed.

Figure 3.10: Setup for supercontinuum generation in directly tapered chalco-
genide fibers.

Figure 3.10 was the setup used for supercontinuum generation in tapered

chalcogenide fibers. As can be seen, the setup is similar to that of figure 4.1a,

just that the CW laser system was replaced with a femtosecond laser system, also

an optical spectrum analyzer (OSA) was used to observe the output spectrum.

Chalcogenide fibers were tapered via the direct tapering technique (as dis-

cussed in section 3.1.2 ). A pump pulse as described in Figure 3.9, which has

a center wavelength around 1560 nm, a pulse width (FWHM) of ∼ 250 fs, rep-

etition rate of 100 MHz and an average output power of ∼ 100 mW was used.

Although light was successfully coupled into the tapered chalcogenide fibers, it is

however important to mention that only few hundreds µW was successfully cou-

pled into the tapered fiber. The tremendous amount of power loss recorded was

attributed to losses such as, losses arising from butt coupling of silica fiber to the

femtosecond laser device, losses due to tapering of both silica and chalcogenide
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(as shown in Figure 3.7), losses arising from butt to butt coupler (which leads to

∼ % 50 drop in power from each butt to butt coupler), also Fresnel losses at the

interfaces between silica and chalcogenide fibers.

3.2.3 Results and Discussion

Interestingly, when light was coupled into the tapered chalcogenide fibers, a vis-

ible green light was observed. Moreover, even after the fiber was splitted green

light still appeared at the fiber tip, both cases are shown in figure 3.11 a) and b).

Considering the fact that green light in the visible spectrum falls between approx-

imately 510 - 570 nm, and our pump has a center wavelength around 1560 nm,

we then suggested that the observed green light was due to non-phase matched

third harmonic generation.

Unfortunately, the lowest wavelength that can be recorded by our OSA is

around 600 nm, which is far away from green region in the visible spectrum. And

for this reason we could not observe a third harmonic generation peak in the

OSA. However, in order to verify our claim that the observed green light was

indeed due to third harmonic generation (THG), we coupled the green light into

a Maya visible spectrometer and observed the spectrum.

As can be seen from figure 3.12 the peak is exactly at 520 nm, this clearly

verifies our claim that indeed the observed green light was due to non-phase

matched third harmonic generation. Note that this was observed in SCG with

both As2Se3 and As2S3.
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Figure 3.11: a) Visible green light observed during SCG process in the fiber before
tapered chalcogenide fiber got splitted, b) and at the fiber tip after it got splitted.
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Figure 3.12: Ouput spectrum from a Maya visible spectrometer with a peak at
exactly 520 nm wavelength.

Figure 3.13: As2Se3 evoporation via absorption of 520 nm wavelength THG.
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Figure 3.14: Experimental and numerical data showing output spectrum for SCG
in As2Se3 at different average power levels, where blue is the incident pulse spec-
trum, red and green are the output spectrum at 20 µW and 30 µW respectively.
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Figure 3.14 shows both numerical and experimental output spectra for SCG

in As2Se3, where red and green are the output spectrum at 20µW and 30 µW

input average power respectively. The simulation was carried out via split-step

Fourier method, using a secant hyperbolic pulse of pulse duration τ0 = 142 fs at

λ0 = 1560 nm, β2 = -1.01 ps2m , γ = 23.2 W−1m−1 and a fiber length of l =

2.5 mm. Apparently, a good agreement between experiment and simulation is

shown. As can be seen, a broadening of about 300 nm - 400 nm was observed

with an average pump power as low as 30 µW (which corresponds to a peak power

of ∼ 2 W). Enough average power was not able to be coupled into the tapered

As2Se3 due to two reasons. The first reason was mentioned previously, which

is due to tremendous amount of insertion losses. The second reason is due to

high absorption of 520 nm ligt generated due to THG in As2Se3. Where at high

average input powers, As2Se3 suddenly evaporates (Figure 3.13). That is why we

always introduce an additional bending loss to the silica fiber butt coupled to the

ultrafast laser to avoid coupling high power. The 20 µW and 30 µW were coupled

successfully by bending and slowly releasing the silica fiber, however, once the

bending loss is removed (i.e. once the fiber is stretched) the material suddenly

melts and evaporates due to high input power as shown in figure 3.13.

54



Figure 3.15: Experimental and numerical data showing output spectrum for su-
percontinuum generation in As2S3, where blue is the source pulse/incident pulse
spectrum, green is the output spectrum at 200 µW.
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Figure 3.15 represents both experimental and numerical output spectra for

SCG with As2S3. Same simulation parameters used for As2Se3 were used here,

except γ for As2S3 was calculated to be γ = 2.32 W−1m−1. Again, a good

agreement between experiment and simulation is reached, this indeed verifies the

credibility of our experiment. Although as can be seen from the figure an average

input power of 200 µW was able to be coupled into a tapered As2S3 fiber, the

broadening extent in the output spectrum is somewhat similar to that of As2Se3.

Apparently, this is a clear manifestation of the fact that optical nonlinearity in

As2Se3 is an order of magnitude greater than that of As2S3 [56], though optical

nonlinearity in As2S3 is still two orders of magnitude greater than that of silica.

Furthermore, an important advantage of As2S3 over As2Se3 worth mentioning is

the power handling capability of tapered As2S3. Whereas strong absorption in

As2Se3 at high average input powers leads to sudden melting and evaporation

of tapered As2Se3 which is an undesirable effect. Therefore by minimizing losses

and ensuring that sufficient power is coupled into the tapered As2S3 fiber, a severe

spectral broadening can be obtained.
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Chapter 4

Multicore chalcogenide fibers for

supercontinuum generation

Research on supercontinuum generation mainly focuses on three important chal-

lenges: Maximization of spectral broadening for several spectral regions, mini-

mization of the input power threshold for supercontinuum generation, and max-

imization of a supercontinuum output power. The first challenge (i.e. maxi-

mization of the output spectrum) can be achieved by using a material with large

transparent window at longer wavelengths such as chalcogenide glasses which

shows great transparency in the infrared region. On the contrary, silica has

strong vibrational absorption at these long wavelengths thereby limiting spectral

broadening due to strong absorption. A recent study demonstrated a dramatic

spectral broadening covering 1.4 µm - 13.3 µm molecular fingerprint region us-

ing ultra-high NA multimode chalcogenide step-index fibre which has an As2Se3

core and Ge10As23.4Se66.6 cladding [57]. Another study showed infrared super-

continuum generation spanning more than one octave, using a picosecond laser

at 1.55 µm [58]. For the second challenge tapering happened to be one of the

most promising solution [59]. For instance, spectral broadening between 1.15

µm - 1.65 µm in tapered As2Se3 was obtained while pumping at a very low peak

power of Pp = 7.8W [60]. Also in the preceding chapter we demonstrated spectral

broadening in As2Se3 with a peak power as low as Pp = 2 W.
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The effort to tackle the third challenge was at first predominantly devoted to

silica and doped silica photonic crystal fibers (PCF). For instance, a generation

of 5 W average power and a SC covering 500 nm - 1800 nm was demonstrated

with a single core silica PCF using picosecond pulses [61]. The main challenge

associated with high power SCG in single core silica fibers are damages occurring

at the pump facet or inside the fiber due to high pump intensity. Hence, high

power SCG in multi-core silica PCF prove promising- an ouput power as high as

42.3 W and SC covering wavelength range from 720 nm to beyond 1.7 µm using a

seven core silica PCF with picosecond pulses [62]. Furthermore, a new record of

112 W output power SC spanning at least 500 nm - 1700 nm was demonstrated

using similar seven core silica PCF while pumping with picosecond pulses [63].

In general, spectral broadening beyond 2.4 µm in silica fibers is perhaps not

feasible due to strong vibrational absorption at longer wavelengths as mentioned

previously. Herein, we aim to tackle the outlined three fundamental challenges in

supercontinuum generation with optical fibers using one single approach inspired

by the seven core silica PCF. We fabricated a sub-micron multicore chalcogenide

step index fiber rather than just seven core.

4.1 Fabrication

In this section we will briefly present a comprehensive fabrication details, for

further details regarding fabrication and characterization of the fiber one can

refer to [64].

4.1.1 Preform preparation

A preform is a macroscopic structure which represents the geometry of the to-

be-drawn micro/nanofiber. Hence, preform preparation is a crucial aspect of

fiber fabrication, any failure or error can lead to undesired consequences in the

fiber drawing process which will directly affect the geometry of the drawn fiber.
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Therefore a diligent preform preparation is paramount for drawing of excellent

fibers.

Preform preparation comprises of three parts; a core which guides light

through, a cladding which provides refractive index difference thereby enhanc-

ing light confinement within the core, and a polymer jacket which serves as a

protective jacket, hence, provides mechanical support as well as flexibility to the

drawn fiber (for more fundamental insight [65]). The core and cladding com-

prises of As2Se3 and Ge10As23.4Se66.6 respectively, and were prepared using melt

quenching and rotational casting technique respectively. Raw materials were

batched into a quartz ampoule sealed and vacuumed in order to maintain purity.

An As2Se3 rod of 8 mm diameter was extracted after quenching in water by

simply breaking the quartz tube. And the rotationally casted quartz tube (i.e.

the cladding) was obtained by quenching in air, it has an inner diameter similar

to the rod (i.e. core) diameter and an outer diameter of 10.3 mm, the fabricated

rod (core) perfectly fits into the tube (cladding). At this point, it is important to

mention that a chalcogenide glass of lower index was chosen as the cladding due

to the fact that pumping polymer embedded chalcogenide leads to high absorp-

tion in the polymer in infrared region [66]. Therefore, to effectively explore our

proposed method, chalcogenides are more suitable for cladding material due to

their low loss in the infrared region. Moreover, a combination of such high index

materials as core and cladding yields high numerical aperture thereby enhancing

light coupling.

The polymer jacket was fabricated from Polyethylenimine (PEI) via thin poly-

mer film rolling and consolidation. And a hollow PEI polymer rod with an inner

diameter approximately equal to that of the cladding outer diameter and a total

diameter of 25 mm -28 mm was fabricated.

After successful fabrication of all the three important components namely core,

cladding and polymer jacket, the preform was obtained by combination/fusion of

the three components, the resultant preform as well as the schematic representa-

tion of its design can be seen in figure 4.1 a) and b). where c) corresponds to the

numerical aperture/refractive index as a function of wavelength.
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Figure 4.1: a) Schematic representation of the preform design b)prepared preform,
c) shows refractive indices as well as numerical apertures of the chalcogenide
materials as a function of wavelength [64].

4.1.2 Fabrication of multicore fiber

In general, optical fibers are fabricated by thermally drawing of a macroscopic

preform. Here the fibers were drawn using an iterative size reduction technique.

Yaman et al. [67] introduced a new technique known as iterative size-reduction

(ISR) method, which can fabricate an indefinitely long nanowire arrays in a flex-

ible polymer fiber matrix from a multimaterial macroscopic rod. A fiber drawing

tower for the ISR method can be seen in Figure 4.2.
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The multicore fibers were fabricated in three steps using the ISR method. For

the first step drawing, the prepared macroscopic preform with diameter 26.5 mm

was suspended appropriately in the fiber drawing tower, and the fiber diameter

was fixed to 1.6 mm which corresponds to a reduction factor of 16.56, this implies

that the drawn fiber will have a core diameter of ∼ 480 µm and that of cladding

∼ 600 µm. Figure 4.3 shows the dark field and bright images of the 1st step fiber.

Figure 4.2: Fiber tower for the drawing process and the corresponding compo-
nents of the fiber tower [67]
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Figure 4.3: a) bright field, b) dark field. The boundaries between cladding and
polymer are obvious in the bright field image but it is not possible to distinguish
the core. However, the boundary between core and cladding becomes distinguish-
able in the dark field image [64].

The second step drawing involves a process known as stack and draw process.

A PEI tube was fabricated with an inner and outer diameter of 8 mm and 26

mm respectively, the first step drawn fiber was cut into pieces of 10 cm long each.

And then seven pieces of the first step fiber were stack in a hexagonal geometry

into the PEI tube and drawn using similar procedure as in the first step. Where

the reduction factor was calculated to be 17.33 which corresponds to a total fiber

core/cladding diameter of 35 µm. Figure 4.4 a) shows a micrograph of the second

step fiber with the seven cores in a hexagonal geometry.

For the third step drawing, fibers drawn in second step are cut into 15 cm long

pieces, similarly, 34 of them were stacked into a PEI rod of ID and OD 8 mm and

26 mm respectively and drawn. The reduction factor here was found to be 26,

thereby reducing the total diameter of ChGs to 135 µm with a core diameter of

∼ 1 µm. Micrograph showing multiple array of the seven core fibers in the third

step fiber can be seen in figure 5.5 b).

The dispersion parameter of the drawn fiber was calculated using Lumerical

Mode solution, Figure 4.5 shows the dispersion parameter of the fiber design

with respect to core diameter. Where a zero dispersion was observed at 1.1 µm,
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Figure 4.4: a) and b) are micrographs of the second and third step fibers, while
c) depicts stacking of fibers into a polymer rod [64].

remember, for the third step fiber the core diameter was found to be 0.95 µm

which falls in the anomalous dispersion regime just close to the ZDW, and has

a dispersion parameter of approximately 100 ps/nm-km, which is a relatively

small value compared to the material dispersion and this value of dispersion

corresponds to a group velocity dispersion of β2 = −0.128 ps2/m. Note that,

pumping extremely close to the ZDW leads to an effective spectral broadening.

63



Figure 4.5: Calculated dispersion parameters for core/cladding fiber design with
respect to core diameter at pump wavelength of 1.55µm. The green line represents
material dispersion of bulk core material (As2Se3).

4.2 Experimental demonstration of SCG

In this section, experimental demonstration of SCG in the as-drawn fibers as well

as some of the the encountered challenges will be discussed. Also proposed unique

solutions to these challenges will be demonstrated and discussed.

Before light is coupled into a waveguide, an optical quality polishing is ex-

tremely vital for proper coupling of light into a waveguide. The polishing device

used to polish the third step fiber was a Bare Fiber Polisher (Krelltech,Trig ),

which is shown in 4.6 a). However, the third step fiber could not fit into the

device holder(i.e. 2 in 4.6 a)), hence, a plastic holder which was designed to hold

the fiber firmly was printed usig 3D printer as shown in 4.6 b). ∼ 1 cm of the

third step fiber was suspended vertically in a plastic container and held firmly to
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avoid any bending, and then the container was filled with an an epoxy (Technoviz

7100) containing a ratio of 1:15 of hardener to resin. A UV curing of about 15

mins was carried out in order to initiate polymerization, and then waited for 24

hours after UV curing of the epoxy for proper hardening. A hard third step fiber

embedded in epoxy (TSFEE) was obtained by simply getting rid of the plastic

container. Due to flat facets on either sides of the TSFEE, precise polishing is

extremely tedious, therefore pyramidal shapes were made on either sides of the

facet using MICROTOME (LEICA EM UC6) as shown in Figure 4.6 c). This

provide precision during polishing. The 3D printed holder serves as an intercon-

nect between the micro-machined TSFEE and the polisher. Consequently, an

optical quality polishing of the TSFEE was obtained as can be seen in 4.6 d).

Figure 4.6: a) Bare Fiber Polisher (Krelltech,Trig where 1 is a motorized rotating
sand paper and 2 is a holder to which the fiber is attached, b) 3D printed holder,
c) micromachined TSFEE and d) polished TSFEE.
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Similar setup used in Figure 3.10 (i.e. all-fiber butt coupling rather than free

space coupling) was used here, just that the tapered fiber in 3.10 was replaced by

the polished multicore fiber as shown in 4.7. Although using a thermal camera

located just above the sample, weak light coupling was observed as can be seen

in 4.8 b), no any broadening in the output spectrum was observed (as seen 4.8

a)). It was suggested that sufficient amount of power was not coupled into the

fiber cores due to the random distribution of the multicore array.

Figure 4.7: Setup for Supercontinuum generation, 1 is the sample, 2 is the tapered
silica fiber and 3 is the motorized stage/clamp.
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Figure 4.8: Output spectrum a), coupling under a thermal camera b).

4.2.1 Collapsed bundle

In order to have sufficient light coupling into some cores of the multicore fiber

array, the PEI polymer jacket was etched using dichloromethane (DCM). The

etching transforms the multicore array into a densely packed bundle of multicore

chalcogenide step index fibers (which is referred to as collapsed bundle). This

will perhaps ensure sufficient light coupling into certain cores within the densely

packed cores. Figure 4.9 a) and b) shows SEM images of the collapsed bundle

lateral and cross sectional views respectively. Before etching, certain region at

both top and bottom of the fiber were wrapped with a Teflon tape in order to

prevent etching, since Teflon resists DCM. These unetched parts will provide

mechanical support to the whole fiber during and after etching. The fiber was

then placed in a container and held firmly. Little holes were made at both top

and bottom of the container in order to stimulate flow when DCM is injected

for etching (4.9 c)). After successful etching, the bottom holes were closed and

epoxy (just like described in the previous subsection) was filled from the top. This

embeds the densely packed fibers, thereby providing a mechanical support and

preventing any physical damage. After proper hardening, the collapsed bundle

was micro-machined and polished similar to that discussed in Figure 5.8. Figure

4.9 d) shows an optical image of a well polished and densely packed bundle.
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Using same setup like that in Figure 5.9, light was coupled to the collapsed

bundle and observed by a thermal camera. Significant amount of light was cou-

pled, however, at a certain region along the fiber a tremendous scattering point

was observed (Figure 4.9 e)), at which further coupling seriously diminished.

Upon further investigation under a microscope, it was noticed that the assumed

scattering point was as a result of a micro kink along the fiber as shown in 4.9 f).

The experiment was repeated several times using various approaches, however,

micro kinks kept reoccurring.

Figure 4.9: a) and b) are collapsed bundle SEM images for lateral and cross sec-
tional views respectively, c) represents etching and epoxy, d) shows the polished
collapsed bundle, e) thermal camera image of the scattering point and f) is the
micro kink.
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In order to tackle the reoccurring microkink along the fiber, a new technique

for collapsed bundle was developed. Figure 4.10 shows a schematic representation

of the new technique for the collapsed bundle. At first the multicore fiber was

dip coated with Polyvinylidene fluoride (PVDF) dissolved in Dimethylformamide

(DMF), the PVDF + DMF coated fiber was then put into an oven at 100 C for

an hour to facilitate homogeneity. PVDF was then removed from the region to

be etched (Figure 1.10(2)). Figure 4.11 a) clearly depicts the PVDF coated and

uncoated regions. The PVDF removed region was etched in DCM without any

defect meanwhile the PVDF coated region remains unetched, as can be seen in

Figure 4.10(3) and Figure 14.11 b). The fiber was then polished on either facets

after proper epoxy and micromachining (Figure 4.10 (4,5) and Figure 4.11 c)).

Some important advantages of this technique worth mentioning include the

fact that the etched region converges (i.e. the cores become closely packed)

which ensures effective coupling. Also the PVDF coated region (i.e. the unetched

region) provides flexibility along the fiber ensuring no physical defect along the

fiber (Figure 4.10(5) and 4.11 c)).

Figure 4.10: Schematic representation of a new technique for collapsed bundle.
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Figure 4.11: a) shows the pvdf coated region 2 and uncoated region of the fiber
1 which was mechanically removed. b) clearly shows the pvdf uncoated was suc-
cessfully etched with no defect, and c) shows the whole fiber aftre micromachining
and polishing.
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4.3 Discussion

The technique is quite promising and unique, light was coupled into the fiber

without any scattering point along it, however, no spectral broadening was ob-

served. It was suggested that this might be due to insufficient focusing/coupling

of light into the bundle cores via butt coupling. Hence ensuring precise and ef-

fective focusing/coupling may yield severe spectral broadening as well as high

output power.

Figure 4.12: Optical microscopic image of the multicore fiber cross section.

It was also suggested that the irregular shape of the cores (as shown in Figure

4.12) undermines coupling into the fiber which is even more pronounce when butt

coupling. Also such irregular core shapes can undermine light propagation inside

the fiber. Furthermore, changing core shape toward a non-circular profile can

also undermine spectral broadening [68].
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Nevertheless, we numerically demonstrate the great potential of this technique

for severe spectral broadening at extremely low peak powers. Using a calculated

effective area of Aeff = 0.69 µm, pulse duration of τ0 = 150 fs, at λ0 = 1550

nm, β2 = -0.128 ps2

m
, γ = 23.2 W−1m−1 and a fiber length of l = 15cm, we

numerically model supercontinuum generation in a single core of the as drawn

multicore chalcogenide step-index fiber at extremely low peak powers (Figure

4.13).

Figure 4.13: I, II, and III are colorscale and line plot representations for spectral
and temporal evolution of SC inside highly nonlinear 15 cm length of single fiber
with As2Se3 core for different peak powers a) 5 W, b) 10 W, and d) 30 W.
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For pump at peak powers 5 W, 10 W, 30 W were calculated to have a soliton

order N of 4, 6, and 11 respectively which correspond to higher order solitons.

Considering the fact that we are pumping in the anomalous GVD regime very

close to the zero dispersion, these higher order soliton will experience some per-

turbation (due to higher order order dispersions and Raman effects ) which leads

to break up of higher order solitons into fundamental solitons (also known as soli-

ton fission) and generating dispersive waves. Generated dispersive waves leads to

spectral broadening in the short wavelength regime whilst in the long wavelength

regime soliton fission and Raman self frequency shift are responsible.

When pumping at 5 W peak power, after a propagation distance of ∼ 8 cm

we begin to observe severe spectral broadening, also soliton fission and dispersive

wave generation become more pronounced (Figure 4.13 a) I and II), and (Figure

4.13 a) III) shows the corresponding line plot of the spectral evolution. However,

when pumping at 10 W peak power, soliton fission as well as dispersive generation

happened after shorter propagation distance ((Figure 4.13 b) I and II)) compared

to that pumping at 5 W. And this is because the Raman effect is power dependent,

therefore, more power means more perturbation of higher order solitons due to

Raman effect, hence, faster spectral evolution. Figure (4.13 b) III) shows the

corresponding line plot of the spectral evolution. And at 30 W peak power,

indeed soliton fission as well as dispersive generation occurs at much shorter

propagation distance (Figure 4.13 c) I and II) and the corresponding line plot for

the spectral evolution is shown in (Figure 4.13 c) III ). The extent of spectral

broadening indeed scales peak power.
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Chapter 5

Conclusion and future works

To address the fundamental challenges associated with supercontinuum genera-

tion with optical fibers, we proposed two unique fabrication techniques namely

Direct tapering and Multicore fibers.

Nanowires/nanofibers were fabricated directly from bulk chalcogenide glasses,

and we referred to the technique as ’Direct tapering’. Furthermore, spectral

broadening with extremely low input power was demonstrated via direct tapering

of bulk As2Se3 and As2S3. However, severe spectral broadening was not observed,

because of tremendous amount of losses (such as Fresnel, absorption and butt to

butt coupling losses ) in the input power. Third harmonic generation (THG)

was also observed. THG kept reoccurring even when pumping at various pump

powers in both As2Se3 and As2S3. This leads to absorption losses in the input

power, where at elevated input powers As2Se3 evaporates. Although even in the

presence of THG, As2S3 proved a better power handling capability, however it

still undermines the input power thereby hindering supercontinuum generation.

As a future plan, we will try to minimize butt to butt coupling losses by mini-

mizing the number of butt to butt couplers as well as inter connects in the optical

set up. We may also try free space coupling in order to provide sufficient power

for supercontinuum generation. We will also engineer some parts of tapering
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in order to mitigate THG especially in As2Se3, which proves vulnerable due to

absorption of 520 nm light generated via THG. Also, longer wavelength sources

(Mid-IR) can be more suitable for our technique [69–71].

Multicore step index chalcogenide fibers with ∼ 1µm diameter and engineered

ZDW around 1550nm were successfully fabricated using a new method. Numeri-

cal results have proven the fabricated fibers to be promising, where severe spectral

broadening with extremely low input powers were shown using split-step Fourier

method. However, sufficient light coupling into the cores of the multicore fiber

has proven difficult, due to the disperse nature of the cores within the fiber array.

Therefore, in order to mitigate this challenge a new technique which is termed

’Collapsed bundle’ was developed. The PEI polymer which embeds the chalco-

genide fibers was etched using DCM, which gave rise to a densely packed step

index chalcogenide fiber bundle, which will perhaps facilitate coupling. Again

sufficient coupling was not achieved. Upon further investigation, the fibers were

found to have an arbitrary shape. It was suggested that such irregular core shapes

undermines coupling particularly when butt coupling.

It is apparent that due to the irregular shape of the fiber, butt coupling of

such fibers is extremely tedious. Therefore, experiment will be repeated using

free space coupling, in order to sufficiently couple light into the multicore array,

and supercontinuum generation will be observed. A severe spectral broadening

can be observed once sufficient amount of light is successfully coupled into the

multicore array.
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[53] R. E. R. Gonzáles, E. F. Chillcce, and L. C. Barbosa, “Micro-size tapered

silica fibers for sensing applications,” in SPIE Photonic Devices+ Applica-

tions, pp. 81200K–81200K, International Society for Optics and Photonics,

2011.
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