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ABSTRACT 

AUCTION BASED SCHEDULING FOR DISTRIBUTED 
SYSTEMS 

 
Emrah Zarifo�lu 

M.S. in Industrial Engineering 

Supervisor: Prof. Dr. �hsan Sabuncuo�lu 

June, 2005 

 

Businesses deal with huge databases over a geographically distributed supply 

network. When this is combined with scheduling and planning needs, it becomes too 

difficult to handle. Recently, Fast Consumer Goods sector tends to consolidate their 

manufacturing facilities on a single supplier serving to a distributed customer 

network. This decentralized structure causes imperfect information sharing between 

customers and the supplier. We model this problem as a single machine distributed 

scheduling problem with job agents representing the customers and the machine agent 

representing the supplier. For benchmarking purpose, we analyzed the problem under 

three different scenarios: decentralized utility case (realistic case), centralized utility 

case, centralized cost case (classical single machine early/tardy problem). We 

developed Auction Based Algorithm by exploiting the opportunity to use game 

theoretic approach to solve the problem in the decentralized utility case. We used 

optimization techniques (Lagrangean Relaxation and Branch-and-Bound) for the 

centralized cases. Results of our extensive computational experiments indicate that 

Auction Based Algorithm converges to the upper bound found for the total utility 

measure. 

 

 

Keywords: Scheduling, Distributed Scheduling, Decentralized Scheduling, Supply 

Chain Scheduling, Auction Based Scheduling, Single Machine Scheduling, Auctions, 

Lagrangean Relaxation 
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��ler co�rafik olarak da�ıtılmı� tedarik a�ları üzerinde yapılmaktadır. Bu durum 

çizelgeleme ve planlama ihtiyaçları ile birle�ti�inde idare edilmesi çok zor bir hal alır. 

Günümüzde Hızlı Tüketim Maddeleri sektörü üretim olanaklarını da�ınık mü�teri 

a�ına hizmet veren tek bir tedarikçide toplama yönünde e�ilim göstermektedir. Bu 

merkezi olmayan yapı mü�teriler ve tedarikçi arasında mükemmel olmayan bilgi 

payla�ımına yol açmaktadır. Biz bu problemi i�ler mü�terileri, makine ise tedarikçiyi 

temsil edecek �ekilde bir tek makineli da�ıtılmı� zaman çizelgelemesi problemi 

�eklinde modelledik. Bu problemi, kar�ıla�tırmada atıf amaçlı olarak üç senaryo 

altında tahlil ettik: merkezi olmayan fayda durumu (gerçekçi durum), merkezi fayda 

durumu, merkezi maliyet durumu (klasik tek makineli erken/geç çizelgeleme 

problemi). Merkezi olmayan fayda durumunu çözmek için oyun teorisi yakla�ımından 

faydalanarak �hale Tabanlı Algoritma geli�tirdik. Merkezi durumlar için en iyileme 

tekniklerini (Lagrangean Geni�letmesi, Dallandırma ve Sınırlama) kullandık. 

Yaptı�ımız kapsamlı ölçümlemeli deneylerin sonuçları �hale Tabanlı Algoritmanın 

toplam fayda ölçüsü için bulunan üst sınıra yakla�ı�ını gösterdi. 

 

 

Anahtar Sözcükler: Çizelgeleme, Da�ınık Çizelgeleme, Merkezi Olmayan 

Çizelgeleme, Tedarik Zinciri Çizelgelemesi, �hale Tabanlı Çizelgeleme, Tek Makineli 

Çizelgeleme, �haleler, Lagrangean Geni�letmesi 
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Chapter 1 
 
 

Introduction  

 
 

 

 The changing demand patterns and huge amount of data and information in 

geographically distributed supply networks require new approaches to solve existing and 

emerging problems in the manufacturing environment. In this complex environment, 

planning and scheduling becomes main hurdles to achieve. Due to the highly distributed 

nature of the supply networks, distributed scheduling and planning comes up as a reasonable 

approach to deal with the supply chain problems. 

 The inspiration of the distributed scheduling problem considered in this research 

arises from the Fast Consumer Goods sector. In this sector, there is a tendency to build a 

central manufacturing plant (supplier) serving to the customers spread over a geographically 

wide area (Figure 1.1). The Customers give orders to the same plant and compete for the 

same scarce resources with each other. Each order has its own operational data (release time, 

process time, due date) and cost structure (inventory and backorder costs). Due to the 

competitive nature of the customers and geographic distribution, there is no information 

sharing between the customers. The manufacturing plant has the operational data but it 
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cannot access cost structure of an order of a customer. This highly distributed structure of the 

supply network makes the scheduling problem of orders on the manufacturing plant even 

more complicated than it already is. Attempting to solve this problem with classical 

centralized scheduling methods does not take the objectives of the customers into account. 

Therefore, we get help from the recently emerged distributed scheduling techniques to solve 

this problem. 

 

Figure 1.1 A Sample Supply Network 
 

 In order to deal with this supply chain problem in simple terms, we can induce it to a 

single machine scheduling problem. In this context, the manufacturing plant (supplier) is 

represented by a machine and the customer orders assume the jobs to be processed on the 

machine. From the centralized viewpoint, the problem can be defined as a classical single 

machine early/tardy problem. However, due to the decentralized nature of the supply chain 

case, we study it as a distributed scheduling problem.  

We use agent structure to represent the problem environment. The manufacturing 

plant (supplier) is represented by a machine agent. Without loss of generality, we assume one 

order for each customer and represent these orders by job agents. Job agents have operational 
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data (release time, process time, due date) and cost data (earliness cost, tardiness cost). While 

machine agent can get access to the operational data, it does not know the cost data. We fit a 

utility function for each job agent using the load profile of the machine agent and cost 

structure of that job agent. The objective of each job agent is to maximize its utility while it is 

being scheduled on the machine. The objective of the machine agent is to make sure that 

there is a feasible schedule. 

In order to assess the performance of distributed scheduling paradigm, we will 

consider three main scenarios. One of them is the centralized cost case. In this one, the 

problem is a classical single machine early/tardy problem. The objective is to minimize the 

total early/tardy cost of the jobs. We used Branch-and-Bound to solve this problem. Another 

one is the centralized utility case in which the only difference is in the objective function that 

is to maximize total utility of the jobs. We used two different methods to solve this problem, 

Branch-and-Bound and Lagrangean Relaxation with a feasibility heuristic. The decentralized 

utility case is the scenario that is compatible with our problem environment explained before. 

In this case, each job agent acts selfish and tries to maximize its own utility while the 

machine agent wants to provide a feasible schedule. We developed an Auction Based 

Algorithm to solve the problem in this case. 

The rest of the chapters are organized as follows. Chapter 2 gives a brief literature 

review about distributed scheduling. Chapter 3 discusses different scenarios explained above 

and introduces the developed algorithms. In Chapter 4, we present the results of the 

computational experiments of the algorithms. In the last chapter, we make concluding 

remarks and discuss the future research opportunities in this field. 
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CHAPTER 2 
 
 

Literature Review 

 

 

In last two decades, distributed scheduling literature has shown a great development. 

Here, in this chapter, we briefly summarize some of these studies under the three categories: 

shop floor level scheduling, supply chain scheduling and auction based scheduling as a game 

theoretic solution approach (Table 2.1). 

Table 2.1 A List of selected studies in the relevant literature 

Shop Floor Level Scheduling Supply Chain Scheduling Game and Auction Based 
Scheduling 

Tharumarajah and Bemelman 
(1997) 

Sabuncuoglu and Toptal (1999a) 

Sabuncuoglu and Toptal (1999b) 

Sabuncuoglu and Toptal (1999c) 

Brennan, Norrie, O and Walker 
(2000) 

Khoo, Lee and Yin (2001) 

Roy and Anciaux (2001) 

Benjamin and Yen (2002) 

Sabuncuoglu and Toptal (1999c) 

Chen, Cost, Finin, Labrou and 
Peng (1999) 

Sauter and Parunak (1999) 

Shen, Chua and Bok (1999) 

Tonshoff, Seilonen and Teunis 
(1999) 

Dutta, Mukherjee and Sen (2001) 

Seredynski (1997) 

Kutanoglu and Wu (1999) 

Kaihara (2000) 

Wellman, Walsh, Wurman and 
MacKie-Mason (2000) 

Dewan and Joshi (2001) 

Seredynski, Koronacki and 
Janikow (2001) 

Kutanoglu and Wu (2002) 

Grimm, Riedel and Wolfstetter 
(2003) 
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Jeong and Leon (2002a) 

Jeong and Leon (2002b) 

Najid, Kouiss and Derriche 
(2003) 

 

2.1. Shop Floor Level Scheduling: 

The most comprehensive survey in this area is due to Sabuncuoglu and Toptal (1999a) 

distributed scheduling with respect to supply chain management, shop floor level applications 

and some computer science applications.  

In another study Sabuncuoglu and Toptal (1999b and 1999c) propose five different 

algorithms based on distributed scheduling approach. First three of them give general 

approaches that can be applied in different job shop environments. The last two are team-

based algorithms regarding product teams. The first three are called Algorithm B1, Algorithm 

B2 and Algorithm C. The last two are called Algorithm PD-JI and Algoithm PD-TI. 

Algorithm B1 is an operation initiated process employed in the system in which this 

algorithm assumes a group of machines each of which has different processing capabilities 

and processes the jobs having different operations on each other in a visitation sequence. 

Each local planner (resource agent) has its own objective. There is also a global objective to 

achieve and the master agent is interested in the sake of this objective. The algorithm has two 

kinds in one of which resource agents either collaborate with each other or in another one 

they compete with each other. This system can be classified as a single layer quasi-

heterarchical system with a separate manager agent. As stated before this is an operation 

initiated algorithm. Manager agent first ranks the schedulable operations. Then, manager 

agent broadcasts a bid to the resource agents for the first schedulable operation. Then the bid 

preparation process starts for the resource agents. There are both competitive and 
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collaborative versions. Manager agent selects the best bid according to some predetermined 

criteria, e.g. earliest finish time. 

Algorithm B2 is a machine initiated bidding algorithm. In this algorithm, the resource 

agents have the initiative to start a bid. Master agent’s responsibility is to resolve the conflicts 

among the resource agents. This system may be classified as a single layer quasi heterarchical 

system with a separate manager agent. The main idea of the algorithm is that the operations 

are put into a pool according to some priority assigned by the manager agent.  

Algorithm C is a job initiated algorithm. It is very similar to the Algorithm B1 but its 

difference is that it is based on jobs rather than operations. Three bidding mechanisms are 

proposed for the Algorithm C, such as H1, H2, H3. If H1 is used, the system behaves like a 

single layer quasi-heterarchical system with a separate manager agent. If H2 or H3 is used, 

the system acts like multi-layer quasi-heterarchical system with multiple bids. There are also 

competitive and collaborative versions of Algorithm C. After the bids are prepared, the 

manager agent selects the best bid according to some predetermined criteria, e.g. earliest 

finish time.  

Algorithm PD-JI is one of the team-based algorithms proposed by Sabuncuoglu and 

Toptal (1999c). A team is a group of machines (resources) that are capable for certain 

processes, projects or products. For the PD-JI algorithm, manager agent ranks the jobs 

according to some predetermined criteria, such as earliest due date. Then it broadcasts a bid 

request to the teams. Here, the teams are assumed to process almost all or all of the 

operations required for the job. This system may be classified as a multi-layer quasi-

heterarchical system with a separate manager agent and multiple biddings. The bid 

preparation mechanism is similar to Algorithm B1. After the bid preparation process, the 
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manager agent selects the best bid according to some predetermined criteria, such as earliest 

finishing time.  

Algorithm PD-TI is a team initiated algorithm. The similar teams are grouped together 

according to their processing capabilities and each group having a rank in the expertise 

determined by the manager agent according to the experience in the past. Also, different job 

pools are assigned for the different appropriate pools. This system can be classified as a 

multi-layer quasi-heterarchical system with a separate manager agent and multiple biddings.  

There are many examples of algorithms provided as utilizing AI based methods. The 

AI methods that can be applied to the distributed scheduling algorithms may be Constraint 

Heuristic Search (CHS), Asynchronous Teams (A-Teams) or Cooperative Interaction via 

Coupling Agents (CICA). CHS is applied in the multi-agents environments where job-based 

or resource-based agent formations are used to make scheduling. The disadvantage of CHS is 

it is difficult to embed this into an optimization process. It finds feasible solutions rather than 

optimal. A-Teams is another AI-based method. This method works as incorporated agents 

utilized with problem-solving methods to work together to solve a problem sharing their 

solutions via common memories. Jeong and Leon (2002a) employ CICA to solve a 

Distributed Scheduling problem in their recent work. CICA works as establishing interactions 

among cooperating organizations and coupling agents. Coupling agents are artificial entities 

utilized with some coupling constraints. Jeong and Leon work on a two-shared-machine 

problem in a two-machine flowshop environment. The distributed characteristics of the 

system come from the distribution decision authorities and information among multiple sub-

production systems sharing two machines. A coupling agent is used to store one of the shared 

machine’s information and another coupling agent is used to store the other machine’s 

information.  The system which Jeong and Leon study can be classified as single layer quasi-
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heterarchical without a separate manager agent. The problem to be solved is to allocate 

operations of jobs to time slots on machines to achieve global objectives by interaction of 

sub-production systems and shared machines with a minimum sharing of global information 

for sub-production systems and coupling agents. 0-1 integer programming formulation is 

used to model scheduling problems and Lagrangian relaxation technique is employed for the 

solution process. The main aim of the algorithm is to find a compromise state where all 

coupling constraints and local constraints are satisfied and the total sum of weighted 

completion time of jobs is minimized (Jeong and Leon 2002a). Good coordination is 

provided as a result of the experimentation. The algorithm gives very close solutions to the 

global optimum. 

Jeong and Leon (2002b) make similar work in a single machine environment. This 

system also consists of multiple sub-production systems and these sub-production systems 

share the single machine. The distributive characteristics come from the distribution of the 

authority of decision making among sub-production systems. The system also can be 

classified as single layer quasi-heterarchical without a separate manager agent. The aim is 

same as before such that they want to minimize the weighted sum of the completion times. 

As before, CICA is used to utilize coupling agents. Sub-production systems and shared 

machines are assumed to have not whole global information. Therefore, as in the previous 

work of Jeong and Leon, they use Lagrangian relaxation to solve a 0-1 integer programming 

formulation. Lagrangian relaxation is appropriate for the cases that there is not enough global 

information publicly open to the agents. This method also performed quite well for the single 

machine case. 

Brennan, Norrie, O and Walker (2000) develope an algorithm to make dynamic job 

routing and job sequencing decisions. They found that the composition of reactive agent 
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mechanisms and appropriate job sequencing heuristics perform well in the shop floor where 

job congestion increases. 

Khoo, Lee and Yin (2001) study an agent-based architecture for scheduling multiple 

shop floors using a genetic algorithm-enhanced scheduling engine (2001). The manufacturing 

scheduling server and shop scheduling client system are two main modules. The supervisory 

agent is coordinating the among the shop floor agents to arrive at a global near optimal 

solution and to resolve conflicts in the shop floor schedules. The algorithm generates feasible 

and near optimal schedule for the entire manufacturing system in the experiments made in a 

hypothetical six products-three shop floors and a plastic injection molding company. 

Roy and Anciaux (2001) propose an approach to solve dynamic production control 

problems in real time to automate the control process as much as possible, to adapt the 

system to production plan modifications and to rationalize decision making by means of 

strong hierarchical structure. A twofold hybrid multi-agent platform is used for this purpose. 

Control is hierarchically distributed and decision making is centralized. Centralization helps 

avoid from competition between agents and hierarchical distribution allows each agent to 

take care of only one product. By this way, they gain significantly in terms of response times 

and reactive capabilities. 

Tharumarajah and Bemelman (1997) review negotiation and the emerging behavior-

based methods for scheduling and coordinating distributed entities within both hierarchical 

and heterarchical control structures. In the paper, they emphasize issues of practical 

importance relevant to a distributed shop floor environment. 

Benjamin and Yen (2002) present a communication infrastructure to handle 

connection and communication between distributed Internet scheduling systems for 
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distributed applications. They present an agent communication language, syntax and 

semantics for the agent communication languages, and negotiation mechanism. 

Najid, Kouiss and Derriche (2003) present an application of the multi-agent approach 

to the control of a flexible manufacturing cell. It is a physically distributed system on a set of 

sites and is composed of a set of cognitive and reactive agents that coordinate their tasks to 

carryout the dynamic control and the scheduling of the manufacturing system. The 

coordination of the actions of the agents emerges from the interaction of these combined 

agents. 

2.2. Supply Chain Scheduling: 

 There are not many studies in the literature for the applications of the distributed 

scheduling approaches in the supply chain (Sabuncuoglu and Toptal 1999b). There are some 

studies that employ multi-agent structure in the supply chain or improve the information 

sharing systems. Some representative examples of these studies are given below. 

Sabuncuoglu and Toptal (1999c) propose two team-based algorithms one is being job 

initiated and the other is being team-initiated as we explained before. They present these 

algorithms in the context of shop floor scheduling but they emphasize that these algorithms 

can be also used for supply chain management with some changes.  

Chen, Cost, Finin, Labrou and Peng (1999) propose a multi agent-system to model the 

supply-chain management problem in the real business life environment using software 

agents. They use the concept of negotiating agent to model the self-interested entities in the 

market place. The system framework they designed allows negotiating agents to join, to stay 

or to leave the system freely. This is not a distributed scheduling problem but it gives idea 

about how to design a multi-agent system based on negotiating agents and how the 

negotiation among agents can be made. 
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For the planning reasons in supply chain, Shen, Chua and Bok (1999) present a 

distributed scheduling tool, called the Integrated Production Scheduler implementing look-

ahead planning via Integrated Constraints Modeling. It is being used for planning the 

activities in the supply chain. A three-layered structural model (database layer, look-ahead 

planning layer and planning layer) for the Integrated Production Scheduler was presented. 

The roles of distributed systems in the supply chain are automatic messaging, internet 

publishing and distributed collaboration. This implementation is done via Internet 

technology. 

One of the studies in the decentralized production environment (e.g., supply chains) is 

due to Tonshoff, Seilonen and Teunis (1999). Their work proposes a mediator based 

approach to support decentralized decision-making focusing on the communication, 

negotiation and scheduling process. The mediator is designed for an adequate level of 

decision-making integration of heterogeneous computer system by use of the Extended Mark-

Up Language (XML). 

Dutta, Mukherjee and Sen (2001) use general scheduling idea to provide the 

competitive power to the firms in supply chain. This is an idea of usage of other scheduling 

techniques than distributed scheduling also. Manufacturer announces contracts for tasks with 

given specifications (deadline and processing time). Suppliers bid on these tasks with prices. 

Contract is allocated by an auction to a supplier who fulfills all task constraints. A three level 

supply chain with primary and secondary manufacturers and a group of suppliers is studied. 

Ability of different strategies to produce more flexible schedules is analyzed. Also, an 

analysis of a price adjustment mechanism by which suppliers make up their bids before when 

they win contracts and reduce their bids when they fail to procure them, is made. This study 

uses responsive supply chain to identify scheduling policies that benefit suppliers in 



 

 12 

managing profitability by allowing them to accommodate demands that others cannot. Supply 

chain managers should manage flow of materials from distributed suppliers to global 

manufacturing facilities. Emphasis should be on keeping low inventory, minimizing 

operations cost, having flexibility and providing efficient customer service. The motivation of 

the study is the aspect of a supply chain as being responsive to dynamically arriving tasks 

which is hinged upon the performance of the suppliers. Scheduling strategies are first fit (put 

the incoming task to the first possible available place), best fit (put the incoming task to the 

place such as the right and left slacks are minimized), or worst fit (put the incoming task to 

the place such as the right and left slacks are maximized). By using the tardiness of the task 

in the supply chain, manufacturers may offer different prices. If tardiness is low they offer 

high price, if it is low they offer high price. They use scheduling for this trade-off business.  

Sauter and Parunak (1999) present ANTS as an example of a Distributed Scheduling 

application in the supply chain management. In supply chain management, solving the 

problem only in the Original Equipment Manufacturer (OEM) level just delays the problem 

to the other levels. Especially, the problems in sub-tier suppliers remain as very important 

problems. Some problems in supply chain may show itself as schedule variation in sub-tier 

suppliers, similar capacity bottlenecks at multiple suppliers, deviation of inventory or WIP 

levels from expectation. In supply chain systems, coordination with the shop floor level is a 

problem. Information systems such as MRP, MRP II, ERP are either limited or too complex 

to solve the stated problem. Smaller firms in the supply chain are too difficult to integrate to 

the whole system. Regarding these problems, Agent Network for Task Scheduling (ANTS) 

aims to provide supply chain management software that can handle complex dynamical 

systems while being much simpler to construct and manage. It proposes solution as a small-

grained agent-based system. A small-grained agent is a simple agent that responds to its 
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environment using simple rules or interacts directly with other agents through predetermined 

protocols. These agents are inspired from the rules and the interactions that govern the insect 

colonies. In a manufacturing enterprise, main measurements are cost of goods produced, 

quality of goods produced and timing of availability of goods relative to the customer’s 

needs. The task of the supply chain management is to deploy resources across a supply chain 

to produce high quality goods as inexpensively as possible and when the customer wants 

them. Regarding the things stated before, the decisions taken by the supply chain 

management are to select which suppliers for which product, order of products to be 

manufactured, start time of new jobs, time of new orders and inventory level. The specific 

requirements in a supply chain are least commitment, empowerment, frequent change, MRP 

functionality, metamorphosis, modality emergence, uniformity. In ANTS, the agents are the 

“things” in the supply chain and within the factory. 

2.3. Game and Auction-Based Scheduling: 

Wellman, Walsh, Wurman and MacKie-Mason (2000) sum up auction protocols used 

in distributed scheduling. They investigate the existence of equilibrium prices for some 

scheduling problems, the quality of equilibrium solutions and the behavior of an ascending 

auction mechanism and bidding protocol. They also discuss direct revelation mechanisms and 

compare them to market-based approach. They define price equilibrium as each agent getting 

an allocation that maximizes its utility given the current prices. The common structure for 

auction protocols is composed of three stages. Firstly, agents send bids to the auction 

mechanism indicating their willingness to exchange goods. Secondly, the auction may post 

price quotes to provide information about price-determination process. The first and second 

steps may be iterated. At the last step, the auction determines an allocation and informs 

agents about the allocation. Wellman et al. define ascending auction as a mechanism at which 
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agents are sending higher bids at each time to the mechanism. While the ascending auction is 

performing well for single-unit problems, it may not be the case for the multiple-unit 

problems and it may not find a price equilibrium even if it exists. Therefore combinatorial 

auction mechanisms are proposed. In these mechanisms, allocations and prices are considered 

regarding function of bids for all the combinations. Prices may refer to individual goods or to 

entire bundles. Also, this paper deals with the generalized Vickrey auction as a direct 

revelation mechanism. The generalized Vickrey auction computes overall payments for 

agents’ allocations that sometimes translate into meaningful prices for individual goods. As 

can be seen, this study gives a good summary for the three categories of mechanisms as a 

spectrum, i.e. single-good, combinatorial and direct revelation.  

Kutanoglu and Wu (1999) study auction-based scheduling on a combinatorial context 

using Lagrangean relaxation. They are interested in mechanisms that allow resource 

scheduling to be locally autonomous, and at the same time aligned with global interests. They 

consider the classical jobshop scheduling problem where a set of jobs is to be completed and 

each job requires a set of machines for a certain period of time for processing. They propose 

an iterative auction mechanism for this problem using the notion of multi-item combinatorial 

auction. An auctioneer sells discrete time slots (objects) to the bidders (jobs). Based on 

current pricing, each job gives bid to best combination of the time slots trying to maximize its 

utility function. The auctioneer evaluated bids and updates the reservation prices according to 

the conflicts among the jobs. This process goes iteratively until a conflict-free allocation is 

found. They investigated two auction protocols (non-adaptive Walrasian and adaptive 

tatonnements) and two payment functions (regular and augmented tatonnements).  They show 

that Lagrangean relaxation using subgradient search corresponds to an adaptive regular 
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tatonnement. They demonstrate the prices of time slots depend heavily on the demand 

patterns (routing structures and processing times). 

Kutanoglu and Wu (2002) study collaborative resource planning that arises when 

resource managers must coordinate their planning with internal or external customers. They 

analyze a setting where the decision makers are geographically distributed and coordinate 

their resource planning using asynchronous, web-based mechanisms. They design a schedule 

selection game where all participating agents state their preferences via a valuation scheme 

and the mechanism selects a final schedule based on collective input. In this mechanism, 

assuming the agents may not state their true evaluation of the schedules; the mechanism 

offers incentive to the agents. By this way, dominant strategy equilibrium exists, i.e. each 

player plays the strategy that is individually best for him regardless f the strategies chosen 

buy other players. Based on Vickrey-Groves-Clarke principles, they show that the proposed 

mechanism is a direct revelation mechanism that implements the optimal resource allocation 

under agents’ dominant strategies. They show a numerical example of this mechanism in 

coordinating electronics component manufacturing.  

 Dewan and Joshi (2001) present a scheduling model similar to a combinatorial 

auction with mathematical programming tools used for bid construction and evaluation to 

solve a problem in a dynamic job shop environment. Each entity in the shop is represented by 

a process interacting with other processes over the network. Dewan and Joshi states that the 

computing benefits of distributed implementation can be realized despite network delays.  

 Seredynski (1997) proposes an approach based on considering a given system as a 

multi-agent system with game-theoretic models of interaction between players. Players 

compete to maximize their payoff and the global objective is represented global behavior of 

the team of players, measured by the average payoff received by the system. Three 
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distributed schemes (i.e., � -learning automata, loosely coupled genetic algorithms and loosely 

coupled classifier systems) are used to evolve a global behavior in the system. Simulation 

results indicate that the global behavior in the systems emerges and is achieved in particular 

by only a local cooperation between players acting without global information about the 

system. He applies models of multi-agent systems to develop parallel and distributed 

algorithms of dynamic mapping and scheduling tasks in parallel computers.  

Seredynski, Koronacki and Janikow (2001) propose a distributed approach in which 

the agents are associated with individual tasks of the program graph to scheduling of parallel 

and distributed algorithms for multiprocessor systems. Agents play an iterated game to find 

directions of migration in the system graph with the objective of minimizing the total 

execution time of the program in a given multiprocessor topology. Competitive 

coevolutionary genetic algorithm (i.e., loosely coupled genetic algorithm) is used to 

implement the multi-agent system. The algorithm with the local criteria is able to find 

optimal or near optimal solutions in a number of generations comparable with the number 

required by the algorithm with the global criterion.  

The study of Grimm, Riedel and Wolfstetter (2003) is an example for multi-unit 

auctions. Their study analyzes the second-generation (GSM) spectrum auction as an example 

of a low price outcome in a simultaneous ascending-bid multi-unit auction. They show that in 

the unique equilibrium that survives iterated elimination of dominated strategies, the efficient 

allocation is reached at minimum bids. 

Kaihara (2000) proposes an agent-based double auction algorithm and demonstrate 

the applicability of economic analysis to this framework. He uses product allocation problem 

in supply chain as a case study. The algorithm is proved to emerge sophisticated product 

flows in supply chain, and conduct a Pareto optimal solution on multi-objective problems. 
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CHAPTER 3 

Proposed Methodology: Auction Based 

Algorithm for Decentralized Scheduling 
 

3.1. Problem 

The recent tendency, consolidating all manufacturing needs of any certain division, of 

Fast Consuming Goods sector inspired us the factory scheduling problem over a supply 

chain. The orders given by geographically distributed customers may share the same 

resource. The inventory cost arising from early completion of an order and the backorder cost 

caused from late completion of an order are among main issues for each customer and also 

whole supply chain. In such supply networks, each customer takes care of its own objectives 

(minimizing cost or maximizing utility). The supplier tries to obtain a feasible schedule by 

making negotiations with customers. The distributed structure of the problem environment 

makes it harder to solve. 

 This supply chain scheduling problem can be viewed as a single machine scheduling 

problem in a highly decentralized structure. We developed three different scenarios by 

changing degree of centralization to analyze the problem environment.  
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The scenario with decentralized case (decentralized utility) simulates the actual 

supply chain environment. The problem structure that we are working on has a highly 

decentralized environment. We use agents to represent the supplier (machine) and the 

customers (jobs). We fit a utility function for each job agent which aims to maximize its own 

utility. The operational data (release time, process time, due date) of the job agent is private 

to the job itself, it is not known by other jobs. However, the machine agent knows the release 

time, due date and processing time information of the job agents. The cost related data are 

earliness and tardiness costs. Each job agent has its own earliness and tardiness cost 

information. This information is not visible to other job agents and also not visible by the 

machine agent. This is a reasonable assumption since the cost or finance information is not 

usually transparent to others. 

The centralized utility scenario ignores the decentralization, gives permission for the 

machine agent to access all data (also the utilities) of the job agents so it assumes the 

environment as a centralized case. We again work with utility functions. The objective is to 

maximize the total utility of job agents while finding a feasible schedule. An integer 

programming approach takes care of the modeling requirements. This second scenario is used 

for benchmarking purpose. It is the case whose optimization solution provides the upper 

bound on the utility. 

The scenario of centralized cost corresponds to a centralized case. The overall 

optimization of the system is concerned. Hence, the objective becomes the minimization of 

total early/tardy cost of job agents. This is a classical single machine scheduling problem. 

Moving from a single machine early/tardy problem to a distributed scheduling 

problem with utility functions is the main difference of this study from classical single 

machine literature. In centralized cost scenario, a job agent has a convex cost function as can 
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be seen in Figure 3.1. In centralized cost case, there is no competition among job agents. 

There is no concept of collaboration because there is a manager (master) agent that solves the 

problem for the sake of whole system. We used Branch-and-Bound to solve this problem. 

 

Figure 3.1 Early/Tardy Cost Function of a Job Agent 
 

In the centralized utility scenario, the cost function of each job agent in Figure 3.1 is 

multiplied by -1 (Figure 3.2) to move the function to the positive side by adding a large 

enough positive constant. We discretize the time axis into time slots. Given the price scheme 

of the time slots, the utility function of each time slot is found by subtracting the prices from 

the converted early/tardy cost function (Figure 3.3). The details of assigning prices to time 

slots and finding a utility function are explained in the next section. The objective in this case 

is to maximize the total utility of the jobs. Note that a solution that optimizes total utility is 

different from the total cost case. Because the patterns of cost functions and utility functions 

are different. Hence, they can generate different solutions. In this case, there is forced 

collaboration, and no competition. The forced collaboration is also provided by a dictator 

agent. We used Branch-and-Bound to solve this problem. We also developed a Lagrangean 

Relaxation Algorithm with a feasibility heuristic for this problem. 
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Figure 3.2 Negative Early/Tardy Cost Function of a Job Agent 
 

 

Figure 3.3 Utility Function of a Job Agent 
 

The decentralized utility scenario is in fact the case we want to solve for the actual 

supply chain scheduling problem. Each job agent tries to maximize its own utility. The 

objective of the machine agent is to have a feasible schedule. There is not a master (or 

central) agent in this case. We see competition between job agents with no collaboration. The 

machine agent may artificially provide some collaboration between job agents by negotiation. 

We propose an Auction Based Algorithm to solve this highly decentralized problem. 

The main difference between centralized cases and decentralized case is in the information 

sharing. In the centralized cases, the machine agent acts as a central agent who has access all 

data of job agents and the machine agent aims the good of the overall system. However, in 

the decentralized case, the machine agent has access to only operational data (release time, 
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due date and process time). It does not have access to cost data (unit earliness cost, unit 

tardiness cost). The jobs do not share any information among each other. Hence, there is not a 

central agent working for the good of the overall system. Therefore centralized case gives a 

bound for the performance of overall system. Figure 3.4 depicts the structure of the problem 

environment in agent perspective. 

Figure 3.4 Machine Agent, Job Agents and Time Slots 

3.2. Decentralized Utility (Auction Based Algorithm) 

 First we give a brief introduction to auction theory. Then we present the mechanism 

of Auction Based Algorithm. A numerical example of the algorithm is given at the end of this 

section.  
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3.2.1. Auction Theory 

Auction can be defined as a market institution with an explicit set of rules determining 

resource allocation and prices on the basis of bids from the market participants. Auctions are 

widely used in the markets to sell goods and to determine prices for those goods. It is one of 

the oldest ways of selling goods. Auctions are usually used in the markets in which seller 

does not have the ability to estimate or determine price of goods. Because the seller cannot 

determine price by itself, market employs some mechanism consisting of some rules to 

determine the price and to assign the goods to the demanding customers.  

The main issues of auctioning can be classified into: i) auctioning mechanism, ii) 

number of units put to the auction at once, and iii) number of stages at which the auction is 

ended. 

 

Figure 3.5 Auction classifications 
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3.2.1.1 Auctioning Mechanisms 

In the literature, there are four commonly referred auctioning mechanisms: English 

auction, Dutch auction, Sealed bid auction, and Vickrey auction. 

The English auction is similar to the ones found in some antique goods outcry 

auctions. It is based on sequential bidding. Bids are made by bidders for the good until no one 

remains in the bidding process. The winner is the last bidder and buys the good for the price 

it offers. English auction can be implemented in such a way that the bid is increased by a 

constant amount or as much as bidders want. The seller usually sets a reservation price (or 

minimum price) below which it cannot be sold. 

The Dutch auction is originated from the flower market in Netherlands. It is still used 

worldwide in flower markets. In the Dutch auction, the seller sets a price (it is usually more 

than the value of the good) and then he (or she) decreases the price sequentially. The auction 

stops whenever a bidder raises his (or her) hand to stop the bidding process. The good is 

awarded to the bidder with that price. 

Sealed bid auction is implemented by bidders offering their bids secret from the 

others to the seller. The seller chooses the bidder with the highest bid. The highest bid’s value 

is assigned as the price of the good. This type of action can be seen in most of governmental 

contracts. 

Vickrey auction is similar to sealed bid auction. Again, the seller chooses the bidder 

with the highest price. However, the value of the second highest bid is assigned as the price 

of the good. The motivation for Vickrey auction is to give incentive to bidders to tell their 

true evaluation for the good in the auction. By paying the second highest bid, the winner 

makes an advantage by paying less than his estimated amount. The difference between the 
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winner bid and the second highest bid is the incentive for the winner. Thus, we can call the 

sealed bid auction as first-price sealed bid auction and the Vickrey auction as second-price 

sealed bid auction. 

Note that, English auction is equivalent to Vickrey auction and Dutch auction is 

equivalent to sealed-bid-auction. Recall that in Vickrey auction, the winner pays the second 

best price. In English auction, however the winner also pays the second best price plus a 

prespecified amount of increment to win the bid. Similar relation can be found between 

Dutch auction and sealed-bid-auction. In both cases, the winner pays the highest price. 

3.2.1.2. Classification of Auctions 

 Figure 3.5 gives an overview about the classification of auctions. These classifications 

are discussed next. 

3.2.1.2.1. Classification based on the Number of Units in Auction 
 

An auction can be classified into single unit, or multi unit. In the single unit auctions, 

bidders prepare bids for only one item at a time. In the multi unit auctions, bidders give bids 

for more than one items at a time. A multi unit auction can be realized in the form of either 

single bid or combinatorial auction. In single bid auctions, the bidder offers one bid for each 

item that he is interested among a whole set of goods available in the auction. In the 

combinatorial auctions, the bidder gives one bid for the combination of all the items that he 

wants to buy.  

For example, consider three different pictures to be sold in a sealed-bid-auction and 

there are two bidders (customers). The seller puts these three different pictures into auction at 

the same time (i.e., a multi unit auction case). Bidder 1 is interested in buying pictures 1 and 

2. Bidder 2 wants all the pictures. In the single bid auction, the seller asks for the bids from 

the bidders as one distinct bid for each picture. Bidder 1 bids $300 for picture 1 and $250 for 
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picture 2. Bidder 2 bids $250 for picture 1, $300 for picture 2, $150 for picture 3. At the end 

of first iteration (i.e. collecting bids from the bidders at one stage) the seller gives picture 1 to 

bidder1, pictures 2 and 3 to bidder 2. In the combinatorial auction case, the seller wants bids 

from the bidders for the whole combination of the pictures they are interested in buying. 

Bidder 1 bids $550 for the combination of pictures 1 and 2. Bidder 2 bids $700 for the 

combination of pictures 1, 2 and 3. The seller assigns all three pictures to bidder 2 because 

bidder 2 offers more money as a total amount. 

3.2.1.2.2. Classification based on the Number of Stages at Auction 
 

The auctions are also classified as either single stage auctions or iterative auctions. In 

the single stage auctions, the auction is finalized at the end of one single stage (or iteration) 

after taking bids from the bidders. In the iterative auctions, auction is implemented in a 

number of iterations. Each iteration has its own characteristics by the means of auction 

methods utilized.  

In the previous example, now consider a single bid in a sealed-bid-auction. Bidder 1 

bids $300 for picture 1 and $250 for picture 2. Bidder 2 bids $300 for picture 1, $300 for 

picture 2 and $150 for picture 3. The seller assigns picture 2 and picture 3 to bidder 2. Since 

the seller can not decide on picture 1, he decides to go on to the second iteration. This time, 

he opens an English outcry auction with the constant increment of $10. Bidder 1 increments 

bid to $310. Bidder 2 responds by a bid of $320 and so on. At the end, after bidder 2 bids 

$390, bidder 1 bids $400. Bidder 2 does not respond to bidder 1 therefore the picture goes to 

bidder 1 with the price of $400. The auction finishes at second iteration. At the end bidder 1 

gets picture 1, and bidder 2 gets picture 2 and picture 3. 
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3.2.2. Distributed Scheduling Algorithm Based on Auction Theory: 

In this subsection, we will explain the proposed scheduling algorithm based on 

auction theory. After we give the necessary notation and related background, we present the 

steps of the algorithm by using an example. 

Distributed Scheduling has lots of opportunities for the contribution of different fields 

of science and technology. Artificial intelligence is one of these fields that also makes a 

contribution to the scheduling by using agents. While there seems to be no single, formal 

definition for an agent, Karsai et al. (2000) consider them as sophisticated objects that are 

dynamically created, and through communication, cooperation and competition solve 

complex problems.  In Distributed Scheduling applications, scheduling problems are 

decomposed to subproblems. Objectives of these subproblems become the objectives of 

agents whose decision making abilities are bounded by the constraints of the subproblems. 

The introduction of agent structure to the solution of scheduling problems gives us the 

opportunity to elaborate on rational agents and to attach rational human characteristics to 

them. Interpreting behaviors of these rational agents by employing utility functions to them 

helps we use economic –especially microeconomic- analysis. In the scheduling context, the 

rational agent competing for scarce resources can be subject to game theoretic analysis (as a 

part of microeconomics). Due to the communicative, cooperative and competitive properties 

of agents, market mechanisms can be employed to model scheduling problems in a 

distributed manner as the agents being actors in the market setting. Auctions, part of market 

mechanisms, can also be used in modeling the behaviors of agents in a scheduling problem. 

In recent years these approaches have become popular in distributed scheduling. 

After we reduce our problem from a supply chain scheduling problem to a single 

machine distributed scheduling problem, we employ an auction theoretic mechanism to solve 
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this problem. Preemption is not allowed. The setting is such that there is a single machine and 

multiple jobs are waiting to be processed on this machine. Each job has two sets of 

information data. One set consists of operational data and the other set consists of cost related 

data. Operational data are ready (or release) time, due date and processing time.  

We formulate the problem such that there are job agents representing jobs and the 

machine agent representing the machine. The operational data is private to the job itself, it is 

not known by other jobs. However, the machine agent can get access to the release time, due 

date and processing time information of the job agents. The cost related data are earliness and 

tardiness costs. Each job agent has its own earliness and tardiness cost information. This 

information is not visible to other job agents and also not visible by the machine agent.  

In summary, there is not any information sharing among job agents, and there is 

partial information sharing between job agents and the machine agent. Therefore this is an 

imperfect information sharing case. Because there is not perfect information sharing and 

there is not a central authority collecting all the information to make decision for the good of 

whole system, this is a distributed system and it is highly decentralized. 

We employ an auction mechanism to schedule the jobs on the machine. The machine 

agent is seller and the jobs are bidders (buyers). Assuming discrete time if we divide the 

planning horizon into equal parts, we acquire equal-length, discrete time slots. These time 

slots on the machine represent units to be sold in the auction. 

In the distributed setting of the problem that we developed an algorithm to solve, the 

objective of job agents is to maximize their own utilities and the objective of the machine 

agent is to find a feasible schedule taking the preferences of the job agents into account. 
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3.2.2.1. Auction Mechanism 

All the time slots (or items) are identical and they are put to the auction at the same 

time. Thus, we have a multi-item auction environment. Reservation prices are set for each 

item by the machine agent. Reservation price is a limit for a bidder’s bid to be accepted. The 

seller determines a minimum bid price and accepts bids higher than this price. Also, the 

bidders are expected to give one unique bid for a combination of the items they want to buy 

(i.e. combinatorial auction). 

The combinatorial auction setting is a result of the assumption that preemption is not 

allowed. In this case, job agent is interested in a bundle of time slots in which these time slots 

reside next to each other. This bundle makes sense for the job agent as a whole instead of 

distinct time slots in that bundle. Thus, the job agent evaluates whole bundle with a unique 

price which leads us to combinatorial auction. 

In this setting, it is almost impossible to assign the time slots to the bidders at one 

stage. The seller needs an iterative procedure to solve the conflicts among the bidders. The 

English auction mechanism is iterative in its nature. Therefore we use English auction. 

The reservation prices are set by the seller (the machine agent) by using the load 

information obtained from the bidders (job agents). Each bidder sends its information in the 

form of due date, release time and processing time. The seller determines the ideal time 

interval for each bidder regardless of the other bidders. Then the seller uses all this 

information to determine a load profile (tendency graph) for the time slots (items to be sold). 

This profile shows the relation between time slots and the demand on each time slot. The 

seller converts this tendency graph to reservation price graph. This new graph shows the 

reservation price of each time slot. The conversion is made by multiplying the load profile by 

the value of increment of English auction. 



 

 29 

The structure of the algorithm is such that the machine agent first takes the required 

information (operational information) from the job agents to determine the reservation prices, 

then it asks the bids from the job agents. The job agents give bids according to the rules that 

will be explained in the next section. The machine agent asks bids from the job agents in the 

order of their indices. Then the next pass starts and the machine agent again asks bids from 

the job agents. Each passage from one job agent to the next job agent for bid request is called 

a iteration. Each tour or pass consisting of asking bids from all job agents is called a cycle. 

These cycles and iterations are repeated a number of times until the stopping criteria for the 

auction are met. At each iteration, the machine agent revises the prices of the time slots. If 

some jobs are not scheduled after a realization of an auction, the same steps above are 

repeated for the empty time slots and unscheduled jobs. It means a new auction is opened to 

unscheduled jobs for empty time slots. Previously scheduled jobs keep their places and they 

do not enter the new auction. These auctions are repeated until all jobs are scheduled. 

3.2.2.1.1Behavior of Bidders 
 

The bidder briefly tries to fulfill its local objectives. In general, each bidder acts 

selfishly and tries to maximize its benefit (i.e. tries to get e time slot at which its processing 

requirement is satisfied on time without incurring any earliness or tardiness penalty). 

Economic interpretation is that the bidder has a utility function and its rational behavior is to 

maximize this utility function. This utility function is revised at each iteration. The utility 

function is used to determine the bidder’s strategy in the auction by the bidder. The utility 

function has two components. The first component is the evaluation of the time slots by the 

job agent. The second component is the actual price of the time slots taken from the seller. 

The first component is easy to compute. The bidder calculates this value using its 

earliness and tardiness information. The bidder applies its earliness and tardiness costs to all 
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the time slots as if the job starts being processed at each time slot. Application of the earliness 

and tardiness costs to all the time slots gives the bidder a discretized convex curve showing 

its actual evaluation of the time slots. Then the bidder multiplies this curve by -1 to determine 

the valuation. The second component that is the price of the time slots is taken from the 

machine agent at each iteration. 

The difference between the valuation of the time slots and the price gives the bidder’s 

utility function depending on which time slot it starts processing. In addition to these terms, 

we search all the early/tardy cost values of the job agents we previously calculated. The 

maximum of these costs is taken and added to all the utility functions for convenience. This 

assures us all the utility functions have positive values at the beginning of the auction. This 

also helps us to set convenient stopping criteria as explained below. The bidder determines 

the time slots on which this utility function has its maximum value. The bidder chooses as 

many time slots as its processing time as its target time slots and gives one unique bid for the 

combination of all these time slots. 

This auction mechanism works with any utility function independent of its shape. It 

can be observed throughout the iteration. Because the shape of the utility function changes 

constantly in the auction process and it takes different shapes randomly. 

There are three factors considered in the bidding process. These factors are summed 

up by the bidder and form the value of the bid. The first factor is the addition of the prices of 

the utility maximizer (target) time slots. The second factor is more difficult to compute. 

When a bidder gives bid for a combination of time slots, some of these time slots could 

previously have been assigned to other job agents. If these job agents also possess other time 

slots than the target time slots, the previous assignment to these time slots are cancelled 

because preemption is not allowed. Therefore, some time slots other than the target time slots 
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given bid by the current job agents will be affected by this current bid. Their assignments will 

be cancelled, they will be empty so their prices will decrease to their reservation prices. This 

is a loss for the machine agent. Therefore, the current job agent who is giving bid 

compensates this loss. Thus, the second factor consists of the sum of the differences between 

the previously assigned prices to the affected time slots and their reservation prices. The third 

factor is the increment value of the English auction. These three factors are added and give 

the value of the bid for the target time slots. 

The utility function of the seller is the sum of the prices assigned to the time slots at 

that iteration. If a time slot is not assigned to any of the jobs, its price is assigned as the 

reservation price of that time slot at the previous iteration. 

3.2.2.1.2. Stopping Criteria 

Stopping criteria are explained for two cases, auctions and algorithm. 

An auction stops when none of the bidders give bid in a cycle. A job agent does not 

give bid if one of two conditions holds. First condition is that a job agent possesses the utility 

maximizing time slots already at its hand when its turn comes to give bid. Since it already has 

the utility maximizing time slots, it does not want to change its place or it does not give 

higher price for those time slots. Therefore it does not give bid. Second condition occurs 

when all points of a job agent’s utility function take negative values. One of the two 

conditions is guaranteed for all the job agents because prices are increasing in an auction. If 

there are not any other agents, who have higher values of utility functions, giving bid to a job 

agent’s utility maximizing time slots, then that job agent buys those time slots and do not 

give away. Or, because of increasing prices (both actual and reservation prices if necessary), 

some job agents who have small values of utility functions have negative values of utility 

functions after some iterations. Since these job agents do not have any time slots and they do 
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not give any bids, they are excluded from the bidding process (i.e. game). This kind of 

exclusion results with not being scheduled on the machine. In this case a new auction is 

opened to the unscheduled jobs for the empty time slots and same rules are valid for the 

subsequent auctions. They have the same stopping criteria as the auction at the beginning. 

The algorithm stops when all jobs are scheduled. The time complexity of the problem 

is O(nm2). 

3.2.3. Algorithm: English Auction Based Scheduling 

 The algorithm consists of five parts. The main part is called Algorithm MainAuction. 

The other four parts (or subroutines) support the main algorithm. 

The first subroutine, Algorithm GenerateReservationPrices, is used by the machine 

agent to determine the reservation prices before the auction. This algorithm uses due-date and 

processing time information of the job agents as input and generates reservation prices of the 

time slots as output. This output is sent to Algorithm GenerateUtilityFunction. 

Each job agent invokes the second subroutine (Algorithm GenerateUtilityFunction) to 

find its utility function before starting bidding. Inputs of Algorithm GenerateUtilityFunction 

are earliness and tardiness costs, release time, due-date and processing time of each job agent, 

and reservation prices coming from the machine agent as an output of Algorithm 

GenerateReservationPrices. The output of GenerateUtilityFunction is utility function of each 

job agent. This output is sent to the third subroutine called Algorithm PrepareBid. 

Algorithm PrepareBid is used to prepare a bid by each job agent. The output of 

Algorithm GenerateUtilityFunction is used to set initial value of utility function. This utility 

function is revised at each iteration. The output of Algorithm PrepareBid consists of time 

slots currently under bid and the value offered for these time slots by the job agent. This 

output is sent to the fourth subroutine (Algorithm DeterminePrices). 
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The MachineAgent employs Algorithm DeterminePrices to determine the new price 

of the time slots at each iteration. The inputs of this algorithm are the old prices (previous 

reservation prices and actual prices) and the output of the Algorithm PrepareBid (the bid 

given by a job agent to the machine agent at that iteration). The output of this algorithm is the 

new prices and reservation prices of the time slots for the next iteration. This output is used to 

revise their utility functions by the job agents. 

Algorithm MainAuction works by the interaction of these four subroutines. The 

logical flow chart of the algorithm can be seen in the Figure 3.6. 
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Figure 3.6 Logical flow chart of the algorithm 
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Algorithm GenerateReservationPrices: 

Step 1: The machine agent requires the available time information, due date information and 

the processing time information from all the job agents (jr , jd , jp ). 

Step 2: The job agents give the required information (jr , jd , jp ). 

Step 3: The machine determines the most demanded time slots for each job agent. These time 

slots are denoted by jjjjj dpdpdi ,...,2,1: +−+−  

Step 4: The machine agent forms a tendency graph (load profile) using the information of 

most demanded time slots. It simply adds up the demands on each time slot. 

Step 5: The machine agent converts tendency graph to the reservation price list for the time 

slots. It applies this by multiplying the tendency graph values by the value of the 

increment in the English auction. 

Step 6: The machine agent opens the time slots on itself to the auction and announces the 

reservation prices for these time slots to the job agents.  

Algorithm GenerateUtilityFunction: 

Step 1: Each job agent calculates its earliness/tardiness cost depending on each time slot. 

Step 2: The values found in step 1 are multiplied by (-1). 

Step 3: Find the minimum among all the values found in Step 2. 

Step 4: Add the absolute value of the term found in Step 3 to the values found in Step 2 

(Normalization of the utility functions of the job agents). 

Step 5: Subtract the sum of the prices of as many time slots as the processing time of each job 

agent starting from the time slot being considered. 

Algorithm PrepareBid: 

Step 1: Job agent finds the time slot combination that maximizes its utility. 
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Step 2.1: If the job agent already has the time slot combination that maximizes its utility, or 

the maximum utility it has is negative, it does not give any bid. 

Step 2.2: Else it gives bid to the time slot combination that maximizes its utility (if there are 

various combinations of time slots maximizing the utility, the job agent chooses the 

time slots combinations having the largest value of total indices) by adding the 

increment value of the English auction to summation of the declared prices of the time 

slots. The time slots, whose status change from busy to idle, are also added to this 

calculation as opportunity cost. 

Algorithm DeterminePrices: 

Step 1: The machine gets the bid from the job agent j and this bid becomes the total price of 

the target time slots. 

Step 2.1: If a time slot does not get a bid and its status is not affected its price does not 

change. 

Step 2.2: If a time slot does not get a bid but its status changes from busy to idle, its price 

becomes its reservation price. 

Step 2.3: If a time slot gets a bid, the sum of the prices of such time slots becomes the whole 

price given by the bid minus the summation of the prices of the time slots explained in 

Step 2.1 and Step 2.2. 

Step 2.3.1: If there is only one time slot as explained in Step 2.3, it gets the price calculated in 

Step 2.3 

Step 2.3.2: If there are multiple time slots as explained in Step 2.3, they equally share this 

price. 
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Step 2.4: If a job agent leaves its assigned time slots to give bid for some other time slot 

combination, the current prices of these time slots are assigned as their reservation 

price. 

Algorithm MainAuction: 

Step 1: The machine agent employs Algorithm GenerateReservationPrices 

Step 2: The job agents employ Algorithm GenerateUtilityFunction 

Step 3: Set j = 1 

Step 4: The machine agent wants bid from the job agent j. 

Step 5: The job agent employs Algorithm PrepareBid 

Step 6: The machine agent employs Algorithm DeterminePrices 

Step 7: All job agents revise their utility functions according to the new prices. 

Step 8: if j < n, Set j = j + 1, Go to Step 4 

 else if no job agent gives bids in one cycle, STOP, else Go to step 3 

 

Algorithm MainAuction is repeated if there are unscheduled jobs until all jobs are 

scheduled. The algorithm runs over empty time slots as unscheduled jobs being the bidders. 

Previously scheduled jobs keep their time slots. Their time slots and they do not attend the 

next realizations of Algorithm MainAuction. 

3.2.4. Numerical Example 

 Suppose that there are two jobs waiting to be scheduled on a single machine. These 

jobs are named as Job 1 and Job 2. The necessary data of these jobs are in Table 3.1: 

Table 3.1 Data set of Jobs 
  r d p e t 
Job 1 0 3 2 3 3 
Job 2 1 2 1 6 3 
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r: release time 

d: due date 

p: processing time 

e: earliness cost per unit time 

t: tardiness cost per unit time 

 As seen in Figure 3.7a, suppose that the planning horizon (timespan) is between time 

0 and time 5. The following is the names of the time slots in the planning horizon: 

Time slot between 0 and 1: Time Slot 1 

Time slot between 1 and 2: Time Slot 2 

Time slot between 2 and 3: Time Slot 3 

Time slot between 3 and 4: Time Slot 4 

Time slot between 4 and 5: Time Slot 5 

 

Figure 3.7a The names of the time slots 

(i) Application of Algorithm GenerateReservationPrices: 

 The machine agent opens its time slots to the auction. First, it requests the operational 

information from the job agents. The job agents give the following necessary data: 

Table 3.2 Operational Data of Jobs 
  r d p 
Job 1 0 3 2 
Job 2 1 2 1 

 

3 

Time 

1 2 3 4 5 0 4 5 3 4 5 4 5 2 1 

Time Slots 
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Figure 3.7b Demand information of Job 1 and Job 2 

 The machine agent uses this information to generate a load profile: 

 

Figure 3.7c Load profile 

Then, the machine agent multiplies load profile values by the increment value of the 

auction, i.e. $1, to compute the reservation prices. 
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Figure 3.7d Reservation prices of the time slots 

(ii) Aplication of Algorithm GenerateUtilityFunction: 

The job agents firstly calculate their earliness/tardiness costs depending on which time 

slot the jobs start to be processed. 

 

Figure 3.7e Earliness/tardiness cost function of Job 1 
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Figure 3.7f Earliness/tardiness cost function of Job 2 

 Then, job agents multiply these cost function by -1: 

 

Figure 3.7g Negative earliness/tardiness cost function of Job 1 
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Figure 3.7h Negative earliness/tardiness cost function of Job 2 

 The maximum earliness/tardiness costs is 9. Therefore, the job agents add 9 to their 

negative earliness/tardiness cost functions for the normalization. 

 

Figure 3.7i Normalized negative earliness/tardiness cost function of Job 1 
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Figure 3.7j Normalized negative earliness/tardiness cost function of Job 2 

 After finding the first component of the utility function, the job agents subtract the 

prices of the time slots from the function found above. Job 2 computes directly subtracting 

the reservation prices from the normalized negative earliness/tardiness cost function values 

because its processing time is 1. However, Job 1 has processing time of 2. Therefore, it firstly 

adds the values of the related time slot and the next time slot, then subtracts this value from 

its normalized negative earliness/tardiness cost function values. This last step gives job 

agents their utility functions at the beginning of the auction. 
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Figure 3.7k Utility function of Job 1 at the beginning of the auction 

 

Figure 3.7l Utility function of Job 2 at the beginning of the auction 

9 

8 

7 

6 

5 

4 

3 

2 

1 

1 2 3 4 5 

 ($) 

Time Slots 

9 

8 

7 

6 

5 

4 

3 

2 

1 

1 2 3 4 5 

Time Slots 

 ($) 



 

 45 

(iii) Application of Algorithm PrepareBid and Algorithm Determin ePrices: 

 The machine agent asks a bid from Job 1. Starting at Time Slot 2 maximizes Job 1’s 

utility. Therefore, it gives bid of $4 to Time Slot 2 and 3 (price of the Time Slot 2 + price of 

the Time Slot 3 + the increment value = 2+1+1). 

 The machine agent assigns Time Slots 2 and 3 to the Job 1 and revises the prices of 

the time slots according to this bid. The values of the time slots already add up to $3, there is 

an additional $1. The machine agent divides this $1 among Time Slots 2 and 3. Now, the 

prices are as the following: 

 

Figure 3.7m Prices of the time slots after the first iteration 

 Before starting the next iteration, Job 2 revizes its utility function to find the new 

utility maximizer time slot. 
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Figure 3.7n Utility function of Job 2 after first iteration 

 Time Slot 2 maximizes Job 2’s utility. However, it was assigned to Job 1 in the 

previous iteration. Therefore, Job 2 takes the compensation of the loss of the machine agent 

due to assignment cancellation of Time Slot 3 from Job 1 in addition to the price of Time Slot 

2 and the increment value of the auction. Job 2 gives a bid of $4 for Time Slot 2 (price of 

Time Slot 2 + compensation of the loss due to Time Slot 3 + increment value of the auction = 

2.5 + (1.5 -1) +1). 

 Since this bid has come only for Time Slot 2, the machine agents assigns this value of 

$4 to Time Slot 2. Because Time Slot 3 is empty now, its value decreases to its reservation 

price ($1). New prices are as follows: 
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Figure 3.7o Prices of the time slots after the second iteration 

 Job 1 bids next. Firstly, it revises its utility function. 

 

Figure 3.7p Utility function of Job 1 after second iteration 

 Starting at Time Slot 3 maximizes Job 1’s utility. Therefore it gives the bid for Time 

Slots 3 and 4 with the value of $2 (price of Time Slot 3 + price of Time Slot 4 + increment 

value of auction = 1+0+1). 

 The machine agent assigns Time Slots 3 and 4 to Job 1 and they share this bid. So 

price of Time Slot 3 increases to $1.5 and Time Slot 4 goes up to $0.5. 
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Figure 3.7q Prices of the time slots after the third iteration 

 Job 2 revises its utility function while starting the fourth iteration. 

 

 

Figure 3.7r Utility function of Job 2 after the third iteration 

 Starting at Time Slot 2 maximizes Job 2’s utility. In fact, Job 2 already possesses this 

utility maximizer, i.e. Time Slot 2. Therefore, it does not give a bid. The prices do not change 

after the fourth iteration. 

 Job 1 revises its utility function after the fourth iteration. 
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Figure 3.7s Utility function of Job 1 after the fourth iteration 

Starting either at Time Slot 3 maximizes Job 1’s utility. Job 1 already starts at Time 

Slot 3, i.e. Time Slots 3 and 4 are assigned to Job 1. Therefore, it does not give a bid, and 

prices do not change. 

 After this point, because prices do not change, the utility functions remain the same. 

Since both job agents have obtained their utility maximizing time slots they do not give any 

further bid. Thus, the algorithm stops. 

 Job1 has Time Slots 3 and 4, Job 2 has Time Slot 2. It means Job 1 starts being 

processed at time 2 and finishes at time 4, Job 2 starts being processed at time 1 and finishes 

at time 2. Job 1 incurs a tardiness cost of $3; Job 2 incurs no earliness or tardiness cost. Total 

earliness/tardiness cost is $3. This is also the optimal value for the centralized version of this 

problem. 
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3.3. Centralized Utility 

 The centralized utility scenario is the centralized case of the decentralized real life 

problem of factory scheduling in Fast Consumer Goods sector. In this setting, there is a 

central agent dictating job agents their schedule by maximizing the total utility functions of 

the job agents. 

3.3.1. Branch-and-Bound Algorithm 

The centralized utility problem is formulated as an integer programming problem. We 

call it as aggregate problem formulation because we will relax it in the next subsection. In the 

aggregated problem the objective function is to maximize the total utility function. The 

objective of the machine agent is achieved by finding a feasible schedule. 
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ijx  is the binary variable, it is 1 if job j starts on time slot i, 0 otherwise. (1) is the 

objective function, that maximizes the total utility. iju  is the parameter representing the utility 

of job j if it starts on time slot i. (2) is the capacity constraint stating that at most one job can 

start on a time slot and no other job can start until its processing finishes. Second set of 

constraints, (3), is the assignment constraint that puts the restriction that each job can and 
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must be scheduled only one time. As most scheduling problems, this problem is also NP-

hard. 

3.3.2. Lagrangean Relaxation Algorithm 

The alternative algorithm is Lagrangean based scheduling algorithm. Lagrangean 

Relaxation has become very popular in last two decades because it provides good bounds 

over a problem and it is very applicable as a decomposition method. Our interest on 

Lagrangean Relaxation arose partially because it is used in integer programming applications 

of auctions. Also some researchers such as Kutanoglu and Wu (1999) and Leon and Jeong 

(2002) employ it in the distributed scheduling context. Furthermore, as an optimization based 

technique, Lagrangean Relaxation is among the most promising decomposition methods to fit 

in the distributed nature of our problem structure (Kutanoglu and Wu 1999). However, 

practically, it assumes a more centralized structure than the original problem due to the initial 

solution, feasibility restoration and the subgradient algorithm working under the Lagrangean 

Relaxation routine. Therefore we classify it under centralized utlity scenario. 

We revise the Lagrangean Relaxation scheme proposed by Guignard and Rosenwein 

(1989) for Generalized Assignment Problem to fit into our aggregate problem. We relax (3), 

assignment constraints and add to the objective function with the Lagrange multipliers, jw . 

The Lagrangean Relaxation Formulation is as below: 
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We employ the subgradient algorithm explained by Guignard and Rosenwein (1989) 

to revise Lagrange multipliers. The iterations of the Lagrangean Relaxation algorithm are 

sketched below after the Table 3.3 which describes the parameters of the algorithm. 

Table 3.3 Lagrangan Relaxation Algorithm Parameters 

k
jw :   Lagrange multiplier at iteration k 

UBk:   Upper bound at iteration k 

LBk:   Lower bound at iteration k 

UBbest:  Best upper bound found 

LBbest:  Best lower bound found 

targetk:  Hypothesized target objective value to be achieved at iteration k 

stepk:   Step size taken in the subgradient optimization at iteration k 

k
ijx :   solution of Lagrangean Relaxation problem at iteration k 

k
jslack :  slack of the j th assignment constraint at iteration k 

normk:   summation of the squares of the assignment constraints 

 

3.3.2.1. Iterations of the Lagrangean Relaxation Algorithm 

Iteration 0:   Solve linear programming relaxation of aggregate problem. 

Set UB0 and UBbest to the objective value of the solution of linear 

programming relaxation of aggregate problem. 

Set 0
jw  to the dual prices of corresponding assignment constraints of linear 

programming relaxation of aggregate problem solution. 

Solve aggregate problem with branch-and-bound method. 
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Set and LB0 and LBbest to the objective function value of the branch-and-

bound solution of the aggregate problem. 

Iteration k:   Solve Lagrangean Relaxation problem. 

Set UBk to the objective function value of the solution of Lagrangean 

Relaxation problem. 

Set UBbest = min(UBk,UBbest). 

If the solution of the Lagrangean relaxation problem is feasible to the 

aggregate problem, set LBk to the objective value of the aggreagate 

problem found by using solution of the Lagrangean Relaxation 

problem. 

Set targetk = (UBbest+LB0)/2 

Set k
jslack  = �

+−

=

−
1

1

1
ipm

i
ijx  

Set normk = ( )�
=

n

j

k
jslack

1

2
 

Set stepk = (alphak(UBk- targetk))/normk 

Update 1+k
jw  = k

jw + k
j

k slackstep ×  

If there is no improvement in UBbest for 5 steps, 

update alphak+1 = alphak /2,  

else alphak+1 = alphak 

3.3.2.2. Feasibility Restoration Heuristic 

In most cases, this Lagrangean Relaxation does not give feasible solutions for the 

aggregate problem. Therefore we developed a feasibility restoration heuristic to resolve this 

issue. The steps are described below: 
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Step 1:  If 1
1

1

>�
+−

=

ipm

i
ijx  for job j, among ijx with value 1, keep 1=ijx  for i with the

 minimum absolute value. Assign all other 0 to ijx .  

Repeat the same procedure for all j = 1,…,n 

Step 2:  If 0
1

1

=�
+−

=

ipm

i
ijx  for job j,  

  Start with i = 1, 

Step 2.i.:  Assign 1=ijx ,  

Check for all capacity constraints.  

If all constraints hold, STOP 

Else, update i � i+1 

  Repeat the same procedure for all j = 1,…,n 

3.4. Centralized Cost (Classical Early/Tardy Single Machine Scheduling Problem) 

 Centralized cost scenario is reduced from the centralized utility case. It assumes a 

centralized environment in the scheduling problem of fast consumer goods sector. There is a 

machine agent behaving as a dictator, not taking the utilities of the job agents into account 

and aiming to minimize the total early/tardy cost (total inventory/backorder cost in supply 

chain viewpoint). 

We formulated the classical single machine scheduling problem as an integer 

programming formulation. The constraints remain same as the aggregate problem 

formulation above. The objective function is changed with minimization of total early/tardy 

cost. 

Let 1=+δ    0>δif , 0=+δ    ..wo  
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 The formulation of classical single machine early/tardy problem is below 
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 We solve this problem by Branch-and-Bound. It is an NP-hard problem. 
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CHAPTER 4 

Experimental Design and 

Computational Results 

 
4.1. Experimental Data 

The design of experiments follows a previous study of Ow and Morton (1989) for the 

single machine early/tardy problem. The main control factors are the tardiness factor of the 

set of jobs to be scheduled, the due date range and the correlation coefficient between due 

dates and processing times.  

The tardiness factor, � , is a measure of the proportion of jobs expected to be tardy in a 

sequence. For a given average due date, d , average processing time, p , and given number 

of jobs, n, �  can be calculated as )/(1 pnd−=τ . 

The due date range factor, R, is used to control the range of the due date distribution 

calculated as pRn . 

Processing times, due dates and costs are integers. The parameters of the experiment 

are summarized as below: 

• Processing times and due dates are generated using a bivariate normal distribution 

which incorporates the variation in processing times, variation in due dates and the 

correlation between the processing times and due dates. Numbers generated are 

rounded to the nearest integer. The parameter levels are set as in the list below: 
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� Mean for processing time variate of bivariate normal is 15. 

� Coefficient of variation for processing time variate of bivariate normal, i.e, 

standard deviation/mean, is 0.2. 

� Due date range factor is, R, is 0.4 and 1.0. 

� Correlation coefficient between processing times and due dates, �, is 0 and 

0.5. 

� Tardiness factor, � , is set at 0.2 and 0.6. 

• Tardy cost rate, tj, is calculated in relation to work content: jj pptt ×= )/( , the cost 

per unit processing time, pt / , is obtained from a uniform distribution in range [0, 5]. 

• Early cost rate, ej, is set proportional to a early/tardy cost rate, e/t. It is calculated as 

jj ttee ×= )/( . Early/tardy cost rate is set to 5%, 10%, 25%. 

• Number of jobs, n,  is set to 8, 15, and 25. 

For each experimental point (72 in total) we generate 20 different test problems and 

we assign the mean of the results 20 different test data as the representative of 

corresponding experimental point (1440 data sets in total). The summary of experimental 

factors can be seen in Table 4.1 (release times are assumed to be same for all jobs, i.e. 

release times are 0). 

Table 4.1 Summary of Experimetal Parameters 

Experimental Factors: Levels: 

n = 8 

n = 15 Number of Jobs (n) 

n = 25 

�  = 0.2 Tardiness Factor ( � ): proportion of jobs that might be expected to be tardy in 

an arbitrary sequence �  = 0.6 

R =0.4 
Due Dates Range Factor (R) 

R =1.0 

�  = 0 
Correlation Coefficient between Processing Times and Due Dates (� ) 

�  = 0.5 

e/t = 0.05 

e/t = 0.10 Early Cost Rate (e/t): proportion of unit earliness cost to unit tardiness cost 

e/t = 0.25 
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4.2. Results 

We ran experiments for Auction Based Algorithm (Auction), Lagrangean Relaxation 

Algorithm (LR), Branch-and-Bound Utility (B&B-Utility) and Branch-and-Bound Cost 

(B&B-Cost). We developed the code in Java (see Appendix A) for Auction Based Algorithm 

and in GAMS (see Appendix B) working over CPLEX optimizer for the rest. Our primary 

performance criterion for Auction, LR and  B&B-Utility is total utility of the job agents, our 

secondary performance criterion for Auction, LR and  B&B-Cost is total cost of the job 

agents as discussed in Chapter 3. 

We used different number of maximum time slots and increment values for different 

number of jobs cases. We assigned enough number of time slots to obtain a feasible schedule. 

The reason to use different incremental values for different job sizes is to make the Auction 

Based Algorithm work faster. Table 4.2 gives the corresponding maximum time slots and 

increment values: 

Table 4.2 Computational Parameters 
 n = 8 n = 15 n = 25 

Maximum Number of Time Slots 250 500 1000 

Increment Value of the English Auction 2.5 20 250 

 

 The maximum number of iterations for the Lagrangean Relaxation Algorithm is 20 

for all different job sizes. 

 Table 4.3 gives the total utility results for Auction, LR and B&B-Utility. Table 4.4 

shows the total cost results for Auction, LR and B&B-Cost for all experimental points: 
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Table 4.3 Total Utility Results for Auction, LR, and B&B-Utility 
 n = 8 n = 15 n = 25 

 Auction LR 
B&B-
Utility Auction LR 

B&B-
Utility Auction LR B&B-Utility 

�=0.2, R=0.4, 

�

=0.0, e/t=0.05  72,358     79,723     78,871   308,391   349,853   352,004   1,216,943   1,405,109   1,396,388  

�=0.2, R=0.4, 

�

=0.0, e/t=0.10  72,593     79,173     78,324   303,313   349,536   350,658   1,208,288   1,385,964   1,389,422  

�=0.2, R=0.4, 

�

=0.0, e/t=0.25  72,973     78,468     77,902   298,634   344,991   346,518   1,195,810   1,385,034   1,377,576  

�=0.2, R=0.4, 

�

=0.5, e/t=0.05  68,957     78,672     78,210   306,075   343,243   342,828   1,180,278   1,366,355   1,338,916  

�=0.2, R=0.4, 

�

=0.5, e/t=0.10  69,943     78,129     77,559   286,348   341,362   341,316   1,153,677   1,348,618   1,332,012  

�=0.2, R=0.4, 

�

=0.5, e/t=0.25  69,965     77,115     76,945   288,073   335,583   336,447   1,159,601   1,330,016   1,317,782  

�=0.2, R=1.0, 

�

=0.0, e/t=0.05  74,995     81,320     81,261   314,821   358,379   362,189   1,258,794   1,407,976   1,417,839  

�=0.2, R=1.0, 

�

=0.0, e/t=0.10  76,349     80,759     81,647   321,742   358,975   360,392   1,232,355   1,409,623   1,412,666  

�=0.2, R=1.0, 

�

=0.0, e/t=0.25  77,613     80,648     81,248   309,870   358,436   357,753   1,224,274   1,375,230   1,402,493  

�=0.2, R=1.0, 

�

=0.5, e/t=0.05  69,755     76,953     76,615   284,247   330,390   331,982   1,115,410   1,285,047   1,293,403  

�=0.2, R=1.0, 

�

=0.5, e/t=0.10  68,413     76,602     76,757   274,342   329,498   330,651   1,089,440   1,285,381   1,289,404  

�=0.2, R=1.0, 

�

=0.5, e/t=0.25  69,949     75,850     76,095   291,492   328,137   326,604   1,110,351   1,261,432   1,277,327  

�=0.6, R=0.4, 

�

=0.0, e/t=0.05  94,640   100,656   101,047   391,063   440,811   440,569   1,399,795   1,649,088   1,628,770  

�=0.6, R=0.4, 

�

=0.0, e/t=0.10  95,362   100,685   101,252   392,582   442,057   440,342   1,375,043   1,652,626   1,621,310  

�=0.6, R=0.4, 

�

=0.0, e/t=0.25  95,057   100,500   101,085   377,411   440,021   439,668   1,433,874   1,636,188   1,618,871  

�=0.6, R=0.4, 

�

=0.5, e/t=0.05  92,602   100,480     99,634   378,653   428,410   431,981   1,379,487   1,639,924   1,584,088  

�=0.6, R=0.4, 

�

=0.5, e/t=0.10  92,103   100,222     99,567   378,047   429,601   430,698   1,352,917   1,631,856   1,580,887  

�=0.6, R=0.4, 

�

=0.5, e/t=0.25  92,347     99,671     99,652   382,634   428,133   430,555   1,366,930   1,631,682   1,573,953  

�=0.6, R=1.0, 

�

=0.0, e/t=0.05  97,899   102,617   102,699   399,761   448,885   449,978   1,449,879   1,639,262   1,655,923  

�=0.6, R=1.0, 

�

=0.0, e/t=0.10  96,356   102,418   102,830   398,638   449,442   449,876   1,445,337   1,636,408   1,655,295  

�=0.6, R=1.0, 

�

=0.0, e/t=0.25  95,686   102,370   102,580   410,619   450,431   450,328   1,428,477   1,629,210   1,656,271  

�=0.6, R=1.0, 

�

=0.5, e/t=0.05  92,488     98,815     98,891   352,192   420,128   420,721   1,317,817   1,557,404   1,536,329  

�=0.6, R=1.0, 

�

=0.5, e/t=0.10  94,115     98,244     99,209   369,790   420,017   420,599   1,325,818   1,555,147   1,535,629  

�=0.6, R=1.0, 

�

=0.5, e/t=0.25  93,700     98,881     98,896   377,624   421,292   420,404   1,331,997   1,539,549   1,526,441  
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Table 4.4 Total Cost Results for Auction, LR, and B&B-Cost 
 n = 8 n = 15 n = 25 

 Auction LR 
B&B-
Cost Auction LR 

B&B-
Cost Auction LR 

B&B-
Cost 

�

=0.2, R=0.4, 

�

=0.0, e/t=0.05    7,664      511      656   45,218     1,286     2,800   178,353     3,409   15,232  

�

=0.2, R=0.4, 

�

=0.0, e/t=0.10    7,889      832   1,198   52,317     2,309     3,706   192,205     6,371   19,910  

�

=0.2, R=0.4, 

�

=0.0, e/t=0.25    7,531   1,636   1,886   52,175     5,094     7,201   200,212     5,094   33,181  

�

=0.2, R=0.4, 

�

=0.5, e/t=0.05  10,652      645      815   40,745     1,788     3,006   174,530     4,715   10,378  

�

=0.2, R=0.4, 

�

=0.5, e/t=0.10    9,652   1,023   1,350   57,281     3,099     4,542   208,870     8,419   15,519  

�

=0.2, R=0.4, 

�

=0.5, e/t=0.25    8,798   2,058   2,342   53,868     6,515     8,543   195,485   18,260   29,523  

�

=0.2, R=1.0, 

�

=0.0, e/t=0.05    7,492      243   1,058   49,118        561     1,528   162,349     1,420   14,505  

�

=0.2, R=1.0, 

�

=0.0, e/t=0.10    6,099      431   1,598   42,801     1,084     2,975   189,664     2,731   18,052  

�

=0.2, R=1.0, 

�

=0.0, e/t=0.25    4,829      940   1,702   53,415     2,488     5,281   192,260     6,156   27,663  

�

=0.2, R=1.0, 

�

=0.5, e/t=0.05    8,109      435      822   50,987     1,144     2,515   179,362     2,910   13,937  

�

=0.2, R=1.0, 

�

=0.5, e/t=0.10    9,460      748   1,161   59,278     2,154     3,628   207,623     5,598   17,960  

�

=0.2, R=1.0, 

�

=0.5, e/t=0.25    7,902   1,639   1,907   42,676     4,780     6,701   196,837   12,528   31,699  

�

=0.6, R=0.4, 

�

=0.0, e/t=0.05  11,108   3,473   5,015   62,328     8,822   12,340   306,927   23,132   47,388  

�

=0.6, R=0.4, 

�

=0.0, e/t=0.10  10,378   3,562   4,994   60,899     9,129   12,509   304,014   23,988   48,547  

�

=0.6, R=0.4, 

�

=0.0, e/t=0.25  10,697   3,802   5,164   74,627   10,194   13,169   271,047   27,230   51,137  

�

=0.6, R=0.4, 

�

=0.5, e/t=0.05  12,292   3,595   4,308   66,217     9,790   12,986   290,847   25,867   41,602  

�

=0.6, R=0.4, 

�

=0.5, e/t=0.10  12,500   3,720   4,563   65,089   10,248   14,020   307,679   27,301   44,766  

�

=0.6, R=0.4, 

�

=0.5, e/t=0.25  12,529   4,061   5,112   62,210   11,613   13,985   302,033   31,028   46,136  

�

=0.6, R=1.0, 

�

=0.0, e/t=0.05    8,514   3,096   3,724   58,826     6,661     9,887   269,919   15,027   39,639  

�

=0.6, R=1.0, 

�

=0.0, e/t=0.10  10,103   3,163   3,924   62,163     6,813   10,059   280,773   15,259   39,893  

�

=0.6, R=1.0, 

�

=0.0, e/t=0.25  10,761   3,301   3,976   49,510     7,136     9,531   288,883   16,464   40,516  

�

=0.6, R=1.0, 

�

=0.5, e/t=0.05  10,224   3,083   4,116   82,984     8,162   11,867   289,273   20,106   44,557  

�

=0.6, R=1.0, 

�

=0.5, e/t=0.10    8,872   3,177   4,686   63,067     8,396   11,983   290,542   21,021   46,345  

�

=0.6, R=1.0, 

�

=0.5, e/t=0.25    9,315   3,453   4,036   55,815     9,336   12,140   280,874   24,137   47,295  
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Table 4.5 and Table 4.6 show the averages of the experimental points for total utility 

and total cost: 

 

Table 4.5 Averages of the Experimental Points for Total Utility 
 n = 8 n = 15 n = 25 

 Auction LR 
B&B-
Utility Auction LR 

B&B-
Utility Auction LR B&B-Utility 

Overall Average   83,176    89,540       89,532    341,515    390,211     389,484    1,281,358    1,475,791    1,485,172  

 

Table 4.6 Averages of the Experimental Points for Total Cost 
 n = 8 n = 15 n = 25 

 Auction LR B&B-Cost Auction LR B&B-Cost Auction LR B&B-Cost 

Overall Average     9,307      2,921         2,193      56,817        8,204         5,775       240,023         32,724         14,507  

 

As can easily be seen, LR gives very close results to B&B-Utility in terms of total 

utility. Even LR is slightly better than B&B-Utility in small problem sizes. However, there is 

a considerable gap between LR and B&B-cost in terms of total utility. The reason for such 

good results for total utility is it works in the same environment with B&B-Utility. However, 

it does not try to minimize total cost as B&B-Cost does with a master (dictator) agent with no 

competition and full collaboration. 

The Auction gives much worse results than LR and B&B-Cost by the means of total 

cost. However, it gives close results to LR and B&B-Utility by the means of total utility. 

There is not a general aim of the system (no master agent) in Auction. The jobs are in 

competition and there is collaboration partly provided by negotiations. Auction works in a 

highly decentralized environment although LR, B&B-Utility and B&B-Cost work in a 

completely centralized environment. 

B&B-Cost beats LR and Auction because the master agent solves the minimization of 

total cost problem not allowing competition and dictating job agents their schedules because 

it is accessible to all data sets of job agents. 

In the experiments, lower and upper bounds for B&B-Utility and B&B-Cost do not 

converge to an optimal solution. We finish the B&B immaturely. Therefore, for some cases 

LR gives better results than B&B-Utility. 

Table 4.7 shows the average total cost and averaged percentage gap between Auction 

Based Algorithm and Lagrangean Relaxation Algorithm for different jobs sizes: 
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Table 4.7 Average Total Cost and Percentage Gap 
 n = 8 n = 15 n = 25 

 Auction LR Auction LR LR LR 
Overall Average       9,307         2,921        56,817          8,204      240,023        32,724  
Average Percentage Gap 218.58% 592.54% 633.48% 
 

 There is very big gap between the total cost results of Auction Based Algorithm and 

Lagrangean Relaxation Algorithm. However as can be seen in Table 4.8, the gap decreases a 

lot for total utility values. 

Table 4.8 Average Total Utility and Percentage Gap 
 n = 8 n = 15 n = 25 

 Auction LR Auction LR Auction LR 
Overall Average     83,176       89,540      341,515       390,211   1,281,358   1,475,791  
Average Percentage Gap -7.11% -12.48% -13.17% 
 

As expected, the results of the Auction Based algorithm are all below the Lagrangean 

Relaxation Algorithm. Because we start with a very good incumbent (the solution of the 

original problem) and very good Lagrangean multipliers (the dual costs of the constraints of 

the Linear Programming Relaxation of the original problem). Also, because the Lagrangean 

Relaxation upper bound actually converges to Linear Programming Relaxation of this type of 

problems, solutions to the problems of the iterations of the Lagrangean Relaxation Algorithm 

alter in a very small range. The total utility results mean that the Auction Based Algorithm 

works very well for the maximization of total utility function although it works on a highly 

distributed environment whereas Lagrangean Relaxation Algorithm works on a centralized 

environment. Unfortunately, we do not have a measure to evaluate the degree of 

decentralization. We conclude that Auction converges to good solutions for the total utility 

measure. 



 

 63 

Total Utilities

-

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

1,800,000

Experimental Points

T
o

ta
l U

til
ity

 V
al

u
es Auction n = 8

Lagrangean n = 8

Auction n = 15

Lagrangean n = 15

Auction n = 25

Lagrangean n = 25

 

Figure 4.1 Comparison Chart of Total Utilities of Auction Based Algorithm and 
Lagrangean Relaxation Algorithm 
  

Figure 4.1 depicts us the comparison of total utilities of Auction and LR. There is an 

increase observed in total utilities when tardiness factor, � , is higher. When correlation 

coefficients between processing times and due dates, � , is higher, total utility decreases. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 



 

 64 

 
 
 
 
 
 
 
 

Chapter 5 

Conclusion and Future Research 

Directions 

 
 
 
 

In this thesis, we solve the scheduling problem of a geographically distributed supply 

chain in Fast Consumer Goods sector. We analyze the problem under three scenarios, 

centralized cost (classical single machine scheduling problem), centralized utility and 

decentralized utility. We solve the centralized cost case with Branch-and-Bound. We also 

solve the centralized utility case with Branch-and-Bound and we develop a Lagrangean 

Relaxation Algorithm for this case. The most realistic scenario is the decentralized cost case 

and we developed an Auction Based Algorithm to solve this case. 

We reduced the supply chain scheduling problem to a single machine scheduling 

problem by introducing utility function concept instead of early/tardy cost. This gives us an 

opportunity to use game theoretic approaches on our highly decentralized problem structure. 
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By employing different solution methodologies from the ideal case of the problem to the 

most realistic case, we compare different scenarios. While Branch-and-Bound beats every 

other method in the most ideal case (centralized cost), Lagrangean Relaxation Algorithm and 

Brach-and-Bound produce similar results for the centralized utility function case. However, 

in the decentralized utility case, the Auction Based Algorithm is the only alternative that fits 

to the structure of the real life problem. While it does not work very efficient for the total cost 

performance, the total utility results are very promising. 

In our opinion, by introducing Auction Based Algorithm, we add game theoretic 

insight to the scheduling problem. While optimization methods work well for centralized 

cases, game theoretic approaches offer more diverse solution opportunities for decentralized 

case. By this algorithm, we introduce a very realistic negotiation mechanism between the 

agents of the system. 

Auction Based Algorithm is a pioneer in our problem structure. It works quiet well, 

however, it does not contain any optimization features. It is a possible research opportunity to 

define optimization submodels and employ them in the auction mechanism. 

We work in a single supplier (or single machine) environment. A possible extension is 

to move the problem in a two-supplier (two-machine) or multi-supplier (multi-machine) 

environment. 

Lagrangean Relaxation Algorithm is also a promising algorithm for our problem 

structure. Although it is working on centralized environment, with some revisions it can be 

made to work on decentralized case. One of the ways is instead of employing subgradient 

algorithm under Lagrangean Relaxation Algorithm, we can develop a pricing heuristic. Then, 

it behaves like an auction algorithm. 
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Different utility functions can be fit to the job agents. By adding extra components to 

the utility function we gain great flexibility for the scheduling solution. 

There is not a measure of degree of decentralization. If there was one, it would be 

better to evaluate the performance of an algorithm working on a decentralized environment. 

This is an intensively theoretic research. 
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APPENDIX A 

Java Code of Auction Based Algorithm 

SystemCore.java 

import java.io.*; 
 
public class SystemCore{ 
  
public static void main (String[] args) throws IOException 
{ 
 int release2 = 0; 
 int duedate2 = 0; 
 int process2 = 0; 
 double early2 = 0; 
 double tardy2 = 0; 
 int counter = 0; 
 final int MAXJOBS = 8; 
 int CORDOBA = 20; 
 int[] earliness = new int[MAXJOBS]; 
 int[] tardiness = new int[MAXJOBS]; 
 double[] earlycost = new double[MAXJOBS]; 
 double[] tardycost = new double[MAXJOBS]; 
 int[] starttime = new int[MAXJOBS]; 
 int[] finishtime = new int[MAXJOBS]; 
 double[] machineutility = new double[CORDOBA]; 
 boolean[] scheduled = new boolean[MAXJOBS]; 
 double[] totalutility = new double[CORDOBA]; 
 double[] totalutility2 = new double[CORDOBA]; 
 double[] totalcost = new double[CORDOBA]; 
 Job[] jobs = new Job[MAXJOBS]; 
 double avgtotalutility = 0; 
 double avgtotalutility2 = 0; 
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 double avgtotalcost = 0; 
 double avgmachineutility = 0; 
  
 for (int carew = 1; carew <= CORDOBA; carew++) 
 { 
  System.out.println(carew); 
  int numberscheduled = 0; 
  int numbernotscheduled = 0; 
  String line, name, file = "input8-02-04-00-005-"+carew+".dat";  
    
  FileReader fr = new FileReader(file); 
  BufferedReader infile = new BufferedReader (fr); 
   int count7 = 0; 
   for (int index = 1; index <= 5 * MAXJOBS; index++) 
   { 
    line = infile.readLine(); 
    if(index%5 == 1){ 
     release2 = Integer.parseInt(line); 
    } 
    if(index%5 == 2){ 
     duedate2 = Integer.parseInt(line); 
    } 
    if(index%5 == 3){ 
     process2 = Integer.parseInt(line); 
    } 
    if(index%5 == 4){ 
     early2 = Double.parseDouble(line); 
    } 
    if(index%5 == 0){ 
     tardy2 = Double.parseDouble(line); 
     jobs[count7] = new Job(release2, duedate2, process2, 
early2, tardy2); 
     count7++; 
    } 
     
   } 
   
   /*close file*/ 
   infile.close(); 
    
   Machine machine = new Machine(jobs); 
   
  double[] reservationprices1 = machine.GenerateReservationPrices(); 
   
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   jobs[index-1].FindMaxcost(); 
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  } 
  
   
  double normalizer1 = machine.FindNormalizer(); 
     
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   jobs[index-1].GenerateUtilityFunction(reservationprices1, 
normalizer1); 
  } 
   
  while (counter < MAXJOBS) 
  { 
   for (int index = 1; index <= MAXJOBS; index++) 
   { 
  
    jobs[index-1].FindMaxUtility(); 
     
    for (int subindex = 1; subindex <= Job.MAXTIMESLOTS; 
subindex++) 
    { 
     Machine.oldstatus[subindex-1] = 
Machine.status[subindex-1]; 
     Machine.oldreservationprices[subindex-1] = 
Machine.reservationprices[subindex-1]; 
     Machine.oldprices[subindex-1] = 
Machine.prices[subindex-1]; 
    } 
  
     
    int target1 = jobs[index-1].argmaxutility; 
    boolean result1 = false; 
    int count1 = 0; 
    boolean resultmaxutility = false; 
        
    for (int subindex = 1; subindex <= Job.MAXTIMESLOTS; 
subindex++) 
    { 
     if (Machine.oldstatus[subindex-1] == index && 
jobs[index-1].utilities[subindex-1] == jobs[index-1].maxutility) 
     { 
      result1 = true; 
      subindex = Job.MAXTIMESLOTS+1; 
     } 
    } 
     
    if (jobs[index-1].maxutility > 0 && result1 == false) 
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    { 
     jobs[index-1].PrepareBid(); 
     
     machine.AssignTimeSlots(index); 
      
     machine.DeterminePrices(index); 
    } 
     
    else 
    { 
     for (int subindex = 1; subindex <= 
Job.MAXTIMESLOTS; subindex++) 
     { 
      Machine.status[subindex-1] = 
Machine.oldstatus[subindex-1]; 
      Machine.prices[subindex-1] = 
Machine.oldprices[subindex-1]; 
      Machine.reservationprices[subindex-1] = 
Machine.oldreservationprices[subindex-1]; 
     } 
    } 
     
     
  
     
    for (int subindex = 1; subindex <= MAXJOBS; subindex++) 
    { 
     jobs[subindex-1].ReviseUtilities(); 
    } 
     
    if (machine.isChanged()) 
    { 
     counter++; 
    } 
    else 
    { 
     counter = 0; 
    } 
     
//    System.out.println("Counter = " + counter); 
   } 
  } 
   
  
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
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   for (int subindex = 1; subindex <= Job.MAXTIMESLOTS; 
subindex++) 
   { 
    if (Machine.status[subindex-1] == index) 
    { 
     scheduled[index-1] = true; 
     subindex = Job.MAXTIMESLOTS+1; 
    } 
     
    else 
    { 
     scheduled[index-1] = false; 
      
    } 
     
   } 
    
   if (scheduled[index-1] == true) 
   { 
    numberscheduled++; 
   } 
   else 
   { 
    numbernotscheduled++; 
   } 
  } 
   
  machine.assignstatus(); 
  
 //biter insallah 
  counter = 0; 
   
  int counter10 = 0; 
  while (numbernotscheduled != 0) 
  { 
   counter10++; 
   double[] reservationprices2 = 
machine.GenerateReservationPrices2(scheduled); 
 /*  for(int i=0; i<100; i++) 
   { 
    System.out.println(reservationprices2[i]); 
   }*/ 
   for (int index = 1; index <= MAXJOBS; index++) 
   { 
    if (scheduled[index-1] == false) 
    { 
     jobs[index-1].FindMaxcost2(); 
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    } 
   } 
 /*  for(int i=0; i<8; i++) 
   { 
    System.out.println(jobs[i].maxcost); 
   }*/ 
    
   double normalizer2 = machine.FindNormalizer2(scheduled); 
 //  System.out.println(normalizer2); 
  
   for (int index = 1; index <= MAXJOBS; index++) 
   { 
    if (scheduled[index-1] == false) 
    { 
     jobs[index-
1].GenerateUtilityFunction2(reservationprices2, normalizer2); 
    } 
   } 
  
 /*  for(int i=0; i<240; i++) 
   { 
    System.out.println(jobs[3].utilities[i]); 
   }*/ 
    
   int counter101 = 0; 
   int counter11 = 0; 
  
   while (counter11 < numbernotscheduled) 
   { 
    counter11 = 0; 
    counter101++; 
    for (int index = 1; index <= MAXJOBS; index++) 
    { 
     if (scheduled[index-1] == false) 
     { 
      jobs[index-1].FindMaxUtility2(); 
/*      if (counter101 == 1) 
      { 
       System.out.println(jobs[index-
1].maxutility); 
       System.out.println(jobs[index-
1].argmaxutility); 
      }*/ 
  
      for (int subindex = 1; subindex <= 
Job.MAXTIMESLOTS; subindex++) 
      { 
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       Machine.oldstatus[subindex-1] = 
Machine.status[subindex-1]; 
       Machine.oldreservationprices[subindex-
1] = Machine.reservationprices[subindex-1]; 
       Machine.oldprices[subindex-1] = 
Machine.prices[subindex-1]; 
      } 
      
      int target2 = jobs[index-1].argmaxutility; 
      boolean result2 = false; 
      int count2 = 0; 
      boolean resultmaxutility2 = false; 
  
      for (int subindex = 1; subindex <= 
Job.MAXTIMESLOTS; subindex++) 
      { 
       if (Machine.status2[subindex-1] == 0) 
       { 
        if (Machine.oldstatus[subindex-1] 
== index && jobs[index-1].utilities[subindex-1] == jobs[index-1].maxutility) 
        { 
         result2 = true; 
         subindex = 
Job.MAXTIMESLOTS+1; 
        } 
       } 
      } 
  
      if (jobs[index-1].maxutility > 0 && result2 == 
false) 
      { 
       jobs[index-1].PrepareBid2(); 
        
       machine.AssignTimeSlots2(index); 
        
       machine.DeterminePrices2(index); 
      } 
  
      else 
      { 
       for (int subindex = 1; subindex <= 
Job.MAXTIMESLOTS; subindex++) 
       { 
        Machine.status[subindex-1] = 
Machine.oldstatus[subindex-1]; 
        Machine.prices[subindex-1] = 
Machine.oldprices[subindex-1]; 
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 Machine.reservationprices[subindex-1] = Machine.oldreservationprices[subindex-1]; 
       } 
      } 
  
      for (int subindex = 1; subindex <= MAXJOBS; 
subindex++) 
      { 
       if (scheduled[subindex-1] == false) 
       { 
        jobs[subindex-
1].ReviseUtilities2(); 
       } 
      } 
  
      if (machine.isChanged()) 
      { 
       counter11++; 
      } 
      else 
      { 
       counter11 = 0; 
      } 
       
//      System.out.println("Counter = " + counter11); 
  
  
     } 
    } 
   } 
    
  
  
   for (int index = 1; index <= MAXJOBS; index++) 
   { 
    if (scheduled[index-1] == false) 
    { 
     for (int subindex = 1; subindex <= 
Job.MAXTIMESLOTS; subindex++) 
     { 
      if (Machine.status[subindex-1] == index) 
      { 
       scheduled[index-1] = true; 
       subindex = Job.MAXTIMESLOTS+1; 
      } 
       
      else 
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      { 
       scheduled[index-1] = false; 
        
      } 
       
     } 
      
     if (scheduled[index-1] == true) 
     { 
      numberscheduled++; 
      numbernotscheduled--; 
     } 
    } 
   } 
  
//   System.out.println("counter10 = "+ counter10); 
//   System.out.println("not scheduled = " + numbernotscheduled); 
//   System.out.println("scheduled = " + numberscheduled); 
  } 
  
  System.out.println("not scheduled = " + numbernotscheduled); 
  System.out.println("scheduled = " + numberscheduled); 
 
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   for (int subindex = 1; subindex <= Job.MAXTIMESLOTS; 
subindex++) 
   { 
    if (Machine.status[subindex-1] == index) 
    { 
     starttime[index-1] = subindex-1; 
     finishtime[index-1] = subindex-1+jobs[index-
1].getProcTime(); 
     subindex = Job.MAXTIMESLOTS+1; 
    } 
   } 
  } 
   
  totalutility[carew-1] = 0; 
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   totalutility[carew-1] += jobs[index-1].firstutilities[starttime[index-1]]; 
  } 
  System.out.println("Total Utility = " + totalutility[carew-1]);  
  
 
  for (int index = 1; index <= MAXJOBS; index++) 
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  { 
   if (finishtime[index-1] < jobs[index-1].getDueDate()) 
   { 
    earliness[index-1] = jobs[index-1].getDueDate()-
finishtime[index-1]; 
    tardiness[index-1] = 0; 
   } 
   else  
   { 
    tardiness[index-1] = finishtime[index-1]-jobs[index-
1].getDueDate(); 
    earliness[index-1] = 0; 
   } 
   
   earlycost[index-1] = jobs[index-1].getEarly()*earliness[index-1]; 
   tardycost[index-1] = jobs[index-1].getTardy()*tardiness[index-1]; 
  } 
   
  
  totalcost[carew-1] = 0; 
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   totalcost[carew-1] = totalcost[carew-1]+earlycost[index-
1]+tardycost[index-1]; 
  } 
  System.out.println("Total Cost = " + totalcost[carew-1]); 
   
  totalutility2[carew-1] = 0; 
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   totalutility2[carew-1] += jobs[index-1].utilities[starttime[index-1]]; 
  } 
  System.out.println("Total Utility2 = " + totalutility2[carew-1]);  
  
 
  machineutility[carew-1] = 0;  
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  { 
   machineutility[carew-1] += Machine.prices[index-1]; 
  } 
  System.out.println("Machine Utility = " + machineutility[carew-1]); 
  
  String file6 = "costs"+carew+".gms";//cost data 
   
  FileWriter fw6 = new FileWriter (file6); 
  BufferedWriter bw6 = new BufferedWriter (fw6); 
  PrintWriter outFile6 = new PrintWriter (bw6); 
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  for (int index=1; index<=MAXJOBS; index++) 
  { 
   outFile6.print("\t"+"i"+index); 
  } 
  outFile6.println(); 
  for (int index=1; index<=Job.MAXTIMESLOTS; index++) 
  { 
   outFile6.print("r"+index);   
   for (int subindex=1; subindex<=MAXJOBS; subindex++) 
   { 
    outFile6.print("\t"+jobs[subindex-1].firstcosts[index-1]); 
   } 
   outFile6.println(); 
  } 
  outFile6.close(); 
    
  String file5 = "process"+carew+".gms";//utility data 
   
  FileWriter fw5 = new FileWriter (file5); 
  BufferedWriter bw5 = new BufferedWriter (fw5); 
  PrintWriter outFile5 = new PrintWriter (bw5); 
   
  outFile5.print("/"); 
  for (int index=1; index<=MAXJOBS; index++) 
  { 
   if(index<MAXJOBS) 
   { 
    outFile5.println("i"+index+"\t"+jobs[index-1].getProcTime()); 
   } 
   else 
   { 
    outFile5.println("i"+index+"\t"+jobs[index-
1].getProcTime()+"/"); 
   } 
  } 
  outFile5.close(); 
   
  
  String file4 = "tablebi.gms";//utility data 
   
  FileWriter fw4 = new FileWriter (file4); 
  BufferedWriter bw4 = new BufferedWriter (fw4); 
  PrintWriter outFile4 = new PrintWriter (bw4); 
   
  outFile4.print("/"); 
  for (int index=1; index<=Job.MAXTIMESLOTS; index++) 
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  { 
   if(index<Job.MAXTIMESLOTS) 
   { 
    outFile4.println("r"+index+"\t"+"1"); 
   } 
   else 
   { 
    outFile4.println("r"+index+"\t"+"1"+"/"); 
   } 
  } 
  outFile4.close(); 
  
  String file3 = "tableaij.gms";//utility data 
   
  FileWriter fw3 = new FileWriter (file3); 
  BufferedWriter bw3 = new BufferedWriter (fw3); 
  PrintWriter outFile3 = new PrintWriter (bw3); 
   
  for (int index=1; index<=MAXJOBS; index++) 
  { 
   outFile3.print("\t"+"i"+index); 
  } 
  outFile3.println(); 
  for (int index=1; index<=Job.MAXTIMESLOTS; index++) 
  { 
   outFile3.print("r"+index);   
   for (int subindex=1; subindex<=MAXJOBS; subindex++) 
   { 
    outFile3.print("\t"+"1"); 
   } 
   outFile3.println(); 
  } 
  outFile3.close(); 
  
  String file2 = "utilities"+carew+".gms";//utility data 
   
  FileWriter fw2 = new FileWriter (file2); 
  BufferedWriter bw2 = new BufferedWriter (fw2); 
  PrintWriter outFile2 = new PrintWriter (bw2); 
   
  for (int index=1; index<=MAXJOBS; index++) 
  { 
   outFile2.print("\t"+"i"+index); 
  } 
  outFile2.println(); 
  for (int index=1; index<=Job.MAXTIMESLOTS; index++) 
  { 
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   outFile2.print("r"+index);   
   for (int subindex=1; subindex<=MAXJOBS; subindex++) 
   { 
    outFile2.print("\t"+jobs[subindex-1].firstutilities[index-1]); 
   } 
   outFile2.println(); 
  } 
  outFile2.close();    
  
  
/*  String file7 = "deniyorum"+carew+".dat";//"output8-02-04-00-005.dat"; 
   
  FileWriter fw7 = new FileWriter (file7); 
  BufferedWriter bw7 = new BufferedWriter (fw7); 
  PrintWriter outFile7 = new PrintWriter (bw7); 
   
  outFile7.println ("TotalNumberofJobs: " + "\t" + MAXJOBS); 
  outFile7.println ("NumberofScheduledJobs: " + "\t" + numberscheduled); 
  outFile7.println ("NumberofUnscheduledJobs: " + "\t" + 
numbernotscheduled); 
  outFile7.println ("TotalCost: " + "\t" + totalcost[carew-1]); 
  outFile7.println ("UtilityofMachine: " + "\t" + machineutility); 
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   if (scheduled[index-1] == false) 
   { 
    outFile7.println ("Job" + index + " is not scheduled."); 
   } 
  } 
  
  outFile7.println ("JobIndex" + "\t" + "ReleaseTime" + "\t" + "DueDate" + "\t"  
      + "ProcessTime" + "\t" + "StartTime" + "\t" + 
"FinishTime"); 
   
  for (int index = 1; index <= MAXJOBS; index++)  
  { 
   outFile7.println (index + "\t" + jobs[index-1].getReleaseTime() + "\t" + 
jobs[index-1].getDueDate() + "\t"  
       + jobs[index-1].getProcTime() + "\t" + 
starttime[index-1] + "\t" + finishtime[index-1]); 
  } 
  
  
  outFile7.println ("JobIndex" + "\t" + "Earliness" + "\t" + "Tardiness" + "\t"  
      + "EarlinessCost" + "\t" + "TardinessCost" + "\t" 
+ "MaximumUtility"); 
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  for (int index = 1; index <= MAXJOBS; index++)  
  { 
   outFile7.println (index + "\t" + earliness[index-1] + "\t" + 
tardiness[index-1] + "\t"  
       + earlycost[index-1] + "\t" + 
tardycost[index-1] + "\t" + jobs[index-1].maxutility); 
  } 
   
  outFile7.close();*/ 
  
 } 
  
 for (int carew=1; carew<=CORDOBA; carew++) 
 { 
  avgtotalutility += totalutility[carew-1]; 
 } 
 avgtotalutility = avgtotalutility/CORDOBA; 
  
 for (int carew=1; carew<=CORDOBA; carew++) 
 { 
  avgtotalcost += totalcost[carew-1]; 
 } 
 avgtotalcost = avgtotalcost/CORDOBA; 
 
 for (int carew=1; carew<=CORDOBA; carew++) 
 { 
  avgtotalutility2 += totalutility2[carew-1]; 
 } 
 avgtotalutility2 = avgtotalutility2/CORDOBA; 
  
 for (int carew=1; carew<=CORDOBA; carew++) 
 { 
  avgmachineutility += machineutility[carew-1]; 
 } 
 avgmachineutility = avgmachineutility/CORDOBA; 
  
 System.out.println (avgtotalutility); 
 System.out.println (avgtotalcost); 
 System.out.println (avgtotalutility2); 
 System.out.println (avgmachineutility); 
 
 String file1 = "output.dat"; 
  
 FileWriter fw = new FileWriter (file1); 
 BufferedWriter bw = new BufferedWriter (fw); 
 PrintWriter outFile = new PrintWriter (bw); 
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 outFile.println (avgtotalutility); 
 outFile.println (avgtotalcost); 
 outFile.println (avgtotalutility2); 
 outFile.println (avgmachineutility); 
  
 outFile.close(); 
} 
} 
 
Job.java 

public class Job{ 
  
 public static final int MAXTIMESLOTS = 250;//DIKKAT ETTTTTTTTTT 
 private final int CONORMALIZER = 1; 
 public double maxcost; 
 private int release, duedate, process; 
 private double early, tardy; 
 public double[] utilities = new double[MAXTIMESLOTS]; 
 public int[] firstutilities = new int[MAXTIMESLOTS]; 
 public double[] oldutilities = new double[MAXTIMESLOTS]; 
 public double bid; 
 public double maxutility; 
 public int argmaxutility; 
 private double[] costs = new double[MAXTIMESLOTS]; 
 public int[] firstcosts = new int[MAXTIMESLOTS]; 
   
 public Job(int release1, int duedate1, int process1, double early1, double tardy1){ 
  release = release1; 
  duedate = duedate1; 
  process = process1; 
  early = early1; 
  tardy = tardy1; 
 } 
   
 public void FindMaxcost() 
 { 
 
  for (int index = release+1; index <= MAXTIMESLOTS-process+1; index++) 
  {  
   if (index+process-1 < duedate) 
    costs[index-1] = early*(duedate-index-process+1); 
   else  
    costs[index-1] = tardy*(index+process-1-duedate); 
  } 
   
  maxcost = costs[release+1-1]; 
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  for (int index = release+2; index <= MAXTIMESLOTS-process+1; index++) 
  { 
   if (costs[index-1] > maxcost) 
   { 
    maxcost = costs[index-1]; 
   } 
  } 
 } 
 
 public void GenerateUtilityFunction (double[] reservationprices, double normalizer) 
 { 
  for(int i = 0; i < reservationprices.length; i++){ 
   Machine.prices[i] = reservationprices[i]; 
  } 
     
  for (int index = release+1; index <= MAXTIMESLOTS-process+1; index++) 
  { 
   utilities[index-1] = CONORMALIZER*Machine.normalizer-
costs[index-1]; 
    
   for (int subindex = index; subindex < index+process; subindex++) 
   { 
    utilities[index-1] = utilities[index-1]-Machine.prices [subindex-
1]; 
   } 
   firstutilities[index-1] = (int) utilities[index-1]; 
  } 
   
  double bigcost = Machine.normalizer;   
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  {  
   if (index>=release+1 && index<=MAXTIMESLOTS-process+1) 
   { 
    firstcosts[index-1] = (int )costs[index-1]; 
   } 
   else 
   { 
    firstcosts[index-1] = (int) bigcost; 
   } 
    
   if (firstcosts[index-1] == 0 && index+process-1!= duedate) 
   { 
    firstcosts[index-1] = 1; 
   } 
  } 
 } 
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 public void FindMaxUtility() 
 { 
  maxutility = utilities[release+1-1]; 
  argmaxutility = release+1; 
 
  for (int index = release+2; index <= MAXTIMESLOTS-process+1; index++) 
  { 
   if (maxutility <= utilities[index-1]) 
   { 
    maxutility = utilities[index-1]; 
    argmaxutility = index; 
   } 
  } 
 
 } 
  
 public void PrepareBid() 
 { 
   bid = 0; 
    
   for (int subindex = argmaxutility; subindex < argmaxutility+process; 
subindex++) 
   { 
    bid = bid+Machine.prices[subindex-1]; 
   } 
   
   for (int index = release+1; index < argmaxutility; index++) 
   { 
    if (Machine.oldstatus [argmaxutility-1] != 0 && 
     Machine.oldstatus[index-1] == Machine.oldstatus 
[argmaxutility-1]) 
    { 
     bid = bid+Machine.oldprices[index-1]-
Machine.oldreservationprices [index-1]; 
    } 
     
    else 
    { 
     bid = bid; 
    } 
   }   
   
   for (int index = argmaxutility+process; index <= MAXTIMESLOTS-
process+1; index++) 
   { 
    if (Machine.oldstatus [argmaxutility+process-1-1] != 0 && 
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     Machine.oldstatus[index-1] == Machine.oldstatus 
[argmaxutility+process-1-1]) 
    { 
     bid = bid+Machine.oldprices[index-1]-
Machine.oldreservationprices [index-1]; 
    } 
     
    else 
    { 
     bid = bid; 
    } 
   } 
   
   bid = bid+process*Machine.INCREMENT; 
 } 
  
 public void ReviseUtilities() 
 { 
  for (int index = release+1; index <= MAXTIMESLOTS-process+1; index++) 
  { 
   utilities[index-1] = Machine.normalizer-costs[index-1]; 
    
   for (int subindex = index; subindex < index+process; subindex++) 
   { 
    utilities[index-1] = utilities[index-1]-Machine.prices [subindex-
1]; 
   } 
  } 
 } 
    
 public void FindMaxcost2() 
 { 
 
  for (int index = release+1; index <= MAXTIMESLOTS-process+1; index++) 
  {  
   if (index+process-1 < duedate) 
    costs[index-1] = early*(duedate-index-process+1); 
   else  
    costs[index-1] = tardy*(index+process-1-duedate); 
  } 
   
  maxcost = costs[release+1-1]; 
   
  for (int index = release+2; index <= MAXTIMESLOTS-process+1; index++) 
  { 
   if (costs[index-1] > maxcost) 
   { 
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    maxcost = costs[index-1]; 
   } 
  } 
 } 
 
 public void GenerateUtilityFunction2 (double[] reservationprices, double normalizer) 
 { 
  for(int i = 0; i < reservationprices.length; i++){ 
   if (Machine.status[i] == 0) 
   { 
    Machine.prices[i] = reservationprices[i]; 
   } 
  } 
 
  for(int i = 0; i < utilities.length; i++){ 
   utilities[i] = 0; 
  } 
 
     
  for (int index = release+1; index <= MAXTIMESLOTS-process+1; index++) 
  { 
   utilities[index-1] = CONORMALIZER*Machine.normalizer-
costs[index-1]; 
    
   for (int subindex = index; subindex < index+process; subindex++) 
   { 
    if (Machine.status2[subindex-1] != 0) 
    { 
     utilities[index-1] = 0; 
     subindex = index+process; 
    } 
    else 
    { 
     utilities[index-1] = utilities[index-1]-Machine.prices 
[subindex-1]; 
    } 
   } 
  } 
  
 } 
 
 public void FindMaxUtility2() 
 { 
  maxutility = 0; 
  argmaxutility = release+1; 
 
  for (int index = release+1; index <= MAXTIMESLOTS-process+1; index++) 
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  { 
   if (Machine.status2[index-1] == 0) 
   { 
    if (maxutility <= utilities[index-1]) 
    { 
     maxutility = utilities[index-1]; 
     argmaxutility = index; 
    } 
   } 
  } 
 
 } 
  
 public void PrepareBid2() 
 { 
   bid = 0; 
    
   for (int subindex = argmaxutility; subindex < argmaxutility+process; 
subindex++) 
   { 
    bid = bid+Machine.prices[subindex-1]; 
   } 
   
   for (int index = release+1; index < argmaxutility; index++) 
   { 
    if (Machine.status2[index-1] == 0) 
    { 
     if (Machine.oldstatus [argmaxutility-1] != 0 && 
      Machine.oldstatus[index-1] == 
Machine.oldstatus [argmaxutility-1]) 
     { 
      bid = bid+Machine.oldprices[index-1]-
Machine.oldreservationprices [index-1]; 
     } 
      
     else 
     { 
      bid = bid; 
     } 
    } 
   }   
   
   for (int index = argmaxutility+process; index <= MAXTIMESLOTS-
process+1; index++) 
   { 
    if (Machine.oldstatus [argmaxutility+process-1-1] != 0 && 
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     Machine.oldstatus[index-1] == Machine.oldstatus 
[argmaxutility+process-1-1]) 
    { 
     bid = bid+Machine.oldprices[index-1]-
Machine.oldreservationprices [index-1]; 
    } 
     
    else 
    { 
     bid = bid; 
    } 
   } 
   
   bid = bid+process*Machine.INCREMENT; 
 } 
 
 public void ReviseUtilities2() 
 { 
  for (int index = release+1; index <= MAXTIMESLOTS-process+1; index++) 
  { 
   if (Machine.status2[index-1] == 0) 
   { 
    utilities[index-1] = Machine.normalizer-costs[index-1]; 
     
    for (int subindex = index; subindex < index+process; 
subindex++) 
    { 
     if (Machine.status2[subindex-1] != 0) 
     { 
      utilities[index-1] = 0; 
      subindex = MAXTIMESLOTS+2; 
     } 
     else 
     { 
      utilities[index-1] = utilities[index-1]-
Machine.prices [subindex-1]; 
     } 
    } 
   } 
  } 
 }   
     
 public int getDueDate(){ 
  return duedate; 
 } 
  
 public int getProcTime(){ 
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  return process; 
 }  
 
 public int getReleaseTime(){ 
  return release; 
 }  
  
 public double getEarly(){ 
  return early; 
 }  
  
 public double getTardy(){ 
  return tardy; 
 }  
 
 
 
 public void reportJob(){ 
  String message = ""; 
  message += "Release Time:\t" +release +" Due Date:\t"+ duedate+"\n"; 
  message += "Process Time:\t" +process+" Early:\t" +early+"\n"; 
  message += "Tardy:\t"+ tardy; 
  System.out.println(message); 
 } 
  
 public void reportMaxcost() 
 { 
  System.out.println(maxcost); 
 } 
  
 public void reportUtility() 
 { 
  for (int index = 1; index <= MAXTIMESLOTS; index ++) 
  { 
   System.out.print(utilities[index-1] + " "); 
  } 
   
  System.out.println(); 
 } 
  
} 
 
 
Machine.java 

public class Machine 
{ 
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 Job[] jobs; 
 public static double[] reservationprices = new double[Job.MAXTIMESLOTS]; 
 public static final double INCREMENT = 2.5; 
 public static int MAXJOBS; 
 public static int[] status = new int[Job.MAXTIMESLOTS]; 
 public static int[] oldstatus = new int[Job.MAXTIMESLOTS]; 
 public static double[] prices = new double[Job.MAXTIMESLOTS]; 
 public static double normalizer; 
 public static double[] oldprices = new double[Job.MAXTIMESLOTS]; 
 public static double[] oldreservationprices = new double[Job.MAXTIMESLOTS]; 
 public static int[] status2 = new int[Job.MAXTIMESLOTS]; 
  
 public Machine (Job[] jobs_) 
 { 
  jobs = jobs_; 
  for(int i = 0; i<status.length; i++){ 
   status[i] = 0; 
  } 
  MAXJOBS = jobs.length; 
 } 
  
 public double[] GenerateReservationPrices () 
 { 
  int[] load = new int[Job.MAXTIMESLOTS]; 
  for(int i = 0; i < load.length; i++){ 
   load[i] = 0; 
  } 
   
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  { 
   for (int subindex = 1; subindex <= MAXJOBS; subindex++) 
   { 
    if (jobs[subindex-1].getDueDate() == index-1+jobs[subindex-
1].getProcTime()) 
    { 
     for (int subsubindex = index; subsubindex < 
index+jobs[subindex-1].getProcTime(); subsubindex++) 
      load[subsubindex-1] = load[subsubindex-1]+1; 
    } 
   } 
    
   reservationprices[index-1] = INCREMENT*load[index-1];//dikkat 
et,incrementle çarpiyordun, artik çarpmiyorsun 
  } 
  return reservationprices; 
    
 } 
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 public double FindNormalizer() 
 { 
  normalizer = jobs[0].maxcost; 
   
  for (int index = 2; index <= MAXJOBS; index++) 
  { 
   if (jobs[index-1].maxcost > normalizer) 
   { 
    normalizer = jobs[index-1].maxcost; 
   } 
  } 
   
  return normalizer; 
 } 
  
 public void AssignTimeSlots (int index) 
 { 
  int target = jobs[index-1].argmaxutility; 
   
  for (int subindex = target; subindex < target+jobs[index-1].getProcTime(); 
subindex++) 
  { 
   status[subindex-1] = index; 
  } 
   
  for (int subindex = jobs[index-1].getReleaseTime()+1; subindex < target; 
subindex++) 
  { 
   if (oldstatus[target-1] != 0 && oldstatus[subindex-1] == 
oldstatus[target-1]) 
   { 
    status[subindex-1] = 0; 
   } 
    
  }   
   
  for (int subindex = target+jobs[index-1].getProcTime(); subindex <= 
Job.MAXTIMESLOTS-jobs[index-1].getProcTime()+1; subindex++) 
  { 
   if (oldstatus [target+jobs[index-1].getProcTime()-1-1] != 0 &&  
   oldstatus[subindex-1] == oldstatus [target+jobs[index-
1].getProcTime()-1-1]) 
   { 
    status[subindex-1] = 0; 
   } 
  } 
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  for (int subindex = 1; subindex < target; subindex++) 
  { 
   if (oldstatus[subindex-1] == index) 
   { 
    status[subindex-1] = 0; 
   } 
  } 
 
  for (int subindex = target+jobs[index-1].getProcTime(); subindex <= 
Job.MAXTIMESLOTS; subindex++) 
  { 
   if (oldstatus[subindex-1] == index) 
   { 
    status[subindex-1] = 0; 
   } 
  } 
 } 
  
 public void DeterminePrices(int indice) 
 { 
  int target = jobs[indice-1].argmaxutility; 
  int numtarget = jobs[indice-1].getProcTime(); 
  double addvalue = jobs[indice-1].bid; 
   
  for (int subindex = target; subindex < target+jobs[indice-1].getProcTime(); 
subindex++) 
  { 
   addvalue = addvalue-oldprices[subindex-1]; 
  } 
    
  for (int subindex = target; subindex < target+jobs[indice-1].getProcTime(); 
subindex++) 
  { 
   prices[subindex-1] = oldprices[subindex-1] + (addvalue/numtarget); 
  } 
   
  for (int subindex = 1; subindex <= target-1; subindex++) 
  { 
   if (oldstatus[subindex-1] != status[subindex-1]) 
   { 
    if (oldstatus[subindex-1] == indice) 
    { 
     reservationprices[subindex-1] = oldprices[subindex-1]; 
     prices[subindex-1] = reservationprices[subindex-1]; 
    } 
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    else 
    { 
     reservationprices[subindex-1] = 
oldreservationprices[subindex-1]; 
     prices[subindex-1] = reservationprices[subindex-1]; 
    } 
   } 
    
   else 
   { 
    reservationprices[subindex-1] = oldreservationprices[subindex-
1]; 
    prices[subindex-1] = oldprices[subindex-1]; 
   } 
  } 
   
  for (int subindex = target+jobs[indice-1].getProcTime(); subindex <= 
Job.MAXTIMESLOTS; subindex++) 
  { 
   if (oldstatus[subindex-1] != status[subindex-1]) 
   { 
    if (oldstatus[subindex-1] == indice) 
    { 
     reservationprices[subindex-1] = oldprices[subindex-1]; 
     prices[subindex-1] = reservationprices[subindex-1]; 
    } 
     
    else 
    { 
     reservationprices[subindex-1] = 
oldreservationprices[subindex-1]; 
     prices[subindex-1] = reservationprices[subindex-1]; 
    } 
   } 
    
   else 
   { 
    reservationprices[subindex-1] = oldreservationprices[subindex-
1]; 
    prices[subindex-1] = oldprices[subindex-1]; 
   } 
  } 
 } 
  
 public double[] GenerateReservationPrices2 (boolean[] scheduled2) 
 { 
  int[] load = new int[Job.MAXTIMESLOTS]; 
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  for(int i = 0; i < load.length; i++){ 
   load[i] = 0; 
  } 
   
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  { 
   for (int subindex = 1; subindex <= MAXJOBS; subindex++) 
   { 
    if (scheduled2[subindex-1] == false) 
    { 
     if (jobs[subindex-1].getDueDate() == index-
1+jobs[subindex-1].getProcTime()) 
     { 
      for (int subsubindex = index; subsubindex < 
index+jobs[subindex-1].getProcTime(); subsubindex++) 
       load[subsubindex-1] = 
load[subsubindex-1]+1; 
     } 
    } 
   } 
    
   reservationprices[index-1] = INCREMENT*load[index-1];//dikkat 
et,incrementle çarpiyordun, artik çarpmiyorsun 
  } 
  return reservationprices; 
    
 } 
 
 public double FindNormalizer2(boolean[] scheduled2) 
 { 
  normalizer = 0; 
   
  for (int index = 1; index <= MAXJOBS; index++) 
  { 
   if (scheduled2[index-1] == false) 
   { 
    if (jobs[index-1].maxcost > normalizer) 
    { 
     normalizer = jobs[index-1].maxcost; 
    } 
   }  
  } 
   
  return normalizer; 
 } 
 
 public void AssignTimeSlots2(int index) 



 

 97 

 { 
  int target = jobs[index-1].argmaxutility; 
   
  for (int subindex = target; subindex < target+jobs[index-1].getProcTime(); 
subindex++) 
  { 
   status[subindex-1] = index; 
  } 
   
  for (int subindex = jobs[index-1].getReleaseTime()+1; subindex < target; 
subindex++) 
  { 
   if (status2[subindex-1] == 0) 
   { 
    if (oldstatus[target-1] != 0 && oldstatus[subindex-1] == 
oldstatus[target-1]) 
    { 
     status[subindex-1] = 0; 
    } 
   } 
    
  }   
   
  for (int subindex = target+jobs[index-1].getProcTime(); subindex <= 
Job.MAXTIMESLOTS-jobs[index-1].getProcTime()+1; subindex++) 
  { 
   if (status2[subindex-1] == 0) 
   { 
    if (oldstatus [target+jobs[index-1].getProcTime()-1-1] != 0 &&  
    oldstatus[subindex-1] == oldstatus [target+jobs[index-
1].getProcTime()-1-1]) 
    { 
     status[subindex-1] = 0; 
    } 
   } 
  } 
   
  for (int subindex = 1; subindex < target; subindex++) 
  { 
   if (status2[subindex-1] == 0) 
   {    
    if (oldstatus[subindex-1] == index) 
    { 
     status[subindex-1] = 0; 
    } 
   } 
  } 
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  for (int subindex = target+jobs[index-1].getProcTime(); subindex <= 
Job.MAXTIMESLOTS; subindex++) 
  { 
   if (status2[subindex-1] == 0) 
   { 
    if (oldstatus[subindex-1] == index) 
    { 
     status[subindex-1] = 0; 
    } 
   } 
  } 
 } 
  
 public void DeterminePrices2(int indice) 
 { 
  int target = jobs[indice-1].argmaxutility; 
  int numtarget = jobs[indice-1].getProcTime(); 
  double addvalue = jobs[indice-1].bid; 
   
  for (int subindex = target; subindex < target+jobs[indice-1].getProcTime(); 
subindex++) 
  { 
   addvalue = addvalue-oldprices[subindex-1]; 
  } 
    
  for (int subindex = target; subindex < target+jobs[indice-1].getProcTime(); 
subindex++) 
  { 
   prices[subindex-1] = oldprices[subindex-1] + (addvalue/numtarget); 
  } 
   
  for (int subindex = 1; subindex <= target-1; subindex++) 
  { 
   if (status2[subindex-1] == 0) 
   { 
    if (oldstatus[subindex-1] != status[subindex-1]) 
    { 
     if (oldstatus[subindex-1] == indice) 
     { 
      reservationprices[subindex-1] = 
oldprices[subindex-1]; 
      prices[subindex-1] = 
reservationprices[subindex-1]; 
     } 
      
     else 
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     { 
      reservationprices[subindex-1] = 
oldreservationprices[subindex-1]; 
      prices[subindex-1] = 
reservationprices[subindex-1]; 
     } 
    } 
     
    else 
    { 
     reservationprices[subindex-1] = 
oldreservationprices[subindex-1]; 
     prices[subindex-1] = oldprices[subindex-1]; 
    } 
   } 
  } 
   
  for (int subindex = target+jobs[indice-1].getProcTime(); subindex <= 
Job.MAXTIMESLOTS; subindex++) 
  { 
   if (status2[subindex-1] == 0) 
   { 
    if (oldstatus[subindex-1] != status[subindex-1]) 
    { 
     if (oldstatus[subindex-1] == indice) 
     { 
      reservationprices[subindex-1] = 
oldprices[subindex-1]; 
      prices[subindex-1] = 
reservationprices[subindex-1]; 
     } 
      
     else 
     { 
      reservationprices[subindex-1] = 
oldreservationprices[subindex-1]; 
      prices[subindex-1] = 
reservationprices[subindex-1]; 
     } 
    } 
     
    else 
    { 
     reservationprices[subindex-1] = 
oldreservationprices[subindex-1]; 
     prices[subindex-1] = oldprices[subindex-1]; 
    } 
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   } 
  } 
 } 
 
 public boolean isChanged(){ 
   
  boolean result = false; 
  int count = 0; 
   
  for(int i = 0; i < status.length; i++) 
  { 
   if(status[i] == oldstatus[i]) 
   { 
    count++; 
   } 
  } 
   
  if(count == status.length) 
  { 
   result = true; 
  } 
   
  return result; 
 } 
  
 public void assignstatus() 
 { 
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  { 
   status2[index-1] = status[index-1]; 
  } 
 } 
  
 public void reportStatus() 
 { 
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  { 
   System.out.print(status[index-1] + " "); 
  } 
   
  System.out.println(); 
 } 
  
 public void reportPrices() 
 { 
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  { 
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   System.out.print(prices[index-1] + " "); 
  } 
   
  System.out.println(); 
 } 
  
 public void reportReservationPrices() 
 { 
  for (int index = 1; index <= Job.MAXTIMESLOTS; index++) 
  { 
   System.out.print(reservationprices[index-1] + " "); 
  } 
   
  System.out.println(); 
 } 
 
  
} 
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APPENDIX B 

Gams Code of Lagrangean Relaxation Algorithm 

$title Lagrangian Relaxation 
$stitle original model definition 
 
sets  i   time slots 
      j   jobs 
      dataset data sets /dataset1 * dataset20/ 
      resultset /totalutilitymain, totalcostmain, optimalutility, optimalcost, averageupper, 
avgsolvetimedata, avgsolvetimeutil, avgsolvetimecost/ 
alias (i, k, ii) 
alias (j, jj) 
 
binary variable x(i,j) assignment of i to j 
       variable z      total negative utility of assignment 
       variable zcost  optimal total cost of assignment 
       variable zutility optimal total utility of assignment 
 
equations capacity(i)  resource availability 
          choice(j)    assignment constraint.. one resource per item 
          defz         definition of negative total utility 
          defzcost     definition of total cost 
          defzutility  definition of total utility; 
 
parameters  a(i,j)  utilization of resource i by item j 
            f(i,j)  utility of assigning item j to resource i 
            c(i,j)  cost of assigning item j to resource i 
            b(i)    available resources 
            process(j)    processing time of job j 
            fp(i,j,dataset)  cost of assigning item j to resource i dataset 
            processp(j,dataset)    processing time of job j dataset 
            utilities1(i,j) 
            utilities2(i,j) 
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            utilities3(i,j) 
            utilities4(i,j) 
            utilities5(i,j) 
            utilities6(i,j) 
            utilities7(i,j) 
            utilities8(i,j) 
            utilities9(i,j) 
            utilities10(i,j) 
            utilities11(i,j) 
            utilities12(i,j) 
            utilities13(i,j) 
            utilities14(i,j) 
            utilities15(i,j) 
            utilities16(i,j) 
            utilities17(i,j) 
            utilities18(i,j) 
            utilities19(i,j) 
            utilities20(i,j) 
            costs1(i,j) 
            costs2(i,j) 
            costs3(i,j) 
            costs4(i,j) 
            costs5(i,j) 
            costs6(i,j) 
            costs7(i,j) 
            costs8(i,j) 
            costs9(i,j) 
            costs10(i,j) 
            costs11(i,j) 
            costs12(i,j) 
            costs13(i,j) 
            costs14(i,j) 
            costs15(i,j) 
            costs16(i,j) 
            costs17(i,j) 
            costs18(i,j) 
            costs19(i,j) 
            costs20(i,j) 
            process1(j) 
            process2(j) 
            process3(j) 
            process4(j) 
            process5(j) 
            process6(j) 
            process7(j) 
            process8(j) 
            process9(j) 
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            process10(j) 
            process11(j) 
            process12(j) 
            process13(j) 
            process14(j) 
            process15(j) 
            process16(j) 
            process17(j) 
            process18(j) 
            process19(j) 
            process20(j); 
 
 
capacity(i)..  sum(j, sum(k$((ord(k) ge (max(ord(i)-process(j)+1, 1)))$(ord(k) le (ord(i)))), 
a(k,j)*x(k,j))) =l= b(i); 
 
choice(j)..    sum(i, x(i,j)) =e= 1; 
 
defz..         z =e= -sum((i,j), f(i,j)*x(i,j)); 
defzcost..     zcost =e= sum((i,j), c(i,j)*x(i,j)); 
defzutility..  zutility =e= sum((i,j), f(i,j)*x(i,j)); 
 
model assign original assignment model / capacity, choice, defz /; 
model costproblem cost optimization / capacity, choice, defzcost /; 
model utilityproblem utility optimization / capacity, choice, defzutility /; 
 
sets  i   time slots / r1 *r250   / 
      j   jobs     / i1 * i8 /; 
 
$Offlisting 
table  a(i,j)  utilization of resource i by item j 
$include "tableaij.gms" 
table  utilities1(i,j) utility of job j starting at time slot i 
$include "utilities1.gms" 
table  utilities2(i,j) utility of job j starting at time slot i 
$include "utilities2.gms" 
table  utilities3(i,j) utility of job j starting at time slot i 
$include "utilities3.gms" 
table  utilities4(i,j) utility of job j starting at time slot i 
$include "utilities4.gms" 
table  utilities5(i,j) utility of job j starting at time slot i 
$include "utilities5.gms" 
table  utilities6(i,j) utility of job j starting at time slot i 
$include "utilities6.gms" 
table  utilities7(i,j) utility of job j starting at time slot i 
$include "utilities7.gms" 
table  utilities8(i,j) utility of job j starting at time slot i 
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$include "utilities8.gms" 
table  utilities9(i,j) utility of job j starting at time slot i 
$include "utilities9.gms" 
table  utilities10(i,j) utility of job j starting at time slot i 
$include "utilities10.gms" 
table  utilities11(i,j) utility of job j starting at time slot i 
$include "utilities11.gms" 
table  utilities12(i,j) utility of job j starting at time slot i 
$include "utilities12.gms" 
table  utilities13(i,j) utility of job j starting at time slot i 
$include "utilities13.gms" 
table  utilities14(i,j) utility of job j starting at time slot i 
$include "utilities14.gms" 
table  utilities15(i,j) utility of job j starting at time slot i 
$include "utilities15.gms" 
table  utilities16(i,j) utility of job j starting at time slot i 
$include "utilities16.gms" 
table  utilities17(i,j) utility of job j starting at time slot i 
$include "utilities17.gms" 
table  utilities18(i,j) utility of job j starting at time slot i 
$include "utilities18.gms" 
table  utilities19(i,j) utility of job j starting at time slot i 
$include "utilities19.gms" 
table  utilities20(i,j) utility of job j starting at time slot i 
$include "utilities20.gms" 
 
table  costs1(i,j) cost of job j starting at time slot i 
$include "costs1.gms" 
table  costs2(i,j) cost of job j starting at time slot i 
$include "costs2.gms" 
table  costs3(i,j) cost of job j starting at time slot i 
$include "costs3.gms" 
table  costs4(i,j) cost of job j starting at time slot i 
$include "costs4.gms" 
table  costs5(i,j) cost of job j starting at time slot i 
$include "costs5.gms" 
table  costs6(i,j) cost of job j starting at time slot i 
$include "costs6.gms" 
table  costs7(i,j) cost of job j starting at time slot i 
$include "costs7.gms" 
table  costs8(i,j) cost of job j starting at time slot i 
$include "costs8.gms" 
table  costs9(i,j) cost of job j starting at time slot i 
$include "costs9.gms" 
table  costs10(i,j) cost of job j starting at time slot i 
$include "costs10.gms" 
table  costs11(i,j) cost of job j starting at time slot i 
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$include "costs11.gms" 
table  costs12(i,j) cost of job j starting at time slot i 
$include "costs12.gms" 
table  costs13(i,j) cost of job j starting at time slot i 
$include "costs13.gms" 
table  costs14(i,j) cost of job j starting at time slot i 
$include "costs14.gms" 
table  costs15(i,j) cost of job j starting at time slot i 
$include "costs15.gms" 
table  costs16(i,j) cost of job j starting at time slot i 
$include "costs16.gms" 
table  costs17(i,j) cost of job j starting at time slot i 
$include "costs17.gms" 
table  costs18(i,j) cost of job j starting at time slot i 
$include "costs18.gms" 
table  costs19(i,j) cost of job j starting at time slot i 
$include "costs19.gms" 
table  costs20(i,j) cost of job j starting at time slot i 
$include "costs20.gms" 
 
parameters process1(j) process times of jobs 
$include "process1.gms" 
parameters process2(j) process times of jobs 
$include "process2.gms" 
parameters process3(j) process times of jobs 
$include "process3.gms" 
parameters process4(j) process times of jobs 
$include "process4.gms" 
parameters process5(j) process times of jobs 
$include "process5.gms" 
parameters process6(j) process times of jobs 
$include "process6.gms" 
parameters process7(j) process times of jobs 
$include "process7.gms" 
parameters process8(j) process times of jobs 
$include "process8.gms" 
parameters process9(j) process times of jobs 
$include "process9.gms" 
parameters process10(j) process times of jobs 
$include "process10.gms" 
parameters process11(j) process times of jobs 
$include "process11.gms" 
parameters process12(j) process times of jobs 
$include "process12.gms" 
parameters process13(j) process times of jobs 
$include "process13.gms" 
parameters process14(j) process times of jobs 
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$include "process14.gms" 
parameters process15(j) process times of jobs 
$include "process15.gms" 
parameters process16(j) process times of jobs 
$include "process16.gms" 
parameters process17(j) process times of jobs 
$include "process17.gms" 
parameters process18(j) process times of jobs 
$include "process18.gms" 
parameters process19(j) process times of jobs 
$include "process19.gms" 
parameters process20(j) process times of jobs 
$include "process20.gms" 
 
 
 
parameters b(i) available resources 
$include "tablebi.gms" 
 
$stitle Relaxed Problem Definition and Subgradient Optimization 
* Lagrangian subproblem definition 
* uses dynamic set to define WHICH knapsack to solve 
 
sets iter   subgradient iteration index / iter1 * iter20  / 
 
 
parameters  w(j)   Lagrangian multipliers 
            improv has the Lagrangian bound improved over the previous iterations 
            zbest(dataset) value of best feasible solution 
            costutility(dataset) cost corresponding to best feasible solution 
            upperzlbest(dataset) best upper value 
            optutility(dataset) optimal utility for each dataset 
            optcost(dataset) optimal cost for each dataset 
            summary(resultset) summary of the results 
            solvetimeiter(iter) solution time at each iteration 
            solvetimedata(dataset) solution time of each data set 
            solvetimeutil(dataset) solution time of each optimal utility 
            solvetimecost(dataset) solution time of each optimal cost 
 
variable  zlrx    relaxed objective 
 
equations knapsack(i) capacity with dynamic sets 
          defzlrx     definition of zlrx; 
 
knapsack(i)..  sum(j, sum(k$((ord(k) ge (max(ord(i)-process(j)+1, 1)))$(ord(k) le (ord(i)))), 
a(k,j)*x(k,j))) =l= b(i); 
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defzlrx..       zlrx =e= -sum((i,j), (f(i,j)+w(j))*x(i,j)); 
 
model pknap / knapsack, defzlrx /; 
 
scalars target target objective function value 
        alpha  step adjuster / 1 / 
        norm   norm of slacks 
        step   step size for subgradient / na / 
        zfeas  value for best known solution or valid upper bound 
        zlr    Lagrangian objective value 
        zl     Lagrangian objective value 
        zlbest current best Lagrangian lower bound 
        count  count of iterations without improvement 
        reset  reset count counter / 5 / 
        tol    termination tolerance / 1e-5 / 
        status outer loop status /0/ 
        counter count of infeasible constraints 
        zfes   value of feasible solution 
        zbestdummy dummy zbest 
        counter1 count of repeating assignments 
        counter2 count of infeasible capacity constraints 
        bool   boolean variable 
        totalutility average total utility 
        totalcost average total cost corresponding to totalutility 
        totaloptutility average optimal total utility 
        totaloptcost average optimal total cost 
        totalupper average of Lagrangean upper bound 
        totalsolvetimedata average time to solve Lagrangean problem 
        totalsolvetimeutil average time to solve utilization optimization problem 
        totalsolvetimecost average time to solve cost optimization problem 
 
parameters 
   s(j)             slack variable 
   report(iter,*)   iteration log 
   xrep(j,i,*)      x iteration report 
   srep(iter,j)     slack report 
   wrep(iter,j)     w iteration report 
   xx(i,j)          binary storage to show the starting time of job j 
   xstart(j)        starting time of job j; 
 
option   mip = default 
        rmip = default; 
 
file results writes iteration report / solution /; 
loop (dataset, 
 
f(i,j)$(ord(dataset)=1) = utilities1(i,j); 
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f(i,j)$(ord(dataset)=2) = utilities2(i,j); 
f(i,j)$(ord(dataset)=3) = utilities3(i,j); 
f(i,j)$(ord(dataset)=4) = utilities4(i,j); 
f(i,j)$(ord(dataset)=5) = utilities5(i,j); 
f(i,j)$(ord(dataset)=6) = utilities6(i,j); 
f(i,j)$(ord(dataset)=7) = utilities7(i,j); 
f(i,j)$(ord(dataset)=8) = utilities8(i,j); 
f(i,j)$(ord(dataset)=9) = utilities9(i,j); 
f(i,j)$(ord(dataset)=10) = utilities10(i,j); 
f(i,j)$(ord(dataset)=11) = utilities11(i,j); 
f(i,j)$(ord(dataset)=12) = utilities12(i,j); 
f(i,j)$(ord(dataset)=13) = utilities13(i,j); 
f(i,j)$(ord(dataset)=14) = utilities14(i,j); 
f(i,j)$(ord(dataset)=15) = utilities15(i,j); 
f(i,j)$(ord(dataset)=16) = utilities16(i,j); 
f(i,j)$(ord(dataset)=17) = utilities17(i,j); 
f(i,j)$(ord(dataset)=18) = utilities18(i,j); 
f(i,j)$(ord(dataset)=19) = utilities19(i,j); 
f(i,j)$(ord(dataset)=20) = utilities20(i,j); 
 
c(i,j)$(ord(dataset)=1) = costs1(i,j); 
c(i,j)$(ord(dataset)=2) = costs2(i,j); 
c(i,j)$(ord(dataset)=3) = costs3(i,j); 
c(i,j)$(ord(dataset)=4) = costs4(i,j); 
c(i,j)$(ord(dataset)=5) = costs5(i,j); 
c(i,j)$(ord(dataset)=6) = costs6(i,j); 
c(i,j)$(ord(dataset)=7) = costs7(i,j); 
c(i,j)$(ord(dataset)=8) = costs8(i,j); 
c(i,j)$(ord(dataset)=9) = costs9(i,j); 
c(i,j)$(ord(dataset)=10) = costs10(i,j); 
c(i,j)$(ord(dataset)=11) = costs11(i,j); 
c(i,j)$(ord(dataset)=12) = costs12(i,j); 
c(i,j)$(ord(dataset)=13) = costs13(i,j); 
c(i,j)$(ord(dataset)=14) = costs14(i,j); 
c(i,j)$(ord(dataset)=15) = costs15(i,j); 
c(i,j)$(ord(dataset)=16) = costs16(i,j); 
c(i,j)$(ord(dataset)=17) = costs17(i,j); 
c(i,j)$(ord(dataset)=18) = costs18(i,j); 
c(i,j)$(ord(dataset)=19) = costs19(i,j); 
c(i,j)$(ord(dataset)=20) = costs20(i,j); 
 
process(j)$(ord(dataset)=1) = process1(j); 
process(j)$(ord(dataset)=2) = process2(j); 
process(j)$(ord(dataset)=3) = process3(j); 
process(j)$(ord(dataset)=4) = process4(j); 
process(j)$(ord(dataset)=5) = process5(j); 
process(j)$(ord(dataset)=6) = process6(j); 
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process(j)$(ord(dataset)=7) = process7(j); 
process(j)$(ord(dataset)=8) = process8(j); 
process(j)$(ord(dataset)=9) = process9(j); 
process(j)$(ord(dataset)=10) = process10(j); 
process(j)$(ord(dataset)=11) = process11(j); 
process(j)$(ord(dataset)=12) = process12(j); 
process(j)$(ord(dataset)=13) = process13(j); 
process(j)$(ord(dataset)=14) = process14(j); 
process(j)$(ord(dataset)=15) = process15(j); 
process(j)$(ord(dataset)=16) = process16(j); 
process(j)$(ord(dataset)=17) = process17(j); 
process(j)$(ord(dataset)=18) = process18(j); 
process(j)$(ord(dataset)=19) = process19(j); 
process(j)$(ord(dataset)=20) = process20(j); 
 
 
* --- calculate initial Lagrangian multipliers 
*     There are many possibl ways to find initial multipliers. 
*     The choice of initial multipliers is very important for the 
*     overall performance. The marginals of the relaxed problem 
*     are often used to initialize the multipliers. Another choice 
*     is simply to start with zero multipliers. 
 
 
* replace 'default' with solver of your choice. 
 
 
 
 
 
 
put results 'solvers used: RMIP = ' system.rmip / 
            '               MIP = ' system.mip  /; 
 
* --- solve relaxed problem to get initial multipliers 
*     Note that different solvers get different dual solutions 
*     which are not as good as a zero set of initila multipliers. 
 
solve assign minimizing z using rmip; 
option solprint = off; 
put / 'RMIP objective value = ', z.l:12:6/; 
 
if(assign.modelstat = 1, 
   status = 1                        ! everything ok 
else 
   abort '*** relaxed MIP not optimal', 
         '    no subgradient iterations', x.l ); 
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xrep(j,i,'initial') = x.l(i,j); 
 
zlbest = z.l; 
 
* --- use RMIP duals 
w(j)   = choice.m(j); 
 
* --- use optimal duals 
*w(j) = wopt(j); 
 
* --- use zero starting point 
*w(j) = 0; 
*zlbest=0; 
 
put // 'zlbest                    objective value  = ', zlbest:12:6; 
put // "Dual values on assignment constraint"/ ; 
loop(j, put / "w('",j.tl,"') =  ", w(j):16:6 ";" ); 
 
*  one needs a value for zfeas 
*  one can compute a valid upper bound as follows: 
$ontext 
zfeas  = sum(j, smax(i, f(i,j))); 
put // 'zfeas quick and dirty bound obj value      = ', zfeas:12:6; 
display 'a priori upper bound',zfeas; 
$offtext 
 
*  another alternative to compute a value for zfeas is 
*  to solve gapmin by B-B and stop 
*  at first 0-1 feasible solution found 
*  using gapmin.optcr = 1, as follows 
 
assign.optcr=1;assign.solprint=2; 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!!!!!!!!! 
 
solve assign minimizing z using mip; 
option solprint = off; 
zfeas=z.l; 
display 'final zfeas',zfeas; 
display 'heuristic solution by B-B ',x.l,z.l; 
put  / 'zfeas IP solution bound objective value    = ', zfeas:12:6; 
 
 
put /// 'Iteration         New Bound   Previous Bound            norm      abs(zl-zf)'/; 
 
 
*  then keep the smaller of the two values as zfeas 
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pknap.optcr = 0;     ! ask for global solution 
pknap.solprint = 2;  ! turn off all solution output 
 
*=================================================================
===========* 
*                                                                            * 
*  beginning of subgradient loop                                             * 
*                                                                            * 
*=================================================================
===========* 
 
count  = 1; 
alpha  = 1; 
 
display status; 
zbest(dataset) = 0; 
 
loop(iter$(status = 1),    ! i.e., repeat while status is 1 
 
*  solve Lagrangian subproblems by solving nonoverlapping knapsack 
*  poblems. Note the use of the dynamic set id(i) which will 
*  contain the current knapsack descriptor. 
 
      solve pknap using mip minimizing zlrx; 
      option solprint = off; 
      zlr = zlrx.l; 
      xx(i,j) = x.l(i,j); 
      xstart(j) = sum(i, xx(i,j)*ord(i))-1; 
      solvetimeiter(iter) = pknap.resusd; 
 
counter = 0; 
loop(j, if(sum(i, x.l(i,j)) = 1, counter = counter +1)); 
if((counter = 0), zfes = sum((i,j), f(i,j)*x.l(i,j))); 
 
loop(j, 
     counter1 = 0; 
     loop(i, if(xx(i,j)=1, 
             counter1 = counter1+1; 
             if(counter1>1, xx(i,j) = 0)))); 
 
loop(j, if(xstart(j)=-1, 
        bool = 0; 
        loop(i$(bool=0), 
             counter2 = 0; 
             bool = 0; 
             xx(i,j)=1; 
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             loop(ii, if(sum(jj, sum(k$((ord(k) ge (max(ord(ii)-process(jj)+1, 1)))$(ord(k) le 
(ord(ii)))), a(k,jj)*xx(k,jj))) > b(ii), counter2 = counter2+1)); 
             if(counter2>0, xx(i,j)=0); 
             if(counter2=0, bool=1););)); 
 
xstart(j) = sum(i, xx(i,j)*ord(i))-1; 
zfes = sum((i,j), f(i,j)*xx(i,j)); 
 
zbestdummy = zbest(dataset); 
zbest(dataset) = max(zbest(dataset), zfes); 
 
costutility(dataset)$(zbest(dataset)<>zbestdummy) = sum((i,j), c(i,j)*xx(i,j)); 
 
$Ontext 
      id(ii) = no );                       ! make set empty again 
$Offtext 
 
   improv = 0; 
   zl     = zlr + sum(j, w(j)); 
   improv$(zl > zlbest) = 1;               ! is zl better than zlbest? 
   zlbest = max(zlbest,zl); 
   s(j)   = 1 - sum(i, x.l(i,j));          ! subgradient 
   norm   = sum(j, sqr(s(j))); 
 
   status$(norm < tol)               = 2; 
   status$(abs(zlbest-zfeas) < 1e-4) = 3; 
   status$(pknap.modelstat <> 1)     = 4; 
   put results / iter.tl ,zl:16:6,zlbest:16:6,norm:16:6,abs(zlbest-zfeas):16:6; 
   if((status = 2), 
      put //"subgr. method has converged, status = ",status:5:0//; 
      put //"last solution found is optimal for IP problem"//; 
     );    ! end if 
   if((status = 3), 
      put //"subgr. method has converged, status = ",status:5:0//; 
      put //"no duality gap, best sol. found is optimal "//; 
    );     ! end if 
   if ((status = 4), 
      put //"something wrong with last Lag. subproblem"//; 
      put //"status = ",status:5:0//; 
    );     ! end if 
 
   report(iter,'zlr')    = zlr; 
   report(iter,'zl')     = zl; 
   report(iter,'zlbest') = zlbest; 
   report(iter,'norm')   = norm; 
   report(iter,'step')   = step; 
*   display zfes; 
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*   display zbest; 
*   display xx; 
*   display xstart; 
 
   wrep(iter,j) = w(j); 
   srep(iter,j) = s(j); 
   xrep(j,i,iter) = x.l(i,j); 
 
   if(status=1, 
      target = (zlbest+zfeas)/2; 
      step   = (alpha*(target-zl)/norm)$(norm > tol); 
      w(j)   = w(j)+step*s(j); 
      if(count>reset,          ! too many iterations w/o improvement 
         alpha = alpha/2; 
         count = 1 
      else if(improv,          ! reset count if improvement 
              count = 1 
           else 
              count = count +1 ! update count if no improvement 
             ) 
        ) 
     ) 
);                                         ! end loop iter 
 
*display report, wrep, srep, xrep; 
display zfeas; 
display zbest; 
upperzlbest(dataset) = zlbest; 
put results // "Dual values on assignment constraint" /; 
loop(j, put /  "w('",j.tl,"') =  ", w(j):16:6  ";" ) 
put //"best Lagrangian bound   =   ",zlbest:10:5; 
 
solve utilityproblem maximizing zutility using mip; 
option solprint = off; 
solve costproblem minimizing zcost using mip; 
option solprint = off; 
optutility(dataset) = zutility.l; 
optcost(dataset) = zcost.l; 
 
solvetimedata(dataset) = sum(iter, solvetimeiter(iter)); 
solvetimeutil(dataset) = utilityproblem.resusd; 
solvetimecost(dataset) = costproblem.resusd; 
); 
 
totalutility = (sum(dataset, zbest(dataset)))/(card(dataset)); 
totalcost = (sum(dataset, costutility(dataset)))/(card(dataset)); 
totaloptutility = (sum(dataset, optutility(dataset)))/(card(dataset)); 
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totaloptcost = (sum(dataset, optcost(dataset)))/(card(dataset)); 
totalupper = -(sum(dataset, upperzlbest(dataset)))/(card(dataset)); 
 
totalsolvetimedata = (sum(dataset, solvetimedata(dataset)))/(card(dataset)); 
totalsolvetimeutil = (sum(dataset, solvetimeutil(dataset)))/(card(dataset)); 
totalsolvetimecost = (sum(dataset, solvetimecost(dataset)))/(card(dataset)); 
 
summary('totalutilitymain') = totalutility; 
summary('totalcostmain') = totalcost; 
summary('optimalutility') = totaloptutility; 
summary('optimalcost') = totaloptcost; 
summary('averageupper') = totalupper; 
 
summary('avgsolvetimedata') = totalsolvetimedata; 
summary('avgsolvetimeutil') = totalsolvetimeutil; 
summary('avgsolvetimecost') = totalsolvetimecost; 
 
display summary; 


