AUCTION BASED SCHEDULING FOR DISTRIBUTED

SYSTEMS

A THESIS
SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL ENGINEERING
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

MASTER OF SCIENCE

By
Emrah Zarifo glu

June, 2005

| certify that | have read this thesis and thatniy opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Mast&cience.

Prof. Dthsan Sabuncigu (Supervisor)

| certify that | have read this thesis and thatniy opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Maxst&cience.

Prof. Brdal Erel

| certify that | have read this thesis and thatniy opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Mast8cience.

Asst. Prof. Drys&gul Toptal

Approved for the Institute of Enginegrand Sciences:

Prof. Dr. Me&t Baray

Director of the Institute of Engering and Science

ABSTRACT

AUCTION BASED SCHEDULING FOR DISTRIBUTED
SYSTEMS

Emrah Zarif@lu
M.S. in Industrial Engineering
Supervisor: Prof. Diihsan Sabuncigu
June, 2005

Businesses deal with huge databases over a geographically didtribupely
network. When this is combined with scheduling and planning needs, it betmones
difficult to handle. Recently, Fast Consumer Goods sector tendmsoldate their
manufacturing facilities on a single supplier serving to a diggthucustomer
network. This decentralized structure causes imperfect infammaharing between
customers and the supplier. We model this problem as a siragleime distributed
scheduling problem with job agents representing the customers ama¢hee agent
representing the supplier. For benchmarking purpose, we analyzed therpuooider
three different scenarios: decentralized utility case i§tealcase), centralized utility
case, centralized cost case (classical single maching/taay problem). We
developed Auction Based Algorithm by exploiting the opportunity to use game
theoretic approach to solve the problem in the decentralized w#gg. We used
optimization techniques (Lagrangean Relaxation and Branch-and-Bound) for the
centralized cases. Results of our extensive computational experimdidate that
Auction Based Algorithm converges to the upper bound found for the tot& util

measure.

Keywords: Scheduling, Distributed Scheduling, Decentralized Scheduling, Supply
Chain Scheduling, Auction Based Scheduling, Single Machine Scheduling, Auctions,

Lagrangean Relaxation

OZET

DAGINIK SISTEMLER ICIN IHALE TABANLI
CiZELGELEME

Emrah Zarif@lu
Endustri Muhendisdii, YUksek Lisans
Tez Yoneticisi: Prof. Drihsan Sabuncigtu
Haziran, 2005

Isler cagrafik olarak dgitilmis tedarik glari Gzerinde yapilmaktadir. Bu durum
cizelgeleme ve planlama ihtiyaclari ile bitiginde idare edilmesi ¢ok zor bir hal alir.
Gunumuizde Hizli Tuketim Maddeleri sektori Uretim olanaklari@ndia misteri
agina hizmet veren tek bir tedarikgide toplama yonungiéne gostermektedir. Bu
merkezi olmayan yapi mgteriler ve tedarik¢i arasinda mikemmel olmayan bilgi
paylgimina yol agmaktadir. Biz bu problemlar mikterileri, makine ise tedarikgiyi
temsil edeceksekilde bir tek makineli datilmis zaman cizelgelemesi problemi
seklinde modelledik. Bu problemi, kalastirmada atif amach olarak ¢ senaryo
altinda tahlil ettik: merkezi olmayan fayda durumu (gergekci diyrumerkezi fayda
durumu, merkezi maliyet durumu (klasik tek makineli erken/ge¢ cizsigel
problemi). Merkezi olmayan fayda durumunu ¢6zmek icin oyun teorisi yiakiadan
faydalanarakihale Tabanli Algoritma galirdik. Merkezi durumlar icin en iyileme
tekniklerini (Lagrangean Geghetmesi, Dallandirma ve Sinirlama) kullandik.
Yaptigimiz kapsamli élcimlemeli deneylerin sonuglirale Tabanli Algoritmanin
toplam fayda 6l¢iist icin bulunan st sinira yagai gosterdi.

Anahtar Sozcukler: Cizelgeleme, Danik Cizelgeleme, Merkezi Olmayan
Cizelgeleme, Tedarik Zinciri CizelgelemeBiale Tabanl Cizelgeleme, Tek Makineli
Cizelgeleme]jhaleler, Lagrangean Gglitmesi

To my family...

Acknowledgement

| would like to express my deepest gratitude to my supervisor Brofihsan
Sabuncuglu for his instructive comments in the supervision of the thexisasso for
all the encouragement and trust during my graduate study.

| would like to express my special thanks and gratitude to ProErdal Erel and
Asst. Prof. Dr. Agegul Toptal for showing keen interest to the subject matter, for
their remarks, recommendations and accepting to read and review the thesis

| would like to express my deepest thanks to Prof. Dr. Semih Korat,, Asé. Dr.
Alper Sen, Asst. Prof. Dr. Erhan Kutaglo, Gokhan Metan, Kigad Derinkuyu, Banu
Yuksel, Selcuk Goren for all their encouragements and supports.

| would like to extend my sincere thanks to Mark Merlino, Mehmet FéThada,
Zumbul Bulut, Serkarimisiker, llyas lyoob for their endless morale support and
friendship during all my desperate times, makes me to face with albtitdés.

Finally, I would like to express my gratitude to my family for th&we,

understanding, suggestions and their endless support. | owe so much to my family.

Vi

Contents

ADSEIACT ...t mr e i
O ZB e v
ACKNOWIEAGEMENL......oeiiiiiiiiiiiieee et e Vi
(O70] 41 (=] 0] SR PP OPPPP PPN Vii
LISt Of FIQUIES ...ttt e emmmmm e IX
LISt Of TABIES ... Xi
(I [(0 To (U1t i [o] o IO PP PP PP PRP 1
2 LIterature REVIEWcccuuiiiiiiiie ittt 4
2.1 Shop Floor Level Scheduling o e 5.
2.2 Supply Chain Schedulingcooceveioiiiiii e 10
2.2 Game and Auction Based Scheduling......c.ccocveviiiiieiiiiiieeeiieen. 13

3 Proposed Methodology: Auction Based Algorithmdr Decentralized

Yol 1= o (1] 1TV PSS 17
3.1 Problem ... e 17
3.2 Decentralized Utility (Auction Based Alghm).............cccceeviieens 21

3.2.1 AUCHION TREOIYeeiiiitit et 22
3.2.1.1 Auctioning MechaniSms.........ccccccvveiniieeeinieee e, 3.2
3.2.1.2 Classification of AWELSc.ceevrieeiiiiiieeiiieeene, 24,

3.2.1.2.1 Classifica Based on the Number of Units in

vii

3.2.2 Distributed Scheduling AlgoritiBased on Auction Theory....26

3.2.2.1 Auction MechaniSmcccceeiiiiieiiiie e 28
3.2.2.1.1 BehavidBalders...........cccoocureernieieeiiiieaces 29
3.2.2.1.2 StOPPINGERIAoooiiviieeiiiee e 31

3.2.3 Algorithm: English Auction Bas8dheduling...............c..cccc.. 32
3.2.4 Numerical EXample ..o e 37
3.3 Centralized ULIlIty.........cccueiiiieeeeiieeieee e 50

3.3.1 Branch-and-Bound Algorithmc..cccceiiiiiiniiieeecee 50

3.3.2 Lagrangean Relaxation AlQOrithmM.............c.ccooooiiiiiiiiiiiinns 51

3.3.2.1 Iterations of the Laggaan Relaxation Algorithm......... 52

3.3.2.2 Feasibility Restorathfd@uristiC..............coeeeeeeiiiiiiiiiicnnns 53

3.4 Centralized Cost (Classical Schedulimpm)..................cooeeens 54

4 Experimental Design and Computational Results.............cccccoeveennee. 56
4.1 Experimental Data................ococmmiviiiiiiiiiie e 56
4.2 RESUIS ..ottt s 58

5 Conclusion and Future Research DireCtions............ccccocvverieeiieeennennn 64
BiDlOGrapnyoeeeieee e e 67
Y 0] 0173 T [G PRSPPI 70
AL APPENAIX A ..ottt ee e e e e e e e e e e e e e e e ammmmmas 70
A2 APPENAIX B oo —— 102

viii

List of Figures

11
31
3.2
3.3
34
35
3.6
3.7a
3.7b
3.7c
3.7d
3.7e
3.7f
3.79
3.7h

3.7

3.7k

3.7

A Sample Supply NetWOTK..ccooiiiiiiiiieee e 2
Early/Tardy Cost Function of a Job Agent.............cccceeeeeeeeeeenneee. 19
Negative Early/Tardy Cost Function of a Job Agent....................20
Utility Function of @ JOb AQent............coouvii e 20

Machine Agent, Job Agents and Time Slots.ccoceeemeeeeeennn. 21

AUCHION ClasSIfICAtIONS.ceeiiiiii e 2.2
Logical flow chart of the algorithm.ooceeee 34
The names of the time SIOtS. ... 38
Demand information of Job 1 and JOb 2.........ccccoviiieiiniieeeccne. 39
LOAd Profile...c e 39

Reservation prices of the time slots.commveeeieeiniieeennn. 40
Earliness/tardiness cost function of Job 1.......cmmceeeeeeeennnnn.. 40
Earliness/tardiness cost function of Job 2.ccccoeeii 41
Negative earliness/tardiness cost function of Job 1.....................41
Negative earliness/tardiness cost function of Job 2.42
Normalized negative earliness/tardiness cost function of Joh.1.42
Normalized negative earliness/tardiness cost function of Joh.2.43
Utility function of Job 1 at the beginning of the auction..............44

Utility function of Job 2 at the beginning of the auction...............44

3.7m Prices of the time slot after the first iteration. e .vceeeeeeeeeeeeenn.e.

3.7n
3.70
3.7p
3.79
3.7r
3.7s

4.1

45

Utility function of Job 2 after first iteration.ccccceuveeeeeeiiiiinnnnnn. 46
Prices of the time slots after the second iteration.........................47
Utility function of Job 1 after second iteration........coeeeeeevveeenn... 47
Prices of the time slots after the third iteration.48
Utility function of Job 2 after the third iteration........meeeeee......... 48
Utility function of Job 1 after the fourth iteration.cccccccvveeee.. 49
Comparison Chart of Total Utilities of Auction Based Algoritima a

Lagrangean Relaxation Algorithm.............ccoocuviiimeeeeciie e 63

List of Tables

2.1

3.1

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

A List of selected studies in the relevant literature..............c.......... 4
Data set 0f JODS.......ceieee e 37
Operational Data of JODS..ccoviiiiiiiii e 38
Lagrangan Relaxation Algorithm Parameters..cccccceeeeveivveennn.. 52
Summary of Experimetal Parameters..cooooceeieiiieeiiiieece, 57
Computational Parameters............ooivereeeieiiiiiee e 58
Total Utility Results for Auction, LR, and B&B-Ultility.. 59

Total Cost Results for Auction, LR, and B&B-Cost..60
Averages of the Experimental Points for Total Utility...cce.......... 61
Averages of the Experimental Points for Total Cost...................61
Average Total Cost and Percentage Gap.. o e eeeeeennenenen. 62

Average Total Utility and Percentage Gap........ccccccmevvvvvrveeeeennnnn. 62

Xi

Chapter 1

Introduction

The changing demand patterns and huge amount of data and information in
geographically distributed supply networks require new approaches to esostang and
emerging problems in the manufacturing environment. In this complex envinbnme
planning and scheduling becomes main hurdles to achieve. Due to the digghlyuted
nature of the supply networks, distributed scheduling and planning comesupasonable
approach to deal with the supply chain problems.

The inspiration of the distributed scheduling problem considered in ébesanch
arises from the Fast Consumer Goods sector. In this sdutoe, s a tendency to build a
central manufacturing plant (supplier) serving to the customeradgspreer a geographically
wide area (Figure 1.1). The Customers give orders to the sameapld compete for the
same scarce resources with each other. Each order hasitgperational data (release time,
process time, due date) and cost structure (inventory and backordey. st to the
competitive nature of the customers and geographic distribution, there information

sharing between the customers. The manufacturing plant has theicmadrdata but it

cannot access cost structure of an order of a customer. This higfinllguded structure of the
supply network makes the scheduling problem of orders on the manufactunrgeyda

more complicated than it already is. Attempting to solve tmsblem with classical
centralized scheduling methods does not take the objectives of tieenets into account.

Therefore, we get help from the recently emerged distributed saigpdethniques to solve

>

this problem.

O lustomers =" |

I:l Supplier
i

Figure 1.1 A Sample Supply Network

In order to deal with this supply chain problem in simple terms;ameinduce it to a
single machine scheduling problem. In this context, the manufacturing (slapplier) is
represented by a machine and the customer orders assume the jolj@doelssed on the
machine. From the centralized viewpoint, the problem can be definaccassical single
machine early/tardy problem. However, due to the decentralizedenaitiine supply chain
case, we study it as a distributed scheduling problem.

We use agent structure to represent the problem environmenimadimefacturing
plant (supplier) is represented by a machine agent. Without loss@&fadjgy, we assume one

order for each customer and represent these orders by job agentgerisbthave operational

data (release time, process time, due date) and cost dditeesacost, tardiness cost). While
machine agent can get access to the operational data, it does noh&rmmsttdata. We fit a
utility function for each job agent using the load profile of the machigent and cost
structure of that job agent. The objective of each job agent is to nzaxitsiutility while it is
being scheduled on the machine. The objective of the machine agent a&ke¢osore that
there is a feasible schedule.

In order to assess the performance of distributed scheduling paradig will
consider three main scenarios. One of them is the central@#dcase. In this one, the
problem is a classical single machine early/tardy problem. Theztolg is to minimize the
total early/tardy cost of the jobs. We used Branch-and-Bound to sodvprttblem. Another
one is the centralized utility case in which the only difference ke objective function that
is to maximize total utility of the jobs. We used two differem@thods to solve this problem,
Branch-and-Bound and Lagrangean Relaxation with a feasibility heufieecdecentralized
utility case is the scenario that is compatible with our proldamironment explained before.
In this case, each job agent acts selfish and tries to maxiteizavn utility while the
machine agent wants to provide a feasible schedule. We developed aonABated
Algorithm to solve the problem in this case.

The rest of the chapters are organized as follows. Chapter 2 glwasf diterature
review about distributed scheduling. Chapter 3 discusses differenarios explained above
and introduces the developed algorithms. In Chapter 4, we presentstiits ref the
computational experiments of the algorithms. In the last chapter, ake moncluding

remarks and discuss the future research opportunities in this field.

CHAPTER 2

Literature Review

In last two decades, distributed scheduling literature has shayveat development.
Here, in this chapter, we briefly summarize some of these studdes the three categories:
shop floor level scheduling, supply chain scheduling and auction based scheduloaaes a
theoretic solution approach (Table 2.1).

Table 2.1 A List of selected studies in the relevant literature

Shop Floor Level Scheduling Supply Chain Scheduling Game and Auction Based
Scheduling

Tharumarajah and BemelmarSabuncuoglu and Toptal (1999c) Seredynski (1997)
(1997)
Chen, Cost, Finin, Labrou andKutanoglu and Wu (1999)
Sabuncuoglu and Toptal (1999a) Peng (1999)
Kaihara (2000)
Sabuncuoglu and Toptal (1999h) Sauter and Parunak (1999)
Wellman, Walsh, Wurman and
Sabuncuoglu and Toptal (1999c) Shen, Chua and Bok (1999) MacKie-Mason (2000)

Brennan, Norrie, O and WalkerTonshoff, Seilonen and TeunjsDewan and Joshi (2001)
(2000) (1999)
Seredynski, Koronacki and

Khoo, Lee and Yin (2001) Dutta, Mukherjee and Sen (2001)Janikow (2001)

Roy and Anciaux (2001) Kutanoglu and Wu (2002)

Benjamin and Yen (2002) Grimm, Riedel and Wolfstetter
(2003)

Jeong and Leon (2002a)
Jeong and Leon (2002b)

Najid, Kouiss and Derrich
(2003)

1%

2.1. Shop Floor Level Scheduling:

The most comprehensive survey in this area is due to Sabuncuoglu and Teggal)
distributed scheduling with respect to supply chain management, shop ¥ieloapelications
and some computer science applications.

In another study Sabuncuoglu and Toptal (1999b and 1999c) propose five different
algorithms based on distributed scheduling approach. First three of glvemgeneral
approaches that can be applied in different job shop environmentsasthevb are team-
based algorithms regarding product teams. The first three aed éddjorithm B1, Algorithm
B2 and Algorithm C. The last two are called Algorithm PD-JI and Algoithm PD-TI.

Algorithm B1 is an operation initiated process employed in the raystavhich this
algorithm assumes a group of machines each of which has diffecmetsping capabilities
and processes the jobs having different operations on each other ita@oxisequence.
Each local planner (resource agent) has its own objective. Ehal®o a global objective to
achieve and the master agent is interested in the sake of thitwebj&he algorithm has two
kinds in one of which resource agents either collaborate with eheh @t in another one
they compete with each other. This system can be classifieal single layer quasi-
heterarchical system with a separate manager agent. Ad beftere this is an operation
initiated algorithm. Manager agent first ranks the schedulableatipes. Then, manager
agent broadcasts a bid to the resource agents for the first sdbledyperation. Then the bid

preparation process starts for the resource agents. There otlre cbmpetitive and

collaborative versions. Manager agent selects the best boddaug to some predetermined
criteria, e.g. earliest finish time.

Algorithm B2 is a machine initiated bidding algorithm. In this altpon, the resource
agents have the initiative to start a bid. Master agent’s regpldy is to resolve the conflicts
among the resource agents. This system may be classified asdarglquasi heterarchical
system with a separate manager agent. The main idea of thghahgis that the operations
are put into a pool according to some priority assigned by the manager agent.

Algorithm C is a job initiated algorithm. It is very similar the Algorithm B1 but its
difference is that it is based on jobs rather than operatidneeTobidding mechanisms are
proposed for the Algorithm C, such as H1, H2, H3. If H1 is used, thensysbaves like a
single layer quasi-heterarchical system with a separate maagemet. If H2 or H3 is used,
the system acts like multi-layer quasi-heterarchical systegmmultiple bids. There are also
competitive and collaborative versions of Algorithm C. After thaésbare prepared, the
manager agent selects the best bid according to some predetenriteda, e.g. earliest
finish time.

Algorithm PD-JI is one of the team-based algorithms proposed by Saiginand
Toptal (1999c). A team is a group of machines (resources) thatapable for certain
processes, projects or products. For the PD-JI algorithm, maagget ranks the jobs
according to some predetermined criteria, such as earliestateeThen it broadcasts a bid
request to the teams. Here, the teams are assumed to prauess al or all of the
operations required for the job. This system may be classified msilt&layer quasi-
heterarchical system with a separate manager agent and endtighdiings. The bid

preparation mechanism is similar to Algorithm B1. After the pidparation process, the

manager agent selects the best bid according to some predetbriteria, such as earliest
finishing time.

Algorithm PD-Tl is a team initiated algorithm. The similaanes are grouped together
according to their processing capabilities and each group having anrdhk expertise
determined by the manager agent according to the experience in thalgastlifferent job
pools are assigned for the different appropriate pools. This systerbecalassified as a
multi-layer quasi-heterarchical system with a separate manageraagemultiple biddings.

There are many examples of algorithms provided as utilizing Aldoasthods. The
Al methods that can be applied to the distributed scheduling algorittagsbe Constraint
Heuristic Search (CHS), Asynchronous Teams (A-Teams) or Comeelateraction via
Coupling Agents (CICA). CHS is applied in the multi-agents environmehése job-based
or resource-based agent formations are used to make schedulimjsddeantage of CHS is
it is difficult to embed this into an optimization procdsdinds feasible solutions rather than
optimal. A-Teams is another Al-based method. This method workscagorated agents
utilized with problem-solving methods to work together to solve a probtering their
solutions via common memories. Jeong and Leon (2002a) employ CICA ‘e a&ol
Distributed Scheduling problem in their recent work. CICA works as éstaiy interactions
among cooperating organizations and coupling agents. Coupling agents avielaetifities
utilized with some coupling constraints. Jeong and Leon work on a tweesheachine
problem in a two-machine flowshop environment. The distributed chasditterof the
system come from the distribution decision authorities and irdbom among multiple sub-
production systems sharing two machines. A coupling agent is used to stofelomshared
machine’s information and another coupling agent is used to store thenatlcine’s

information. The system which Jeong and Leon study can be classfsdgle layer quasi-

heterarchical without a separate manager agent. The problem dolvsel is to allocate
operations of jobs to time slots on machines to achieve globaltiebgedy interaction of
sub-production systems and shared machines with a minimum sharing ofigfobaktion
for sub-production systems and coupling agents. 0-1 integer programming doomus
used to model scheduling problems and Lagrangian relaxation teclsieumployed for the
solution process. The main aim of the algorithm is to find a compeostate where all
coupling constraints and local constraints are satisfied andotaé sum of weighted
completion time of jobs is minimized (Jeong and Leon 2002a). Good coordination
provided as a result of the experimentation. The algorithm gives \@sg sblutions to the
global optimum.

Jeong and Leon (2002b) make similar work in a single machine environniesit. T
system also consists of multiple sub-production systems and thegeosluction systems
share the single machine. The distributive characteristics émmethe distribution of the
authority of decision making among sub-production systems. The system alsbeca
classified as single layer quasi-heterarchical without a aepananager agent. The aim is
same as before such that they want to minimize the weighted fstima completion times.
As before, CICA is used to utilize coupling agents. Sub-productionnsgséand shared
machines are assumed to have not whole global information. Therefaretre previous
work of Jeong and Leon, they use Lagrangian relaxation to solve a 0-1 iptegeamming
formulation. Lagrangian relaxation is appropriate for the caséshbi@ is not enough global
information publicly open to the agents. This method also performed guitlomthe single
machine case.

Brennan, Norrie, O and Walker (2000) develope an algorithm to make ayjam

routing and job sequencing decisions. They found that the composition tfeeagent

mechanisms and appropriate job sequencing heuristics perform whed ghop floor where
job congestion increases.

Khoo, Lee and Yin (2001) study an agent-based architecture for schedulimgjenult
shop floors using a genetic algorithm-enhanced scheduling engine (2001). Tifacnamg
scheduling server and shop scheduling client system are two main sothdesupervisory
agent is coordinating the among the shop floor agents to arrive abal glear optimal
solution and to resolve conflicts in the shop floor schedules. [§betam generates feasible
and near optimal schedule for the entire manufacturing system explegiments made in a
hypothetical six products-three shop floors and a plastic injection molding company.

Roy and Anciaux (2001) propose an approach to solve dynamic production control
problems in real time to automate the control process as much siblgoso adapt the
system to production plan modifications and to rationalize decisionngndly means of
strong hierarchical structure. A twofold hybrid multi-agent platfesmased for this purpose.
Control is hierarchically distributed and decision making is eénéd. Centralization helps
avoid from competition between agents and hierarchical distributiowsaeach agent to
take care of only one product. By this way, they gain significantlyrms®f response times
and reactive capabilities.

Tharumarajah and Bemelman (1997) review negotiation and the emergiagdre
based methods for scheduling and coordinating distributed entities Wwathinhierarchical
and heterarchical control structures. In the paper, they emphisizes of practical
importance relevant to a distributed shop floor environment.

Benjamin and Yen (2002) present a communication infrastructure to ehandl

connection and communication between distributed Internet schedulingmsystor

distributed applications. They present an agent communication languagex sand
semantics for the agent communication languages, and negotiation mechanism.

Najid, Kouiss and Derriche (2003) present an application of the ngdtitaapproach
to the control of a flexible manufacturing cell. It is a phyl§ycdistributed system on a set of
sites and is composed of a set of cognitive and reactive abantsoordinate their tasks to
carryout the dynamic control and the scheduling of the manufacturingmsy3tke
coordination of the actions of the agents emerges from the interawtithese combined

agents.
2.2. Supply Chain Scheduling:

There are not many studies in the literature for the applitatof the distributed
scheduling approaches in the supply chain (Sabuncuoglu and Toptal 1999b). €lsmear
studies that employ multi-agent structure in the supply chain or imghevenformation
sharing systems. Some representative examples of these studies abelgwen

Sabuncuoglu and Toptal (1999c) propose two team-based algorithms one is being job
initiated and the other is being team-initiated as we expldiaéore. They present these
algorithms in the context of shop floor scheduling but they emphasizéhdse algorithms
can be also used for supply chain management with some changes.

Chen, Cost, Finin, Labrou and Peng (1999) propose a multi agent-system tahaode
supply-chain management problem in the real business life environmegt scftware
agents. They use the concept of negotiating agent to model the selétedeentities in the
market place. The system framework they designed allows negotigéngsdo join, to stay
or to leave the system freely. This is not a distributed scheduloidepn but it gives idea
about how to design a multi-agent system based on negotiating agents anthehow

negotiation among agents can be made.

10

For the planning reasons in supply chain, Shen, Chua and Bok (1999) present a
distributed scheduling tool, called the Integrated Production Saremiplementing look-
ahead planning via Integrated Constraints Modeling. It is being used foninathe
activities in the supply chain. A three-layered structural médigtiabase layer, look-ahead
planning layer and planning layer) for the Integrated Production Schedatepresented.
The roles of distributed systems in the supply chain are automassaging, internet
publishing and distributed collaboration. This implementation is done wtarnket
technology.

One of the studies in the decentralized production environment (e.g., shppig)ds
due to Tonshoff, Seilonen and Teunis (1999). Their work proposes a mediatdr base
approach to support decentralized decision-making focusing on the comnmmicati
negotiation and scheduling process. The mediator is designed for an adEyehtof
decision-making integration of heterogeneous computer system by use afehddel Mark-

Up Language (XML).

Dutta, Mukherjee and Sen (2001) use general scheduling idea to proede th
competitive power to the firms in supply chain. This is an idea ajeai®f other scheduling
techniques than distributed scheduling also. Manufacturer announdesctofor tasks with
given specifications (deadline and processing time). Suppliers hitkea tasks with prices.
Contract is allocated by an auction to a supplier who fulfillsagk ttonstraints. A three level
supply chain with primary and secondary manufacturers and a group of sugpsitrdied.
Ability of different strategies to produce more flexible schedusesnalyzed. Also, an
analysis of a price adjustment mechanism by which suppliers makeiupitds before when
they win contracts and reduce their bids when they fail to prabers, is made. This study

uses responsive supply chain to identify scheduling policies tbaéfib suppliers in

11

managing profitability by allowing them to accommodate demands that ctmanst. Supply
chain managers should manage flow of materials from distribsitgbliers to global
manufacturing facilities. Emphasis should be on keeping low inventorgimining
operations cost, having flexibility and providing efficient customeriser The motivation of
the study is the aspect of a supply chain as being responsive to dylyaamneang tasks
which is hinged upon the performance of the suppliers. Schedulinggstsaare first fit (put
the incoming task to the first possible available place), fiiggtut the incoming task to the
place such as the right and left slacks are minimized), ost\io (put the incoming task to
the place such as the right and left slacks are maximized)siBg the tardiness of the task
in the supply chain, manufacturers may offer different pricesrdinass is low they offer
high price, if it is low they offer high price. They use scheduling for this trade-offidsssi
Sauter and Parunak (1999) present ANTS as an example of dRedriScheduling
application in the supply chain management. In supply chain management, gsbking
problem only in the Original Equipment Manufacturer (OEM) level gledays the problem
to the other levels. Especially, the problems in sub-tier srgplemain as very important
problems. Some problems in supply chain may show itself as schedialiéomain sub-tier
suppliers, similar capacity bottlenecks at multiple suppliers, tleniaf inventory or WIP
levels from expectation. In supply chain systems, coordination witehbe floor level is a
problem. Information systems such as MRP, MRP II, ERP are dithiézd or too complex
to solve the stated problem. Smaller firms in the supply chaitoardifficult to integrate to
the whole system. Regarding these problems, Agent Network for TaskduBoge(ANTS)
aims to provide supply chain management software that can handleegodyplamical
systems while being much simpler to construct and manage. It propossnsat a small-

grained agent-based system. A small-grained agent is a sigghe #hat responds to its

12

environment using simple rules or interacts directly with offgemts through predetermined
protocols. These agents are inspired from the rules and thacties that govern the insect
colonies. In a manufacturing enterprise, main measurementsosteof goods produced,
quality of goods produced and timing of availability of goods relative ¢octistomer’s
needs. The task of the supply chain management is to deploy resouosssaasupply chain
to produce high quality goods as inexpensively as possible and when the custorteer
them. Regarding the things stated before, the decisions taken by the shpply c
management are to select which suppliers for which product, order of womude
manufactured, start time of new jobs, time of new orders and myela&vel. The specific
requirements in a supply chain are least commitment, empowerfrejuent change, MRP
functionality, metamorphosis, modality emergence, uniformity. In ANTSageants are the

“things” in the supply chain and within the factory.
2.3. Game and Auction-Based Scheduling:

Wellman, Walsh, Wurman and MacKie-Mason (2000) sum up auction protoeals us
in distributed scheduling. They investigate the existence of equribprices for some
scheduling problems, the quality of equilibrium solutions and the behavior as@nding
auction mechanism and bidding protocol. They also discuss direct revehotanisms and
compare them to market-based approach. They define price equilibresclragagent getting
an allocation that maximizes its utility given the currentgsi The common structure for
auction protocols is composed of three stages. Firstly, agents g#nhdobthe auction
mechanism indicating their willingness to exchange goods. Secondly, thenaway post
price quotes to provide information about price-determination procassfirst and second
steps may be iterated. At the last step, the auction determmedlocation and informs

agents about the allocation. Wellman et al. define ascending aasteomechanism at which

13

agents are sending higher bids at each time to the mechanisra.tiiéhdscending auction is
performing well for single-unit problems, it may not be the casettier multiple-unit
problems and it may not find a price equilibrium even if it existeer&fore combinatorial
auction mechanisms are proposed. In these mechanisms, allocatiqricas are considered
regarding function of bids for all the combinations. Prices may tefedividual goods or to
entire bundles. Also, this paper deals with the generalized &fickuction as a direct
revelation mechanism. The generalized Vickrey auction computezlloypayments for
agents’ allocations that sometimes translate into meanipgfés for individual goods. As
can be seen, this study gives a good summary for the three catejaneshanisms as a
spectrum, i.e. single-good, combinatorial and direct revelation.

Kutanoglu and Wu (1999) study auction-based scheduling on a combinatorial context
using Lagrangean relaxation. They are interested in mechanisms lihat rakource
scheduling to be locally autonomous, and at the same time aligned withigtebasts. They
consider the classical jobshop scheduling problem where a set & joblse completed and
each job requires a set of machines for a certain period efftinprocessing. They propose
an iterative auction mechanism for this problem using the notiomutii-item combinatorial
auction. An auctioneer sells discrete time slots (objects) tdithaers (jobs). Based on
current pricing, each job gives bid to best combination of the tiot t5}/ing to maximize its
utility function. The auctioneer evaluated bids and updates thevaéiserprices according to
the conflicts among the jobs. This process goes iteratively unbhéict-free allocation is
found. They investigated two auction protocols (non-adaptive Walrasian caqutive
tatonnements) and two payment functions (regular and augmented tatonnements). They show

that Lagrangean relaxation using subgradient search corresponds taivearegular

14

tatonnement. They demonstrate the prices of time slots depend heavilye demand
patterns (routing structures and processing times).

Kutanoglu and Wu (2002) study collaborative resource planning thas axisen
resource managers must coordinate their planning with internal ona@xteistomers. They
analyze a setting where the decision makers are geographicatliputést and coordinate
their resource planning using asynchronous, web-based mechanisms. Thewn desigdule
selection game where all participating agents state thderprnees via a valuation scheme
and the mechanism selects a final schedule based on collectivelmplis mechanism,
assuming the agents may not state their true evaluation of the ssetthe mechanism
offers incentive to the agents. By this way, dominant strategy equifibexists, i.e. each
player plays the strategy that is individually best for him regssdighe strategies chosen
buy other players. Based on Vickrey-Groves-Clarke principles, they staivwhe proposed
mechanism is a direct revelation mechanism that implementsptheal resource allocation
under agents’ dominant strategies. They show a numerical example ofgbignism in
coordinating electronics component manufacturing.

Dewan and Joshi (2001) present a scheduling model similar to a nzdorkal
auction with mathematical programming tools used for bid constructiorewaldation to
solve a problem in a dynamic job shop environment. Each entity in thessteggesented by
a process interacting with other processes over the network. Demtaloshi states that the
computing benefits of distributed implementation can be realized despiterket@ays.

Seredynski (1997) proposes an approach based on considering a givenasystem
multi-agent system with game-theoretic models of interaction destwplayers. Players
compete to maximize their payoff and the global objective is septed global behavior of

the team of players, measured by the average payoff received by teen.sydhree

15

distributed schemes (i.&-learning automata, loosely coupled genetic algorithms and loosely
coupled classifier systems) are used to evolve a global behauioe isystem. Simulation
results indicate that the global behavior in the systems emangeis achieved in particular
by only a local cooperation between players acting without global infamaitbout the
system. He applies models of multi-agent systems to develop paaate distributed
algorithms of dynamic mapping and scheduling tasks in parallel computers.

Seredynski, Koronacki and Janikow (2001) propose a distributed approach in which
the agents are associated with individual tasks of the program gragheiduling of parallel
and distributed algorithms for multiprocessor systems. Agents plagrated game to find
directions of migration in the system graph with the objectivanofimizing the total
execution time of the program in a given multiprocessor topology. Cdivpeti
coevolutionary genetic algorithm (i.e., loosely coupled genetic algoriismyised to
implement the multi-agent system. The algorithm with the lac#éria is able to find
optimal or near optimal solutions in a number of generations companathl the number
required by the algorithm with the global criterion.

The study of Grimm, Riedel and Wolfstetter (2003) is an example tdt-umit
auctions. Their study analyzes the second-generation (GSM) speatalion as an example
of a low price outcome in a simultaneous ascending-bid multi-unitoeudthey show that in
the unique equilibrium that survives iterated elimination of dorathatrategies, the efficient
allocation is reached at minimum bids.

Kaihara (2000) proposes an agent-based double auction algorithm and demonstrat
the applicability of economic analysis to this framework. He pseduct allocation problem
in supply chain as a case study. The algorithm is proved to engpbestgated product

flows in supply chain, and conduct a Pareto optimal solution on multi-objective problems

16

CHAPTER 3

Proposed Methodology: Auction Based

Algorithm for Decentralized Scheduling

3.1. Problem

The recent tendency, consolidating all manufacturing needs of aninabviaion, of
Fast Consuming Goods sector inspired us the factory scheduling mprobier a supply
chain. The orders given by geographically distributed customers may #gtersame
resource. The inventory cost arising from early completion of an ardkthe backorder cost
caused from late completion of an order are among main issueacfoicestomer and also
whole supply chain. In such supply networks, each customer takes car@whibbjectives
(minimizing cost or maximizing utility). The supplier tries to abta feasible schedule by
making negotiations with customers. The distributed structure of tig#epn environment
makes it harder to solve.

This supply chain scheduling problem can be viewed as a single machadikng
problem in a highly decentralized structure. We developed three ediffescenarios by

changing degree of centralization to analyze the problem environment.

17

The scenario with decentralized case (decentralized utilitpulates the actual
supply chain environment. The problem structure that we are working on haghlg
decentralized environment. We use agents to represent the suppdienir@ and the
customers (jobs). We fit a utility function for each job agent whiafis to maximize its own
utility. The operational data (release time, process time, dug afatee job agent is private
to the job itself, it is not known by other jobs. However, the machinet kgews the release
time, due date and processing time information of the job agents. Theelated data are
earliness and tardiness costs. Each job agent has its oWwmessarand tardiness cost
information. This information is not visible to other job agents asd abt visible by the
machine agent. This is a reasonable assumption since the ¢mstnoe information is not
usually transparent to others.

The centralized utility scenario ignores the decentralizationsgreemission for the
machine agent to access all data (also the utilities) ofaineagents so it assumes the
environment as a centralized case. We again work with utilitgtfons. The objective is to
maximize the total utility of job agents while finding a feasibtdeslule. An integer
programming approach takes care of the modeling requirements. Tdvsl S®@nario is used
for benchmarking purpose. It is the case whose optimization solptmndes the upper
bound on the utility.

The scenario of centralized cost corresponds to a centralized Ths overall
optimization of the system is concerned. Hence, the objective be¢bheesinimization of
total early/tardy cost of job agents. This is a classical single machine sobgutoblem.

Moving from a single machine early/tardy problem to a distributglteduling
problem with utility functions is the main difference of this stddym classical single

machine literature. In centralized cost scenario, a job dgen& convex cost function as can

18

be seen in Figure 3.1. In centralized cost case, there ismpetition among job agents.
There is no concept of collaboration because there is a manaagelragent that solves the

problem for the sake of whole system. We used Branch-and-Bound to solve this problem.

L=

Figure 3.1 Early/Tardy Cost Function of a Job Agent

In the centralized utility scenario, the cost function of eabhagent in Figure 3.1 is
multiplied by -1 (Figure 3.2) to move the function to the positive byleadding a large
enough positive constant. We discretize the time axis into tiote $iven the price scheme
of the time slots, the utility function of each time slot is foundddytrsicting the prices from
the converted early/tardy cost function (Figure 3.3). The detailssafraisg prices to time
slots and finding a utility function are explained in the nextieecThe objective in this case
is to maximize the total utility of the jobs. Note that a solutlmat optimizes total utility is
different from the total cost case. Because the patterns ofurmsions and utility functions
are different. Hence, they can generate different solutions. $nctise, there is forced
collaboration, and no competition. The forced collaboration is alseidad by a dictator
agent. We used Branch-and-Bound to solve this problem. We also developgrhiagean

Relaxation Algorithm with a feasibility heuristic for this problem.

19

Figure 3.2 Negative Early/Tardy Cost Function of a Job Agent

Figure 3.3 Utility Function of a Job Agent

The decentralized utility scenario is in fact the case we wagsblve for the actual
supply chain scheduling problem. Each job agent tries to maximize itsubliy. The
objective of the machine agent is to have a feasible schedulee iBh@ot a master (or
central) agent in this case. We see competition between job agtntso collaboration. The
machine agent may artificially provide some collaboration betwa@zagents by negotiation.
We propose an Auction Based Algorithm to solve this highly decentralized problem.

The main difference between centralized cases and decerdrabse is in the information
sharing. In the centralized cases, the machine agent actseasral agent who has access all
data of job agents and the machine agent aims the good of the oveeatl.dyistwvever, in

the decentralized case, the machine agent has access to aalyoopk data (release time,

20

due date and process time). It does not have access to costirdatzatliness cost, unit
tardiness cost). The jobs do not share any information among each @hee, bhere is not a
central agent working for the good of the overall system. Thereéoeatized case gives a
bound for the performance of overall system. Figure 3.4 depicts tlotusérof the problem

environment in agent perspective.

Machine Agent

Time Time Time Time
Slot 1 Slot 2 Slot 3 Slot
00000 OOS
Job Agent Job Agent Job Agent

Figure 3.4 Machine Agent, Job Agents and Time Slots
3.2. Decentralized Utility (Auction Based Algorithm

First we give a brief introduction to auction theory. Then wagethe mechanism
of Auction Based Algorithm. A numerical example of the algorithigiven at the end of this

section.

21

3.2.1. Auction Theory

Auction can be defined as a market institution with an explicibfsetles determining
resource allocation and prices on the basis of bids from the npak&tipants. Auctions are
widely used in the markets to sell goods and to determine pdcésose goods. It is one of
the oldest ways of selling goods. Auctions are usually used in the tsmankerhich seller
does not have the ability to estimate or determine price of goodsudgetize seller cannot

determine price by itself, market employs some mechanism cogsistisome rules to

determine the price and to assign the goods to the demanding customers.

The main issues of auctioning can be classified into: i) auctiomeghanism, ii)

number of units put to the auction at once, and iii) number of stagesict the auction is

ended.

English Auction

Dutch Auction

Mechanism

Sealed Bid Auction

Vickrey Auction

Single Unit

Auction

. . Units sold
Classifications

—

Single Bid

Multi Unit

[

Combinatorial

Single Stage

Stage

Figure 3.5 Auction classifications

Iterative

22

3.2.1.1 Auctioning Mechanisms

In the literature, there are four commonly referred auctioning mesrha: English
auction Dutch auction Sealed bid auctiopnandVickrey auction

The English auctionis similar to the ones found in some antique goods outcry
auctions. It is based on sequential bidding. Bids are made by bidders goothentil no one
remains in the bidding process. The winner is the last bidder and buysatidor the price
it offers. English auctioncan be implemented in such a way that the bid is increased by a
constant amount or as much as bidders want. The seller usually restsrvation price (or
minimum price) below which it cannot be sold.

The Dutch auctionis originated from the flower market in Netherlands. Itiis ssed
worldwide in flower markets. In the Dutch auction, the seller @gisce (it is usually more
than the value of the good) and then he (or she) decreases theegueatially. The auction
stops whenever a bidder raises his (or her) hand to stop the biddoesqr The good is
awarded to the bidder with that price.

Sealed bid auctions implemented by bidders offering their bids secret from the
others to the seller. The seller chooses the bidder with the hlgjlie$he highest bid’s value
is assigned as the price of the good. This type of action can benseest of governmental
contracts.

Vickrey auctionis similar to sealed bid auction. Again, the seller choosebitluer
with the highest price. However, the value of the second highes hisigned as the price
of the good. The motivation fd¥ickrey auctionis to give incentive to bidders to tell their
true evaluation for the good in the auction. By paying the second highest bidintier

makes an advantage by paying less than his estimated amount. fEhendé between the

23

winner bid and the second highest bid is the incentive for the wihas, we can call the
sealed bid auction as first-price sealed bid auction and the Viekigion as second-price
sealed bid auction.

Note that, English auction is equivalent to Vickrey auction and Dutchoaurst
equivalent to sealed-bid-auction. Recall that in Vickrey auctionwtheer pays the second
best price. In English auction, however the winner also pays the secsingrice plus a
prespecified amount of increment to win the bid. Similar relatiam loe found between
Dutch auction and sealed-bid-auction. In both cases, the winner pays the highest price
3.2.1.2. Classification of Auctions

Figure 3.5 gives an overview about the classification of auctions. Tlessifications
are discussed next.
3.2.1.2.1. Classification based on the Number of Units in Auction

An auction can be classified insngle unif or multi unit In thesingle unit auctions
bidders prepare bids for only one item at a time. Imthéi unit auctionsbidders give bids
for more than one items at a time.nulti unit auctioncan be realized in the form of either
single bidor combinatorial auctionlIn single bid auctionsthe bidder offers one bid for each
item that he is interested among a whole set of goods availaliee auction. In the
combinatorial auctionsthe bidder gives one bid for the combination of all the itemshthat
wants to buy.

For example, consider three different pictures to be sold inledske@-auction and
there are two bidders (customers). The seller puts thesediffezent pictures into auction at
the same time (i.e., multi unit auctioncase). Bidder 1 is interested in buying pictures 1 and
2. Bidder 2 wants all the pictures. In thiagle bid auctionthe seller asks for the bids from

the bidders as one distinct bid for each picture. Bidder 1 bids $30Cfarepil and $250 for

24

picture 2. Bidder 2 bids $250 for picture 1, $300 for picture 2, $150 for piBtuAt the end
of first iteration (i.e. collecting bids from the bidders at stage) the seller gives picture 1 to
bidderl, pictures 2 and 3 to bidder 2. In the combinatorial auction tbasseller wants bids
from the bidders for the whole combination of the pictures theyindeeested in buying.
Bidder 1 bids $550 for the combination of pictures 1 and 2. Bidder 2 bids $7Q0ef
combination of pictures 1, 2 and 3. The seller assigns all thceggs to bidder 2 because
bidder 2 offers more money as a total amount.

3.2.1.2.2. Classification based on the Number of Stages at Auction

The auctions are also classified as eitiegle stageauctions oiterative auctionsln
the single stageauctions the auction is finalized at the end of one single stage (atige)y
after taking bids from the bidders. In titerative auctions auction is implemented in a
number of iterations. Each iteration has its own charadtsrisly the means of auction
methods utilized.

In the previous example, now considesiagle bidin a sealed-bid-auctionBidder 1
bids $300 for picture 1 and $250 for picture 2. Bidder 2 bids $300 for picti$800, for
picture 2 and $150 for picture 3. The seller assigns picture 2 enulepB to bidder 2. Since
the seller can not decide on picture 1, he decides to go on to the gecatiah. This time,
he opens an English outcry auction with the constant increment of $10r Ridurements
bid to $310. Bidder 2 responds by a bid of $320 and so on. At the end, after bidder 2 bi
$390, bidder 1 bids $400. Bidder 2 does not respond to bidder 1 therefore the pictuiee goe
bidder 1 with the price of $400. The auction finishes at secoratitter At the end bidder 1

gets picture 1, and bidder 2 gets picture 2 and picture 3.

25

3.2.2. Distributed Scheduling Algorithm Based on Auction Theory:

In this subsection, we will explain the proposed scheduling algoriibsed on
auction theory. After we give the necessary notation and relatkgroand, we present the
steps of the algorithm by using an example.

Distributed Scheduling has lots of opportunities for the contributiahftgfrent fields
of science and technology. Artificial intelligence is one of thieslds that also makes a
contribution to the scheduling by using agents. While there seemsrto biegle, formal
definition for an agent, Karsai et al. (2000) consider them as fmgaited objects that are
dynamically created, and through communication, cooperation and commpesibive
complex problems. In Distributed Scheduling applications, scheduling proléeens
decomposed to subproblems. Objectives of these subproblems becomgetitiresbof
agents whose decision making abilities are bounded by the constraints of the subproblems.

The introduction of agent structure to the solution of scheduling problems gs the
opportunity to elaborate on rational agents and to attach rational humattehatics to
them. Interpreting behaviors of these rational agents by employinty €aitictions to them
helps we use economic —especially microeconomic- analysis. In tedudicly context, the
rational agent competing for scarce resources can be subject tdhgaoretic analysis (as a
part of microeconomics). Due to the communicative, cooperative and ctwvepptoperties
of agents, market mechanisms can be employed to model scheduling probleans
distributed manner as the agents being actors in the markeg séttctions, part of market
mechanisms, can also be used in modeling the behaviors of agentdhedaliag problem.
In recent years these approaches have become popular in distributed scheduling.

After we reduce our problem from a supply chain scheduling problea siagle

machine distributed scheduling problem, we employ an auction theorefimmem to solve

26

this problem. Preemption is not allowed. The setting is such thatisheingle machine and
multiple jobs are waiting to be processed on this machine. Each phwua sets of
information data. One set consists of operational data and the etltensists of cost related
data. Operational data are ready (or release) time, due date and proa@ssing ti

We formulate the problem such that there are job agents refngspbs and the
machine agent representing the machine. The operational data te pritlae job itself, it is
not known by other jobs. However, the machine agent can get accessdigdise time, due
date and processing time information of the job agents. The cdsdrdita are earliness and
tardiness costs. Each job agent has its own earliness amtke$aradost information. This
information is not visible to other job agents and also not visible by the machine agent.

In summary, there is not any information sharing among job agents, amdigher
partial information sharing between job agents and the machine agergfoféehis is an
imperfect information sharing case. Because there is notcpenfiermation sharing and
there is not a central authority collecting all the inforovatio make decision for the good of
whole system, this is a distributed system and it is highly decentralized.

We employ an auction mechanism to schedule the jobs on the machimaadihiee
agent is seller and the jobs are bidders (buyers). Assuming distnet if we divide the
planning horizon into equal parts, we acquire equal-length, discnetestots. These time
slots on the machine represent units to be sold in the auction.

In the distributed setting of the problem that we developed an thlgoto solve, the
objective of job agents is to maximize their own utilities and theobile of the machine

agent is to find a feasible schedule taking the preferences of the job agentsanttd.ac

27

3.2.2.1. Auction Mechanism

All the time slots (or items) are identical and they aretpuhe auction at the same
time. Thus, we have multi-item auctionenvironment. Reservation prices are set for each
item by the machine agent. Reservation price is a limit for a bedbiel to be accepted. The
seller determines a minimum bid price and accepts bids higherthigmprice. Also, the
bidders are expected to give one unique bid for a combination of the iteyng/ant to buy
(i.e.combinatorial auctioh

The combinatorial auctiorsetting is a result of the assumption that preemption is not
allowed. In this case, job agent is interested in a bundle ofstotein which these time slots
reside next to each other. This bundle makes sense for the job agenthate instead of
distinct time slots in that bundle. Thus, the job agent evalwdtete bundle with a unique
price which leads us twombinatorial auction

In this setting, it is almost impossible to assign the times diwtthe bidders at one
stage. The seller needs an iterative procedure to solve the toaftiong the bidders. The
English auctiormechanism is iterative in its nature. Therefore weHmgish auction

The reservation prices are set by the seller (the machine) dgenising the load
information obtained from the bidders (job agents). Each bidder ssnd$ormation in the
form of due date, release time and processing time. The dellermines the ideal time
interval for each bidder regardless of the other bidders. Theneller sises all this
information to determine a load profile (tendency graph) for the siots (items to be sold).
This profile shows the relation between time slots and the demaedaimtime slot. The
seller converts this tendency graph to reservation price graph. Twignagh shows the
reservation price of each time slot. The conversion is made bypiyuigj the load profile by

the value of increment of English auction.

28

The structure of the algorithm is such that the machine agentdkes the required
information (operational information) from the job agents to deterthimeeservation prices,
then it asks the bids from the job agents. The job agents give usliag to the rules that
will be explained in the next section. The machine agent asksrbidsttie job agents in the
order of their indices. Then the next pass starts and the machineaggentisks bids from
the job agents. Each passage from one job agent to the next jobaadedtréequest is called
a iteration. Each tour or pass consisting of asking bids from all jebt@gs called a cycle.
These cycles and iterations are repeated a humber of timeshergiiopping criteria for the
auction are met. At each iteration, the machine agent revisgsities of the time slots. If
some jobs are not scheduled after a realization of an auctiorsathe steps above are
repeated for the empty time slots and unscheduled jobs. It meansaactean is opened to
unscheduled jobs for empty time slots. Previously scheduled jobs keepl#oeis and they
do not enter the new auction. These auctions are repeated until all jobs are dchedule
3.2.2.1.1Behavior of Bidders

The bidder briefly tries to fulfill its local objectives. In gral, each bidder acts
selfishly and tries to maximize its benefit (i.e. tries to@éme slot at which its processing
requirement is satisfied on time without incurring any earlinesgaaliness penalty).
Economic interpretation is that the bidder has a utility functionitan@tional behavior is to
maximize this utility function. This utility function is revised @dch iteration. The utility
function is used to determine the bidder’s strategy in the auction Hyidter. The utility
function has two components. The first component is the evaluation bimeslots by the
job agent. The second component is the actual price of the time slots taken freftethe s

The first component is easy to compute. The bidder calculatesahis using its

earliness and tardiness information. The bidder applies its esrlamal tardiness costs to all

29

the time slots as if the job starts being processed at each time slotafipplaf the earliness
and tardiness costs to all the time slots gives the biddeiceetized convex curve showing
its actual evaluation of the time slots. Then the bidder multigliecurve by -1 to determine
the valuation. The second component that is the price of the lotseis taken from the

machine agent at each iteration.

The difference between the valuation of the time slots and the givies the bidder’'s
utility function depending on which time slot it starts processin@dufition to these terms,
we search all the early/tardy cost values of the job agents ewsopsly calculated. The
maximum of these costs is taken and added to all the utilityidunscfor convenience. This
assures us all the utility functions have positive values adbebening of the auction. This
also helps us to set convenient stopping criteria as explained Bdtevwbidder determines
the time slots on which this utility function has its maximurnugalThe bidder chooses as
many time slots as its processing time as its targetdiate and gives one unique bid for the
combination of all these time slots.

This auction mechanism works with any utility function independent cfhigpe. It
can be observed throughout the iteration. Because the shape ofithdundtion changes
constantly in the auction process and it takes different shapes randomly.

There are three factors considered in the bidding process. Tdweesfare summed
up by the bidder and form the value of the bid. The first factor isdtiéi@n of the prices of
the utility maximizer (target) time slots. The second factom@e difficult to compute.
When a bidder gives bid for a combination of time slots, some of tiaseslots could
previously have been assigned to other job agents. If these job dgemisssess other time
slots than the target time slots, the previous assignment to tiheseslots are cancelled

because preemption is not allowed. Therefore, some time slotstudethe target time slots

30

given bid by the current job agents will be affected by this currenfbieir assignments will
be cancelled, they will be empty so their prices will decréaskeir reservation prices. This
is a loss for the machine agent. Therefore, the current jobt agem is giving bid
compensates this loss. Thus, the second factor consists of the therdidferences between
the previously assigned prices to the affected time slots amdékervation prices. The third
factor is the increment value of the English auction. These thcemdeare added and give
the value of the bid for the target time slots.

The utility function of the seller is the sum of the pricesgassd to the time slots at
that iteration. If a time slot is not assigned to any of the j@bgrice is assigned as the
reservation price of that time slot at the previous iteration.
3.2.2.1.2. Stopping Criteria

Stopping criteria are explained for two cases, auctions and algorithm.

An auction stops when none of the bidders give bid in a cycle. A job dgesatnot
give bid if one of two conditions holds. First condition is that a jomigessesses the utility
maximizing time slots already at its hand when its turn comewéobgil. Since it already has
the utility maximizing time slots, it does not want to change laseor it does not give
higher price for those time slots. Therefore it does not give bid. Sexmdition occurs
when all points of a job agent’s utility function take negative valu&se of the two
conditions is guaranteed for all the job agents because preé@scagasing in an auction. If
there are not any other agents, who have higher values of utility fungjieimg bid to a job
agent’s utility maximizing time slots, then that job agent buys thiose slots and do not
give away. Or, because of increasing prices (both actual andatserprices if necessary),
some job agents who have small values of utility functions have negatues\af utility

functions after some iterations. Since these job agents do not hatmmarsjots and they do

31

not give any bids, they are excluded from the bidding process (i.e. .g&hig)kind of
exclusion results with not being scheduled on the machine. In this case auction is
opened to the unscheduled jobs for the empty time slots and samereuledic for the
subsequent auctions. They have the same stopping criteria as the auction at tiregbegin

The algorithm stops when all jobs are scheduled. The time conyptdxttie problem

is O(nn).
3.2.3. Algorithm: English Auction Based Scheduling

The algorithm consists of five parts. The main part isedaMllgorithm MainAuction.
The other four parts (or subroutines) support the main algorithm.

The first subroutine, Algorithm GenerateReservationPrices, @ bgehe machine
agent to determine the reservation prices before the auctioralgjbrghm uses due-date and
processing time information of the job agents as input and generaéggation prices of the
time slots as output. This output is sent to Algorithm GenerateUtilityFunction.

Each job agent invokes the second subroutine (Algorithm Generatgtitiiction) to
find its utility function before starting bidding. Inputs of Algorithm GexteUtilityFunction
are earliness and tardiness costs, release time, due-datmeesking time of each job agent,
and reservation prices coming from the machine agent as an outpAigofithm
GenerateReservationPrices. The output of GenerateUtilityFuristiatility function of each
job agent. This output is sent to the third subroutine called Algorithm PrepareBid.

Algorithm PrepareBid is used to prepare a bid by each job agent. The ofitput
Algorithm GenerateUltilityFunction is used to set initial vatfeutility function. This utility
function is revised at each iteration. The output of Algorithm Pr&ureonsists of time
slots currently under bid and the value offered for these time Isjothe job agent. This

output is sent to the fourth subroutine (Algorithm DeterminePrices).

32

The MachineAgent employs Algorithm DeterminePrices to determheenew price
of the time slots at each iteration. The inputs of this alguoriéine the old prices (previous
reservation prices and actual prices) and the output of the AlgoftrepareBid (the bid
given by a job agent to the machine agent at that iteration). The outpig afgorithm is the
new prices and reservation prices of the time slots for theteextion. This output is used to
revise their utility functions by the job agents.

Algorithm MainAuction works by the interaction of these four subroutindse T

logical flow chart of the algorithm can be seen in the Figure 3.6.

33

Algorithm MainAuctior

A 4

Algorithm

due date, GenerateReservationPrices

processing time

reservation prices

Algorithm

earliness cost, GenerateUtilityFunction

tardiness cost,
release time,
due date,
processing time

utility function

Algorithm PrepareBid

target time slots,
value of bid

prices

Rt <

Algorithm DeterminePrices

Figure 3.6 Logical flow chart of the algorithm

34

Algorithm GenerateReservationPrices:
Step 1: The machine agent requires the available time infermatue date information and

the processing time information from all the job agents d;, p;).
Step 2: The job agents give the required informationd;, p;).

Step 3: The machine determines the most demanded time slotstigokeagent. These time

slots are denoted by.d; - p; +1d, - p; +2,....d,

Step 4: The machine agent forms a tendency graat (brofile) using the information of
most demanded time slots. It simply adds up theathel®m on each time slot.

Step 5: The machine agent converts tendency gafietreservation price list for the time
slots. It applies this by multiplying the tendengsaph values by the value of the
increment in the English auction.

Step 6: The machine agent opens the time slots¢self to the auction and announces the
reservation prices for these time slots to thegjgénts.

Algorithm GenerateUtilityFunction:

Step 1: Each job agent calculates its earlinesi#ftass cost depending on each time slot.

Step 2: The values found in step 1 are multipligd-b).

Step 3: Find the minimum among all the values fomn8tep 2.

Step 4. Add the absolute value of the term foun&tep 3 to the values found in Step 2
(Normalization of the utility functions of the jagents).

Step 5: Subtract the sum of the prices of as miamgy $lots as the processing time of each job
agent starting from the time slot being considered.

Algorithm PrepareBid:

Step 1: Job agent finds the time slot combinati@ maximizes its utility.

35

Step 2.1: If the job agent already has the time &mbination that maximizes its utility, or
the maximum utility it has is negative, it does givte any bid.

Step 2.2: Else it gives bid to the time slot comalion that maximizes its utility (if there are
various combinations of time slots maximizing ttidity, the job agent chooses the
time slots combinations having the largest valuetatél indices) by adding the
increment value of the English auction to summatibthe declared prices of the time
slots. The time slots, whose status change frony busdle, are also added to this
calculation as opportunity cost.

Algorithm DeterminePrices:

Step 1: The machine gets the bid from the job apant this bid becomes the total price of
the target time slots.

Step 2.1: If a time slot does not get a bid andsiggus is not affected its price does not
change.

Step 2.2: If a time slot does not get a bid busittus changes from busy to idle, its price
becomes its reservation price.

Step 2.3: If a time slot gets a bid, the sum offghees of such time slots becomes the whole
price given by the bid minus the summation of thegs of the time slots explained in
Step 2.1 and Step 2.2.

Step 2.3.1: If there is only one time slot as eixygd in Step 2.3, it gets the price calculated in

Step 2.3

Step 2.3.2: If there are multiple time slots aslaxed in Step 2.3, they equally share this

price.

36

Step 2.4: If a job agent leaves its assigned tilots $0 give bid for some other time slot
combination, the current prices of these time skots assigned as their reservation
price.

Algorithm MainAuction:

Step 1: The machine agent employs AlgoritBenerateReservationPrices

Step 2: The job agents employ Algoritl@enerateUtilityFunction

Step 3: Setj=1

Step 4: The machine agent wants bid from the jantg

Step 5: The job agent employs AlgorithitrepareBid

Step 6: The machine agent employs AlgoritbeterminePrices

Step 7: All job agents revise their utility funat®according to the new prices.

Step 8:ifj<n, Setj=j+ 1, Goto Step 4

else if no job agent gives bids in one cycle, STé&se Go to step 3

Algorithm MainAuction is repeated if there are umsduled jobs until all jobs are
scheduled. The algorithm runs over empty time sdstsinscheduled jobs being the bidders.
Previously scheduled jobs keep their time slotwifTiime slots and they do not attend the
next realizations of Algorithm MainAuction.

3.2.4. Numerical Example

Suppose that there are two jobs waiting to bedided on a single machine. These

jobs are named as Job 1 and Job 2. The necessaryfdaese jobs are in Table 3.1:

Table 3.1 Data set of Jobs

r d p e t
Job 1 0 3 2 3 3
Job 2 1 2 1 6 3

37

r: release time
d: due date
p: processing time
e: earliness cost per unit time
t: tardiness cost per unit time
As seen in Figure 3.7a, suppose that the plarfmonigon (timespan) is between time
0 and time 5. The following is the names of theetstots in the planning horizon:
Time slot between 0 and 1: Time Slot 1
Time slot between 1 and 2: Time Slot 2
Time slot between 2 and 3: Time Slot 3
Time slot between 3 and 4: Time Slot 4

Time slot between 4 and 5: Time Slot 5

Time Slot:
A

> Time

Figure 3.7a The names of the time slots
(i) Application of Algorithm GenerateReservationPrices:

The machine agent opens its time slots to thaaudtirst, it requests the operational
information from the job agents. The job agent&dhe following necessary data:

Table 3.2 Operational Data of Jobs

r d p
Job 1 0 3 2
Job 2 1 2 1

38

Job: Job:

%—'—{ Time Slot:

1 2 3 4 5
Job ¢
~—H I I I Time Slot:
1 2 3 4 5

Figure 3.7b Demand information of Job 1 and Job 2

The machine agent uses this information to geaerdbad profile:

| | | | » Time Slot:

Figure 3.7c Load profile

Then, the machine agent multiplies load profileuesl by the increment value of the

auction, i.e. $1, to compute the reservation prices

39

I » Time Slot:

Figure 3.7d Reservation prices of the time slots
(ii) Aplication of Algorithm GenerateUTtilityFunction:
The job agents firstly calculate their earlinessliteess costs depending on which time

slot the jobs start to be processed.

(o]
I
|

R N Wb

4H I I I > Time Slot:

Figure 3.7e Earliness/tardiness cost function of Job 1

40

R N W~ O O N 0O ©
|
|

4H I I I > Time Slot:

Figure 3.7f Earliness/tardiness cost function of Job 2

Then, job agents multiply these cost function by -

—H I I I > Time Slot:

© ® N o &a A w N Pk

Figure 3.7g Negative earliness/tardiness cost function of Job 1

41

4H I I I > Time Slot:

1 | 1 | I 1] 1 1
© 00 N o o0 A WOWDN PP

Figure 3.7h Negative earliness/tardiness cost function of Job 2
The maximum earliness/tardiness costs is 9. Toerethe job agents add 9 to their

negative earliness/tardiness cost functions fontrenalization.

($)

4
9 —L I
g ——
7 ——
6 ‘P —
5 ——
4 ——
3 — —
2
1 ——

I I I I I » Time Slot:
1 2 3 4 5

Figure 3.7i Normalized negative earliness/tardiness cost function of3d

42

R N W~ O O N 0O ©
|
|

I I I H—V Time Slot:

1 2 3 4 5

Figure 3.7] Normalized negative earliness/tardiness cost function of 8@

After finding the first component of the utilityifiction, the job agents subtract the
prices of the time slots from the function founcad. Job 2 computes directly subtracting
the reservation prices from the normalized negag@diness/tardiness cost function values
because its processing time is 1. However, Jols pracessing time of 2. Therefore, it firstly
adds the values of the related time slot and tixé tiree slot, then subtracts this value from
its normalized negative earliness/tardiness costtion values. This last step gives job

agents their utility functions at the beginningloé auction.

43

R N W~ O O N 0O ©
|
|

I I I I I » Time Slot:

Figure 3.7k Utility function of Job 1 at the beginning of the auction

(%)

P N W DM 01O N 00 ©
|
|

I I I H—b Time Slot:

1 2 3 4 5

Figure 3.7I Utility function of Job 2 at the beginning of the auction

44

(i) Application of Algorithm PrepareBid and Algorithm Determin ePrices:

The machine agent asks a bid from Job 1. Staaingme Slot 2 maximizes Job 1's
utility. Therefore, it gives bid of $4 to Time Slatand 3 (price of the Time Slot 2 + price of
the Time Slot 3 + the increment value = 2+1+1).

The machine agent assigns Time Slots 2 and 3etddb 1 and revises the prices of
the time slots according to this bid. The valuetheftime slots already add up to $3, there is
an additional $1. The machine agent divides thisa®bng Time Slots 2 and 3. Now, the

prices are as the following:

Actual Prices 0 2.t 1.t 0 0
I | | I | I : '
I I I I I I Time Slot:
1 2 3 4 5
Reservation Price 0 2 1 0 0

Figure 3.7m Prices of the time slots after the first iteration
Before starting the next iteration, Job 2 revi#ssutility function to find the new

utility maximizer time slot.

45

R N W~ O O N 0O ©
|
|

I I I H—V Time Slot:

1 2 3 4 5

Figure 3.7n Utility function of Job 2 after first iteration

Time Slot 2 maximizes Job 2’s utility. However,wias assigned to Job 1 in the
previous iteration. Therefore, Job 2 takes the @maation of the loss of the machine agent
due to assignment cancellation of Time Slot 3 filwh 1 in addition to the price of Time Slot
2 and the increment value of the auction. Job 2gy& bid of $4 for Time Slot 2 (price of
Time Slot 2 + compensation of the loss due to T8to# 3 + increment value of the auction =
2.5+ (1.5-1) +1).

Since this bid has come only for Time Slot 2, tieechine agents assigns this value of
$4 to Time Slot 2. Because Time Slot 3 is empty nitsvwalue decreases to its reservation

price ($1). New prices are as follows:

46

Actual Prices 0 4 1 0 0
I | | | | I : '
I I I I I I Time Slot:

Reservation Price 0 2 1 0 0

Figure 3.70 Prices of the time slots after the second iteration

Job 1 bids next. Firstly, it revises its utilityriction.

($)

4
ol
8 ——
7 1
6 ——
5 —1 —
4 —— —
3T —
2 #
1 ——

I I I I I » Time Slot:
1 2 3 4 5

Figure 3.7p Utility function of Job 1 after second iteration

Starting at Time Slot 3 maximizes Job 1's utilifiherefore it gives the bid for Time
Slots 3 and 4 with the value of $2 (price of TimetS + price of Time Slot 4 + increment
value of auction = 1+0+1).

The machine agent assigns Time Slots 3 and 4kdlJand they share this bid. So

price of Time Slot 3 increases to $1.5 and Time &lgoes up to $0.5.

47

Actual Prices 0 4 1.t 0.5 0

I I I I I I Time Slot:

Reservation Price 0 2 1 0 0

Figure 3.7q Prices of the time slots after the third iteration

Job 2 revises its utility function while startitige fourth iteration.

(%)

P N W DM 01O N 00 ©
|
|

I I I H—b Time Slot:

1 2 3 4 5

Figure 3.7r Utility function of Job 2 after the third iteration

Starting at Time Slot 2 maximizes Job 2’s utility.fact, Job 2 already possesses this
utility maximizer, i.e. Time Slot 2. Therefore dbes not give a bid. The prices do not change
after the fourth iteration.

Job 1 revises its utility function after the fduiteration.

48

R N W~ O O N 0O ©
|
|

I I I I I » Time Slot:

Figure 3.7s Utility function of Job 1 after the fourth iteration

Starting either at Time Slot 3 maximizes Job 1lityt Job 1 already starts at Time
Slot 3, i.e. Time Slots 3 and 4 are assigned tollobherefore, it does not give a bid, and
prices do not change.

After this point, because prices do not change,utiility functions remain the same.
Since both job agents have obtained their utiligximizing time slots they do not give any
further bid. Thus, the algorithm stops.

Jobl has Time Slots 3 and 4, Job 2 has Time Sldtt rheans Job 1 starts being
processed at time 2 and finishes at time 4, Jdar&sdeing processed at time 1 and finishes
at time 2. Job 1 incurs a tardiness cost of $3;2Jwtzurs no earliness or tardiness cost. Total
earliness/tardiness cost is $3. This is also thienap value for the centralized version of this

problem.

49

3.3. Centralized Utility

The centralized utility scenario is the centralizzase of the decentralized real life
problem of factory scheduling in Fast Consumer Goselctor. In this setting, there is a
central agent dictating job agents their schedylenbximizing the total utility functions of
the job agents.

3.3.1. Branch-and-Bound Algorithm

The centralized utility problem is formulated asiateger programming problem. We
call it as aggregate problem formulation becauseilleelax it in the next subsection. In the
aggregated problem the objective function is to im&e the total utility function. The

objective of the machine agent is achieved by figdi feasible schedule.

max Y 3 U X, (1)

n i
> D% <1 i=1..m (2
j=1 s=max(-p+11)

m-p;+1

qu =1 j=1..,n (3)

x; =01 i=1...m j=1..n 4)

X; is the binary variable, it is 1 if jopstarts on time slot i, O otherwise. (1) is the

objective function, that maximizes the total uyility, is the parameter representing the utility
of job j if it starts on time slot (2) is the capacity constraint stating that astame job can

start on a time slot and no other job can staril itst processing finishes. Second set of

constraints, (3), is the assignment constraint plas the restriction that each job can and

50

must be scheduled only one time. As most schedudmglems, this problem is also NP-
hard.
3.3.2. Lagrangean Relaxation Algorithm

The alternative algorithm is Lagrangean based sdimed algorithm. Lagrangean
Relaxation has become very popular in last two desdecause it provides good bounds
over a problem and it is very applicable as a demumition method. Our interest on
Lagrangean Relaxation arose partially becauseusgeasl in integer programming applications
of auctions. Also some researchers such as Kutareogl Wu (1999) and Leon and Jeong
(2002) empiloy it in the distributed scheduling extt Furthermore, as an optimization based
technique, Lagrangean Relaxation is among the prostising decomposition methods to fit
in the distributed nature of our problem struct@keitanoglu and Wu 1999). However,
practically, it assumes a more centralized stractiian the original problem due to the initial
solution, feasibility restoration and the subgrati@gorithm working under the Lagrangean
Relaxation routine. Therefore we classify it undentralized utlity scenario.

We revise the Lagrangean Relaxation scheme progmsé&tlignard and Rosenwein
(1989) for Generalized Assignment Problem to fibiour aggregate problem. We relax (3),

assignment constraints and add to the objectivetitm with the Lagrange multipliersy; .

The Lagrangean Relaxation Formulation is as below:

max »

m n
i=1 j=

u; X; - Z {wj(l— m§f+;ij H (5)

1 j=1 i=1

st.

n

> Zi:xsj <1 i=1..m)

j=1 s=max(-p, +11)

x, = 01 i=14...m j=1..n 4)

51

We employ the subgradient algorithm explained byg@ard and Rosenwein (1989)
to revise Lagrange multipliers. The iterations loé L_agrangean Relaxation algorithm are
sketched below after the Table 3.3 which describegparameters of the algorithm.

Table 3.3 Lagrangan Relaxation Algorithm Parameters

Wi Lagrange multiplier at iteration k

uB~; Upper bound at iteratidn

LB Lower bound at iteratiok

UBbest Best upper bound found

LBbest Best lower bound found

target’ Hypothesized target objective value to be adteat iteratiork
step: Step size taken in the subgradient optimizagioiterationk

xi;(: solution of Lagrangean Relaxation problemexiition k
slaclJE : slack of thg™ assignment constraint at iteration k

normt summation of the squares of the assignmenticonts

3.3.2.1. Iterations of the Lagrangean Relaxation Algorithm
Iteration 0: Solve linear programming relaxation of aggregmtdlem.
Set UB® and UBbest to the objective value of the solution of linear

programming relaxation of aggregate problem.

Set Wf to the dual prices of corresponding assignmenstcaimts of linear

programming relaxation of aggregate problem satutio

Solve aggregate problem with branch-and-bound ndetho

52

Iteration k:

Set andLB® and LBbestto the objective function value of the branch-and-
bound solution of the aggregate problem.

Solve Lagrangean Relaxation problem.

Set UB* to the objective function value of the solution bégrangean
Relaxation problem.

SetUBbest= min(UB, UBbest)

If the solution of the Lagrangean relaxation prablés feasible to the
aggregate problem, séB* to the objective value of the aggreagate
problem found by using solution of the Lagrangeaelakation
problem.

Settarget = (UBbest+LE)/2

m-p; +1

Setslack =1~ Z_l“)gj

Setnorni‘ = i(slacl%)2
=1

Setstep = (alphd(UB* target))/nornt

k+1 —

Updatew!™ = w + steg‘ x slack’

If there is no improvement idBbestfor 5 steps,
updatealphd** = alphd /2,

elsealphd** = alphd"

3.3.2.2. Feasibility Restoration Heuristic

In most cases, this Lagrangean Relaxation doegimet feasible solutions for the

aggregate problem. Therefore we developed a fdisit@storation heuristic to resolve this

issue. The steps are described below:

53

m-p; +1
Step 1: If inj >1 for job j, among x; with value 1, keepx; = Ior i with the
i=1

minimum absolute value. Assign all other 0¢a

Repeat the same procedure forj alll,...,n

m-p; +1

Step 2: If > x, =0 for jobj,
i=1
Start withi = 1,
Step 2.i.: Assignx, = 1

Check for all capacity constraints.
If all constraints hold, STOP
Else, updaté > i+1
Repeat the same procedure fojj all1,...,n
3.4. Centralized Cost (Classical Early/Tardy Single Machine Schedulingr&blem)
Centralized cost scenario is reduced from therakrgd utility case. It assumes a
centralized environment in the scheduling probldrfast consumer goods sector. There is a
machine agent behaving as a dictator, not takiegutilities of the job agents into account
and aiming to minimize the total early/tardy casttgl inventory/backorder cost in supply
chain viewpoint).
We formulated the classical single machine schedulroblem as an integer
programming formulation. The constraints remain esams the aggregate problem
formulation above. The objective function is chathgéth minimization of total early/tardy

cost.

Letd" =1 ifo0>0,0"=0 ow.

54

The formulation of classical single machine egalgy problem is below

mn 33 e (d, -ix,)" +t,(x, -d,) (6

i=1 j=1
st.

n

> zi:xsj <1 i=1..m (2)

j=1 s=max(—p; +11)

m-p;+1

inj =1 j=1..n (3)

x, = 01 i=14...m j=1..n (4)

We solve this problem by Branch-and-Bound. Itid\#°-hard problem.

55

CHAPTER 4
Experimental Design and

Computational Results

4.1. Experimental Data

The design of experiments follows a previous stod@w and Morton (1989) for the
single machine early/tardy problem. The main cdrfactors are the tardiness factor of the
set of jobs to be scheduled, the due date rangdhendorrelation coefficient between due
dates and processing times.

The tardiness factot, is a measure of the proportion of jobs expeatdokttardy in a

sequence. For a given average due dateaverage processing tim@,, and given number

of jobs,n, = can be calculated as=1-d /(rp).
The due date range factdt, is used to control the range of the due dateiloligion
calculated afRrp.
Processing times, due dates and costs are intdgergparameters of the experiment
are summarized as below:
* Processing times and due dates are generated aidingariate normal distribution
which incorporates the variation in processing smeariation in due dates and the
correlation between the processing times and duesd&umbers generated are

rounded to the nearest integer. The parameterslavelset as in the list below:

56

Mean for processing time variate of bivariate ndrima5.

Coefficient of variation for processing time vaeadf bivariate normal, i.e,
standard deviation/mean, is 0.2.

Due date range factor is, R, is 0.4 and 1.0.

Correlation coefficient between processing timed doe datesp, is 0 and
0.5.

Tardiness factor;, is set at 0.2 and 0.6.

+ Tardy cost ratey, is calculated in relation to work contemf:= (t/ p)x p;, the cost

per unit processing time/ p, is obtained from a uniform distribution in ran@e 5].

» Early cost rateg, is set proportional to a early/tardy cost rai, It is calculated as

e, = (e/t) xt,. Early/tardy cost rate is set to 5%, 10%, 25%.

* Number of jobsnp, is set to 8, 15, and 25.

For each experimental point (72 in total) we getee® different test problems and

we assign the mean of the results 20 different tkgh as the representative of

corresponding experimental point (1440 data setstal). The summary of experimental

factors can be seen in Table 4.1 (release timeasmemed to be same for all jobs, i.e.

release times are 0).

Table 4.1 Summary of Experimetal Parameters

Experimental Factors: Levels:
n==8

Number of Jobs (n) n=15
n=25

Tardiness Factor (7): proportion of jobs that might be expected to be tardy in | ;-2
an arbitrary sequence

1=0.6

Due Dates Range Factor (R)

R=04

R=1.0

Correlation Coefficient between Processing Times and Due Dates (p)

p=0
p=05

Early Cost Rate (e/t): proportion of unit earliness cost to unit tardiness cost e/t=0.10

e/t =0.05

e/t=0.25

57

4.2. Results

We ran experiments for Auction Based Algorithm (foic), Lagrangean Relaxation
Algorithm (LR), Branch-and-Bound Utility (B&B-Utity) and Branch-and-Bound Cost
(B&B-Cost). We developed the code in Java (see AgpeA) for Auction Based Algorithm
and in GAMS (see Appendix B) working over CPLEX iopter for the rest. Our primary
performance criterion for Auction, LR and B&B-Ultyl is total utility of the job agents, our
secondary performance criterion for Auction, LR ar&B-Cost is total cost of the job
agents as discussed in Chapter 3.

We used different number of maximum time slots sradement values for different
number of jobs cases. We assigned enough numbienetlots to obtain a feasible schedule.
The reason to use different incremental valuesliiberent job sizes is to make the Auction
Based Algorithm work faster. Table 4.2 gives theresponding maximum time slots and
increment values:

Table 4.2 Computational Parameters

n=8 n=15n=25

Maximum Number of Time Slots 250 500 1000

Increment Value of the English Auction2.5 20 250

The maximum number of iterations for the LagramgBalaxation Algorithm is 20
for all different job sizes.
Table 4.3 gives the total utility results for Awcet, LR and B&B-Utility. Table 4.4

shows the total cost results for Auction, LR andB&ost for all experimental points:

58

Table 4.3 Total Utility Results for Auction, LR, and B&B-UTtility

n=28 n=15 n=25
B&B- B&B-

Auction LR Utility Auction LR Utility Auction LR B&B-Utility
7=0.2, R=0.4, p=0.0, e/t=0.05 72,358 79,723 78,871 | 308,391 | 349,853 | 352,004 | 1,216,943 1,405,109 1,396,388
1=0.2, R=0.4, p=0.0, e/t=0.10 72,593 79,173 78,324 | 303,313 | 349,536 | 350,658 | 1,208,288 1,385,964 1,389,422
1=0.2, R=0.4, p=0.0, e/t=0.25 72,973 78,468 77,902 [298,634 | 344,991 | 346,518 | 1,195,810 1,385,034 1,377,576
7=0.2, R=0.4, p=0.5, e/t=0.05 68,957 78,672 78,210 [306,075 | 343,243 | 342,828 | 1,180,278 1,366,355 1,338,916
7=0.2, R=0.4, p=0.5, e/t=0.10 69,943 78,129 77,559 [286,348 | 341,362 | 341,316 | 1,153,677 1,348,618 1,332,012
7=0.2, R=0.4, p=0.5, e/t=0.25 69,965 77,115 76,945 [288,073 | 335,583 | 336,447 | 1,159,601 1,330,016 1,317,782
=0.2, R=1.0, p=0.0, e/t=0.05 74,995 81,320 81,261 | 314,821 | 358,379 | 362,189 | 1,258,794 1,407,976 1,417,839
=0.2, R=1.0, p=0.0, e/t=0.10 76,349 80,759 81,647 [321,742 | 358,975 | 360,392 | 1,232,355 1,409,623 1,412,666
=0.2, R=1.0, p=0.0, e/t=0.25 77,613 80,648 81,248 [309,870 | 358,436 | 357,753 | 1,224,274 1,375,230 1,402,493
=0.2, R=1.0, p=0.5, e/t=0.05 69,755 76,953 76,615 | 284,247 | 330,390 | 331,982 | 1,115,410 1,285,047 1,293,403
7=0.2, R=1.0, p=0.5, e/t=0.10 68,413 76,602 76,757 | 274,342 | 329,498 | 330,651 | 1,089,440 1,285,381 1,289,404
=0.2, R=1.0, p=0.5, e/t=0.25 69,949 75,850 76,095 [291,492 | 328,137 | 326,604 | 1,110,351 1,261,432 1,277,327
7=0.6, R=0.4, p=0.0, e/t=0.05 94,640 100,656 | 101,047 | 391,063 | 440,811 | 440,569 [1,399,795 1,649,088 1,628,770
=0.6, R=0.4, p=0.0, e/t=0.10 95,362 100,685 | 101,252 | 392,582 | 442,057 | 440,342 | 1,375,043 1,652,626 1,621,310
7=0.6, R=0.4, p=0.0, e/t=0.25 95,057 100,500 | 101,085 | 377,411 | 440,021 | 439,668 | 1,433,874 1,636,188 1,618,871
7=0.6, R=0.4, p=0.5, e/t=0.05 92,602 100,480 99,634 | 378,653 | 428,410 | 431,981 | 1,379,487 1,639,924 1,584,088
7=0.6, R=0.4, p=0.5, e/t=0.10 92,103 100,222 99,567 [378,047 | 429,601 | 430,698 | 1,352,917 1,631,856 1,580,887
7=0.6, R=0.4, p=0.5, e/t=0.25 92,347 99,671 99,652 [382,634 | 428,133 | 430,555 | 1,366,930 1,631,682 1,573,953
=0.6, R=1.0, p=0.0, e/t=0.05 97,899 102,617 | 102,699 | 399,761 | 448,885 | 449,978 | 1,449,879 1,639,262 1,655,923
=0.6, R=1.0, p=0.0, e/t=0.10 96,356 102,418 | 102,830 | 398,638 | 449,442 | 449,876 | 1,445,337 1,636,408 1,655,295
=0.6, R=1.0, p=0.0, e/t=0.25 95,686 102,370 | 102,580 | 410,619 | 450,431 | 450,328 | 1,428,477 1,629,210 1,656,271
=0.6, R=1.0, p=0.5, e/t=0.05 92,488 98,815 98,891 [352,192 | 420,128 | 420,721 | 1,317,817 1,557,404 1,536,329
=0.6, R=1.0, p=0.5, e/t=0.10 94,115 98,244 99,209 [369,790 | 420,017 | 420,599 | 1,325,818 1,555,147 1,535,629
7=0.6, R=1.0, p=0.5, e/t=0.25 93,700 98,881 98,896 | 377,624 | 421,292 | 420,404 | 1,331,997 1,539,549 1,526,441

59

Table 4.4 Total Cost Results for Auction, LR, and B&B-Cost

n=28 n=15 n=25

B&B- B&B- B&B-

Auction LR Cost Auction LR Cost Auction LR Cost

7=0.2, R=0.4, p=0.0, e/t=0.05 7,664 511 656 45,218 1,286 2,800 178,353 3,409 15,232
T7=0.2, R=0.4, p=0.0, e/t=0.10 7,889 832 1,198 52,317 2,309 3,706 192,205 6,371 19,910
T7=0.2, R=0.4, p=0.0, e/t=0.25 7,531 1,636 1,886 52,175 5,094 7,201 200,212 5,094 33,181
7=0.2, R=0.4, p=0.5, e/t=0.05 10,652 645 815 40,745 1,788 3,006 174,530 4,715 10,378
7=0.2, R=0.4, p=0.5, e/t=0.10 9,652 1,023 1,350 57,281 3,099 4,542 208,870 8,419 15,519
7=0.2, R=0.4, p=0.5, e/t=0.25 8,798 2,058 2,342 53,868 6,515 8,543 195,485 18,260 29,523
7=0.2, R=1.0, p=0.0, e/t=0.05 7,492 243 1,058 49,118 561 1,528 162,349 1,420 14,505
T7=0.2, R=1.0, p=0.0, e/t=0.10 6,099 431 1,598 42,801 1,084 2,975 189,664 2,731 18,052
7=0.2, R=1.0, p=0.0, e/t=0.25 4,829 940 1,702 53,415 2,488 5,281 192,260 6,156 27,663
7=0.2, R=1.0, p=0.5, e/t=0.05 8,109 435 822 50,987 1,144 2,515 179,362 2,910 13,937
7=0.2, R=1.0, p=0.5, e/t=0.10 9,460 748 1,161 59,278 2,154 3,628 207,623 5,598 17,960
7=0.2, R=1.0, p=0.5, e/t=0.25 7,902 1,639 1,907 42,676 4,780 6,701 196,837 12,528 31,699
T7=0.6, R=0.4, p=0.0, e/t=0.05 11,108 3,473 5,015 62,328 8,822 12,340 306,927 23,132 47,388
7=0.6, R=0.4, p=0.0, e/t=0.10 10,378 3,562 4,994 60,899 9,129 12,509 304,014 23,988 48,547
7=0.6, R=0.4, p=0.0, e/t=0.25 10,697 3,802 5,164 74,627 10,194 13,169 271,047 27,230 51,137
T7=0.6, R=0.4, p=0.5, e/t=0.05 12,292 3,595 4,308 66,217 9,790 12,986 290,847 25,867 41,602
T7=0.6, R=0.4, p=0.5, e/t=0.10 12,500 3,720 4,563 65,089 10,248 14,020 307,679 27,301 44,766
T7=0.6, R=0.4, p=0.5, e/t=0.25 12,529 4,061 5,112 62,210 11,613 13,985 302,033 31,028 46,136
7=0.6, R=1.0, p=0.0, e/t=0.05 8,514 3,096 3,724 58,826 6,661 9,887 269,919 15,027 39,639
7=0.6, R=1.0, p=0.0, e/t=0.10 10,103 3,163 3,924 62,163 6,813 10,059 280,773 15,259 39,893
T7=0.6, R=1.0, p=0.0, e/t=0.25 10,761 3,301 3,976 49,510 7,136 9,531 288,883 16,464 40,516
T7=0.6, R=1.0, p=0.5, e/t=0.05 10,224 3,083 4,116 82,984 8,162 11,867 289,273 20,106 44 557
7=0.6, R=1.0, p=0.5, e/t=0.10 8,872 3,177 4,686 63,067 8,396 11,983 290,542 21,021 46,345
7=0.6, R=1.0, p=0.5, e/t=0.25 9,315 3,453 4,036 55,815 9,336 12,140 280,874 24,137 47,295

60

Table 4.5 and Table 4.6 show the averages of thergmental points for total utility

and total cost:

Table 4.5 Averages of the Experimental Points for Total Utility

n=8 n=15 n=25
B&B- B&B-
Auction LR Utility Auction LR Utility Auction LR B&B-Utility
| Overall Average 83,176 89,540 89,532 341,515 390,211 389,484 1,281,358 1,475,791 1,485,172

Table 4.6 Averages of the Experimental Points for Total Cost

n=8 n=15 n=25
Auction LR B&B-Cost | Auction LR B&B-Cost Auction LR B&B-Cost
| Overall Average 9,307 2,921 2,193 56,817 8,204 5,775 240,023 32,724 14,507

As can easily be seen, LR gives very close resolB®&B-Utility in terms of total
utility. Even LR is slightly better than B&B-Utiljtin small problem sizes. However, there is
a considerable gap between LR and B&B-cost in tesfmtal utility. The reason for such
good results for total utility is it works in tharse environment with B&B-Utility. However,
it does not try to minimize total cost as B&B-Cdskes with a master (dictator) agent with no
competition and full collaboration.

The Auction gives much worse results than LR andB8ost by the means of total
cost. However, it gives close results to LR and B&#ity by the means of total utility.
There is not a general aim of the system (no masmgent) in Auction. The jobs are in
competition and there is collaboration partly pdad by negotiations. Auction works in a
highly decentralized environment although LR, B&HEHty and B&B-Cost work in a
completely centralized environment.

B&B-Cost beats LR and Auction because the mastentagplves the minimization of
total cost problem not allowing competition andtdliing job agents their schedules because
it is accessible to all data sets of job agents.

In the experiments, lower and upper bounds for BdtiBty and B&B-Cost do not
converge to an optimal solution. We finish the B&Bmaturely. Therefore, for some cases
LR gives better results than B&B-Utility.

Table 4.7 shows the average total cost and avenageentage gap between Auction
Based Algorithm and Lagrangean Relaxation Algoritondifferent jobs sizes:

61

Table 4.7 Average Total Cost and Percentage Gap

n=8 n=15 n=25
Auction LR Auction LR LR LR
Overall Average 9,307 2,921 56,817 8,204 240,023 32,724
Average Percentage Gap 218.58% 592.54% 633.48%

There is very big gap between the total cost tesfl Auction Based Algorithm and
Lagrangean Relaxation Algorithm. However as casdsn in Table 4.8, the gap decreases a
lot for total utility values.

Table 4.8 Average Total Utility and Percentage Gap

n=8 n=15 n=25
Auction LR Auction LR Auction LR
Overall Average 83,176 89,540 341,515 390,211 | 1,281,358 | 1,475,791
Average Percentage Gap -7.11% -12.48% -13.17%

As expected, the results of the Auction Based dlgorare all below the Lagrangean
Relaxation Algorithm. Because we start with a vgood incumbent (the solution of the
original problem) and very good Lagrangean mukigsli(the dual costs of the constraints of
the Linear Programming Relaxation of the originadlgpem). Also, because the Lagrangean
Relaxation upper bound actually converges to LifFagramming Relaxation of this type of
problems, solutions to the problems of the iteretiof the Lagrangean Relaxation Algorithm
alter in a very small range. The total utility rksunean that the Auction Based Algorithm
works very well for the maximization of total utylifunction although it works on a highly
distributed environment whereas Lagrangean Relaxatigorithm works on a centralized
environment. Unfortunately, we do not have a measto evaluate the degree of
decentralization. We conclude that Auction converggegood solutions for the total utility

measure.

62

Total Utilities

1,800,000
1,600,000 pe—e ‘v—l—ié N—e
1,400,000 -
0
3 1200000 | —e— Auctionn =8
g —a—Lagrangeann =38
> 1,000,000 —&a—Auctionn =15
% 800,000 —— Lagrangeann =15
2 —— Auction n =25
©
S 600,000 —e— Lagrangean n =25
" oo W
200,000
e e e e e N e e e et e

Experimental Points

Figure 4.1 Comparison Chart of Total Utilities of Auction Based Algorithm and
Lagrangean Relaxation Algorithm

Figure 4.1 depicts us the comparison of totaltigsi of Auction and LR. There is an
increase observed in total utilities when tardinéssor, r, is higher. When correlation

coefficients between processing times and due dateshigher, total utility decreases.

63

Chapter 5
Conclusion and Future Research

Directions

In this thesis, we solve the scheduling problera geographically distributed supply
chain in Fast Consumer Goods sector. We analyzeptbblem under three scenarios,
centralized cost (classical single machine schedulroblem), centralized utility and
decentralized utility. We solve the centralizedtcosse with Branch-and-Bound. We also
solve the centralized utility case with Branch-aalind and we develop a Lagrangean
Relaxation Algorithm for this case. The most rdaliscenario is the decentralized cost case
and we developed an Auction Based Algorithm to esdihis case.

We reduced the supply chain scheduling problem single machine scheduling
problem by introducing utility function concept tead of early/tardy cost. This gives us an

opportunity to use game theoretic approaches orhigiity decentralized problem structure.

64

By employing different solution methodologies frahe ideal case of the problem to the
most realistic case, we compare different scenakidisile Branch-and-Bound beats every
other method in the most ideal case (centralizest) cbagrangean Relaxation Algorithm and
Brach-and-Bound produce similar results for thetradimed utility function case. However,
in the decentralized utility case, the Auction Bh#dgorithm is the only alternative that fits
to the structure of the real life problem. Whilelites not work very efficient for the total cost
performance, the total utility results are verymiging.

In our opinion, by introducing Auction Based Algbm, we add game theoretic
insight to the scheduling problem. While optimipatimethods work well for centralized
cases, game theoretic approaches offer more digetsgon opportunities for decentralized
case. By this algorithm, we introduce a very reéiglisegotiation mechanism between the
agents of the system.

Auction Based Algorithm is a pioneer in our problstructure. It works quiet well,
however, it does not contain any optimization fesgult is a possible research opportunity to
define optimization submodels and employ them enatction mechanism.

We work in a single supplier (or single machinejimnment. A possible extension is
to move the problem in a two-supplier (two-machioe)multi-supplier (multi-machine)
environment.

Lagrangean Relaxation Algorithm is also a promisaigorithm for our problem
structure. Although it is working on centralizedveanment, with some revisions it can be
made to work on decentralized case. One of the usysstead of employing subgradient
algorithm under Lagrangean Relaxation Algorithm,cae develop a pricing heuristic. Then,

it behaves like an auction algorithm.

65

Different utility functions can be fit to the jolgants. By adding extra components to
the utility function we gain great flexibility fahe scheduling solution.

There is not a measure of degree of decentralizaltiahere was one, it would be
better to evaluate the performance of an algoritvorking on a decentralized environment.

This is an intensively theoretic research.

66

Bibliography

Benjamin P., Yen, C., “Communication Infrastructurd®istributed Scheduling”, Computers
and Industrial Engineering 42, 2002.

Brennan, R.W., Norrie, D.H., O, W., Walker, S.99B Sequencing and Dispatching in
Multi-agent Heterarchical Control Systems”, Univref Calgary, Calgary, Alberta,
Canada: 2000.

Chen, Y., Cost, S., Finin, T., Labrou, Y., Peng“Kegotiating Agents for Supply Chain
Management”, Department of Computer Science anctiiial Engineering,
University of Maryland, USA: 1999.

Dewan, P., Joshi, S., “Implementation of an Auctgased Distributed Scheduling Model for
a Dynamic Job Shop Environment”, International daliof Computer Integrated
Manufacturing 14, 2001.

Dutta, P.S., Mukherjee, R., Sen, S., “Schedulingg@ompetitive in Supply Chains”,
Department of Mathematical and Computer Sciencasdusity of Tulsa, USA:
2000.

Grimm, V., Riedel, R., Wolfstetter, E., “Low Priéguilibrium in Multi-Unit Auctions: the
GSM spectrum auction in German”, International daliof Industrial Organization
21, 2003.

Jeong, 1.J. Leon, V.J., “A Distributed Schedulingtibdology for a Two-machine Flowshop

using Cooperative-interaction via Multiple Couphagents”, Texas A&M University,
College Station Texas, USA: 2002a.

67

Jeong, |.J. Leon, V.J., A Single-machine Distribugzheduling Methodology Using
Cooperative-interaction via Coupling-agents, TeX&s1 University, College Station
Texas, USA: 2002b.

Kaihara, T., “Agent-Based Double Auction Algoritifor Global Supply Chain System”,
IEEE, 2000.

Khoo, L.P., Lee, S.G,, Yin, X.F., “Agent-based Mplé Shop Floor Manufacturing
Scheduler”, International Journal of Productionézesh 39, 2001.

Kutanoglu, E., Wu, S.D., “On Combinatorial Auctiand Lagrangean Relaxation for
Distributed Resource Scheduling”, IIE Trans. 3199.9

Kutanoglu, E., Wu, S.D., “Collaborative ResourcariPing with Distributed Agents, The
University of Texas at Austin-Lehigh University, AS2002.

Najid, N.M., Kouiss, K., Derriche, O., “Agent BasAgproach for a Real-Time Shop Floor
Control”, Technical Paper, IRCCyN/IUT de Nantes-lD8/IFMA, France: 2003.

Ow, P., S., Morton, E., M., “The Single Machine Igarardy Problem”, Management
Science, 35(2), 1989.

Roy, D., Anciaux, D., “Shop Floor Control: A Muligents Approach”, International Journal
of Computer Integrated Manufacturing 14, 2001.

Sabuncuoglu I., Toptal A., “Distributed Schedulifgrt 1 — A Review of Concepts and
Applications”, Technical paper: IE99-XX, Bilkent thersity, Turkey: 1999a.

Sabuncuoglu I., Toptal A., “Distributed Schedulifgirt 2 — Bidding Algorithms and
Performance Evaluations”, Technical paper: IE99-Bikent University, Turkey:
1999b.

Sabuncuoglu 1., Toptal A., “Distributed Schedulii@rt 3 — Product Team Based
Algorithms”, Technical paper: IE99-XX, Bilkent Ureysity, Turkey: 1999c.

Sauter, J., A., Parunak, H.V.D., “ANTS in the Sup@lyain”, Workshop on Agent based
Decision Support for Managing the Internet-Enal3egply Chain, Agents, 99, USA:
1999.

Seredynski, F., “Competitive Coevolutionary Multgént Systems: The Application to
Mapping and Scheduling Problems”, Journal of Palralhd Distributed Computing
47, 1997.

Seredynski, F., Koronacki, J., Janikow, C.Z., “Disited Multiprocessor Scheduling with

Decomposed Optimization Criterion”, Future GeneratComputer Systems 17,
2001.

68

Shen L., J,, Chua, D., K., C., Bok, S., H., “Distiied Scheduling with Integrated Production
Scheduler”, Department of Civil Engineering, Naabbniversity of Singapore,
Singapore: 1999.

Tharumarajah, A., Bemelman, R., “Approaches ancekssu Scheduling a Distributed Shop
Floor Environment”, Computers in Industry 34, 1997.

Tonshoff, H.K., Leitao, P., Seilonen, I., Teunis, @ Mediator-based Approach for
Decentralized Production Planning Scheduling andidMang”, University of
Hannover, Germany: 1999.

Wellman, M.P., Walsh, W.E., Wurman, P.R., MacKieddn, J.K., “Auction Protocols for
Decentralized Scheduling”, Games and Economic Beh&6, 2001.

69

APPENDIX A

Java Code of Auction Based Algorithm

SystemCore.java

import java.io.*;

public class SystemCore{

public static void main (String[] args) throws 1Qteption

{

int release2 = 0;

int duedate2 = 0O;

int process2 = 0;

double early2 = 0;

double tardy2 = 0;

int counter = 0;

final int MAXJOBS = 8§;

int CORDOBA = 20;

int[] earliness = new intfMAXJOBS];

int[] tardiness = new intfMAXJOBS];

double[] earlycost = new double[MAXJOBS];
double[] tardycost = new double[MAXJOBS];
int[] starttime = new intfMAXJOBS];

int[] finishtime = new intfMAXJOBS];

double[] machineutility = new double[CORDOBA];
boolean[] scheduled = new boolean[MAXJOBS];
double[] totalutility = new double[CORDOBA];
double[] totalutility2 = new double[CORDOBA];
double[] totalcost = new double[CORDOBA;
Job[] jobs = new Job[MAXJOBS];

double avgtotalutility = O;

double avgtotalutility2 = 0O;

70

double avgtotalcost = 0;
double avgmachineutility = 0;

for (int carew = 1; carew <= CORDOBA, carew++)

{

System.out.printin(carew);

int numberscheduled = 0;

int numbernotscheduled = 0;

String line, name, file = "input8-02-04-00-005carew+".dat";

FileReader fr = new FileReader(file);
BufferedReader infile = new BufferedReader (fr);
int count?7 = 0;
for (int index = 1; index <=5 * MAXJOBS; indexy)

{

early2, tardy?2);

}

line = infile.readLine();
if(index%5 == 1){

release2 = Integer.parselnt(line);
}

if(index%5 == 2){
duedate2 = Integer.parselnt(line);

}
if(index%5 == 3){

process?2 = Integer.parselnt(line);
}

if(index%5 == 4){
early2 = Double.parseDouble(line);

}
if(index%5 == 0){
tardy2 = Double.parseDouble(line);
jobs[count7] = new Job(release2, duedateZgss®,

count7++;

[*close file*/
infile.close();

Machine machine = new Machine(jobs);

double[] reservationpricesl = machine.GenerateRasonPrices();

for (int index = 1; index <= MAXJOBS; index++)

jobs[index-1].FindMaxcost();

71

double normalizerl = machine.FindNormalizer();

for (int index = 1; index <= MAXJOBS; index++)

{
jobs[index-1].GenerateUtilityFunction(reservatoices1,
normalizerl);
}
while (counter < MAXJOBS)
{

for (int index = 1; index <= MAXJOBS; index++)
{

jobs[index-1].FindMaxUtility();
for (int subindex = 1; subindex <= Job.MAXTIMESTS;

{

Machine.status[subindex-1];

subindex++)
Machine.oldstatus[subindex-1] =

Machine.oldreservationprices[subindex-1] =
Machine.reservationprices[subindex-1];

Machine.oldprices[subindex-1] =
Machine.prices[subindex-1];

}

int targetl = jobs[index-1].argmaxutility;
boolean resultl = false;

int countl = 0;

boolean resultmaxutility = false;

for (int subindex = 1; subindex <= Job.MAXTIMESTS;

{
if (Machine.oldstatus[subindex-1] == index &&
jobs[index-1].utilities[subindex-1] == jobs[indeX-taxutility)

subindex++)

resultl = true;
subindex = Job.MAXTIMESLOTS+1;

}
if (jobs[index-1].maxutility > 0 && resultl =false)

72

jobs[index-1].PrepareBid();
machine.AssignTimeSlots(index);

machine.DeterminePrices(index);

}

else

{

for (int subindex = 1; subindex <=

Job.MAXTIMESLOTS; subindex++)

{

Machine.status[subindex-1] =

Machine.oldstatus[subindex-1];

Machine.prices[subindex-1] =

Machine.oldprices[subindex-1];

Machine.reservationprices[subindex-1] =

Machine.oldreservationprices[subindex-1];

I

}
}

for (int subindex = 1; subindex <= MAXJOBS; sulex++)
{

}

if (machine.isChanged())
{

jobs[subindex-1].ReviseUtilities();

counter++;

counter = 0;

}

System.out.printin("Counter =" + counter);

for (int index = 1; index <= MAXJOBS; index++)

{

73

for (int subindex = 1; subindex <= Job.MAXTIMESLS;
subindex++)

{
if (Machine.status[subindex-1] == index)
{
scheduled[index-1] = true;
subindex = Job.MAXTIMESLOTS+1;
}
else
{
scheduled[index-1] = false;
}
}
if (scheduled[index-1] == true)
{
numberscheduled++;
}
else
{
numbernotscheduled++;
}

machine.assignstatus();

/Ibiter insallah
counter = 0;

int counter10 = O;
while (numbernotscheduled != 0)
{
counterl0++;
double[] reservationprices2 =
machine.GenerateReservationPrices2(scheduled);
I* for(int i=0; i<100; i++)
{

Ll
for (int index = 1; index <= MAXJOBS; index++)

System.out.printin(reservationprices2][i]);

if (scheduled[index-1] == false)

jobs[index-1].FindMaxcost2();

74

/*

I

}

}
for(int i=0; i<8; i++)
{
System.out.printin(jobs[i]. maxcost);
¥

double normalizer2 = machine.FindNormalizer2¢sttiied);
System.out.printin(normalizer2);

for (int index = 1; index <= MAXJOBS; index++)
{

if (scheduled[index-1] == false)

jobs[index-

1].GenerateUtilityFunction2(reservationprices2,malizer2);

/*

/*

1].maxutility);

1].argmaxutility);

}
}

for(int i=0; i<240; i++)
{

Y

System.out.printin(jobs[3].utilities][i]);

int counter101 = O;
int counterll = O;

while (counterll < numbernotscheduled)

{

counterll = 0;
counterl01++;
for (int index = 1; index <= MAXJOBS; index++)

if (scheduled[index-1] == false)

{
jobs[index-1].FindMaxUtility2();
if (counterl01 ==1)
{

System.out.printin(jobs[index-
System.out.printin(jobs[index-
bl

for (int subindex = 1; subindex <=

Job.MAXTIMESLOTS; subindex++)

{

75

Machine.oldstatus[subindex-1] =
Machine.status[subindex-1];

Machine.oldreservationprices[subindex-
1] = Machine.reservationprices[subindex-1];

Machine.oldprices[subindex-1] =
Machine.prices[subindex-1];

}

int target2 = jobs[index-1].argmaxutility;
boolean result2 = false;

int count2 = 0;

boolean resultmaxutility2 = false;

for (int subindex = 1; subindex <=

{

Job.MAXTIMESLOTS; subindex++)
if (Machine.status2[subindex-1] == 0)

{
if (Machine.oldstatus[subindex-1]
== index && jobs[index-1].utilities[subindex-1] =pbs[index-1].maxutility)

result2 = true;

subindex =
JOob.MAXTIMESLOTS+1;
}
}
}
if (jobs[index-1].maxutility > 0 && result2 =
false)
{
jobs[index-1].PrepareBid2();
machine.AssignTimeSlots2(index);
machine.DeterminePrices2(index);
}
else
{

for (int subindex = 1; subindex <=

{

Job.MAXTIMESLOTS; subindex++)

Machine.status[subindex-1] =
Machine.oldstatus[subindex-1];

Machine.prices[subindex-1] =
Machine.oldprices[subindex-1];

76

Machine.reservationprices[subindex-1] = Machirdreservationprices[subindex-1];

}
}
for (int subindex = 1; subindex <= MAXJOBS;
subindex++)
{
if (scheduled[subindex-1] == false)
{
jobs[subindex-
1].ReviseUtilities2();
}
}
if (machine.isChanged())
{
counterll++;
}
else
{
counterll = 0;
}
1 System.out.printin("Counter =" + countex11

for (int index = 1; index <= MAXJOBS; index++)
{

if (scheduled[index-1] == false)

{
for (int subindex = 1; subindex <=
Job.MAXTIMESLOTS; subindex++)

{
if (Machine.status[subindex-1] == index)
{
scheduled[index-1] = true;
subindex = Job.MAXTIMESLOTS+1;
}
else

77

scheduled[index-1] = false;

}
}
if (scheduled[index-1] == true)
{
numberscheduled++;
numbernotscheduled--;
}
}
}
I System.out.printin("counter10 = "+ counter10);
I System.out.printin("not scheduled = " + nunmtwéscheduled);
I System.out.printin("scheduled = " + numbersithed);

}

System.out.printin("not scheduled =" + numbesnbéeduled);
System.out.printin("scheduled =" + numberschedil

for (int index = 1; index <= MAXJOBS; index++)
{
for (int subindex = 1; subindex <= Job.MAXTIMESIS;
subindex++)

{
if (Machine.status[subindex-1] == index)
{
starttime[index-1] = subindex-1;
finishtime[index-1] = subindex-1+jobs[index-
1].getProcTime();
subindex = Job.MAXTIMESLOTS+1,
}
}

}

totalutility[carew-1] = O;
for (int index = 1; index <= MAXJOBS; index++)
{

}
System.out.printin("Total Utility =" + totalutiy/[carew-1]);

totalutility[carew-1] += jobs[index-1].firstutties[starttime[index-1]];

for (int index = 1; index <= MAXJOBS; index++)

78

if (finishtime[index-1] < jobs[index-1].getDueDx))

{
earliness[index-1] = jobs[index-1].getDueDate()
finishtime[index-1];
tardiness[index-1] = 0;
}
else
{
tardiness[index-1] = finishtime[index-1]-jobsfiex-
1].getDueDate();
earliness[index-1] = 0;
}

earlycost[index-1] = jobs[index-1].getEarly()téaess[index-1];
tardycost[index-1] = jobs[index-1].getTardy()rfdaness[index-1];

totalcost[carew-1] = 0;
for (int index = 1; index <= MAXJOBS; index++)

{
totalcost[carew-1] = totalcost[carew-1]+earlytfiosiex-
1]+tardycost[index-1];
}

System.out.printin("Total Cost =" + totalcostiea-1]);

totalutility2[carew-1] = O;
for (int index = 1; index <= MAXJOBS; index++)
{

}
System.out.printin("Total Utility2 =" + totallity2[carew-1]);

totalutility2[carew-1] += jobs[index-1].utilitestarttime[index-1]];

machineutility[carew-1] = O;
for (int index = 1; index <= Job.MAXTIMESLOTS,; iea++)
{

}
System.out.printin("Machine Utility = " + machimdity[carew-1]);

machineutility[carew-1] += Machine.prices[ind&k-

String file6 = "costs"+carew+".gms";//cost data
FileWriter fw6 = new FileWriter (file6);

BufferedWriter bw6 = new BufferedWriter (fw6);
PrintWriter outFile6 = new PrintWriter (bw6);

79

for (int index=1; index<=MAXJOBS; index++)
{

}
outFile6.printin();

for (int index=1; index<=Job.MAXTIMESLOTS; indexy}
{

outFile6.print("\t"+"i"+index);

outFile6.print("r"+index);
for (int subindex=1; subindex<=MAXJOBS; subinéeX
{

}
outFile6.printin();

outFile6.print("\t"+jobs[subindex-1].firstcofitsdex-1]);

outFile6.close();

String file5 = "process"+carew+".gms";//utilityath
FileWriter fw5 = new FileWriter (file5);
BufferedWriter bw5 = new BufferedWriter (fw5);
PrintWriter outFile5 = new PrintWriter (bw5b);

outFile5.print("/");
for (int index=1; index<=MAXJOBS; index++)

if(index<MAXJOBS)
{
outFile5.printin("i"+index+"\t"+jobs[index-1] g&tProcTime());
}
else
{
outFile5.printIn("i"+index+"\t"+jobs[index-
1].getProcTime()+"/");
}

}

outFile5.close();

String file4 = "tablebi.gms";//utility data
FileWriter fw4 = new FileWriter (file4);
BufferedWriter bw4 = new BufferedWriter (fw4);
PrintWriter outFile4 = new PrintWriter (bw4);

outFile4.print("/");
for (int index=1; index<=Job.MAXTIMESLOTS; indexy

80

if(index<Job.MAXTIMESLOTYS)

{
outFile4.printin("r"+index+"\t"+"1");
}
else
{
outFile4.printin("r"+index+"\t"+"1"+"/");
}

outFile4.close();
String file3 = "tableaij.gms";//utility data

FileWriter fw3 = new FileWriter (file3);
BufferedWriter bw3 = new BufferedWriter (fw3);
PrintWriter outFile3 = new PrintWriter (bw3);

for (int index=1; index<=MAXJOBS; index++)
{

outFile3.print("\t"+"i"+index);

outFile3.printin();
for (int index=1; index<=Job.MAXTIMESLOTS; indexy

{

outFile3.print("r"+index);
for (int subindex=1; subindex<=MAXJOBS; subindeX

{

}
outFile3.printin();

outFile3.print("\t"+"1");

outFile3.close();
String file2 = "utilities"+carew+".gms";//utilitglata

FileWriter fw2 = new FileWriter (file2);
BufferedWriter bw2 = new BufferedWriter (fw2);
PrintWriter outFile2 = new PrintWriter (bw?2);

for (int index=1; index<=MAXJOBS; index++)
{

outFile2.print("\t"+"i"+index);

outFile2.printin();
for (int index=1; index<=Job.MAXTIMESLOTS; indexy

{

81

outFile2.print("r"+index);
for (int subindex=1; subindex<=MAXJOBS; subinéeX
{

}
outFile2.printin();

outFile2.print("\t"+jobs[subindex-1].firstutiles[index-1]);

}

outFile2.close();

I* String file7 = "deniyorum"+carew+".dat";//"oup8-02-04-00-005.dat";

FileWriter fw7 = new FileWriter (file7);
BufferedWriter bw7 = new BufferedWriter (fw7);
PrintWriter outFile7 = new PrintWriter (bw7);

outFile7.printin ("TotaINumberofJobs: " + "\t"MAXJOBS);

outFile7.printin ("NumberofScheduledJobs: " + ®ithumberscheduled);

outFile7.printin ("NumberofUnscheduledJobs: "\t %
numbernotscheduled);

outFile7.println ("TotalCost: " + "\t" + totalctjsarew-1));

outFile7.printin ("UtilityofMachine: " + "\t" + rachineutility);

for (int index = 1; index <= MAXJOBS; index++)

{
if (scheduled[index-1] == false)
{
outFile7.printin ("Job" + index + " is not schaed.");
}
}

outFile7.printin ("JobIindex" + "\t" + "ReleaseTérh+ "\t" + "DueDate" + "\t"
+ "ProcessTime" + "\t" + "StartTime" + "\t" +
"FinishTime");

for (int index = 1; index <= MAXJOBS; index++)

{
outFile7.println (index + "\t" + jobs[index-1tReleaseTime() + "\t" +
jobs[index-1].getDueDate() + "\t"
+ jobs[index-1].getProcTime() + "\t" +
starttime[index-1] + "\t" + finishtime[index-1]);

}

outFile7.printin ("Jobindex" + "\t" + "Earliness""\t" + "Tardiness" + "\t"
+ "EarlinessCost" + "\t" + "TardinessCost"\#
+ "MaximumuUtility");

82

for (int index = 1; index <= MAXJOBS; index++)

{
outFile7.printin (index + "\t" + earliness[ind&f + "\t" +
tardiness[index-1] + "\t"
+ earlycost[index-1] + "\t" +
tardycost[index-1] + "\t" + jobs[index-1].maxutii};

}

outFile7.close();*/

}
for (int carew=1; carew<=CORDOBA; carew++)
{
avgtotalutility += totalutility[carew-1];
}

avgtotalutility = avgtotalutility/ CORDOBA,;

for (int carew=1; carew<=CORDOBA; carew++)

{

}
avgtotalcost = avgtotalcost/ CORDOBA,

avgtotalcost += totalcost[carew-1];

for (int carew=1; carew<=CORDOBA; carew++)

{

}
avgtotalutility2 = avgtotalutility2/ CORDOBA;

avgtotalutility2 += totalutility2[carew-1];

for (int carew=1; carew<=CORDOBA; carew++)

{

}
avgmachineutility = avgmachineutility/ CORDOBA;

avgmachineutility += machineutility[carew-1];

System.out.printin (avgtotalutility);
System.out.println (avgtotalcost);
System.out.printin (avgtotalutility2);
System.out.println (avgmachineutility);

String filel = "output.dat";
FileWriter fw = new FileWriter (filel);

BufferedWriter bw = new BufferedWriter (fw);
PrintWriter outFile = new PrintWriter (bw);

83

outFile.printin (avgtotalutility);
outFile.printin (avgtotalcost);
outFile.printin (avgtotalutility2);
outFile.printin (avgmachineutility);

outFile.close();

}
}

Job.java

public class Job{

public static final int MAXTIMESLOTS = 250;//DIKKATETTTTTTTTTT
private final int CONORMALIZER = 1;

public double maxcost;

private int release, duedate, process;

private double early, tardy;

public double[] utilities = new double[MAXTIMESLQOH];
public int[] firstutilities = new intfMAXTIMESLOTS;

public double[] oldutilities = new double[MAXTIMBESDTS];
public double bid;

public double maxutility;

public int argmaxutility;

private double[] costs = new double[MAXTIMESLOTS];
public int[] firstcosts = new intMAXTIMESLOTS];

public Job(int releasel, int duedatel, int protedsuble earlyl, double tardy1){
release = releasel;
duedate = duedatel;
process = processl;
early = earlyl;
tardy = tardy1;
}

public void FindMaxcost()
{

for (int index = release+1; index <= MAXTIMESLOJBocess+1; index++)

if (index+process-1 < duedate)

costs[index-1] = early*(duedate-index-proce9s+1
else

costs[index-1] = tardy*(index+process-1-duejlate

}

maxcost = costs[release+1-1];

84

for (int index = release+2; index <= MAXTIMESLOT[Bocess+1; index++)
if (costs[index-1] > maxcost)

maxcost = costs[index-1];

}
}
}
public void GenerateUtilityFunction (double[] regationprices, double normalizer)
{

for(int i = 0; i < reservationprices.length; i£+)
Machine.prices[i] = reservationprices]i];
}

for (int index = release+1; index <= MAXTIMESLO8ocess+1; index++)
{

costs[index-1];

utilities[index-1] = CONORMALIZER*Machine.normaléer-

for (int subindex = index; subindex < index+pss; subindex++)

{
utilities[index-1] = utilities[index-1]-Machingrices [subindex-
1];
}
firstutilities[index-1] = (int) utilities[indext];
}

double bigcost = Machine.normalizer;
for (int index = 1; index <= Job.MAXTIMESLOTS,; iea++)

if (index>=release+1 && index<=MAXTIMESLOTS-press+1)

{
firstcosts[index-1] = (int)costs[index-1];
}
else
{
firstcosts[index-1] = (int) bigcost;
}
if (firstcosts[index-1] == 0 && index+process=1tHuedate)
{
firstcosts[index-1] = 1;
}

85

public void FindMaxUTtility()

{
maxutility = utilities[release+1-1];
argmaxutility = release+1;
for (int index = release+2; index <= MAXTIMESLO8ocess+1; index++)
{
if (maxutility <= utilities[index-1])
{
maxutility = utilities[index-1];
argmaxutility = index;
}
}
}
public void PrepareBid()
{
bid = 0;

for (int subindex = argmaxautility; subindex <garaxutility+process;
subindex++)

{
bid = bid+Machine.prices[subindex-1];
}
for (int index = release+1; index < argmaxutilindex++)
{

if (Machine.oldstatus [argmaxutility-1] != 0 &&
Machine.oldstatus[index-1] == Machine.oldssatu
[argmaxutility-1])

{
bid = bid+Machine.oldprices[index-1]-
Machine.oldreservationprices [index-1];

}
else
bid = bid;
}

for (int index = argmaxutility+process; index ##AXTIMESLOTS-
process+1; index++)

{
if (Machine.oldstatus [argmaxutility+procesdfl}= 0 &&

86

Machine.oldstatus[index-1] == Machine.oldssatu
[argmaxutility+process-1-1])

{
bid = bid+Machine.oldprices[index-1]-
Machine.oldreservationprices [index-1];

}
else
bid = bid;
}
}
bid = bid+process*Machine.INCREMENT;
}
public void ReviseUtilities()
{
for (int index = release+1; index <= MAXTIMESLO8ocess+1; index++)
{
utilities[index-1] = Machine.normalizer-costgfiex-1];
for (int subindex = index; subindex < index+m@ss; subindex++)
{
utilities[index-1] = utilities[index-1]-Machinprices [subindex-
1];
}
}
}
public void FindMaxcost2()
{
for (int index = release+1; index <= MAXTIMESLOT[Bocess+1; index++)
{
if (index+process-1 < duedate)
costs[index-1] = early*(duedate-index-procegs+1
else
costs[index-1] = tardy*(index+process-1-duejlate
}

maxcost = costs[release+1-1];
for (int index = release+2; index <= MAXTIMESLOT[Bocess+1; index++)

if (costs[index-1] > maxcost)

87

maxcost = costs[index-1];

}
}
}
public void GenerateUTtilityFunction2 (double[] ezgationprices, double normalizer)
{

for(int i = O; i < reservationprices.length; i4{+)
if (Machine.status][i] == 0)

{
Machine.prices[i] = reservationpricesi;
}
}
for(int i = O; i < utilities.length; i++){
utilities]i] = 0;
}

for (int index = release+1; index <= MAXTIMESLOT[Bocess+1; index++)
{

costs[index-1];

utilities[index-1] = CONORMALIZER*Machine.normaier-

for (int subindex = index; subindex < index+m@ss; subindex++)

{
if (Machine.status2[subindex-1] = 0)
{
utilities[index-1] = 0O;
subindex = index+process;
}
else
{
utilities[index-1] = utilities[index-1]-Machm prices
[subindex-1];
}
}
}
}
public void FindMaxUtility2()
{
maxutility = 0;

argmaxutility = release+1;

for (int index = release+1; index <= MAXTIMESLOBocess+1; index++)

88

if (Machine.status2[index-1] == 0)

{
if (maxutility <= utilities[index-1])
{
maxutility = utilities[index-1];
argmaxutility = index;
}
}
}
}
public void PrepareBid2()
{
bid = 0;

for (int subindex = argmaxautility; subindex <garaxutility+process;
subindex++)

{
bid = bid+Machine.prices[subindex-1];
}
for (int index = release+1; index < argmaxutjlindex++)
{

if (Machine.status2[index-1] == 0)
{
if (Machine.oldstatus [argmaxutility-1] = 0&
Machine.oldstatus[index-1] ==
Machine.oldstatus [argmaxutility-1])

{

Machine.oldreservationprices [index-1];

bid = bid+Machine.oldprices[index-1]-

else

{
}

bid = bid,;

}

for (int index = argmaxutility+process; index #AXTIMESLOTS-
process+1; index++)

{

if (Machine.oldstatus [argmaxutility+procesdfll= 0 &&

89

Machine.oldstatus[index-1] == Machine.oldssatu
[argmaxutility+process-1-1])

{
bid = bid+Machine.oldprices[index-1]-
Machine.oldreservationprices [index-1];

}
else
bid = bid;
}
}
bid = bid+process*Machine.INCREMENT;
}
public void ReviseUtilities2()
{

for (int index = release+1; index <= MAXTIMESLO8ocess+1; index++)
{

if (Machine.status2[index-1] == 0)

{

utilities[index-1] = Machine.normalizer-costsfiex-1];

for (int subindex = index; subindex < index+qess;
subindex++)

{
if (Machine.status2[subindex-1] != 0)
{
utilities[index-1] = O;
subindex = MAXTIMESLOTS+2;
}
else
{
utilities[index-1] = utilities[index-1]-
Machine.prices [subindex-1];
}

}

}

public int getDueDate(){
return duedate;
}

public int getProcTime(){

90

return process;

}

public int getReleaseTime(){
return release;
}

public double getEarly(){
return early;
}

public double getTardy(){
return tardy;
}

public void reportJob(){
String message =
message +=" Release Time:\t" +release +" Due:Wateluedate+"\n";
message += "Process Time:\t" +process+" Earlyatrly+"\n";
message += "Tardy:\t"+ tardy;
System.out.printin(message);

}

public void reportMaxcost()

{ System.out.printin(maxcost);

}

public void reportUtility()

{ for (int index = 1; index <= MAXTIMESLOTS; index+)
{ System.out.print(utilities[index-1] + " ");
}

} System.out.printin();

Machine.java

public class Machine

{

91

Job[] jobs;

public static double[] reservationprices = new lde{Job.MAXTIMESLOTS];
public static final double INCREMENT = 2.5;

public static int MAXJOBS;

public static int[] status = new int[Job.MAXTIME®TS];

public static int[] oldstatus = new int[Job.MAXTIESLOTS];

public static double[] prices = new double[Job.MEXIESLOTS];

public static double normalizer;

public static double[] oldprices = new double[MBXTIMESLOTS];

public static double[] oldreservationprices = ndouble[Job.MAXTIMESLOTS];
public static int[] status2 = new int[Job.MAXTIMESTS];

public Machine (Job([] jobs_)

{
jobs = jobs_;
for(int i = O; i<status.length; i++){
status]i] = 0;
}
MAXJOBS = jobs.length;
}
public double[] GenerateReservationPrices ()
{

int[] load = new int[Job.MAXTIMESLOTS];
for(inti=0; i < load.length; i++){

load[i] = 0;
}
for (int index = 1; index <= Job.MAXTIMESLOTS,; iea++)
{

for (int subindex = 1; subindex <= MAXJOBS; suthex++)
if (jobs[subindex-1].getDueDate() == index-1b$psubindex-
{
for (int subsubindex = index; subsubindex <

index+jobs[subindex-1].getProcTime(); subsubindex++
load[subsubindex-1] = load[subsubindex-1]+1;
}

1].getProcTime())

}

reservationprices[index-1] = INCREMENT*load[ind&];//dikkat
et,incrementle carpiyordun, artik carpmiyorsun

}

return reservationprices;

92

public double FindNormalizer()

{
normalizer = jobs[0].maxcost;
for (int index = 2; index <= MAXJOBS; index++)
{
if (jobs[index-1].maxcost > normalizer)
normalizer = jobs[index-1].maxcost;
}
}
return normalizer;
}
public void AssignTimeSlots (int index)
{

int target = jobs[index-1].argmaxutility;

for (int subindex = target; subindex < targetsjatdex-1].getProcTime();
subindex++)

{
status[subindex-1] = index;
}
for (int subindex = jobs[index-1].getReleaseTijmé&(subindex < target;
subindex++)
{

if (oldstatus|target-1] != 0 && oldstatus[subiext1] ==

{
}

oldstatus|target-1])

status[subindex-1] = 0;

}

for (int subindex = target+jobs[index-1].getPrau&(); subindex <=
Job.MAXTIMESLOTS-jobs[index-1].getProcTime()+1; snbex++)

if (oldstatus [target+jobs[index-1].getProcTinréf1] '= 0 &&

oldstatus[subindex-1] == oldstatus [target+joixgx-
1].getProcTime()-1-1])

{

}

status[subindex-1] = 0;

93

for (int subindex = 1; subindex < target; subixtte)

if (oldstatus[subindex-1] == index)

{
}

status[subindex-1] = 0;

}

for (int subindex = target+jobs[index-1].getPrau&(); subindex <=
Job.MAXTIMESLOTS; subindex++)

{
if (oldstatus[subindex-1] == index)
{
status[subindex-1] = O;
}
}
}
public void DeterminePrices(int indice)
{

int target = jobs[indice-1].argmaxutility;
int numtarget = jobs[indice-1].getProcTime();
double addvalue = jobs[indice-1].bid;

for (int subindex = target; subindex < targetsjatdice-1].getProcTime();
subindex++)

{
addvalue = addvalue-oldprices[subindex-1];
}
for (int subindex = target; subindex < targetsjatdice-1].getProcTime();
subindex++)
{
prices[subindex-1] = oldprices[subindex-1] +daalue/numtarget);
}

for (int subindex = 1; subindex <= target-1; swl@x++)

if (oldstatus[subindex-1] != status[subindex-1])

{
if (oldstatus[subindex-1] == indice)
{
reservationprices[subindex-1] = oldprices[sdleix-1];
prices[subindex-1] = reservationprices[subiad
}

94

else

{
reservationprices[subindex-1] =
oldreservationprices[subindex-1];
prices[subindex-1] = reservationprices[subiadp
}
}
else
{
reservationprices[subindex-1] = oldreservatrags[subindex-
1];
prices[subindex-1] = oldprices[subindex-1];
}

}

for (int subindex = target+jobs[indice-1].getPFaune(); subindex <=
Job.MAXTIMESLOTS; subindex++)

{
if (oldstatus[subindex-1] != status[subindex-1])
if (oldstatus[subindex-1] == indice)
{
reservationprices[subindex-1] = oldprices[sdleix-1];
prices[subindex-1] = reservationprices[subiadf
}
else
{
reservationprices[subindex-1] =
oldreservationprices[subindex-1];
prices[subindex-1] = reservationprices[subxdlg
}
}
else
{
reservationprices[subindex-1] = oldreservatrags[subindex-
1];
prices[subindex-1] = oldprices[subindex-1];
}
}
}
public double[] GenerateReservationPrices2 (bajlezxheduled?2)
{

int[] load = new int[Job.MAXTIMESLOTS];

95

for(inti=0; i < load.length; i++){

load[i] = O;
}
for (int index = 1; index <= Job.MAXTIMESLOTS,; iaa++)
{

for (int subindex = 1; subindex <= MAXJOBS; suthéx++)
if (scheduled2[subindex-1] == false)

if (jobs[subindex-1].getDueDate() == index-
1+jobs[subindex-1].getProcTime())

{
for (int subsubindex = index; subsubindex <
index+jobs[subindex-1].getProcTime(); subsubindex++
load[subsubindex-1] =
load[subsubindex-1]+1;

}

reservationprices[index-1] = INCREMENT*load[ind&];//dikkat
et,incrementle ¢arpiyordun, artik carpmiyorsun

}

return reservationprices;

}
public double FindNormalizer2(boolean[] scheduled?2
{
normalizer = 0;
for (int index = 1; index <= MAXJOBS; index++)
if (scheduled2[index-1] == false)
{
if (jobs[index-1].maxcost > normalizer)
{
normalizer = jobs[index-1].maxcost;
}
}
}
return normalizer;
}

public void AssignTimeSlots2(int index)

96

int target = jobs[index-1].argmaxutility;

for (int subindex = target; subindex < targetsjatdex-1].getProcTime();
subindex++)

{
status[subindex-1] = index;
}
for (int subindex = jobs[index-1].getReleaseTijmé&(subindex < target;
subindex++)
{

if (status2[subindex-1] == 0)
if (oldstatus|target-1] != 0 && oldstatus[subliex-1] ==
{
}

oldstatus|target-1])

status[subindex-1] = 0;

}

for (int subindex = target+jobs[index-1].getPrau&(); subindex <=
Job.MAXTIMESLOTS-jobs[index-1].getProcTime()+1; snbex++)

if (status2[subindex-1] == 0)

if (oldstatus [target+jobs[index-1].getProcTippé-1] '= 0 &&
oldstatus[subindex-1] == oldstatus [target+jolakex-

{
}

1].getProcTime()-1-1])

status[subindex-1] = 0;

}

for (int subindex = 1; subindex < target; subixtte)

if (status2[subindex-1] == 0)

{
if (oldstatus[subindex-1] == index)
{
status[subindex-1] = 0;
}
}

97

for (int subindex = target+jobs[index-1].getPrau&(); subindex <=
Job.MAXTIMESLOTS; subindex++)

{
if (status2[subindex-1] == 0)
{
if (oldstatus[subindex-1] == index)
{
status[subindex-1] = 0;
}
}
}
}
public void DeterminePrices2(int indice)
{

int target = jobs[indice-1].argmaxutility;
int numtarget = jobs[indice-1].getProcTime();
double addvalue = jobs[indice-1].bid;

for (int subindex = target; subindex < targetsjatdice-1].getProcTime();
subindex++)

{
addvalue = addvalue-oldprices[subindex-1];
}
for (int subindex = target; subindex < targetsjatdice-1].getProcTime();
subindex++)
{
prices[subindex-1] = oldprices[subindex-1] +dadlue/numtarget);
}

for (int subindex = 1; subindex <= target-1; swlax++)

if (status2[subindex-1] == 0)

{
if (oldstatus[subindex-1] != status[subindeX-1]
{
if (oldstatus[subindex-1] == indice)
{
reservationprices[subindex-1] =
oldprices[subindex-1];
prices[subindex-1] =
reservationprices[subindex-1];
}
else

98

reservationprices[subindex-1] =
oldreservationprices[subindex-1];

prices[subindex-1] =
reservationprices[subindex-1];

}
}
else
{
reservationprices[subindex-1] =
oldreservationprices[subindex-1];
prices[subindex-1] = oldprices[subindex-1];
}

}

for (int subindex = target+jobs[indice-1].getPfoue(); subindex <=
Job.MAXTIMESLOTS; subindex++)

if (status2[subindex-1] == 0)

if (oldstatus[subindex-1] != status[subindeX-1]

{
if (oldstatus[subindex-1] == indice)
{
reservationprices[subindex-1] =
oldprices[subindex-1];
prices[subindex-1] =
reservationprices[subindex-1];
}
else
{
reservationprices[subindex-1] =
oldreservationprices[subindex-1];
prices[subindex-1] =
reservationprices[subindex-1];
}
}
else
{
reservationprices[subindex-1] =
oldreservationprices[subindex-1];
prices[subindex-1] = oldprices[subindex-1];
}

99

}

public boolean isChanged(){

boolean result = false;
int count = 0;

for(inti = 0; i < status.length; i++)

{
if(status[i] == oldstatusli])
{
count++;
}
}
if(count == status.length)
{
result = true;
}
return result;
}
public void assignstatus()
{
for (int index = 1; index <= Job.MAXTIMESLOTS,; ied++)
{
status2[index-1] = status[index-1];
}
}
public void reportStatus()
{
for (int index = 1; index <= Job.MAXTIMESLOTS; ied++)
{
System.out.print(status[index-1] + " ");
}
System.out.printin();
}
public void reportPrices()
{

for (int index = 1; index <= Job.MAXTIMESLOTS; ied++)
{

100

System.out.print(prices[index-1] + " ");

}
System.out.printin();
}
public void reportReservationPrices()
{
for (int index = 1; index <= Job.MAXTIMESLOTS,; iag++)
{
System.out.print(reservationprices[index-1] ;"
}
System.out.printin();
}

101

APPENDIX B

Gams Code of Lagrangean Relaxation Algorithm

$title Lagrangian Relaxation
$stitle original model definition

sets i time slots
] jobs
dataset data sets /datasetl * dataset20/
resultset /totalutilitymain, totalcostmaimtionalutility, optimalcost, averageupper,
avgsolvetimedata, avgsolvetimeutil, avgsolvetimécos
alias (i, k, i)
alias (j, jj)

binary variable x(i,j) assignment of i to j
variable z total negative utility ofssgnment
variable zcost optimal total cost of aseignt
variable zutility optimal total utility ofssignment

equations capacity(i) resource availability
choice(j) assignment constraint.. @source per item
defz definition of negative totsility
defzcost definition of total cost
defzutility definition of total utility;

parameters a(i,j) utilization of resource i lsnit
f(i,j)) utility of assigning item j teesource i
c(i,j) cost of assigning item j to oesce i
b(i) available resources
process(j) processing time of job |
fp(i,j,dataset) cost of assigning iteim resource i dataset
processp(j,dataset) processing tifeb j dataset
utilities1(i,j)
utilities2(i,j)

102

utilities3(i,j)
utilities4(i,j)
utilities5(i,j)
utilities6(i,j)
utilities7(i,j)
utilities8(i,j)
utilities9o(i,j)
utilities10(i,j)
utilities11(i,j)
utilities12(i,j)
utilities13(i,j)
utilities14¢(i,j)
utilities15(i,j)
utilities16(i,j)
utilities17(i,j)
utilities18(i,j)
utilities19(i,j)
utilities20(i,j)
costsi(i,))
costs2(i,))
costs3(i,))
costs4(i,))
costs5(i,))
costs6(i,))
costs7(i,))
costs8(i,))
costs9(i,))
costs10(i,))
costs11(i,))
costs12(i,j)
costs13(i,))
costs14(i,j)
costs15(i,))
costs16(i,))
costs17(i,))
costs18(i,))
costs19(i,))
costs20(i,})
processl())
process2(j)
process3(j)
process4())
process5(j)
process6())
process7(j)
process8())
process9())

103

process10(j)
process11(j)
process12(j)
process13())
processl14())
process15())
process16(j)
processl17(j)
process18())
process19())
process20());

capacity(i).. sum(j, sum(k$((ord(k) ge (max(ordfipcess(j)+1, 1)))$(ord(k) le (ord(i)))),
a(k,j)x(k.j)) == b(i;

choice(j).. sum(i, x(i,j)) =e= 1;

defz.. z =e= -sum((i,j), f(i,j)*x(i.j);
defzcost.. zcost =e= sum((i,j), c(i,))*x(i,}));
defzutility.. zutility =e= sum((i,j), f(i,j))*x(i,));

model assign original assignment model / capacitgice, defz /;
model costproblem cost optimization / capacity,ichpdefzcost /;
model utilityproblem utility optimization / capagitchoice, defzutility /;

sets i time slots/rl *r250 /
j jobs [il*i8/,

$Offlisting

table a(i,j) utilization of resource i by item j
$include "tableaij.gms"

table utilities1(i,j) utility of job j starting aime slot i
$include "utilities1.gms"

table utilities2(i,j) utility of job j starting aime slot i
$include "utilities2.gms"

table utilities3(i,j) utility of job j starting aime slot i
$include "utilities3.gms"

table utilities4(i,j) utility of job j starting aime slot i
$include "utilities4.gms"

table utilities5(i,j) utility of job j starting @ime slot i
$include "utilities5.gms"

table utilities6(i,j) utility of job j starting aime slot i
$include "utilities6.gms"

table utilities7(i,j) utility of job j starting aime slot i
$include "utilities7.gms"

table utilities8(i,j) utility of job j starting aime slot i

104

$include "utilities8.gms"

table utilities9(i,j) utility of job j starting @ime slot i
$include "utilities9.gms"

table utilities10(i,j) utility of job j startingtdime slot i
$include "utilities10.gms"

table utilities11(i,j) utility of job j startingtadime slot i
$include "utilities11.gms"

table utilities12(i,j) utility of job j startingtdime slot i
$include "utilities12.gms"

table utilities13(i,j) utility of job j startingtdime slot i
$include "utilities13.gms"

table utilities14(i,j) utility of job j startingtdime slot i
$include "utilities14.gms"

table utilities15(i,j) utility of job j startingtdime slot i
$include "utilities15.gms"

table utilities16(i,j) utility of job j startingtdime slot i
$include "utilities16.gms"

table utilities17(i,j) utility of job j startingtdime slot i
$include "utilities17.gms"

table utilities18(i,j) utility of job j startingtdime slot i
$include "utilities18.gms"

table utilities19(i,j) utility of job j startingtdime slot i
$include "utilities19.gms"

table utilities20(i,j) utility of job j startingtdime slot i
$include "utilities20.gms"

table costsl(i,j) cost of job j starting at timket$
$include "costs1l.gms"

table costs2(i,j) cost of job j starting at timket$
$include "costs2.gms"

table costs3(i,j) cost of job j starting at timket$
$include "costs3.gms"

table costs4(i,j) cost of job j starting at timket$
$include "costs4.gms"

table costs5(i,j) cost of job j starting at timket$
$include "costs5.gms"

table costs6(i,j) cost of job j starting at timket$
$include "costs6.gms"

table costs7(i,j) cost of job j starting at timket$
$include "costs7.gms"

table costs8(i,j) cost of job j starting at timket$
$include "costs8.gms"

table costs9(i,j) cost of job j starting at timket$
$include "costs9.gms"

table costs10(i,j) cost of job j starting at tistet i
$include "costs10.gms"

table costs11(i,j) cost of job j starting at tistet i

105

$include "costs11.gms"
table costs12(i,j) cost of job j starting at tistet i
$include "costs12.gms"
table costs13(i,j) cost of job j starting at tistet i
$include "costs13.gms"
table costs14(i,j) cost of job j starting at tistet i
$include "costs14.gms"
table costs15(i,j) cost of job j starting at tistet i
$include "costs15.gms"
table costs16(i,j) cost of job j starting at tistet i
$include "costs16.gms"
table costs17(i,j) cost of job j starting at tistet i
$include "costs17.gms"
table costs18(i,j) cost of job j starting at tistet i
$include "costs18.gms"
table costs19(i,j) cost of job j starting at tistet i
$include "costs19.gms"
table costs20(i,j) cost of job j starting at tistet i
$include "costs20.gms"

parameters processl(j) process times of jobs
$include "processl.gms"

parameters process2(j) process times of jobs
$include "process2.gms"

parameters process3(j) process times of jobs
$include "process3.gms"

parameters process4(j) process times of jobs
$include "process4.gms"

parameters process5(j) process times of jobs
$include "process5.gms"

parameters process6(j) process times of jobs
$include "process6.gms"

parameters process7(j) process times of jobs
$include "process7.gms"

parameters process8(j) process times of jobs
$include "process8.gms"

parameters process9(j) process times of jobs
$include "process9.gms"

parameters process10(j) process times of jobs
$include "process10.gms"

parameters processl11(j) process times of jobs
$include "process1l.gms"

parameters process12(j) process times of jobs
$include "process12.gms"

parameters process13(j) process times of jobs
$include "process13.gms"

parameters processl14(j) process times of jobs

106

$include "process14.gms"
parameters process15(j) process times of jobs
$include "process15.gms"
parameters process16(j) process times of jobs
$include "process16.gms"
parameters processl17(j) process times of jobs
$include "processl17.gms"
parameters process18(j) process times of jobs
$include "process18.gms"
parameters process19(j) process times of jobs
$include "process19.gms"
parameters process20(j) process times of jobs
$include "process20.gms"

parameters b(i) available resources
$include "tablebi.gms"

$stitle Relaxed Problem Definition and Subgradi@ptimization
* Lagrangian subproblem definition
* uses dynamic set to define WHICH knapsack toesolv

sets iter subgradient iteration index / iteriet20 /

parameters w(j) Lagrangian multipliers
improv has the Lagrangian bound impdoweer the previous iterations
zbest(dataset) value of best feasitligisn
costutility(dataset) cost correspondimppest feasible solution
upperzlbest(dataset) best upper value
optutility(dataset) optimal utility f@ach dataset
optcost(dataset) optimal cost for edataset
summary(resultset) summary of the tssul
solvetimeiter(iter) solution time athateration
solvetimedata(dataset) solution timeaxh data set
solvetimeutil(dataset) solution timeeaich optimal utility
solvetimecost(dataset) solution timeath optimal cost

variable zlrx relaxed objective

equations knapsack(i) capacity with dynamic sets
defzlrx definition of zlrx;

knapsack(i).. sum(j, sum(k$((ord(k) ge (max(orgfipcess(j)+1, 1)))$(ord(k) le (ord(i)))),
a(k,j)*x(k.j)) =I=b();

107

defzirx.. zlrx =e= -sum((i,j), (f(i,j)+w(@))x(,j));
model pknap / knapsack, defzlrx /;

scalars target target objective function value
alpha step adjuster/ 1/
norm norm of slacks
step step size for subgradient / na /
zfeas value for best known solution oidrapper bound
zlr Lagrangian objective value
zl Lagrangian objective value
zlbest current best Lagrangian lower bound
count count of iterations without improvemh
reset reset count counter/5/
tol termination tolerance / 1e-5/
status outer loop status /0/
counter count of infeasible constraints
zfes value of feasible solution
zbestdummy dummy zbest
counterl count of repeating assignments
counter2 count of infeasible capacity craists
bool boolean variable
totalutility average total utility
totalcost average total cost correspontbrtgtalutility
totaloptutility average optimal total utyi
totaloptcost average optimal total cost
totalupper average of Lagrangean upperdboun
totalsolvetimedata average time to solvgraagean problem
totalsolvetimeutil average time to solviization optimization problem
totalsolvetimecost average time to solv& optimization problem

parameters
s(j) slack variable
report(iter,*) iteration log
xrep(j,i,*) xiteration report
srep(iter,j) slack report
wrep(iter,j) w iteration report
xX(1,)) binary storage to show the stay time of job |
xstart(j) starting time of job j;

option mip = default
rmip = default;

file results writes iteration report / solution /;
loop (dataset,

f(i,j)$(ord(dataset)=1) = utilities1(i,j);

108

f(i,j)$(ord(dataset)=2) = utilities2(i,));
f(i,j)$(ord(dataset)=3) = utilities3(i,));
f(i,))$(ord(dataset)=4) = utilities4(i,));
f(i,j)$(ord(dataset)=5) = utilities5(i,));
f(i,j)$(ord(dataset)=6) = utilities6(i,));
f(i,j)$(ord(dataset)=7) = utilities7(i,));
f(i,j))$(ord(dataset)=8) = utilities8(i,));
f(i,j)$(ord(dataset)=9) = utilities9(i,));

(i,j)$(ord(dataset)=10) = utilities10(i,);
f(i’j)$(0rd(data56t):ll) = utilitiesll(i,j);
(i,j)$(ord(dataset)=12) = utilities12(i,j);
f(i’j)$(0rd(data56t):13) = utilitieslB(i,j);
(i,j)$(ord(dataset)=14) = utilities14(,j);
f(i’j)$(0rd(data56t):15) = Uti"tieS].S(i,j);
(i,j)$(ord(dataset)=16) = utilities16(,j);
f(i’j)$(0rd(data56t):l7) = Uti"tieS].7(i,j);
(i,j)$(ord(dataset)=18) = utilities18(i,);
f(i’j)$(0rd(data56t):19) = utilitiele(i,j);
(i,j)$(ord(dataset)=20) = utilities20(i,);

c(i,j)$(ord(dataset)=1) = costsl(i,j);
c(i,j)$(ord(dataset)=2) = costs2(i,);
c(i,j)$(ord(dataset)=3) = costs3(i,);
c(i,j)$(ord(dataset)=4) = costs4(i,);
c(i,j)$(ord(dataset)=5) = costs5(i,));
c(i,j)$(ord(dataset)=6) = costs6(i,));
c(i,j)$(ord(dataset)=7) = costs7(i,));
c(i,j)$(ord(dataset)=8) = costs8(i,));
c(i,j)$(ord(dataset)=9) = costs9(i,));
c(i,j)$(ord(dataset)=10) = costs10(i,j);
c(i,j)$(ord(dataset)=11) = costs11(i,));
c(i,j)$(ord(dataset)=12) = costs12(i,j);
c(i,j)$(ord(dataset)=13) = costs13(i,));
c(i,j)$(ord(dataset)=14) = costs14(i,j);
c(i,j)$(ord(dataset)=15) = costs15(i,));
c(i,j)$(ord(dataset)=16) = costs16(i,j);
c(i,j)$(ord(dataset)=17) = costs17(i,));
c(i,j)$(ord(dataset)=18) = costs18(i,j);
c(i,j)$(ord(dataset)=19) = costs19(i,j);
c(i,j)$(ord(dataset)=20) = costs20(i,j);

process(j)$(ord(dataset)=1) = processl(j);
process(j)$(ord(dataset)=2) = process2(j);
process(j)$(ord(dataset)=3) = process3(j);
process(j)$(ord(dataset)=4) = process4());
process(j)$(ord(dataset)=5) = process5(j);
process(j)$(ord(dataset)=6) = process6());

109

process(j)$(ord(dataset)=7) = process7(j);

process(j)$(ord(dataset)=8) = process8(j);

process(j)$(ord(dataset)=9) = process9());

process(j)$(ord(dataset)=10) = process10());
process(j)$(ord(dataset)=11) = process11(j);
process(j)$(ord(dataset)=12) = process12(j);
process(j)$(ord(dataset)=13) = process13(j);
process(j)$(ord(dataset)=14) = process14());
process(j)$(ord(dataset)=15) = process15(j);
process(j)$(ord(dataset)=16) = process16());
process(j)$(ord(dataset)=17) = process17(j);
process(j)$(ord(dataset)=18) = process18());
process(j)$(ord(dataset)=19) = process19(j);
process(j)$(ord(dataset)=20) = process20());

* --- calculate initial Lagrangian multipliers

* There are many possibl ways to find initiallirpliers.

* The choice of initial multipliers is very ingptant for the

* overall performance. The marginals of thexxeld problem
* are often used to initialize the multiplieAnother choice
* is simply to start with zero multipliers.

* replace 'default’ with solver of your choice.

put results 'solvers used: RMIP =" system.rmip /
MIP ="' system.mip /;

* --- solve relaxed problem to get initial multipis
Note that different solvers get different tdsalutions
* which are not as good as a zero set of aniultipliers.

solve assign minimizing z using rmip;
option solprint = off;
put / 'RMIP objective value ="', z.1:12:6/;

if(assign.modelstat = 1,
status = 1 I everythirig o
else
abort *** relaxed MIP not optimal’,
no subgradient iterations’, x.I);

110

xrep(j,i,"initial’) = x.I(i,));
zlbest = z.;

* --- use RMIP duals
w(j) = choice.m(j);

* --- use optimal duals
*w(j) = wopt(j);

* --- use zero starting point
“w(j) = 0;
*zlbest=0;

put // 'zlbest objective valuég, zlbest:12:6;
put // "Dual values on assignment constraint"/ ;
loop(j, put / "w(™,j.th,") = ", w(j):16:6 ;");

* one needs a value for zfeas

* one can compute a valid upper bound as follows:
$ontext

zfeas = sum(j, smax(i, f(i,j)));

put // 'zfeas quick and dirty bound obj value="', zfeas:12:6;
display 'a priori upper bound',zfeas;

Sofftext

another alternative to compute a value for zisas
to solve gapmin by B-B and stop

at first 0-1 feasible solution found

using gapmin.optcr = 1, as follows

o

assign.optcr=1;assign.solprint=2;

solve assign minimizing z using mip;

option solprint = off;

zfeas=z.l;

display 'final zfeas',zfeas;

display 'heuristic solution by B-B ' x.l,z.l;

put /'zfeas IP solution bound objective value', zfeas:12:6;

put /// 'lteration New Bound Previous Bdu norm

* then keep the smaller of the two values as zfeas

111

abs(zl-zf)';

pknap.optcr = 0; ! ask for global solution
pknap.solprint = 2; ! turn off all solution output

* *

* beginning of subgradient loop *

* *
*::
oottt

count =1;

alpha =1,

display status;
zbest(dataset) = 0;

loop(iter$(status = 1), !i.e., repeat whiletgsas 1

* solve Lagrangian subproblems by solving nonagping knapsack
* poblems. Note the use of the dynamic set id(i)olr will
* contain the current knapsack descriptor.

solve pknap using mip minimizing zIrx;
option solprint = off;

zlr = zIrx.l;

xX(i,)) = x.A(1,));

xstart(j) = sum(i, xx(i,j)*ord(i))-1;
solvetimeiter(iter) = pknap.resusd;

counter = 0;
loop(j, if(sum(i, x.I(i,j)) = 1, counter = countetl));
if((counter = 0), zfes = sum((i,j), f(i,j)*x.I(i,));

loop(j,
counterl = 0;

loop(i, if(xx(i,j)=1,
counterl = counterl+1;
if(counter1>1, xx(i,j) = 0))));

loop(j, if(xstart(j)=-1,

bool = 0;

loop(i$(bool=0),
counter2 = 0;
bool = 0;
xx(i,))=1;

112

loop(ii, if(sum(jj, sum(k$((ord(k) denax(ord(ii)-process(jj)+1, 1)))$(ord(k) le
(ord(ii)))), a(k,jj)*xx(k,jj))) > b(ii), counter2 =counter2+1));

if(counter2>0, xx(i,j)=0);

if(counter2=0, bool=1);),));

xstart(j) = sum(i, xx(i,j)*ord(i))-1;
zfes = sum((i,)), f(i,j)*xx(i,)));

zbestdummy = zbest(dataset);
zbest(dataset) = max(zbest(dataset), zfes);

costutility(dataset)$(zbest(dataset)<>zbestdumnsym((i,j), c(i,j)*xx(i,)));

$Ontext
id(ii) = no); I maketeempty again
$Offtext

improv = 0;

zl = zIr + sum(j, w()));

improv$(zl > zlbest) = 1, I istzttter than zlbest?
zlbest = max(zlbest,zl);

s() =1 -sum(i, x.I(i,j))); | subgtient

norm = sum(j, sqr(s())));

status$(norm < tol) =2;
status$(abs(zlbest-zfeas) < 1le-4) = 3;
status$(pknap.modelstat <> 1) =4;
put results / iter.tl ,zI:16:6,zlbest:16:6,noir6,abs(zlbest-zfeas):16:6;
if((status = 2),
put //"subgr. method has converged, statystatus:5:0//;
put //"last solution found is optimal for pfPoblem"//;
); l'endif
if((status = 3),
put //"subgr. method has converged, statystatus:5:0//;
put //"no duality gap, best sol. found isioya "//;
); lendif
if ((status = 4),
put //"something wrong with last Lag. subpeo'//;
put //"status = ",status:5:0//;
); lendif

report(iter,'zlr') = zlr;

report(iter,'’zl) = zl;

report(iter,'zlbest’) = zlbest;

report(iter,'norm’) = norm;

report(iter,'step’) = step;
* display zfes;

113

* display zbest;
* display xx;
* display xstart;

wrep(iter,j) = w(j);
srep(iter,j) = s(j);
xrep(j,i,iter) = x.I(i,j);

if(status=1,
target = (zlbest+zfeas)/2;
step = (alpha*(target-zl)/norm)$(norm >)tol
w() = w(j)+step*s(j);

if(count>reset, I too many iteraom/o improvement
alpha = alpha/2;
count=1
else if(improv, I reset count if injpement
count=1
else
count = count +1 ! update count ifimprovement
)
)
)
); I endbfoiter

*display report, wrep, srep, xrep;

display zfeas;

display zbest;

upperzlbest(dataset) = zlbest;

put results // "Dual values on assignment condtrgin
loop(j, put/ "w(™j.t,") = ", w(j):16:6 ";")

put //"best Lagrangian bound = ",zlbest:10:5;

solve utilityproblem maximizing zutility using mip;
option solprint = off;

solve costproblem minimizing zcost using mip;
option solprint = off;

optutility(dataset) = zutility.I;

optcost(dataset) = zcost.l;

solvetimedata(dataset) = sum(iter, solvetimeiten)jt
solvetimeutil(dataset) = utilityproblem.resusd;
solvetimecost(dataset) = costproblem.resusd;

);
totalutility = (sum(dataset, zbest(dataset)))/((dathset));

totalcost = (sum(dataset, costutility(dataset)pidcdataset));
totaloptutility = (sum(dataset, optutility(datagpicard(dataset));

114

totaloptcost = (sum(dataset, optcost(dataset)jil(dataset));
totalupper = -(sum(dataset, upperzlbest(datagegjil(dataset));

totalsolvetimedata = (sum(dataset, solvetimedatase)))/(card(dataset));
totalsolvetimeutil = (sum(dataset, solvetimeutitédaet)))/(card(dataset));
totalsolvetimecost = (sum(dataset, solvetimecotdfgd)))/(card(dataset));

summary(‘totalutilitymain') = totalutility;
summary(‘totalcostmain’) = totalcost;
summary(‘optimalutility’) = totaloptultility;
summary(‘optimalcost’) = totaloptcost;
summary(‘averageupper’) = totalupper;

summary(‘avgsolvetimedata') = totalsolvetimedata;
summary(‘avgsolvetimeutil’) = totalsolvetimeutil;
summary(‘avgsolvetimecost’) = totalsolvetimecost;

display summary;

115

