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ABSTRACT 

We study a generalized version of the near-duplicate detection 

problem which concerns whether a document is a subset of 

another document. In text-based applications, document 

containment can be observed in exact-duplicates, near-duplicates, 

or containments, where the first two are special cases of the third. 

We introduce a novel method, called CoDet, which focuses 

particularly on this problem, and compare its performance with 

four well-known near-duplicate detection methods (DSC, full 

fingerprinting, I-Match, and SimHash) that are adapted to 

containment detection. Our method is expandable to different 

domains, and especially suitable for streaming news. 

Experimental results show that CoDet effectively and efficiently 

produces remarkable results in detecting containments. 

Categories and Subject Descriptors 

H.3.7 [Digital Libraries]: Collection, System Issues. 

General Terms: Algorithms, Experimentation, 

Performance, Reliability 

Keywords: Corpus Tree, Document Containment, Duplicate 

Detection, Similarity, Test Collection Preparation. 

1. INTRODUCTION 
Near-duplicate1 detection is an important task in various web 

applications. Due to reasons such as mirroring, plagiarism, and 

versioning such documents are common in many web applications 

[17].  For example, Internet news sources generally disseminate 

slightly different versions of news stories coming from syndicated 

agencies by making small changes in the news articles. 

Identifying such documents increases the efficiency and 

effectiveness of search engines.   

We consider a generalized version of the near-duplicate 

detection problem and investigate whether a document is a subset 

of another document [2]. In text-based applications, document 

containment can be observed in near-duplicates and containments. 

We refer to identifying such document pairs as the document 

containment detection problem. We study this problem within the 

context of news corpora that involve streaming news articles.  

If a document dC possesses all the information that document 

dA has, then dC is said to contain dA, which is denoted as dC⊇dA, 

and this relation is called containment. Moreover, if two 

documents contain roughly the same content, they are near-

duplicates [6]. Although near-duplicate condition is a special case 
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of containment, these two cases are not usually distinguished from 

each other [15]. Similar to the “conditional equivalence” concept 

defined by Zobel and Bernstein [17], if dC⊇dA, then a news-

consumer who have already read dC would have no need to read 

dA. Of course, dC⊇dA does not necessarily imply dA⊇dC, i.e. 

containment relation is asymmetric. By detecting dC⊇dA, news 

consumers that have already seen dC can be informed to skip 

reading dA. 

In related studies, containment problem is addressed by near-

duplicate detection algorithms. Therefore, we compare 

performance of CoDet with well-known near-duplicate detection 

approaches. 

Contributions of this study are the following. We introduce a 

sentence-based containment detection method adaptable to 

different text-based problem domains, and especially suitable for 

streaming news; show that our approach outperforms commonly 

known near-duplicate detection methods; and construct a test 

collection using a novel pooling technique, which enables us to 

make reliable judgments for the relative effectiveness of 

algorithms using limited human assessments. 

2. RELATED WORK 
In near-duplicate detection similarity measurement plays an 

important role [11]. By using similarity, two documents are 

defined as duplicates if their similarity or resemblance [3] exceeds 

a certain threshold value. Such approaches are applied to identify 

roughly the same documents, which have the same content except 

for slight modifications [1]. In comparisons, factors other than 

similarity may also play a role. Conrad and Schriber [7] after 

consulting librarians deem that two documents are duplicates if 

they have 80% overlap and 20 variations in length.  

Similarity measures may use all words in documents in 

calculation. Instead of using each word, a sequence of them, 

shingles, may be used. In shingling approaches, if two documents 

have significant number of shingles in common, then they are 

considered as similar (near-duplicate). Well-known shingling 

techniques include for example COPS [1] and DSC (Digital 

Syntactic Clustering) [3]. COPS uses the sentences (or small 

units) to generate hash codes and stores these in a table to see if a 

document contains a sentence. Wang and Chang propose using the 

sequence of sentence lengths for near-duplicate detection and they 

evaluated different configurations of sentence-level and word-

level algorithms [14]. 

Shingling and similarity approaches suffer from efficiency 

issues. As a result a new strategy emerged which is based on 

hashing of the whole document.  I-Match [6] is a commonly 

known approach that uses this strategy. It filters terms based on 

collection statistics (idf values). Charikar‟s [5] Simhash method is 

based on the idea of creating a hash by using document features 

(words, bigram, trigrams, etc.). It compares bit differences of 

these signatures to decide if two documents are near-duplicate or 

not. Yang and Callan [15] use clustering concepts for efficiency. 

While clustering documents they use additional information 
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extracted from documents and structural relationships among 

document pairs.  

Hajishirzi et al. [9] propose an adaptable method for near 

duplicate detection by representing documents as real valued 

sparse k-gram vectors, where weights are learnt to optimize a 

similarity function. Zhang et al. [18] address the partial-duplicate 

detection problem by doing sentence level near-duplicate 

detection and sequence matching. Their algorithm generates a 

signature for each sentence and sentences that have the same 

signature are considered as near-duplicates. Theobald et al. [13] 

propose SpotSigs algorithm that combines stopword antecedents 

with short chains of adjacent content terms to create signatures. 

3. CODET ALGORITHM 

3.1 Containment Similarity Concept 
CoDet is a novel sentence-based containment detection algorithm. 

It employs a new similarity measure called containment similarity 

(CS). It measures to what extent a document dA is contained by 

another document dC, which is defined as 

                                   

          

                                      

where SA and SC denote the set of sentences in dA and dC, 

respectively. The function cs(si, sj) indicates containment similarity 

between sentences si and sj, which is calculated as 

                             
 

   
           

   

                           

where f(si, sj)  denotes the word sequence representing the longest 

word prefix match of the sentences si and sj, lent is the length of the 

word sequence t, and wt,k stands for the kth word in the word 

sequence t. For example, let s1 be “John is happy.” and s2 be “John 

is sad.” then f(s1, s2) is a word sequence (John, is),              is 2 

and wf(s1, s2),1 is John. 

As can be seen in Formula 2, containment similarity between 

two sentences grows significantly as their word prefix match gets 

longer. The containment similarity of a document to itself is 

referred to as self-containment similarity (SCS). 

 
Fig. 1. Insertion of three documents dA: “NASDAQ starts day 

with an increase. Shares gain 2%.”, dB: “NASDAQ starts the 

day with a decrease. Shares lose 2%.”, and dC: “Shares lose 

2%.”. For the sake of clarity, words of sentences are not 

sorted according to their idf values. 

3.2 Containment Similarity Calculation 
For efficient calculation of containment similarities, we utilize a 

data structure called corpus tree. The corpus tree begins with a 

virtual root node which contains a pointer list storing the locations 

of the children nodes in the next level. In addition to pointer list, 

nodes other than the root contain a label and a document list. The 

label represents the node‟s term and the document list contains 

visiting document ids. 

 Let dA denote a document with a set of sentences SA= {s1, s2 … 

sn}. Processing of dA involves processing all of its sentences. 

Insertion of si (1≤ i ≤ n) to the corpus tree is performed as follows: 

First, words of si are sorted according to their idf values in 

descending order. Let <w1, w2 … wm> denote the sequence of 

words in si after sorting. These words are inserted into the corpus 

tree starting from the virtual root node. If the root has a child     
 

with label w1, then similarity values of dA with all documents in 

    
's document list are increased according to Formula 2. 

Otherwise, a new child node     
 with label w1 is created and 

added to the root‟s pointer list. In the next step, we treat     
 as we 

did the root, and insert the following word w2 of si similarly. The 

insertion of si finishes after all of its words are processed. The 

remaining sentences of dA are handled in the same manner. The 

same is done for the remaining sentences of dA. 

Fig. 1. shows how the corpus tree grows with sentence 

insertions. In Fig. 1-I, dA‟s sentences “NASDAQ starts day with an 

increase.” and “Shares gain 2%.” are inserted to the corpus tree 

starting from the virtual root, which is shown by a dark circle. Since 

the tree is initially empty, while inserting the first sentence all the 

nodes with labels <nasdaq, starts, day, with, an, increase> are 

created. Similarly, insertion of the second sentence creates nodes 

with labels <shares, gain, 2%>. In Fig. 1-II, during the insertion of 

the sentence “NASDAQ starts day with a decrease.” previously 

created nodes with labels <nasdaq, starts, day, with> are visited and 

updated. Also, two nodes with labels <a, decrease> are created. 

Insertion of the sentence “Shares lose 2%.” visits the node with 

label shares and creates two nodes with labels <lose, 2%>. Thus, 

similarity value of dA and dB is increased by summation of each 

revisited node's impact values, which is calculated by multiplication 

of node‟s depth and idf value of its label. For example, contribution 

of the node with label starts is                   because its 

depth is 2 and word starts appears in 2 of 3 documents (in the 

experiments, the idf values are obtained from a large reference 

collection). The final structure of the corpus tree after the insertion 

of dC is shown in Fig. 1-III. 

To decide whether a document dA is contained by another 

document dC, CoDet uses CS(dA, dC) as well as SCS(dA) values. If 

(CS(dA, dC) / SCS(dA)) exceeds the equivalency threshold level 

(ETL), dC is said to contain dA. In the experiments, different ETL 

values are tested. 

3.3 Complexity Analysis 
For each scenario, let n denote the number of documents and let c 

denote the average number of words per document, which is treated 

as constant. 

First Scenario (One Content, n Documents): In this case, each 

document has the same content; therefore, corpus tree contains c 

nodes. Each node contains n integers in its document list. As a 

result, the memory requirement of the corpus tree is O(n) but due to 

pairwise containment similarity increase operations the algorithm 

takes O(n2) time.  

Second Scenario (n Different Contents, n Documents): In this 

case, each document has totally different content. Thus, corpus tree 

contains nc nodes (one node for each word). Each node contains 

only one document id in its document list. Therefore, asymptotically 

the memory requirement of the corpus tree is O(n) and the 

algorithm takes O(n) time. 

The first scenario is the worst case for CoDet, where the algorithm 

performs nonlinearly. The second one is the best case for CoDet and 

the algorithm runs in linear time. In practice the algorithm behaves 

as if it is linear because average number of near-duplicate per 
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document is significantly smaller than n. Also CoDet is especially 

suitable for streaming news since with a time window concept, 

which makes older documents to be removed from the corpus tree, 

the corpus tree does not grow too much. 

4. EXPERIMENTAL SETUP 
We used four algorithms to compare their effectiveness and 

efficiency with CoDet. These algorithms are: 

DSC: Every three overlapping substrings of size four in the 

documents are hashed. If a document dC contains 60% of dA‟s hash 

values, we say dC⊇dA [3]. 

Full Fingerprinting (FFP): For each document, all substrings of 

size four are hashed. If document dC contains 60% of dA‟s hash 

values, then, dC⊇dA. 

I-Match: First two words with the highest idf values are ignored. 

After that, ten words with the highest idf values are used to create a 

fingerprint for each document. When a pair of documents has the 

same fingerprint, the pair is marked as containment [6]. 

SimHash: First two words with the highest idf values are ignored. 

Then, each unique term of a document is hashed. We use a vector v, 

whose size is equal to the hash value bit size, to determine the final 

SimHash [5] value. For each term t, ith element of the vector v is 

updated as follows: If ith bit of the hash value of t is zero, then it is 

decreased by idf of w. It is increased by the idf otherwise. Finally, if 

ith element of v is positive, ith bit of the SimHash value is set to one; 

otherwise it is set to zero. When a pair of documents‟ SimHash 

values has a Hamming distance less than three, the pair is 

considered as containment. 

For hashing, SHA1 [6] algorithm is used in all methods. 

Stopword elimination and a word truncation-based stemming (first-

5) are performed before the detection process. I-Match, SimHash 

and CoDet requires idf values. These values are obtained from a 

large reference collection (defined in the next section). In order to 

do a fair evaluation, each algorithm‟s parameters are optimized to 

give the best results for efficiency. 

We performed the experimentation on a machine with quad 

2.1Ghz six-core AMD Opteron processors with six 128 KB L1, 512 

KB L2, and one 6MB L3 cache. It has 128 GB memory and 

operating system Debian Linux v5.0.5. 

4.1 Test Collection Preparation 
There is no gold-standard test collection for containment detection 

in news corpora; therefore, we prepared a test dataset from the 

Turkish TDT (Topic Detection and Tracking) news collection 

(BilCol-2005) [4] which contains 209,305 streaming (time-ordered) 

news articles obtained from five different Turkish web news 

sources.  

For efficiency measurement, we used all documents of BilCol-

2005. For effectiveness measurement, we used the first 5,000 

documents of BilCol-2005. It is practically impossible to provide 

human assessment for each document pair in this sub-collection. 

Our approach to human assessments is similar to the pooling 

method used in TREC for the evaluation of IR systems [16]. For the 

creation of the dataset, we obtained a number of possible 

containments by running all five methods (including CoDet) with 

permissive parameters. In this way, methods nominate all pairs that 

would normally be chosen with their selective parameters, together 

with several additional pairs as containment candidates. Since the 

methods are executed with permissive parameters, we expect that 

most of the real containments will be added to the test collection. 

All pairs of documents, which are marked as containments by any 

of the methods, are brought to the attention of human assessors to 

determine whether they actually are containments. Note that in 

order to measure the effectiveness of a new algorithm with this test 

dataset, adding human assessments only for containment candidates 

that are nominated solely by this new algorithm to our dataset is 

sufficient. 

By this approach, our dataset includes only true positive (TP) 

and false positive (FP) document pairs returned by any of our 

permissive algorithms. excluding true negative and false negative 

pairs do not change the relative effectiveness rankings of selective 

algorithms during the test phase; because, if a permissive algorithm 

marks a pair as negative (non-containment), then its selective 

counterpart should also marks that pair as negative. Therefore, 

including TN and FN pairs of permissive algorithms in our dataset 

would not contribute to the number of positive pairs (TP‟s and FP‟s) 

returned by any selective algorithm during the test phase. Hence, 

using our pruned dataset, precision1 values of the selective 

algorithms remain unchanged with respect to precision values they 

would obtain in a full dataset having annotations for all possible 

document pairs. Similarly, recall values of the selective algorithms 

decrease proportionally (with the same ratio of total number of 

containments in the pruned dataset to the total number of 

containments in the full dataset, for all algorithms) with respect to 

recall values they would obtain in the full dataset.  

Our pooling process generated 4,727 document pairs 

nominations. We performed a human-based annotation to obtain a 

ground truth. The pooled document pairs are divided into 20 groups 

containing about the same number of nominations. Each document 

pair is annotated by two assessors. The assessors are asked if the 

nominated document pairs are actually containments.  The assessors 

identified 2,875 containment cases. The size of our dataset is 

comparable with the annotated test collections reported in related 

studies [13].  

In information retrieval, human assessors may have different 

opinions about the relevance of a document to a query. A similar 

situation arises in our assessments. For example, for the document 

pair dC = “XYZ shares increase 10% from 100 to 110.” and dA = 

“XYZ shares increase from 100 to 110.”, some assessors may say 

that dC and dA are near-duplicates, while some others may claim dC 

contains dA, but the dA does not contain dC. In such cases we expect 

disagreements among human assessors. In order to validate the 

reliability of the assessments, we measured the agreements of the 

judgments by using the Cohen‟s Kappa measure, and obtained an 

average agreement rate of 0.73. This indicates almost a substantial 

agreement [10], which is an important evidence for the reliability of 

our test dataset. Furthermore, such conflicts are resolved by an 

additional assessor.  

5. EXPERIMENTAL RESULTS 
In this section, we first investigate the impacts of the following 

parameters on the performance of CoDet: Processed Suffix Count 

(PSC), Depth Threshold (DT), and Word Sorting (WS). This 

discussion is followed by efficiency and effectiveness 

performance of CoDet with those of four well-known near-

duplicate detection algorithms. Effectiveness measurement is 

done by precision, recall and F1 values. Impacts of parameters and 

effectiveness experiments are done on prepared test collection. 

Efficiency experiment is performed with the whole BilCol-2005. 

5.1 Impacts of Parameters 
Processed Suffix Count (PSC): It determines how many suffixes 

of each sentence are inserted to the corpus tree. If the PSC is 3, 

the processed suffixes for “NASDAQ starts day with an increase.” 

are the sentence itself, <starts, day, with, an, increase> and <day, 

with, an, increase> Increasing PSC increases space requirement 

                                                                 

1 Precision (P) = |TP| / (|TP| + |FP|). where |S| is the cardinality of 

the set S.  Recall (R) = |TP| / (|TP| + |FN|).  F1 = 2PR / (P + R). 
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but do not change effectiveness considerably as shown in Fig. 2: 

Different PSC values result in close F1 scores. 

  

Fig. 2. Effect of Processed                                

Suffix Count (PSC). 

Fig. 3. Efficiency 

Comparison: Execution 

Time vs. Document Count. 

  
Fig. 4. Effect of Depth 

Threshold (DT): Word 

Sorting (WS) is on. 

Fig. 5. Effect of Depth 

Threshold (DT): Word 

Sorting (WS) is off. 
  

Depth Threshold (DT): It determines how many words of a 

sentence are processed. If the DT is 3, the processed words 

“NASDAQ starts day with an increase.” are <nasdaq, starts, day>. 

Fig. 4 and 5 show the effect of DT on F1 score. Sorting words of a 

sentence by idf values places representative words close to the 

virtual root. Thus, results are better for small DT values when word 

sorting is enabled. It avoids the noise effect of insignificant words in 

similarity calculations. In the experiments, DT value of 5 gives the 

best result; also smaller DT values yield a similar performance. 

Thus, instead of having the corpus tree structure, an algorithm that 

considers only a few most significant words from each sentence can 

improve efficiency without sacrificing effectiveness significantly. 
Word Sorting (WS): Sorting words in sentences by idf values 

causes important words to be located close to the virtual root. Since 

most sentences start with common words, by using word sorting, we 

avoid many redundant similarity calculations. In the experiments, 

enabling word sorting decreases average number of calculated 

similarity values per document from 341 to 3.53. 

5.2 Comparing with Other Algorithms 
The efficiency results are given in Fig. 3. As the number of 

documents increase, execution time of full fingerprinting increases 

non-linearly. It calculates similarity values for each document pair 

that has at least one substring in common. Hence, it is not feasible 

for large collections. CoDet performs as the third best algorithm in 

time efficiency; the corpus tree accesses impose many random 

memory accesses, which disturb cache coherency. Our results show 

that I-Match, SimHash and CoDet are scalable to large collections. 

 Table 1 shows the effectiveness results. The best performance 

with a value of 0.85 F1 score is observed with FFP since it 

calculates text overlaps between document pairs having a common 

substring. Therefore, without making any semantic analysis, it is 

difficult to outperform FFP in terms of effectiveness with a time-

linear algorithm. CoDet finds text overlaps by only using important 

words of sentences and is the second best in terms of effectiveness 

with an F1 score of 0.76. I-Match, SimHash, and DSC perform 

poorly with respective F1 scores of 0.45, 0.39, and 0.30. FFP is not 

feasible for large collections; thus, CoDet is the most suitable 

algorithm for containment detection in news corpora.  

6. CONCLUSIONS 
In this work we investigate containment detection problem, which 

is a more generalized version of the near-duplicate detection 

problem. We introduce a new approach, and compare its 

performance with four other well-known methods. As the 

experimental results demonstrate CoDet is preferable to all these 

methods; since it produces considerably better results in a feasible 

time. It also has desirable features such as time-linear efficiency 

and scalability, which enriches its practical value. Our method is 

versatile, can be improved, and can be extended to different 

problem domains. 
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Table 1. Effectiveness Comparison 

Algorithm Precision Recall F1 Measure 

FFP 0.82 0.88 0.85 

CoDet 0.75 0.76 0.76 

I-Match 0.72 0.33 0.45 

SimHash 0.53 0.30 0.39 

DSC 0.22 0.45 0.30 
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