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ASYMPTOTIC ANALYSIS OF NONHOMOGENEOUS
HIERARCHICAL MARKOV PROCESSES AND APPLICATIONS IN
MODELS OF THE CONSOLIDATION OF QUEUEING SYSTEMS

UDC 519.21

V. V. ANISIMOV

ABSTRACT. Limit theorems for nonhomogeneous in time hierarchical Markov pro-
cesses admitting the consolidation of states are studied. Notion of quasi-Markov
processes is introduced. The theorem on asymptotic consolidation in the class of
switching processes is used in the proof. As an application, asymptotic properties of
some models of nonhomogeneous in time queueing systems with local characteristics
depending on the current state and a random Markov environment are investigated.

1. INTRODUCTION

A good part of the papers by B. V. Gnedenko is devoted to the development of the
theory of limit theorems for sums of random variables and to its applications in queueing
and reliability theories [13]-[15]. These papers basically deal with homogeneous in time
models.

The asymptotic behavior of nonhomogeneous in time Markov processes (MP) with
characteristics slowly varying in some scale of time and with the state space admitting
the asymptotic consolidation of states is studied in this paper. The class of Markov
systems with two levels of hierarchy is considered. It is convenient to study this class by
using the class of the so-called switching processes (SP).

In Section 2 we consider the general construction of switching processes and give a limit
theorem on the asymptotic consolidation in the class SP. In Section 3 the asymptotic
behavior of additive functionals on quasi-ergodic MP is studied and a model of the
asymptotic consolidation of states of nonhomogeneous MP is investigated. Section 4 is
devoted to the application of the preceding results to the investigation of asymptotic
properties of queueing systems with local characteristics depending on a current state in
a random Markov environment.

2. SWITCHING PROCESSES

The main property of switching processes is that their development may spontaneously
change at some epochs of time that are random functionals of the preceding trajectory.
Formally, SP’s are two-component processes (z(t),({(t)), t > 0, assuming values in the
space (X,R") for which there exists a sequence of time moments, t; < t2 < --- such
that x(t) = z(tx) on every interval [tk,tx+1) and the behavior of the process {(t) on this
interval depends only on the values (z(tx), ((tx)). The moments t; are called switching
moments and z(t) is called the discrete switching component.
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In specific applications, the component z(t) may be viewed as a random environment
or as an operating regime of a system. Such processes may be described in terms of
constructive characteristics [3—4] and they are a convenient tool to study the asymptotic
behavior of stochastic systems with “fast” and “rare” switches ([4-6], [8], [9]).

SP’s are a natural generalization of well known classes of processes such as Markov
processes, processes homogeneous in the second component [16], processes with inde-
pendent increments and semi-Markov switches [2], Markov aggregates [12], MP with a
semi-Markov interference of a chance [17], and Markov and semi-Markov evolutions [18,
21, 23-25).

2.1. Switching processes. Let jointly independent families
Fr = {(¢(t, 2, @), Tk(z, @), Br(z,@)),t 2 0,z € X, € R"}, k>0,

be given, where (x(t,z,), for all fixed k, z, and «, is a stochastic process in the
Skorokhod space D7, and 7x(z, ), Br(z,a) are random variables that may depend on
Ck(+, z, @), T(+) > 0, Bk(+) € X. Denote by (zo,Sp) the initial value. Put

to =0, tkt1 = tk + Tk(zk, Sk), Sk+1 = Sk + &k(zk, Sk),
Tk41 = ﬂk(xkask)a k 2 01

where &i(z, @) = (i (Tk(z, @), z, @), and set

(2.1)

(2.2) ¢(t) = Sk + Ck(t — tk, Tk, Sk), z(t) = xk, forty <t <txq1, t>0.

The two-component process (z(t),{(t)), t > 0, is a switching process. We say that a SP
is regular if its component z(t) has (with probability one) only a finite number of jumps
on any finite interval.

If the distributions of random variables {7x(z, @), Bx(z, @)} do not depend on & and «,
then the sequence zj is a homogeneous MP and z(-) is a semi-Markov process (SMP).
In this case () is a process with semi-Markov switches. If additionally (x(t,z, ) are
processes with independent increments (PII), then ((-) is a PII process with semi-Markov
switches (PII SMS) (see [2]). If z(-) is a Markov process, then (z(t),((t)),t > 0, is a
Markov process, homogeneous in the second component [16].

In a particular case, where a nonnegative function a(z), z € X, is given and a SMP z(t)
assumes values in X, we denote by IIy()(t) a Poisson process with parameter A(t) =
a(z(t)), t > 0, and call it a process of Poisson type with a parameter switched by the
process z(t).

Note that SP’s are mathematical models of the processes of service in queueing sys-
tems operating in a random environment. A broad class of systems and networks with
parameters depending on a current state of a system (size of a queue etc.) and on an
external Markov or semi-Markov environment, may be described in terms of SP’s. To
this class belong SMg/Mg/1/00, Msm,o/Msm,o/l/k, (Msm,o/Msm,q/li/k:i)", pro-
cesses with batch Markov or semi-Markov input flow and service, various types of calls
of possibly random size (a volume of information, value of necessary job), etc.

2.2. Convergence of switching processes. In [4-6] limit theorems on the conver-
gence of an SP to another SP (in the class of SP) for the case of “rare” switches were
proved and these results form the basis of the consolidation theory of states of nonho-
mogeneous Markov and semi-Markov processes. We quote a theorem from [5-6] that we
use in what follows. This theorem concerns the general models of the consolidation of
states in the class of SP’s.

The asymptotic consolidation of states means that the parameter space of the initial
SP may be split up into subsets in such a way that the characteristics of the limit SP
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depend on a lesser number of parameters and each parameter corresponds to a concrete
subset of the initial space. Assume that, for all n > 0, the following families:

Fri = {(¢nk(t, 2, @), Tnie(z, @), Buk(z,@)), € X,0 € R"}, k>0,

and the initial value (2,0, Sn0), » = 1,2,..., are given. This collection, for all n > 0,
defines, according to relations (2.1) and (2.2), an SP (z,(t),(n(2)), t > 0.

Let K(): X — Y be a measurable mapping, where Y is a metric space, and let the
families

B = {(G(tv,0), 7,0, Buy, @) ,t 20y eY,a e R}, k20,

and the initial value (yo, So) be given. Using this collection we construct the SP (y(+), {(+))
and suppose it to be regular.

Let us give general conditions for the convergence of the processes (K (z,(+)), (n(%)),
n=1,2,..., consolidated with respect to the first component, to a limit SP (y(-),{(+)).

Definition 2.1. We say that a sequence of processes &,(-) J-converges as n — oo to a
process £(+) on some interval [0, T if the sequence of measures generated by the sequence
of processes &,(+) weakly converges in the Skorokhod space D{O ) to the corresponding

measure generated by &£(-).
Set
'l/)nk()\Oa oo ))‘jatla v )tjaovf(')axa (1)

J
= Eexp {'L Z(Al: an(tla z, a)) + i()\Oa §nk(x7 (1)) - eTnk($7 a)}f(ﬂnk(x) a)):
=1
where &k (2, @) = Cuk(Tar(z, @),z,0), N €R™, 1 =0,...,5,0<t; <--- < tg, 6 >0,
f(+) is a continuous function on X. We assume that X is a metric space. Further, let
the function 1/1k(/\0, Ayt .. t,0, f(+),y,a) be defined by (2.3) for the family Ey,
k>0.
Theorem 2.1. Let the following conditions be satisfied:
1. (K(Zno),Sn0) = (Y0,S0) (= stands for the weak convergence of distributions).
2. There are sequences of sets B,, € By and D,, € Brr, m > 0, such that for all
m >0, ug € Dy, go € B, for all u, — ug and v, € X with K(v,) — go, and for
all k Z 0, _7 Z O, Ao,...,)\j, tl,...,tj, 9,f(°),

nangownk(A01~' . y/\jytly- . ',tj197f(K('))7vn7un)
:’lz)k(AOy'°',Aj,tlr"1tj,05f(')790vu0))

and the sequence of measures generated by the processes (ni(t,vn,un) is weakly
compact in the Skorokhod space D[0 T,] 0T some sequence of intervals [0, Ty], where
Ty — 00 as £ — oo;
P{7k(y,0) >0} =1,y€Y,a € R", k> 0;

4. P{yx € Bx} =1, P{Sk € Dy} =1, k > 0, where the sequences yx and Sk, k > 0,

are constructed by the process ¢ according to (2.1), (2.2).

Then the sequence of consolidated processes (K (zn(+)),(n(+)) J-converges as n — oo to
the SP (y(+),{(-)) on any interval [0, Ty).

The proof of this theorem is given in [5, 6]. A limit SP is of a sufficiently simple
structure in various applications, for instance, it could be a PII with Markov switches
or PII SMS. Therefore Theorem 2.1 provides the basis of a new approach to asymptotic
problems, decreasing the dimension for compound stochastic systems.

(2.3)

@
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3. ASYMPTOTIC CONSOLIDATION OF STATES IN
NONHOMOGENEOUS HIERARCHICAL MARKOV SYSTEMS

If the state space of an MP may be split up into asymptotically connected subsets
such that the transient probabilities are asymptotically negligible, then we prove, under
rather general conditions, that the accumulation processes on SP’s weakly converge to a
SMP with Markov switches and with the state space corresponding to the total number
of subsets of the initial process.

First we introduce the notion of a class of nonhomogeneous MP’s with characteristics
slowly varying in some scale of time.

3.1. Quasi-ergodic Markov processes. For the sake of simplicity we consider the
case of a finite number of states. Let z,(t), t > 0, be an MP with the state space
X = {1,2,...,7} generated by the family of instantaneous intensities {a,(3,7,t),%,j €
X,t # j,t > 0} of the transient probabilities. Denote by ¢n(u,T) the uniformly strong
mixing coefficient (USMC) for a process z,(t) on an interval [0, k,T):

on(u,T) = su max |P{zn(t+u) € A/z,(t) =i
(3.1) #altnT) OStSEnTi,jEX,ACx' {za( ) € A/zn(t) = i}

—P{zn(t +u) € A/za(t) = 5}

Assume that there exists a family of continuous functions {ao(s, ,v),%,7 € X, #
v > 0} and a sequence of natural numbers k,, — co such that

(32) lim sup |an(i7ja knv) - aO(i7ja ’U)l =0

n—=00 4<T

foralli,j € X,i # j,and T > 0. For any fixed v > 0 we denote by x(()v)(-) an auxiliary MP
with the state space X generated by the family of intensities {ao(z, j,v),%,5 € X,i # j}.
Similarly to (3.1) we introduce the USMC () (u) for this process. Suppose that there
exists ¢, 0 < ¢ < 1, and that, for all T > 0, there exists 7(T") > 0 such that

(33) ®(r(T)) < q

forallv <T.

Assertion 3.1. Let conditions (3.2) and (3.3) be satisfied. Then for allv >0
(3-4) P{zn(knv) = j} = 7¥(j),  jeX,

as n — oo, where 7(¥)(5), j € X, is the stationary distribution (ezisting if (3.3) is
satisfied) for the MP zgv)(-). Also there exists q, 0 < ¢ < 1, and for all T > 0 there
exists r(T) > 0 such that

(3.5) en(r(T),T) < q.

An MP satisfying (3.4) is called a quasi-ergodic MP.

Proof. Denote by Z,(t), t > 0, an MP generated at time ¢ by the instantaneous transient
intensities {ao(%, j,t/kn),%,j € X,i # j,u > 0} and such that Z,(0) = z,(0). Let

(i, j,u) = P{zn(knu) = j/zn(0) =i}, Pn(i,J,u) = P{Zn(knu) = j/z,(0) = i}.
By conditions (3.2) and (3.3), for all T' we have

sup max |pn (4, j,u) — pn (3, j,u)| — 0
u<T ©J
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n — oo according to results of [6, Chapter 2, Section 1] (see also [7]) and relation (3.5)
s satisfied for the process Z,(t). Further, since functions a¢(%, j,u) are continuous, anal-
ogously to [6] and [7] we obtain for all u > 0 that |pn(3,j,u) — 7¥)(j)] — 0 in view of
condition (3.3). This proves the statement of Assertion 3.1. O

3.2. Asymptotic behavior of the first exit time from a subset of states. Let
zn(t), t = 0, be a nonhomogeneous MP with a finite state space X = {0,1,...,d}
generated by a family of instantaneous transient intensities {a.(%,l,t),4,! € X,i # I,
¢t > 0}. Denote by

(3.6) Qn(ip) = inf{t:t > 0, z,(t) =0, given z,(0) =io }, io=1,...,d,

the first exit time from the subset Xy = {1,2,...,d}. Let us investigate the behavior of
0, (io) if the set {1,2,...,d} forms a single quasi-ergodic class as n — oo.

Theorem 3.1. Let there erist a sequence k, — oo satisfying condition (3.2) for all
i,l € Xo, © # l. Further, let the auziliary homogeneous MP 5:3”)(-) generated by the

intensities {ao(i,1,v),1,1 € Xo,1 # 1} satisfy relation (3.3), and for all T > 0
(3.7) lim sup max sup knan(%,0, k,u) < Cr < oco.

n—oo 1€Xo0y<T
Then for all ig € X
(3.8) lim sup [P{2,(50) > knu} — exp{—An(u)}| =0,

n—00 4 >0

where u
An(w) = kn / (Z Tr(”)(i)an(i,o,knv)) dv,
0 i€Xo
and ) (i), i € Xy, is the stationary distribution for the MP ié“) (+)-

Remark. Under the same conditions we obtain in the homogeneous case (i.e. a,(4,1,t) =
an(i,1)) that Ap(u) = ukn ), x, m(i)an(i,0), which means the exponential approxima-
tion for 2, (o).

Proof. Denote by Z,(t) the auxiliary nonhomogeneous MP with the state space Xo =
{1,2,...,d} and intensities of transitions {a,(%,!,t), i,l € Xo,7 # [,t > 0}. Further,
we denote by (Z,(t),II,(t)), t > 0, a two-component MP such that II,(¢) is a Poisson
process switched by Z,(t) and having instantaneous intensity of a jump an(z,(t),0,t) at
the moment ¢. Put

n (o) = inf{t:t >0, T, (t) > 1, given #n(0) = do } io € Xo.

It is not hard to prove (see [6]) that for all i € X random variables Q,(i0) (see (3.6))
and Q,(40) have the same distribution. According to relations (3.2) and (3.3), Z,(-) is a
quasi-ergodic MP and Assertion 3.1 holds.

Now we use the representation

(3.9) P{Q.(i0) > kpu} = Eexp{ - /kn“ an(Zn(t),0,t) dt}.
0

Put A, (u) = Efok"u an(&n(t),0,t) dt. Using the inequality |e*—ef—ef (a—pB)| < 3|a—pBI?,
valid for a, 8 < 0, we obtain via (3.9) that
2

E

/ ™ an(En(0),0,8) b — Ron(u)
0

(3.10) |P{Rn(io) > knu} — exp {~Rn(w) }| < %
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Denote by ¢, (u,T) the USMC for the process Z,(t) (defined similarly to (3.1)) on the
interval [0, k,T]. Conditions (3.2) and (3.3) imply that for all T > 0 there exist ¢,
g < q1 <1, and r(T) such that

(3.11) en(r(T),T) < q1.
Taking into account the well-known inequality

Elan(zn(w),0,u)an (2 (v),0,v) — Ean(zn(w),0,u) Ean(zn(v),0, v)|
S sup an(za 07 S)SOn('U - u)’

,s

valid for all u < v, it is not hard to prove that

2

E /Onuan(mn(t),t)dt—[&n(u) — 0.

Relation (3.4) together with (3.7) implies that A,(u) — An(u) — 0. This completes the
proof of the statement of Theorem 3.1. O

Note that Theorem 3.1 generalizes results on exponential approximation for the first
exit time from a subset of states independently proved for homogeneous MP and SMP
by different methods in [1, 2] and [20], respectively.

3.3. Asymptotic consolidation of nonhomogeneous MP. Consider applications of
Theorems 2.1 and 3.1 in models of the asymptotic consolidation for nonhomogeneous MP.
Let z,(t),t > 0, for n > 0 be a nonhomogeneous MP assuming valuesin X = {1,2,...,d}
and generated by a family of instantaneous intensities of transient probabilities a, (%, [, t),
i,l=1,...,d, 7 # l. Assume that the state space X may be represented in the form

(3.12) X ={Jx,
jeEY

where X;, N X;, = @ for j; # j2. Introduce a map K(-) from X to Y such that K (i) = j
for all ¢+ € X; and consider the consolidated process K(z,(t)) = j for z,(t) € X, t > 0.
Assume that the following representation is valid:

1
(3.13) an(i,1,t) = a9 (5, 1,t) + ~ba(i, L), i l=1,....d,

where for all T > 0

(3.14) lim sup max sup |b,(3,1,t)| < Cr < oo,

n—oo bt t<nT
and forallj€Y,t>0
(3.15) aO®G,L,t)=0 ie€X; l€X;.

We assume that the functions a,(lo)(i,l,t) regularly depend on the parameter ¢ in the
following way: there exists a family of continuous functions {ao(%,l,u), i,l = 1,...,d,
it# 1, u >0} such that forall j€eY and T > 0

(3.16) lim sup |a{? (3,1, nu) — ao(i,l,u)| =0,  i,l€ X;.

n—00 4T
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For all j € Y and a fixed v > 0 we denote by a:(] )( v), t > 0, the auxiliary homogeneous
MP with the state space X; and transient intensities ao(,1,v), ¢,! € X, ¢ # l. Introduce

the USMC

o9 (u,v) = max P{xff)(u v) €A / z9(0,v) = 21}

17) i1,12€X;,ACX;
3.
( —P{m(() (u,v EA/x(])Ov):ig}‘.

Also assume that there exists g, 0 < ¢ < 1, and for all T' > 0 there exists 7(T") such that
forallj €Y, v<T

(3.18) e (r(T),v) < q.

Note that conditions (3.16)—(3.18) mean that every X is a quasi-ergodic subset. Further,

for all v > 0 denote by 7r(J )(z v), © € X, the stationary distribution of the MP x(’ )(t, v)
(that exists under COIldlthIl (3.18)). Forallj e Y, meY, j # m we put

an (7, m,v) = ZW(J)Z’U Zb i,1,nv).

i€X; leXm

Assume that for all j,m € Y, j # m and for all u > 0 there exist the following limits:
(3.19) A(j,m,u) = 7}1—.1130 /Ou in (4, m,v) dv,

where the functions A(j, m,u) may be written in the form:

(3.20) A(F,m,u) = /Ou S\O(j, m,v)dv,

and Ao(4, m,v) are continuous functions.

Theorem 3.2. Let conditions (3.12)—(3.20) be satisfied and

P .
K (zn(0)) — Jjo-

Then the sequence of consolidated processes K (zn(nu)) J-converges on any interval [0, T
to a nonhomogeneous MP y(u) having the state space Y and initial value jo and generated
by the family of transient intensities Ao(j, m,u), j,m € Y, j # m. Moreover, for all
i€ X; and u > 0,

lim P{z,(nu) = i} = 7 (i, u)P{y(u) = j}.

n—oo

Further we consider the convergence of integral functionals. Let a family of continuous
functions {f(¢,v), i € X,v > 0} be given. Put

=/Ou f(zn(nv),v) dv.

Set £(j,v) = Yiex, 76 (6, v)f(i,v), § €Y, v 2 0.
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Theorem 3.3. Under the conditions of Theorem 3.2, the sequence of processes
(K (zn(nu)), Sn(w))

J-converges on any interval [0,T] to a process (y(u),S(u)), where y(u) is defined in
Theorem 3.2 and

(3.21) S(u) = /O " ), v dv

Further we consider the convergence of Poisson type processes with switches. Let a
family of continuous nonnegative functions {u,(,t), ¢ € X,t > 0} be given. Construct
a process of Poisson type on the trajectory z,(:) as follows: if z,(t) = %, then the
instantaneous intensity of a jump is un(%,t). Denote by IL,(t) the total number of jumps
on the interval [0,¢] and put

AD) (u) =/ Z 79 (4, ) i (3, V) d.

1€X;
Theorem 3.4. Let conditions of Theorem 3.2 be satisfied,

lim sup max sup nun(i,nu) < Cp < oo for all T > 0,

n—oo 1€X y<T

and suppose there exists a family of continuous functions {(j,v),j € Y,v > 0} such that
for allu >0

lim Aglj)(u)=/ i(4,v) dv.

n—oo 0
Then the sequence of processes (K (zn(nu)),II,(nu)) J-converges on any interval [0, T
to a process (y(u),Il(u)), where the MP y(u) is defined in Theorem 3.2 and Il(u) is a

Poisson process on the trajectory y(+) generated by the intensities i(j,u) (if y(u) =j at
a moment u, then the local intensity of a jump is (4, u)).

Proofs of Theorems 3.2-3.4. First we represent the process (K (z,(t)), S.(t)) as a SP. In
this case, switching moments are the moments of transitions between subsets X;, and the
processes (,(t, j, &) are the corresponding additive functionals of the auxiliary processes

&9 (+) on subsets X;.

For all j € Y and | € X; we denote by Zr ) (t, 1) an auxiliary MP with the state space X
and initial state [ generated by transient 1ntensities an(i,k,t), 4,k € Xj,1 # k. Further we

denote by Hslj )( t) a nonhomogeneous compound Poisson process switched by Z ¥ (t l) and
having, at the moment ¢, the instantaneous intensity n‘lb(J ) (%,t) of a jump from a state 1,
where b(’ ) (4,1) = g X; by (4,1,t), and the jump size 9) (i,t) equals s with probability
b (1,8)"16% (s, s t) s & X;. Consider a two-component process (&3 (t,1), 115’ (t)).
Denote by u + 'rn (u 1) the first moment of a jump of the process o) (¢ (t) on the interval
[u,00) and by gy (u ) we denote the Jump size. Construct a SP y,(t) with values
in Y using random variables {7 g )(u 1), (u ),l € X;}, 5 €Y. Let ig € X, be

the initial value. Put t,o = 0, tpkt+1 = tnk + Tygjnk)(tnk,'lnk), Ink+l = ﬂ,gj"")(tnk,znk),
Jnk = K(ink), k > 0, and set yn(t) = jnk for tnx <t < tpk41, t > 0. By construction,
the process yy, (+) is equivalent to the process K (z,(+)). Denote by I1¢)(t) the compound
Poisson process with the instantaneous intensity of a jump Ag (Gv)=>, £ S\O(j,m v)
(see (3.19) and (3.20)) and such that the jump size )(z v) equals m with probability
Mo(F,m,v)Ao(4,v)"1, I € X;. If n — oo, then, accordmg to Theorem 3.1, the distribution
of the random variable n_17'1(7,j )(nv, l)foralll € X;, v >

0, weakly converges to the
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random variable that may be described as follows: it is the moment of the first jump of
the process o) (t) —116) (v) on the interval [v, 00) minus v. Respectively, the distribution
of the random variable ﬂ (v,l) weakly converges to the distribution of the size of this
jump. It is easily seen that the SP constructed in such a way, is equivalent to the MP
y(u) introduced in Theorem 3.2. Finally, using Theorem 2.1 we complete the proof of
the statement of Theorem 3.2.

In the case of Theorem 3.3 we put (. (u, j,1) = [ f(&7’(nv,1),v) dv. Then the process
(K (zn(nu)), Sn(u)), as before, may be represented as a SP by using the above notation
and the processes (,(u, j,!). However, the process :z;n (t 1) satisfies the uniform strong
mixing condition on every subset X;. This implies that the process ¢, (u, 7,1) uniformly
converges for all I € X; to the deterministic function fou f(j,v) dv and the limit process
constructed by the limit variables corresponds to relation (3.21). The proof of Theo-
rem 3.4 is similar. O

Note that the consolidation of states of homogeneous MP and SMP was studied in
[20, 22] using operator methods. A direct constructive method was proposed in [19]. An
approach based on the switching processes was developed in [2, 4, 6].

3.4. The asymptotic consolidation in queueing systems. Now we consider ap-
plications of Theorems 3.1-3.4 to problems of the asymptotic consolidation of states in
queueing systems.

3.4.1. A state-dependent system Myr.o/Mm,q/s/m in a fast varying environment.
1) Consolidation of states of the environment. Let families of continuous (in t)
nonnegative functions,

{a(3,1,t,q),\(3,t,q), u(5, t,q), i,l € X, # 1,4 € {0,1,2,...}},

be given, where X = {1,2,...,7}. The system consists of s servers and m waiting
places. Denote by z,(¢) a stochastic process forming the environment of the system.
Let us describe the evolution of the system. We suppose that calls enter the system
one by one. If, at the moment ¢, the total number of calls in the system is @ and
z,(t) =1,4=1,...,7, then the instantaneous intensity of the input flow is A(%, ¢, @), the
instantaneous intensity of the service for any busy server is u(¢,¢,Q), and the process
z,(t) may jump from a state i to a state [ with the intensity na(s,{,¢,Q@) (n is a scale
parameter and n — o0). After the service is completed, the call leaves the system.

For every fixed (v, q) we consider the auxiliary homogeneous MP z(u,v,q), u > 0, as-
suming values in X and generated by the transient intensities {a(i,l,v, q),%,1l € X,i # l}.
Let p(u,v,q) be its USMC (see (3.1)). Assume that there exists g, 0 < g < 1, and for
all T > 0 there exists (T} > 0 such that

(3.22) o(r(T),v,q) < g

forallv < T and g € {0,1,...}. Denote by {n(%,v,q),? € X} the stationary distribution
of the process z(u, v, q), u > 0, and put

(323) )‘(an) = Z )\(i,v,q)ﬂ'(i,v,q), .[L(an) = Z,u(i,v,q)’n(i,v,q).

i€X i€X
By Q,(t) we denote the total number of calls in the system at the moment ¢ (the size of
a queue).

Introduce the system Mg /Mg/s/m described as follows: if the size of a queue at the
moment ¢ is Q(t) = @, then the instantaneous intensity of the input flow is At, Q) and
the instantaneous intensity of service for any busy server is ji(t, @) (the environment is
absent in such a system). Suppose the process Q(t) is regular.
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Assertion 3.2. Under the above assumptions and condition (3.22) the process Qn(t)
J-converges on any finite interval to the process Q(1).

Remark. This means that the size of a queue in the initial system may be approximated
by the size of a queue in the limit system with averaged characteristics.

Proof. Consider the MP (Qn(t), zn(t)) and describe it as a SP. In this case the component
Qn(+) is the environment and zn(-) is a process of Markov type switched by Qn(:).
Therefore the statement directly follows from Theorem 3.2. |

2) Consolidation of states of the environment. Now we consider the preceding sys-
tem in the case where the process z,(-) admits the asymptotic consolidation of states.
Let families of continuous nonnegative functions {A(i,t,q), u(4,t,q), 4,0 € X,i # I,
qg € {0,1,2,...}} be given, where X = {1,2,...,7}. We suppose that representa-
tion (3.12) is valid (it is possible to consider the case where different ¢ correspond to differ-
ent partitions) and families of continuous nonnegative functions {a(j)(i, l,t,9), 1,1l € X,
i #1093, k,t,q), i€ X;,k € Xj,j €Y, t>0,q€{0,1,2,...}} are given.

Let us describe the evolution of the system. We assume that calls enter the system one
by one. If the total number of calls in the system at the moment t is Q and z,(t) =i € Xj,
then the instantaneous intensity of the input flow is A(%, ¢, @), the instantaneous intensity
of service for any busy server is u(i,t, @), and the process z,(t) may jump from a state %
to a state | € X, with intensities na(i,1,t,Q), | € X;, or it may jump to a state
k € X,,, m # j, with intensities b (i, k,t,Q), k & X.

For every fixed (j,v,q) consider the auxiliary homogeneous MP z(u, j,v,q), u > 0,
assuming values in X; and generated by transient intensities {a(j)(i,l,v,q), 3,1l € Xj,
i # 1}. Let o(u,j,v,q) be its USMC (see (3.1)). Assume that the USMC satisfies
condition (3.22) for all j € Y. Denote by {7 (¢, j,v,q),% € X;} the stationary distribution
of the process z(u, j,v,q), u > 0, and put

AGv, @) = Y AGv, (i Gy v,0),  AG,v,9) = D p(i,v,q)m (i, 5,v,9),
1€EX; 1€EX;

b(G,m,v,q) = Y w(i,5,0,9) Y b9(i,k,v,q).

’l:EXj k€EXm

(3.24)

Also denote by Q. (t) the size of a queue in the system at the moment ¢ and put y,(t) =
K(za(t))-

Introduce the system Mps,o/Ma,q/s/m switched by the process y(-) and described
in the following way: if the size of a queue at the moment ¢ is Q(¢t) = @ and y(¢) = j,
then the instantaneous intensity of the input flow is 5\( j,t, @), the instantaneous intensity
of the service for any busy server is fi(j,¢, @), and the intensity of the transition of the
process y(+) from a state j to a state m is b(j,m,t,Q) (note that the process y(+) in the
general case is not Markov, since its transient intensities depend also on the current size
of a queue). Assume that the process (y(t), Q(t)) is regular.

Assertion 3.3. If under the above conditions z,(0) = iy € Xj,, then the process
(yn(t), Qn(t)) J-converges on any finite interval to the process (y(t), Q(t)), where y(0) =
Jo-

Remark. In this case the limit system operates in an environment with a consolidated
state space and with averaged characteristics in every asymptotically connected subset.

3.4.2. Analysis of losses in the system My .q/Mm,g/s/m. As another example we
consider the same system operating in the same fast time scale as the environment.
Let the system be described in the same way as that in Section 3.4.1 2) with the only
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difference that the instantaneous intensities of the input flow and service at the moment ¢
are nA(6 b Q) and nu(i,t, Q), respectively. We assume that s < co and m < co. Denote
by pn(t) the probability to lose a call entering the system at a moment ¢. Let Z,(t)
denote the total number of calls lost on an interval [0,].

For all fixed (j,v), j € Y, v > 0, we introduce the auxiliary, homogeneous in time
system M](ég /M. /s/m described by the two-component MP (y(t, ,v), Q(t)) assum-
ing values in X; x {0,1,...,s + m}, as follows: if Q(t) = Q and y(t,5,v) = i at a
moment t, then the instantaneous intensity of the input flow is A(7, v, @), the instanta-
neous intensity of the service for any busy server is u(i,v,@Q), and the transition prob-
ability of the process y(t,j,v) from a state i to a state | € X is a9 (i,l,v,Q). Let
(1,4, 5,v), (5,9) € X; x {0,1,..., s+ m} denote the stationary distribution of the pro-
cess (y(t,J,v), Q(t)) and g(j,v) is the stationary probability to lose a call.

Introduce the random variables

bj,mov)= > w(ig,5,v) > b9,k v,q)

i€X;,0<q<s+m EEXm

and denote the MP with transient intensities b(j,m, t), j # m, by §(t).

Assertion 3.4. If ,(0) = 49 € Xj,, then under the above assumptions pp(t) —
Eg(§(t),t) for all t > 0 and the process n='Z,(t) J-converges on any fized interval

to the process fot 9(y(u), u) du, where y(0) = jo.

We also may consider a system with “fast” service (i.e. u(f) = un(?) and p,(i) —
oo while X is fixed). Some applications to the analysis of the behavior of compound
renewable systems with “fast” service are obtained in [9]-[11] for homogeneous models.

The above results obtained for systems may be extended to a wide class of nonhomo-
geneous in time stochastic networks and provide us with a new approach to problems of
analytical modelling of compound hierarchical service systems.
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