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A fast and accurate algorithm is developed for the numerical computation of the family of complex linear ca-
nonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase sys-
tems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to repre-
sent paraxial optical systems that involve complex parameters. These include lossy systems such as Gaussian
apertures, Gaussian ducts, or complex graded-index media, as well as lossless thin lenses and sections of free
space and any arbitrary combinations of them. Complex-ordered fractional Fourier transforms (CFRTs) are a
special case of CLCTs, and therefore a fast and accurate algorithm to compute CFRTSs is included as a special
case of the presented algorithm. The algorithm is based on decomposition of an arbitrary CLCT matrix into
real and complex chirp multiplications and Fourier transforms. The samples of the output are obtained from
the samples of the input in ~N log N time, where N is the number of input samples. A space-bandwidth prod-
uct tracking formalism is developed to ensure that the number of samples is information-theoretically suffi-
cient to reconstruct the continuous transform, but not unnecessarily redundant. © 2010 Optical Society of
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1. INTRODUCTION

Linear canonical transforms (LCTs) appear widely in op-
tics [1-3], electromagnetics, and classical and quantum
mechanics [4-6], as well as in computational and applied
mathematics [7]. The application areas of LCTs include,
among others, the study of scattering from periodic poten-
tials [8-10], laser cavities [2,11,12], and multilayered
structures in optics and electromagnetics [13].

LCTs with real parameters have received considerably
more attention than LCTs with complex parameters [4].
Real linear canonical transforms (RLCTs) are unitary
mappings between the elements of Hilbert space of
square integrable functions of a variable in R. RLCTs are
represented by 2 X 2 unimodular real matrices,

b
M, = {Z d}, &

with determinant equal to 1, where a, b, ¢, and d are real.
The parameter matrices My form the real symplectic
group Sp(2,R) with three independent parameters [14].
RLCTs are of great importance in electromagnetic, acous-
tic, and other wave propagation problems since they rep-
resent the solution of the wave equation under a variety
of circumstances. At optical frequencies, RLCTs can
model a broad class of lossless optical systems including
thin lenses, sections of free space in the Fresnel approxi-
mation, sections of quadratic graded-index media, and ar-
bitrary concatenations of any number of these, sometimes
referred to as first-order optical systems or quadratic-
phase systems [1,15-26].
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The extension of RLCTs to complex linear canonical
transforms (CLCTs) is rather involved [4,27-29]. The ex-
tension is very briefly summarized as follows. When we
let the entries of the unimodular transform matrices be
complex numbers, we obtain the unit-determinant matri-

ces,
M a b
C — c d > (2)

where a, b, ¢, and d are complex parameters. The matri-
ces M form the complex symplectic group Sp(2,C) with
six independent parameters [29]. However, CLCTs repre-
sented by this symplectic group can no longer be estab-
lished as a unitary mapping between the Hilbert space of
square integrable functions in R. Instead, we have a map-
ping from the Hilbert space of square integrable functions
of a real variable to analytical functions of a complex vari-
able on the complex plane in the Bargmann—Hilbert space
of square integrable functions [30,31], as established in
[4,27-29]. The CLCTs are required to be bounded but not
necessarily unitary, in which case we need to represent
CLCTs with a semigroup HSp(2,C) within the group
Sp(2,C). More on the mathematical foundations and
theory of CLCTs can be found in [4,27-29].

Bilateral Laplace transforms, Bargmann transforms,
Gauss—Weierstrass transforms [4,27,32], fractional
Laplace transforms [33], and complex-ordered fractional
Fourier transforms (CFRTs) [34-37] are all special cases
of CLCTs. An important special case of CLCTs is the fam-
ily of CFRTs. The CFRT is the generalization of the frac-
tional Fourier transform (FRT) where the order of the
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transformation is allowed to be a complex number, and
consequently the abcd matrix elements are in general
complex. The optical interpretation of the CFRT, its prop-
erties, and optical realizations can be found in [34-38]. An
interesting property of CFRTs is that, in some restricted
cases, they can be optically realized by RLCTs [39].

To avoid confusion, we note that a number of publica-
tions have used the term complex fractional Fourier
transformation (FT) to refer to a particular generalization
of the FRT [40,41], which is not a complex FRT in the
sense of the order parameter being a complex number.
The entity referred to as a complex FRT in these publica-
tions is distinct from what we refer to as a complex FRT
and is actually a special case of real two-dimensional (2D)
non-separable or non-symmetrical FRTs. Since such
transforms are a special case of 2D non-separable LCTs,
their digital computation is covered by the algorithm pro-
posed in [42]. To avoid confusion with this important but
distinct entity, we will use the term complex-ordered to re-
fer to complex FRTs belonging to the class of CLCTs. By
developing a general algorithm for CLCTs, we also obtain
an algorithm for the important special case of CFRTs.

Given its ubiquitous nature and numerous applica-
tions, the fast and efficient digital computation of LCTs is
of considerable interest. Many works have addressed the
problem of sampling and computation of RLCTs, using
both decomposition-based and discrete-LCT-based meth-
ods [43-51].

The literature and developments on algorithms for real
one-dimensional (1D) and real symmetrical (separable)
2D LCTs are reviewed and summarized in [52]. Recent
work has also addressed the computation of the more dif-
ficult non-symmetrical (non-separable and non-
orthogonal) 2D LCTs, which include anamorphic/
astigmatic cases in which the system does not exhibit
symmetry about the optical axis [42]. Thus, an appropri-
ate fast algorithm exists for all possible 1D and 2D
RLCTs. The purpose of this paper is to cover the case of
CLCTs. To our knowledge, there is no algorithm in the lit-
erature that efficiently calculates CLCTs or even its most
prominent special case, the CFRT.

The distinguishing feature of our approach is the way
our algorithm carefully addresses sampling and space—
bandwidth product issues from an information-theoretical
perspective. Special care is taken to ensure that the out-
put samples represent the continuous transform in the
Nyquist—Shannon sense during every stage of the algo-
rithm so that the continuous transform can be fully recov-
ered from the samples. Despite the highly oscillatory na-
ture of the integral kernel, we carefully manage the
sampling rate so as to ensure that the number of samples
used is sufficient, but not much larger than the space—
bandwidth product of the input signal so that the algo-
rithms are as efficient as possible. The straightforward
method of sampling the input field and the kernel, and
then calculating the output field, is not suitable for sev-
eral reasons. First of all, due to the highly oscillatory na-
ture of the integral kernel, a naive application of the Ny-
quist sampling theorem to determine the sampling rate
would result in an excessively large number of samples
and inefficient computation. On the other hand, ignoring
the oscillations of the kernel and determining the sam-
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pling rate according to the input field alone may cause
under-representation of the output field in the Nyquist—
Shannon sense. This unacceptable situation arises due to
the fact that the particular 2D LCT that we are calculat-
ing may increase the space—bandwidth product in one or
both of the dimensions. If we do not increase the number
of samples that we are working with, so as to compensate
for this increase, there will be information loss and we
will not be able to recover the true transformed output
from our computed samples. The computation of CLCTs
involves a number of issues which do not arise in the case
of RLCTs. The decompositions employ complex chirp mul-
tiplications (CCMs) whose effect on the Wigner distribu-
tion (WD) must be clarified to ensure proper space—
bandwidth tracking and control.

Complex-parametered LCTs allow several kinds of op-
tical systems to be represented, including lossy as well as
lossless ones. When complex parameters are involved,
LCTs may no longer be unitary and boundedness issues
may arise. The decomposition of general CLCTs into Fou-
rier transforms and real and imaginary CMs allows us to
derive conditions on the transform parameters that en-
sure boundedness.

We also need to find the conditions under which
HSp(2,C) can be constructed as a mapping from R—R.
This is because we are interested in optical applications of
CLCTs where the inputs and outputs are functions of real
spatial variables. Such CLCTs which map functions over
Hilbert spaces from the real line to the real line are called
passive CLCTs in [27], whereas CLCTs that map func-
tions from the real line to analytical functions on complex
Bargmann-Hilbert spaces are called active CLCTs. Thus
the eligible parameters also depend on how the HSp(2,C)
semigroup is constructed for R —R. Wolf derived the pa-
rameter spaces for which the CLCTs represent a mapping
from R — R and the output is bounded [27]. However, this
construction excludes some optically important special
cases like Gaussian apertures. The decompositions we use
allow the derivation of conditions which do not exclude
Gaussian apertures. The specification of such conditions
was not necessary in the RLCT case.

The paper is organized as follows. In Section 2, we give
the fundamental definitions and properties of both RLCTs
and CLCTs. Section 3 presents some mathematical pre-
liminaries that we use in the derivation of our algorithm
and review some special and important CLCTs in optics.
In Section 4, we present a careful analysis of every pos-
sible case the complex transform matrix may assume and
present fast algorithms based on decompositions into gen-
eralized CMs, real scalings, and FTs. We also determine
whether a given CLCT represents an optically possible
bounded input-output relationship from the real line to
the real line. Numerical examples to demonstrate the ac-
curacy of the algorithm are given in Section 5. Finally we
conclude in Section 6.

2. LINEAR CANONICAL TRANSFORMS

We first recall the definition of RLCTs and discuss the
group theoretical structure of RLCTs. Then we will give
the definition of CLCTs and explain its group theoretical
structure.
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The RLCT of f(z) with real parameter matrix My, is de-
noted as fMR(u)=(CMRf)(u),

(CM;xu)=J‘ Kpu,u')ftu)du’,

Kp(u,u') =e'i”/4\@ explim(au® - 2Buu’ + yu'?)], (3)

where «, B, and y are real parameters independent of u
and u’ and where Cy, is the RLCT operator. The trans-
form is unitary. The 2 X2 matrix M whose elements are
a,b,c,d represents the same information as the three pa-
rameters «, 3, and y which uniquely define the LCT,

a b VB 1/8 ap  -1/8|1
Me=l o a|™|=grays ag|™|p-avp wp | -
(4)

The unit-determinant matrix My belongs to the class of
unimodular matrices. From a group theoretical point of
view RLCTs form the three-parameter symplectic group
Sp(2,R).

The CLCT of f(u) with a complex parameter matrix Mg
is denoted as fMC(u)z(CMCf)(u),

(CMCf)(u)=f Ke(u,u)f(w')du’,

Ko(u,u') =e‘i“/4\/,£:3 explim(au® - 2Buu’ + u'?»], (5)

where @, B, and 7 are complex parameters independent of
u and 1" and where Cy,, is the CLCT operator. M¢ again
has a unit determinant and is given by

[a b] |:ar+iac br+ibc] 3B 1/8
“Tle dl | -g+awe wp
(6)

where a,, a,, b,, b., ¢,, ., d,, and d, are real numbers. The

c.+ic, d.+id,

overbar in the parameters @, 8, and 7 is to emphasize that
these parameters are now complex, corresponding to a to-

tal of six real parameters: a=«,+ie,, B=p.+i,, and 7y
=v,+iv,. In terms of these parameters the kernel K can
be rewritten as

Ke(u,u')
— e—iw/4\J'B + lﬂ eiﬂ'(aruz—z,ﬁ'ruu'+7ru’2)e—w(acu2—256uu'+7cu'2)
/ Pr c .

(7

The bidirectional relationship between the @, 8, ¥ param-
eters and the matrix entries are given as follows:

db,+d.b, db,-d,b,
T Tpzipr 0 YT T p2ip?
b, -b,
Br_bg+b35 :Bc_bz_'_b?’
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ab,+ab, ab,-a,b,
T T R (T IR (8)
Bc Yet Bryr ﬁr’)/c - :80 Yr
= —’ aC = —7
B+ B B+ B
_ ﬁr _ - ﬁc
LB BT BB
_ Bcac + Brar _ acﬂr - ar:Bc (9)
BB T BB

3. PRELIMINARIES

A. Wigner Distributions

Here we will review the relationship between LCTs and
the WD, which will aid us in understanding the effects of
the elementary blocks used in our decompositions. The
WD, WHu,u), of a signal f(u) can be defined as follows
[53,54]:

W, p) = f Flu+u'/2)f (w-u'l2)e 2™ dy' . (10)

Roughly speaking, W(u,u) is a function which gives the
distribution of the signal energy over space and fre-
quency. Its integral over space and frequency,
T2 02 W, w)dudpu, gives the signal energy.

Let f denote a signal and fj be its LCT with parameter
matrix M. Then, the WD of fj; can be expressed in terms
of the WD of f as [1]

WfM(u,,u)z WAdu —bu,—cu+ap). (11)

This means that the WD of the transformed signal is a
linearly distorted version of the original distribution. The
Jacobian of this coordinate transformation is equal to the
determinant of the matrix M, which is unity. Therefore
this coordinate transformation does not change the sup-
port area of the WD. The invariance of the support area
means that LCTs do not concentrate or deconcentrate en-
ergy. The support area of the WD can also be approxi-
mately interpreted as the number of degrees of freedom of
the signal. Therefore, the number of samples needed to
represent the signal does not change after a RLCT opera-
tion.

For the purpose of space-bandwidth tracking as em-
ployed in our algorithm, we do not require a full charac-
terization of the effects of CLCTs on the WD. However, we
do need to know the effect of multiplying a function with
another function on the WD to derive a space-bandwidth
product tracking method for CLCTs. This multiplication
property is not required in deriving our previous algo-
rithms for RLCTs [42,47], but it will be necessary in our
CLCT algorithm. The WD has the following multiplica-
tion property [1]: let ~A(z) and f(z) be two functions and let
Wi (u,n) and Wu,u) be their corresponding WDs. Then
h(w)f(u) has the WD given by
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JWh(u,u—M')Wf(u,M’)du’. (12)

In other words, when two functions are multiplied, the
WD of the resulting function is given by the convolution of
the WDs of the initial two functions along the frequency
dimension.

It is well known that a nonzero function and its FT can-
not both be confined to finite intervals. However, in prac-
tice we always work with samples of finite extent signals.
We assume that a large percentage of the signal energy,
as represented by the WD, is confined to an ellipse with
diameters AS in the space dimension and AB in the
spatial-frequency dimension, which can be ensured by
choosing AS and AB suitably. This implies that the space-
domain representation is approximately confined to the
interval [-AS/2,AS/2] and that the frequency-domain
representation is approximately confined to [-AB/2,
AB/2]. We then define the space-bandwidth product
ASAB, which is always =1 because of the uncertainty re-
lation. Let us now introduce the scaling parameter s and
scaled coordinates, such that the space- and frequency-
domain representations are confined to intervals of
lengths AS/s and ABs. Let s=yAS/AB so that the lengths
of both intervals become equal to the dimensionless quan-
tity VABAS, which we denote by Au, and the ellipse be-
comes a circle with diameter Au. It will not make much
difference if we assume that the signal is contained
within the smallest square containing this circle. In the
new scaled coordinates, signals can be represented in
both domains with Au? samples spaced Au~! apart. We
will assume that this dimensional normalization has been
performed and that the coordinates © and w are dimen-
sionless.

For a signal with rectangular space-frequency support,
the space—bandwidth product is equal to the number of
degrees of freedom. This is not true for signals with other
support shapes [565]. While we have observed that LCTs
do not change the number of degrees of freedom of a sig-
nal, they may change its space-bandwidth product. This
will be evident when we examine some of the basic special
cases of the LCT.

B. CLCTs in Optics and Special CLCTs

Magnification (scaling), FT, real fractional Fourier trans-
formation (RFRT), real chirp multiplication (CM), CCM,
Gauss—Weierstrass transform, and CFRT are all special
cases of CLCTs that have optical realizations. Scaling, FT,
RFRT, and CM, which have real parameters, belong to the
narrower class of RLCTs and have been reviewed in [47].
In this section, we only review complex-parametered
cases that are essential for our development.

1. Complex Scaling (Magnification)

Simple scaling with a real parameter M is an operation
which corresponds to optical magnification [47]. If the pa-
rameter M is allowed to be complex, we obtain the com-
plex scaling operation, which is a special case of CLCTs.
With complex scaling, the real axis on which the input
function is defined is mapped to a straight line in the com-
plex plane passing through the origin and making an
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angle arg(M) with the real axis. The mapping becomes
R —C. The interpretation of complex scaling in quantum
mechanics has been discussed in [56,57], while an inter-
pretation from a signal processing perspective can be
found in [58]. However, we are not aware of the realiza-
tion and application of complex scaling from a purely op-
tical point of view.

2. Gaussian Apertures (Complex Chirp Multiplication)
Gaussian apertures, also called soft apertures, are a spe-
cial case of CLCTs. They are actually CMs with a complex
parameter and are the complex counterparts of CM op-
erations. We will hereafter refer to them as CCM. The
definition of CCM is similar to the definition of real CM,
where we replace the chirp parameter with a purely
imaginary complex parameter,

Cq, fw) = Qigflu) = e™*flu), (13)

1 0 1 0!
Qg = —ig 1| |ig 1| ~ (14)

where q is real and so iq is a purely imaginary parameter.
It essentially behaves like a multiplicative filter where
the transmission is dependent on the transverse dimen-
sion quadratic-exponentially. To exclude the unbounded
case we require g =0.

We now discuss the effect of CCM on the WD. We need
this result in order to track and control the space—
bandwidth product of CLCTs. This result is not needed in
algorithms for RLCTs because there are no CCM stages in
RLCTs and is of a considerably different nature than the
operations employed there. We use the property given in
Eq. (12) with h(u)=e™"’. The WD of A(x), denoted by
W, (u, p), can be obtained by directly using the definition
of the WD [Eq. (10)],

2
Wi (u,p) = \/—62""”26(2”/")“2, g<o0. (15)
-q

The WD of the Gaussian function is a 2D Gaussian func-
tion in the space-frequency plane. Since ¢ <0, this func-
tion decays with increasing v and u. Therefore, we can
specify a rectangular region which contains almost all of
the energy of the function. We will choose the extent of
this rectangle to correspond to plus/minus four standard
deviations of the Gaussian in both the space and fre-
quency dimensions, which defines a rectangle with extent

g1=16/mq|,
82=16g|/m (16)

in the space and frequency dimensions, respectively.
When the WD of the input function and the WD of the
Gaussian function are convolved along the u direction to
find the resulting WD of the output function (as illus-
trated in Fig. 1), the resulting space extent of the support
of the output WD will be given by min(d;,g;) and the re-
sulting frequency extent will be given by dy+g9, where d;
and dq are the space and spatial-frequency extent of the
input function.
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Fig. 1. The effect of the CCM operation on the WD.

3. Gauss-Welierstrass Transform
The Gauss—Weierstrass transform with parameter ¢ is
given by the integral transform [4]

Gfw) =\t f e du (17)

It gives the solution of the heat equation. The complex
chirp convolution (CCC) operation, which is a special case
of CLCTs, is represented by the transform matrix

1 ir
Rir= O 1 ) (18)

and is equivalent to convolution by a Gaussian function,
Cr, fw) = R;,f(u) = fu) * '™ \[1/r exp(mu?r).  (19)

We observe that CCC is the same as the Gauss—
Weierstrass transform when we choose the CCC param-
eter r=—t. As in the case of the FT, there is again the in-
consequential constant phase factor e i™* difference
between the two definitions. CCC operations are covered
by our algorithm since they are a special case of CLCTs.
CCC operations are most conveniently calculated by ex-
pressing them as a FT followed by a CCM operation fol-
lowed by an inverse FT.

The combined effect of two CCM (or CCC) operations
following each other is again a CCM (or CCC) operation,
whose parameter is found by summing the parameters of

the two constituent operations. If two CCM operations
with real or complex parameters q; and ¢, follow each
other, the equivalent operation is a new CCM operation
with parameter g;+qs. If two CCC operations with real or
complex parameters r; and ry follow each other, the
equivalent operation is a new CCC operation with param-
eter ri+rso.

4. CFRT
The ath order RFRT (or simply FRT) is well studied in the
literature [1,59-67]. Complex FRTs are FRTs whose order
parameter is complex [34-38].

When the order is an imaginary number ib, then we ob-
tain the following special case of CLCTs with the trans-
form matrix:

» cosh(bn/2) i sinh(bn/2)

Ic=| _j sinh(b7/2) cosh(bm/2) |’ 20

which again differs only by the factor e?™* from FRTs as
commonly defined,

Crvfie) = Fiofl) = "™ Feflw). (21)

Since FRTs are additive in index, a real-ordered and a
purely imaginary-ordered FRT can be combined as 7%+
=FF to yield a general CFRT, where the complex order
may be denoted by a,=a+ib. CFRTSs can be optically real-
ized by using thin lenses, free-space propagations, and
Gaussian apertures or by combination of Gauss—
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Weierstrass transforms with Gaussian apertures [34].

4. ALGORITHM

We now show how given abcd matrices can be decom-
posed in a manner that leads to a fast algorithm for the
computation of CLCTs. In the most general case, the ma-
trix Mg is composed of the four complex parameters
a,b,c,d, whose real and imaginary parts add up to a total
of eight parameters. These eight parameters are re-
stricted by the unimodularity condition on Mg, which re-
quires the real part of the determinant to be 1 and the
imaginary part to be zero. Because of these two equations,
the total number of independent parameters of a general
CLCT is 6. These six parameters correspond to the six pa-
rameters of the group HSp(2,C), which is a six-parameter
semigroup of the complex symplectic group Sp(2,C). Be-
fore giving the main decomposition which covers the gen-
eral case, we start with a special case whose treatment is
straightforward.

A. b=0 Case
When 6=0, the unimodularity requirement requires a
#0 and the transform output can be written as

1,
Cu N (w) = —Ee"cy Peflyla). (22)
\‘J

In this case, the output is given by a scaling operation
with parameter a followed by a CM operation with pa-
rameter —c/2a. We will restrict ourselves to the case
where a is real since only in this case will the scaling op-
eration result in a R— R mapping. The case where a is
complex produces complex scaling operations and there-
fore causes mappings from functions on the real line to
functions on the complex plane. This case would require
special treatment, which we do not attempt since we are
not aware of any optical realization or application of such
transforms. Also necessary is the condition Im(c/a),
which is necessary to ensure boundedness. In order to
have a bounded and R — R mapping, it becomes necessary
for a to be real and Im(c/a)=0. Together with the unit-
determinant condition, these conditions can be explicitly
summarized as follows:

a,c. =0, (23)

where the first two are intrinsically required to define any
LCT (det M-=1) and the last two are required to obtain a
bounded R —R mapping. When the conditions in 23 are
satisfied, the matrix M can be decomposed as
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M a. 0 1 Of|lae, O 1 0
"¢ Va, | |cla, 1||0 1a,| |cla, 1

1 0l[a o
% icda, 1|1 0 1/a,| 24

The above decomposition can be used for the fast compu-
tation of the special case b=0.

B. b#0 Case

Now, we turn our attention to the more general case in
which the following decomposition will be the basis of our
fast algorithm:

1 0 1 oo -1 1 0 1 0

MC:{—qsr 1“—iq30 1M1 OM—qu 1“—% 1}
0 1 1 0 1 0

o an 2l )

This decomposition consists of three imaginary CM and
real CM pairs with Fourier/inverse Fourier transform op-
erations in between. The imaginary CM and real CM
pairs can also be viewed as CCM operations,

o PR i
CTl-(gsr+igs) 1]|1 0 |[~(gar+iga) 1

0 1 1 0
121 0| (g +igr0) 1] (26)

The three matrices in the center can also be expressed as
a CCC operation,

M 1 0 1 (q2r+iQ2C) 1 0
7| - (g3 +igs) 1][0 1 - (q1,+ig1) 1]

(27)

which is nothing but the complex version of the well-
known CM-CC-CM decomposition [1].

When we multiply out the matrices on the right-hand
side of Eq. (25), equate the result to the general CLCT
matrix given in Eq. (6), and solve for our decomposition
parameters in terms of the CLCT parameters, we get the
following:

br - brar - acbc

q1r= bg+b3 ’

b.a

cr
q1c=

b,a

_bc_ r“c
b2+ b?

’

qor= br,
Qo= bc:

b,-b,d,—d.b,

q:
o b2+ b2

>
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b.d,-b,-b,d,

q3c= b? +b ? (28)
Thus, all six parameters of our decomposition have been
expressed in terms of the six parameters of the CLCT
which we desire to compute. By using Eq. (9), we can also
easily calculate the decomposition parameters in terms of
the complex «, B,y parameters if needed. The decomposi-
tion in Eq. (25) can also be expressed in operator notation
as follows:

Cu=9 Qiq3cﬁlQ Qig, F1c9q,, Ly, - (29)

CE 99, q1r

We now discuss the various cases that arise depending
on the values of the parameters. When b # 0, a separate
treatment is required depending on whether a is zero or
not. First, consider the case when a=0. The decomposi-
tion parameters given in Eq. (28) become

b,

q1r= b?+b?’
_bc

q1c= b?+b3’
q2r=br’
q20=b07

b,-b,d,—d.b,

q3r= b?+b?

bd,~b,-b.d,
qsc= Tb? (30)

As discussed in Subsection 3.B.2, the CCM parameters
Q16> 920, and g3, should be =0 leading to the conditions

_bc
——— =0, 31
bE b @D
b, =0, (32)

b.d,—b,—b,d,

gz =0 (33)

Equations (31) and (32) imply 6,=0 and Eq. (33) becomes
b,d.=0. When we set b.=0 in Eq. (30), we obtain the fol-
lowing decomposition parameters:

q1,=1/b,,
q1.=0,
q2,=b,,
q2.=0,

gs=(1-d,)/b?,
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q3c=— dc/br’ (34)

with the condition 4,d,=0. The decomposition we should
use in this case therefore can be expressed as

1 o[ 1 olfo -1][ 1 o
Me=\ _a_ayb, 1||idsm, 1|1 o ||-b 1

o 1] 1 o
121 ol|-wp, 1] (35)

We now turn our attention to the case 6 #0 and a #0.
The decomposition given in Eq. (25) and the decomposi-
tion parameters given in Eq. (28) are applicable. The be-
low three conditions should be satisfied to have a bounded
and R — R mapping:

b.=0,
bcar - brac = bcr

bcdr - brdc = bca (36)

which can be equivalently expressed in terms of the
a, 3,y parameters,

B.=0,
aC = BC?

Ye = Bes (37)

which depends only on the imaginary parts. This is ex-
pected since RLCTs are always bounded and unitary, and
it is the imaginary parts that are involved in issues of
boundedness. These conditions are derived by restricting
the parameters of the Gaussian aperture steps in the
CLCT decompositions we employ. There are no such con-
ditions required for RLCTs. However, these constraints
are crucial for the computation of CLCTs. To better illus-
trate these conditions, we summarize them in Table 1.
The special case b=0 requires the computation of only
real CM and CCM and a real scaling operation. The de-
composition for the general case includes CMs and FTs.
CMs require only N multiplications and can be done in
~N times. The FT and inverse FT can be computed in
~N log N times by using the fast Fourier transform (FF'T)
algorithm. We also note that the scaling operation merely
changes the sampling interval in the sense of reinterpre-
tation of the same samples with a scaled sampling inter-
val, in a manner which corresponds to scaling of the un-
derlying continuous signal. Thus the cost of the scaling

Table 1. Summary of the Conditions to Have
Bounded R—R CLCTs

Case 1 Case 2 Case 3
b=0 b#0 and a=0 b#0and a#0
a,#0 b.=0 b.=0
d=1/a b,d.=0 ba,-b,a.=b,
a,=0 bd,—-bd.=b,
a,c,=0
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Fig. 2. Example function F4.

operation is minimal and not of consequence since it
amounts only to a reinterpretation of the samples. There-
fore, the overall CLCT can be computed in ~N log N
times. To ensure that the number of samples required to
represent the function is sufficient in the Nyquist—
Shannon sense at each step of the decomposition, we will
track the space—bandwidth representation of the function
by using the WD and increase the sampling rate when
necessary. We will do this with the help of the procedures
summarized in [47] for real steps and with the help of Fig.
1 and the discussion given in Subsection 3.B.2 for the
complex components. Since the FRT corresponds to rota-
tion and the scaling operation only to a reinterpretation of
the samples, these steps never require us to increase the
number of samples. CMs, however, require careful han-
dling of the space—bandwidth and sampling issues.

Finally, we summarize our algorithm and the associ-
ated space-bandwidth product tracking and sampling
control methodology for the most general case. [For the
b=0 and b#0, a=0 special cases, this procedure can be
easily simplified to correspond to the simpler decomposi-
tions in Eqgs. (24) and (35), respectively.] Whenever the
current number of samples will not be sufficient to fully
represent the operated-on signal in the Nyquist—Shannon
sense, an increase in the number of samples is required
prior to performing the operation.

1. We will use E; and E; to denote the spatial and fre-
quency extent of the function as we go through the stages
of the algorithm. We assume that the initial space-
frequency support is a square of edge length Au so that at
the beginning E =E;=Au, and the signal can be repre-
sented with ESEszu2 samples.

2. The first step of the decomposition is the first CCM
with parameter q;.. We use Eq. (16) to obtain the space
and frequency extent of the Gaussian function, which we
denote by G;; and Gy, respectively. E; and E; are changed
according to E;—min(E,,G,) and Ef— E +Gp. The re-
quired number of samples then becomes E; X E; which are
taken in the interval [-AE,/2,AE,/2] with a spacing of
1/E¢ apart from each other. This may or may not require
an increase in the number of samples depending on
whether the new E; X E, product is bigger than the start-
ing number of samples, Au?. If an increase in the number
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Fig. 3. Example function F5.

of samples is required, we oversample the signal using an
appropriate interpolation scheme and then the CCM op-
eration is performed on the input samples.

3. The second step is a CM operation with parameter
q1,- We see that the extent must now become E;,— E and
E;— Ef+|q1,|E;. The number of samples required becomes
E X (Es+|q1,/Es) which will require oversampling with a
factor k=1+|qy,|E;/E;. After this oversampling is per-
formed, the CM operation is performed.

4. We now take the FT of the samples by using the FFT
algorithm. We have E;—E; and E;—E; since FT only
switches the spatial variable and its spatial-frequency
variable. The FT operation does not change the space—
bandwidth product of the signal, so oversampling is not
required at this stage.

5. Repeat Steps 2 and 3 with the parameters go, and
g9, corresponding to subsequent stages of the decomposi-
tion.

6. Repeat Step 4, this time with an inverse FT opera-
tion instead of a forward FT operation.

7. Repeat Steps 2 and 3 with the parameters g3, and
q3, corresponding to the final stages of the decomposition
to get the final output samples.

5. NUMERICAL EXAMPLES

We have considered several examples to illustrate the
performance of the presented algorithm. We consider the
chirped pulse function exp(-mu?-imu?), denoted by F1,
and the trapezoidal function 1.5 tri(u/3)-0.5 tri(u), de-
noted by F2 [tri(u)=rect(u)*rect(u)]. Since these two
functions are well confined to a circle in the space-
frequency plane with a diameter of Au=8, we take N=82.
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We also consider the binary sequence 01101010 occupying
[—8,8] with each bit 2 units in length so that N=162. This
binary sequence is denoted by F'3 and the function shown
in Fig. 2 is denoted by F4, again with N=162. Addition-
ally, we also test the example function given in Fig. 3 with
N=82 that has complex values (i.e., amplitude and
phase). These choices for Au result in ~0%, 0.0002%,
0.47%, 0.03%, and 0.25% of the energies of F1, F2, F3, F4,
and F5, respectively, to fall outside the chosen frequency
extent. The chosen space extent includes all of the ener-
gies of F'2, F3, F4, and F5 and virtually all of the energy
of F1. We consider three transforms: the first (7'1) with
parameters (&, By, ¥r; @, Be, ¥e)=(-2,1.2,-0.9;0.04,0.02,
0.12), the second (72) with parameters (1.15,—0.14,
—0.1;0.003,0.001,0.002), and the third (73) with param-
eters (—1.2,—0.3,0.1;0.6,0.5,1). The CLCTs T1, T2, and T3
of the functions F1, F2, F3, F4, and F5 have been com-
puted both by the presented fast algorithm and by a
highly inefficient brute force numerical approach based
on Simpson’s numerical integration, which is taken here
as a reference.

The results for all functions (F'1, F2, F3, F4, F5) are
plotted in Figs. 4 and 5 for transforms 7'1 and 72, respec-
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tively, and are tabulated in Table 2 for all transforms 7'1,
T2, and T3. Also shown are the errors that arise when us-
ing the discrete Fourier transform (DFT) in approximat-
ing the FT of the same functions, which serves as a refer-
ence. (The error is defined as the energy of the difference
normalized by the energy of the reference, expressed as a
percentage.)

We also tested our algorithm for the CFRT, which is an
important special case of CLCTs and the complex exten-
sion of the real-parametered FRT. A CFRT with order
0.8-:0.2 is calculated with our algorithm and the refer-
ence method and the results are plotted for all functions
(F1, F2, F3, F4, F5) in Fig. 6 and again are tabulated in
Table 2. The CFRT order 0.8—:0.2 corresponds to CLCT
parameters (apy Bry ¥rs @, Be» v.)=(0.292,0.9919,0.292;
0.3331,0.098,0.3331).

Examination of the table shows that our algorithm can
accurately compute CLCTs for a variety of transforms and
functions. We observe that the main determinant of the
error is not the transform, but the function, and more spe-
cifically the energy of the function lying outside the as-
sumed extent. If we require the error to be further re-

Im of transform of F1

|
w

J
N

|
-
(=]
-
N
w

Im of transform of F2

0.5
0
N /\/\
=4
-2 -1 0 1 2
Im of transform of F3
0.5

-3 -2 - 0 1 2 3
Im of transform of F4

1
0.5
0
-0.5
-1
-1.5

-2 -1 0 1 2

Im of transform of F5

0

%

-0.5

-1
-2 -1 0 1 2

Fig. 4. Transform (T'1) of F1, F2, F3, F4, and F5. The results obtained with the presented algorithm and the reference result have been
plotted with dotted and solid lines, respectively. However, the two types of lines are almost indistinguishable since the results are very
close.
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plotted with dotted and solid lines, respectively. However, the two types of lines are almost indistinguishable since the results are very

close.

duced, we can reduce the excluded energy by increasing
the extent and the number of samples involved.

6. CONCLUSIONS

We presented an algorithm for the fast and accurate digi-
tal computation of the general family of complex-
parametered linear canonical transforms (LCTs). This
family of transform integrals can represent a general
class of complex quadratic-phase systems in optics. Our
approach is based on concepts from signal analysis and
processing rather than conventional numerical analysis.
With careful consideration of sampling issues, the num-

ber of samples, N, can be chosen very close to the space—
bandwidth product of the functions. A naive approach
based on the examination of the frequency content of the
integral kernels would, on the other hand, result in an
unnecessarily high number of samples being taken due to
the highly oscillatory nature of the kernels, which would
not only be representationally inefficient but also increase
the computation time and storage requirements. The
transform output may have a higher space—bandwidth
product than the input due to the nature of the transform
family. Through careful space-bandwidth tracking and
control, we can assure that the output samples obtained
are accurate approximations to the true ones and that

Table 2. Percentage Errors for Different Functions F and Transforms T'

T1 T2 T3 CFRT DFT
F1 4.12x106 2.19%x 1076 2.8%x1073 1.24x107° 2.0x10°2!
F2 3.73x10* 7.1x1073 1.4x1073 1.2x 1073 6.2x104
F3 0.53 0.35 0.26 0.22 1.2

F4 1.2x1073 4.96x 1072 2.0x1073 2.2%x1073 7.1x1072
F5 0.11 0.2 8.0x1073 6.4%x1073 1.7
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Fig. 6. CFRT with order 0.8-:0.2 of F1, F2, F3, F4, and F5. The results obtained with the presented algorithm and the reference result
have been plotted with dotted and solid lines, respectively. However, the two types of lines are almost indistinguishable since the results

are very close.

they are sufficient (but not unnecessarily redundant) in
the Nyquist—Shannon sense, allowing a full reconstruc-
tion of the underlying continuous output functions. The
algorithm takes the samples of the input function and
maps them to the samples of the continuous CLCT of this
function in the same sense that the fast Fourier trans-
form (FFT) implementation of the DFT computes the
samples of the continuous FT of a function.

Complex-parametered LCTs allow several kinds of op-
tical systems to be represented, including lossy as well as
lossless ones. When complex parameters are involved,
LCTs may no longer be unitary and boundedness issues
may arise. We have identified the conditions for a CLCT
to constitute a bounded map from functions on the real
axis to functions on the real axis. As a special case of our
general CLCT algorithm, we have also obtained an effi-
cient and accurate algorithm for complex-ordered frac-
tional Fourier transforms (CFRTs).
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