
CoDet: Sentence-based Containment Detection
in News Corpora

Emre Varol, Fazli Can, Cevdet Aykanat, Oguz Kaya
Computer Engineering Department, Bilkent University

Ankara, Turkey

{ evarol, canf, aykanat } @cs.bilkent.edu.tr, oguzkaya87@gmail.com

ABSTRACT

We study a generalized version of the near-duplicate detection

problem which concerns whether a document is a subset of

another document. In text-based applications, document

containment can be observed in exact-duplicates, near-duplicates,

or containments, where the first two are special cases of the third.

We introduce a novel method, called CoDet, which focuses

particularly on this problem, and compare its performance with

four well-known near-duplicate detection methods (DSC, full

fingerprinting, I-Match, and SimHash) that are adapted to

containment detection. Our method is expandable to different

domains, and especially suitable for streaming news.

Experimental results show that CoDet effectively and efficiently

produces remarkable results in detecting containments.

Categories and Subject Descriptors

H.3.7 [Digital Libraries]: Collection, System Issues.

General Terms: Algorithms, Experimentation,

Performance, Reliability

Keywords: Corpus Tree, Document Containment, Duplicate

Detection, Similarity, Test Collection Preparation.

1. INTRODUCTION
Near-duplicate1 detection is an important task in various web

applications. Due to reasons such as mirroring, plagiarism, and

versioning such documents are common in many web applications

[17]. For example, Internet news sources generally disseminate

slightly different versions of news stories coming from syndicated

agencies by making small changes in the news articles.

Identifying such documents increases the efficiency and

effectiveness of search engines.

We consider a generalized version of the near-duplicate

detection problem and investigate whether a document is a subset

of another document [2]. In text-based applications, document

containment can be observed in near-duplicates and containments.

We refer to identifying such document pairs as the document

containment detection problem. We study this problem within the

context of news corpora that involve streaming news articles.

If a document dC possesses all the information that document

dA has, then dC is said to contain dA, which is denoted as dC⊇dA,

and this relation is called containment. Moreover, if two

documents contain roughly the same content, they are near-

duplicates [6]. Although near-duplicate condition is a special case

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

CIKM’11, October 24–28, 2011, Glasgow, Scotland, UK.
Copyright 2011 ACM 978-1-4503-0717-8/11/10...$10.00.

of containment, these two cases are not usually distinguished from

each other [15]. Similar to the “conditional equivalence” concept

defined by Zobel and Bernstein [17], if dC⊇dA, then a news-

consumer who have already read dC would have no need to read

dA. Of course, dC⊇dA does not necessarily imply dA⊇dC, i.e.

containment relation is asymmetric. By detecting dC⊇dA, news

consumers that have already seen dC can be informed to skip

reading dA.

In related studies, containment problem is addressed by near-

duplicate detection algorithms. Therefore, we compare

performance of CoDet with well-known near-duplicate detection

approaches.

Contributions of this study are the following. We introduce a

sentence-based containment detection method adaptable to

different text-based problem domains, and especially suitable for

streaming news; show that our approach outperforms commonly

known near-duplicate detection methods; and construct a test

collection using a novel pooling technique, which enables us to

make reliable judgments for the relative effectiveness of

algorithms using limited human assessments.

2. RELATED WORK
In near-duplicate detection similarity measurement plays an

important role [11]. By using similarity, two documents are

defined as duplicates if their similarity or resemblance [3] exceeds

a certain threshold value. Such approaches are applied to identify

roughly the same documents, which have the same content except

for slight modifications [1]. In comparisons, factors other than

similarity may also play a role. Conrad and Schriber [7] after

consulting librarians deem that two documents are duplicates if

they have 80% overlap and 20 variations in length.

Similarity measures may use all words in documents in

calculation. Instead of using each word, a sequence of them,

shingles, may be used. In shingling approaches, if two documents

have significant number of shingles in common, then they are

considered as similar (near-duplicate). Well-known shingling

techniques include for example COPS [1] and DSC (Digital

Syntactic Clustering) [3]. COPS uses the sentences (or small

units) to generate hash codes and stores these in a table to see if a

document contains a sentence. Wang and Chang propose using the

sequence of sentence lengths for near-duplicate detection and they

evaluated different configurations of sentence-level and word-

level algorithms [14].

Shingling and similarity approaches suffer from efficiency

issues. As a result a new strategy emerged which is based on

hashing of the whole document. I-Match [6] is a commonly

known approach that uses this strategy. It filters terms based on

collection statistics (idf values). Charikar‟s [5] Simhash method is

based on the idea of creating a hash by using document features

(words, bigram, trigrams, etc.). It compares bit differences of

these signatures to decide if two documents are near-duplicate or

not. Yang and Callan [15] use clustering concepts for efficiency.

While clustering documents they use additional information

2049

extracted from documents and structural relationships among

document pairs.

Hajishirzi et al. [9] propose an adaptable method for near

duplicate detection by representing documents as real valued

sparse k-gram vectors, where weights are learnt to optimize a

similarity function. Zhang et al. [18] address the partial-duplicate

detection problem by doing sentence level near-duplicate

detection and sequence matching. Their algorithm generates a

signature for each sentence and sentences that have the same

signature are considered as near-duplicates. Theobald et al. [13]

propose SpotSigs algorithm that combines stopword antecedents

with short chains of adjacent content terms to create signatures.

3. CODET ALGORITHM

3.1 Containment Similarity Concept
CoDet is a novel sentence-based containment detection algorithm.

It employs a new similarity measure called containment similarity

(CS). It measures to what extent a document dA is contained by

another document dC, which is defined as

where SA and SC denote the set of sentences in dA and dC,

respectively. The function cs(si, sj) indicates containment similarity

between sentences si and sj, which is calculated as

where f(si, sj) denotes the word sequence representing the longest

word prefix match of the sentences si and sj, lent is the length of the

word sequence t, and wt,k stands for the kth word in the word

sequence t. For example, let s1 be “John is happy.” and s2 be “John

is sad.” then f(s1, s2) is a word sequence (John, is), is 2

and wf(s1, s2),1 is John.

As can be seen in Formula 2, containment similarity between

two sentences grows significantly as their word prefix match gets

longer. The containment similarity of a document to itself is

referred to as self-containment similarity (SCS).

Fig. 1. Insertion of three documents dA: “NASDAQ starts day

with an increase. Shares gain 2%.”, dB: “NASDAQ starts the

day with a decrease. Shares lose 2%.”, and dC: “Shares lose

2%.”. For the sake of clarity, words of sentences are not

sorted according to their idf values.

3.2 Containment Similarity Calculation
For efficient calculation of containment similarities, we utilize a

data structure called corpus tree. The corpus tree begins with a

virtual root node which contains a pointer list storing the locations

of the children nodes in the next level. In addition to pointer list,

nodes other than the root contain a label and a document list. The

label represents the node‟s term and the document list contains

visiting document ids.

 Let dA denote a document with a set of sentences SA= {s1, s2 …

sn}. Processing of dA involves processing all of its sentences.

Insertion of si (1≤ i ≤ n) to the corpus tree is performed as follows:

First, words of si are sorted according to their idf values in

descending order. Let <w1, w2 … wm> denote the sequence of

words in si after sorting. These words are inserted into the corpus

tree starting from the virtual root node. If the root has a child

with label w1, then similarity values of dA with all documents in

's document list are increased according to Formula 2.

Otherwise, a new child node
 with label w1 is created and

added to the root‟s pointer list. In the next step, we treat
 as we

did the root, and insert the following word w2 of si similarly. The

insertion of si finishes after all of its words are processed. The

remaining sentences of dA are handled in the same manner. The

same is done for the remaining sentences of dA.

Fig. 1. shows how the corpus tree grows with sentence

insertions. In Fig. 1-I, dA‟s sentences “NASDAQ starts day with an

increase.” and “Shares gain 2%.” are inserted to the corpus tree

starting from the virtual root, which is shown by a dark circle. Since

the tree is initially empty, while inserting the first sentence all the

nodes with labels <nasdaq, starts, day, with, an, increase> are

created. Similarly, insertion of the second sentence creates nodes

with labels <shares, gain, 2%>. In Fig. 1-II, during the insertion of

the sentence “NASDAQ starts day with a decrease.” previously

created nodes with labels <nasdaq, starts, day, with> are visited and

updated. Also, two nodes with labels <a, decrease> are created.

Insertion of the sentence “Shares lose 2%.” visits the node with

label shares and creates two nodes with labels <lose, 2%>. Thus,

similarity value of dA and dB is increased by summation of each

revisited node's impact values, which is calculated by multiplication

of node‟s depth and idf value of its label. For example, contribution

of the node with label starts is because its

depth is 2 and word starts appears in 2 of 3 documents (in the

experiments, the idf values are obtained from a large reference

collection). The final structure of the corpus tree after the insertion

of dC is shown in Fig. 1-III.

To decide whether a document dA is contained by another

document dC, CoDet uses CS(dA, dC) as well as SCS(dA) values. If

(CS(dA, dC) / SCS(dA)) exceeds the equivalency threshold level

(ETL), dC is said to contain dA. In the experiments, different ETL

values are tested.

3.3 Complexity Analysis
For each scenario, let n denote the number of documents and let c

denote the average number of words per document, which is treated

as constant.

First Scenario (One Content, n Documents): In this case, each

document has the same content; therefore, corpus tree contains c

nodes. Each node contains n integers in its document list. As a

result, the memory requirement of the corpus tree is O(n) but due to

pairwise containment similarity increase operations the algorithm

takes O(n2) time.

Second Scenario (n Different Contents, n Documents): In this

case, each document has totally different content. Thus, corpus tree

contains nc nodes (one node for each word). Each node contains

only one document id in its document list. Therefore, asymptotically

the memory requirement of the corpus tree is O(n) and the

algorithm takes O(n) time.

The first scenario is the worst case for CoDet, where the algorithm

performs nonlinearly. The second one is the best case for CoDet and

the algorithm runs in linear time. In practice the algorithm behaves

as if it is linear because average number of near-duplicate per

2050

document is significantly smaller than n. Also CoDet is especially

suitable for streaming news since with a time window concept,

which makes older documents to be removed from the corpus tree,

the corpus tree does not grow too much.

4. EXPERIMENTAL SETUP
We used four algorithms to compare their effectiveness and

efficiency with CoDet. These algorithms are:

DSC: Every three overlapping substrings of size four in the

documents are hashed. If a document dC contains 60% of dA‟s hash

values, we say dC⊇dA [3].

Full Fingerprinting (FFP): For each document, all substrings of

size four are hashed. If document dC contains 60% of dA‟s hash

values, then, dC⊇dA.

I-Match: First two words with the highest idf values are ignored.

After that, ten words with the highest idf values are used to create a

fingerprint for each document. When a pair of documents has the

same fingerprint, the pair is marked as containment [6].

SimHash: First two words with the highest idf values are ignored.

Then, each unique term of a document is hashed. We use a vector v,

whose size is equal to the hash value bit size, to determine the final

SimHash [5] value. For each term t, ith element of the vector v is

updated as follows: If ith bit of the hash value of t is zero, then it is

decreased by idf of w. It is increased by the idf otherwise. Finally, if

ith element of v is positive, ith bit of the SimHash value is set to one;

otherwise it is set to zero. When a pair of documents‟ SimHash

values has a Hamming distance less than three, the pair is

considered as containment.

For hashing, SHA1 [6] algorithm is used in all methods.

Stopword elimination and a word truncation-based stemming (first-

5) are performed before the detection process. I-Match, SimHash

and CoDet requires idf values. These values are obtained from a

large reference collection (defined in the next section). In order to

do a fair evaluation, each algorithm‟s parameters are optimized to

give the best results for efficiency.

We performed the experimentation on a machine with quad

2.1Ghz six-core AMD Opteron processors with six 128 KB L1, 512

KB L2, and one 6MB L3 cache. It has 128 GB memory and

operating system Debian Linux v5.0.5.

4.1 Test Collection Preparation
There is no gold-standard test collection for containment detection

in news corpora; therefore, we prepared a test dataset from the

Turkish TDT (Topic Detection and Tracking) news collection

(BilCol-2005) [4] which contains 209,305 streaming (time-ordered)

news articles obtained from five different Turkish web news

sources.

For efficiency measurement, we used all documents of BilCol-

2005. For effectiveness measurement, we used the first 5,000

documents of BilCol-2005. It is practically impossible to provide

human assessment for each document pair in this sub-collection.

Our approach to human assessments is similar to the pooling

method used in TREC for the evaluation of IR systems [16]. For the

creation of the dataset, we obtained a number of possible

containments by running all five methods (including CoDet) with

permissive parameters. In this way, methods nominate all pairs that

would normally be chosen with their selective parameters, together

with several additional pairs as containment candidates. Since the

methods are executed with permissive parameters, we expect that

most of the real containments will be added to the test collection.

All pairs of documents, which are marked as containments by any

of the methods, are brought to the attention of human assessors to

determine whether they actually are containments. Note that in

order to measure the effectiveness of a new algorithm with this test

dataset, adding human assessments only for containment candidates

that are nominated solely by this new algorithm to our dataset is

sufficient.

By this approach, our dataset includes only true positive (TP)

and false positive (FP) document pairs returned by any of our

permissive algorithms. excluding true negative and false negative

pairs do not change the relative effectiveness rankings of selective

algorithms during the test phase; because, if a permissive algorithm

marks a pair as negative (non-containment), then its selective

counterpart should also marks that pair as negative. Therefore,

including TN and FN pairs of permissive algorithms in our dataset

would not contribute to the number of positive pairs (TP‟s and FP‟s)

returned by any selective algorithm during the test phase. Hence,

using our pruned dataset, precision1 values of the selective

algorithms remain unchanged with respect to precision values they

would obtain in a full dataset having annotations for all possible

document pairs. Similarly, recall values of the selective algorithms

decrease proportionally (with the same ratio of total number of

containments in the pruned dataset to the total number of

containments in the full dataset, for all algorithms) with respect to

recall values they would obtain in the full dataset.

Our pooling process generated 4,727 document pairs

nominations. We performed a human-based annotation to obtain a

ground truth. The pooled document pairs are divided into 20 groups

containing about the same number of nominations. Each document

pair is annotated by two assessors. The assessors are asked if the

nominated document pairs are actually containments. The assessors

identified 2,875 containment cases. The size of our dataset is

comparable with the annotated test collections reported in related

studies [13].

In information retrieval, human assessors may have different

opinions about the relevance of a document to a query. A similar

situation arises in our assessments. For example, for the document

pair dC = “XYZ shares increase 10% from 100 to 110.” and dA =

“XYZ shares increase from 100 to 110.”, some assessors may say

that dC and dA are near-duplicates, while some others may claim dC

contains dA, but the dA does not contain dC. In such cases we expect

disagreements among human assessors. In order to validate the

reliability of the assessments, we measured the agreements of the

judgments by using the Cohen‟s Kappa measure, and obtained an

average agreement rate of 0.73. This indicates almost a substantial

agreement [10], which is an important evidence for the reliability of

our test dataset. Furthermore, such conflicts are resolved by an

additional assessor.

5. EXPERIMENTAL RESULTS
In this section, we first investigate the impacts of the following

parameters on the performance of CoDet: Processed Suffix Count

(PSC), Depth Threshold (DT), and Word Sorting (WS). This

discussion is followed by efficiency and effectiveness

performance of CoDet with those of four well-known near-

duplicate detection algorithms. Effectiveness measurement is

done by precision, recall and F1 values. Impacts of parameters and

effectiveness experiments are done on prepared test collection.

Efficiency experiment is performed with the whole BilCol-2005.

5.1 Impacts of Parameters
Processed Suffix Count (PSC): It determines how many suffixes

of each sentence are inserted to the corpus tree. If the PSC is 3,

the processed suffixes for “NASDAQ starts day with an increase.”

are the sentence itself, <starts, day, with, an, increase> and <day,

with, an, increase> Increasing PSC increases space requirement

1 Precision (P) = |TP| / (|TP| + |FP|). where |S| is the cardinality of

the set S. Recall (R) = |TP| / (|TP| + |FN|). F1 = 2PR / (P + R).

2051

but do not change effectiveness considerably as shown in Fig. 2:

Different PSC values result in close F1 scores.

Fig. 2. Effect of Processed

Suffix Count (PSC).

Fig. 3. Efficiency

Comparison: Execution

Time vs. Document Count.

Fig. 4. Effect of Depth

Threshold (DT): Word

Sorting (WS) is on.

Fig. 5. Effect of Depth

Threshold (DT): Word

Sorting (WS) is off.

Depth Threshold (DT): It determines how many words of a

sentence are processed. If the DT is 3, the processed words

“NASDAQ starts day with an increase.” are <nasdaq, starts, day>.

Fig. 4 and 5 show the effect of DT on F1 score. Sorting words of a

sentence by idf values places representative words close to the

virtual root. Thus, results are better for small DT values when word

sorting is enabled. It avoids the noise effect of insignificant words in

similarity calculations. In the experiments, DT value of 5 gives the

best result; also smaller DT values yield a similar performance.

Thus, instead of having the corpus tree structure, an algorithm that

considers only a few most significant words from each sentence can

improve efficiency without sacrificing effectiveness significantly.
Word Sorting (WS): Sorting words in sentences by idf values

causes important words to be located close to the virtual root. Since

most sentences start with common words, by using word sorting, we

avoid many redundant similarity calculations. In the experiments,

enabling word sorting decreases average number of calculated

similarity values per document from 341 to 3.53.

5.2 Comparing with Other Algorithms
The efficiency results are given in Fig. 3. As the number of

documents increase, execution time of full fingerprinting increases

non-linearly. It calculates similarity values for each document pair

that has at least one substring in common. Hence, it is not feasible

for large collections. CoDet performs as the third best algorithm in

time efficiency; the corpus tree accesses impose many random

memory accesses, which disturb cache coherency. Our results show

that I-Match, SimHash and CoDet are scalable to large collections.

 Table 1 shows the effectiveness results. The best performance

with a value of 0.85 F1 score is observed with FFP since it

calculates text overlaps between document pairs having a common

substring. Therefore, without making any semantic analysis, it is

difficult to outperform FFP in terms of effectiveness with a time-

linear algorithm. CoDet finds text overlaps by only using important

words of sentences and is the second best in terms of effectiveness

with an F1 score of 0.76. I-Match, SimHash, and DSC perform

poorly with respective F1 scores of 0.45, 0.39, and 0.30. FFP is not

feasible for large collections; thus, CoDet is the most suitable

algorithm for containment detection in news corpora.

6. CONCLUSIONS
In this work we investigate containment detection problem, which

is a more generalized version of the near-duplicate detection

problem. We introduce a new approach, and compare its

performance with four other well-known methods. As the

experimental results demonstrate CoDet is preferable to all these

methods; since it produces considerably better results in a feasible

time. It also has desirable features such as time-linear efficiency

and scalability, which enriches its practical value. Our method is

versatile, can be improved, and can be extended to different

problem domains.

7. REFERENCES
[1] Brin, S., Davis, J., Garcia-Molina, H.: Copy detection mechanisms for

digital documents. ACM SIGMOD Conf. (1995) 398-409.

[2] Broder, A.: On the resemblance and containment of documents. Proc.
of Compression and Complexity of Sequences (1997) p.21.

[3] Broder, A. Z., Glassman, S. C., Manasse, M. S., Zweig, G.: Syntactic

clustering of the web. Computer Networks and ISDN Systems, 29(8-
13) (1997) 1157-1166.

[4] Can, F., Kocberber, S., Baglioglu, O., Kardas, S., Ocalan, H. C.,

Uyar, E.: New event detection and topic tracking in Turkish. JASIST
61(4) (2010) 802-819.

[5] Charikar, M.: Similarity estimation techniques from rounding

algorithms. ACM STOC (2002) 380-388.
[6] Chowdury, A., Frieder, O., Grossman, D., McCabe, M. C.: Collection

statistics for fast duplicate document detection. ACM TOIS, 20(2)

(2002) 171-191.
[7] Conrad, J. G., Schriber, C. P.: Managing déjà vu: Collection building

for the identification of duplicate documents. JASIST, 57(7) (2006)

921-923.
[8] Deng, F., Rafiei, D.: Approximately detecting duplicates for

streaming data using stable Bloom filters. ACM SIGMOD Conf.

(2006) 25-36.
[9] Hajishirzi H., Yih W., Kolcz A.: Adaptive near-duplicate detection

via similarity learning. ACM SIGIR Conf. (2010): 419-426.

[10] Landis, J. R., Koch, G. G.: The measurement of observer agreement
for categorical data. Biometrics, 33(1) (1977) 159–174.

[11] Manku, G. S., Jain, A., Sarma, A. D.: Detecting near-duplicates for

web crawling. ACM WWW Conf. (2007) 141-150.
[12] Monostori, K., Zaslavsky, A. B., Schmidt, H. W.: Efficiency of data

structures for detecting overlaps in digital documents. ACSC (2001)

140-147.
[13] Theobald, M., Siddharth, J., Paepcke, A.: SpotSigs: robust and

efficient near duplicate detection in large web collections. ACM

SIGIR „08 Conf. 563-570.
[14] Wang, J. H., Chang, H. C.: Exploiting sentence-level features for

near-duplicate document detection. AIRS Conf. (2009) 205–217

[15] Yang, H., Callan, J. P.: Near-duplicate detection by instance-level
constrained clustering. ACM SIGIR Conf. (2006) 421-428.

[16] Zobel, J.: How reliable are the results of large-scale information

retrieval experiments? ACM SIGIR Conf. (1998) 307-314.
[17] Zobel, J., Bernstein, Y.:. The case of the duplicate documents

measurement, search, and science. LNCS, Vol. 3841. (2006) 26-39.

[18] Zhang, Q., Zhang, Y., Yu, H., Huang, X.: Efficient partial-duplicate
detection based on sequence matching. ACM SIGIR Conf. (2010)

675-682.

Table 1. Effectiveness Comparison

Algorithm Precision Recall F1 Measure

FFP 0.82 0.88 0.85

CoDet 0.75 0.76 0.76

I-Match 0.72 0.33 0.45

SimHash 0.53 0.30 0.39

DSC 0.22 0.45 0.30

2052

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yih:Wen=tau.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/k/Kolcz:Aleksander.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigir/sigir2010.html#HajishirziYK10
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/z/Zhang:Qi.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/y/Yu:Haomin.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/h/Huang:Xuanjing.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigir/sigir2010.html#ZhangZYH10

