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A fast and accurate algorithm is developed for the numerical computation of the family of complex linear ca-
nonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase sys-
tems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to repre-
sent paraxial optical systems that involve complex parameters. These include lossy systems such as Gaussian
apertures, Gaussian ducts, or complex graded-index media, as well as lossless thin lenses and sections of free
space and any arbitrary combinations of them. Complex-ordered fractional Fourier transforms (CFRTs) are a
special case of CLCTs, and therefore a fast and accurate algorithm to compute CFRTs is included as a special
case of the presented algorithm. The algorithm is based on decomposition of an arbitrary CLCT matrix into
real and complex chirp multiplications and Fourier transforms. The samples of the output are obtained from
the samples of the input in �N log N time, where N is the number of input samples. A space–bandwidth prod-
uct tracking formalism is developed to ensure that the number of samples is information-theoretically suffi-
cient to reconstruct the continuous transform, but not unnecessarily redundant. © 2010 Optical Society of
America
OCIS codes: 070.2580, 350.6980, 070.2590.
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. INTRODUCTION
inear canonical transforms (LCTs) appear widely in op-
ics [1–3], electromagnetics, and classical and quantum
echanics [4–6], as well as in computational and applied
athematics [7]. The application areas of LCTs include,

mong others, the study of scattering from periodic poten-
ials [8–10], laser cavities [2,11,12], and multilayered
tructures in optics and electromagnetics [13].

LCTs with real parameters have received considerably
ore attention than LCTs with complex parameters [4].
eal linear canonical transforms (RLCTs) are unitary
appings between the elements of Hilbert space of

quare integrable functions of a variable in R. RLCTs are
epresented by 2�2 unimodular real matrices,

MR = �a b

c d� , �1�

ith determinant equal to 1, where a, b, c, and d are real.
he parameter matrices MR form the real symplectic
roup Sp�2,R� with three independent parameters [14].
LCTs are of great importance in electromagnetic, acous-

ic, and other wave propagation problems since they rep-
esent the solution of the wave equation under a variety
f circumstances. At optical frequencies, RLCTs can
odel a broad class of lossless optical systems including

hin lenses, sections of free space in the Fresnel approxi-
ation, sections of quadratic graded-index media, and ar-

itrary concatenations of any number of these, sometimes
eferred to as first-order optical systems or quadratic-
hase systems [1,15–26].
1084-7529/10/091896-13/$15.00 © 2
The extension of RLCTs to complex linear canonical
ransforms (CLCTs) is rather involved [4,27–29]. The ex-
ension is very briefly summarized as follows. When we
et the entries of the unimodular transform matrices be
omplex numbers, we obtain the unit-determinant matri-
es,

MC = �a b

c d� , �2�

here a, b, c, and d are complex parameters. The matri-
es MC form the complex symplectic group Sp�2,C� with
ix independent parameters [29]. However, CLCTs repre-
ented by this symplectic group can no longer be estab-
ished as a unitary mapping between the Hilbert space of
quare integrable functions in R. Instead, we have a map-
ing from the Hilbert space of square integrable functions
f a real variable to analytical functions of a complex vari-
ble on the complex plane in the Bargmann–Hilbert space
f square integrable functions [30,31], as established in
4,27–29]. The CLCTs are required to be bounded but not
ecessarily unitary, in which case we need to represent
LCTs with a semigroup HSp�2,C� within the group
p�2,C�. More on the mathematical foundations and

heory of CLCTs can be found in [4,27–29].
Bilateral Laplace transforms, Bargmann transforms,

auss–Weierstrass transforms [4,27,32], fractional
aplace transforms [33], and complex-ordered fractional
ourier transforms (CFRTs) [34–37] are all special cases
f CLCTs. An important special case of CLCTs is the fam-
ly of CFRTs. The CFRT is the generalization of the frac-
ional Fourier transform (FRT) where the order of the
010 Optical Society of America
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ransformation is allowed to be a complex number, and
onsequently the abcd matrix elements are in general
omplex. The optical interpretation of the CFRT, its prop-
rties, and optical realizations can be found in [34–38]. An
nteresting property of CFRTs is that, in some restricted
ases, they can be optically realized by RLCTs [39].

To avoid confusion, we note that a number of publica-
ions have used the term complex fractional Fourier
ransformation (FT) to refer to a particular generalization
f the FRT [40,41], which is not a complex FRT in the
ense of the order parameter being a complex number.
he entity referred to as a complex FRT in these publica-
ions is distinct from what we refer to as a complex FRT
nd is actually a special case of real two-dimensional (2D)
on-separable or non-symmetrical FRTs. Since such
ransforms are a special case of 2D non-separable LCTs,
heir digital computation is covered by the algorithm pro-
osed in [42]. To avoid confusion with this important but
istinct entity, we will use the term complex-ordered to re-
er to complex FRTs belonging to the class of CLCTs. By
eveloping a general algorithm for CLCTs, we also obtain
n algorithm for the important special case of CFRTs.
Given its ubiquitous nature and numerous applica-

ions, the fast and efficient digital computation of LCTs is
f considerable interest. Many works have addressed the
roblem of sampling and computation of RLCTs, using
oth decomposition-based and discrete-LCT-based meth-
ds [43–51].

The literature and developments on algorithms for real
ne-dimensional (1D) and real symmetrical (separable)
D LCTs are reviewed and summarized in [52]. Recent
ork has also addressed the computation of the more dif-
cult non-symmetrical (non-separable and non-
rthogonal) 2D LCTs, which include anamorphic/
stigmatic cases in which the system does not exhibit
ymmetry about the optical axis [42]. Thus, an appropri-
te fast algorithm exists for all possible 1D and 2D
LCTs. The purpose of this paper is to cover the case of
LCTs. To our knowledge, there is no algorithm in the lit-
rature that efficiently calculates CLCTs or even its most
rominent special case, the CFRT.
The distinguishing feature of our approach is the way

ur algorithm carefully addresses sampling and space–
andwidth product issues from an information-theoretical
erspective. Special care is taken to ensure that the out-
ut samples represent the continuous transform in the
yquist–Shannon sense during every stage of the algo-

ithm so that the continuous transform can be fully recov-
red from the samples. Despite the highly oscillatory na-
ure of the integral kernel, we carefully manage the
ampling rate so as to ensure that the number of samples
sed is sufficient, but not much larger than the space–
andwidth product of the input signal so that the algo-
ithms are as efficient as possible. The straightforward
ethod of sampling the input field and the kernel, and

hen calculating the output field, is not suitable for sev-
ral reasons. First of all, due to the highly oscillatory na-
ure of the integral kernel, a naive application of the Ny-
uist sampling theorem to determine the sampling rate
ould result in an excessively large number of samples
nd inefficient computation. On the other hand, ignoring
he oscillations of the kernel and determining the sam-
ling rate according to the input field alone may cause
nder-representation of the output field in the Nyquist–
hannon sense. This unacceptable situation arises due to
he fact that the particular 2D LCT that we are calculat-
ng may increase the space–bandwidth product in one or
oth of the dimensions. If we do not increase the number
f samples that we are working with, so as to compensate
or this increase, there will be information loss and we
ill not be able to recover the true transformed output

rom our computed samples. The computation of CLCTs
nvolves a number of issues which do not arise in the case
f RLCTs. The decompositions employ complex chirp mul-
iplications (CCMs) whose effect on the Wigner distribu-
ion (WD) must be clarified to ensure proper space–
andwidth tracking and control.
Complex-parametered LCTs allow several kinds of op-

ical systems to be represented, including lossy as well as
ossless ones. When complex parameters are involved,
CTs may no longer be unitary and boundedness issues
ay arise. The decomposition of general CLCTs into Fou-

ier transforms and real and imaginary CMs allows us to
erive conditions on the transform parameters that en-
ure boundedness.

We also need to find the conditions under which
Sp�2,C� can be constructed as a mapping from R→R.
his is because we are interested in optical applications of
LCTs where the inputs and outputs are functions of real
patial variables. Such CLCTs which map functions over
ilbert spaces from the real line to the real line are called
assive CLCTs in [27], whereas CLCTs that map func-
ions from the real line to analytical functions on complex
argmann–Hilbert spaces are called active CLCTs. Thus

he eligible parameters also depend on how the HSp�2,C�
emigroup is constructed for R→R. Wolf derived the pa-
ameter spaces for which the CLCTs represent a mapping
rom R→R and the output is bounded [27]. However, this
onstruction excludes some optically important special
ases like Gaussian apertures. The decompositions we use
llow the derivation of conditions which do not exclude
aussian apertures. The specification of such conditions
as not necessary in the RLCT case.
The paper is organized as follows. In Section 2, we give

he fundamental definitions and properties of both RLCTs
nd CLCTs. Section 3 presents some mathematical pre-
iminaries that we use in the derivation of our algorithm
nd review some special and important CLCTs in optics.
n Section 4, we present a careful analysis of every pos-
ible case the complex transform matrix may assume and
resent fast algorithms based on decompositions into gen-
ralized CMs, real scalings, and FTs. We also determine
hether a given CLCT represents an optically possible
ounded input-output relationship from the real line to
he real line. Numerical examples to demonstrate the ac-
uracy of the algorithm are given in Section 5. Finally we
onclude in Section 6.

. LINEAR CANONICAL TRANSFORMS
e first recall the definition of RLCTs and discuss the

roup theoretical structure of RLCTs. Then we will give
he definition of CLCTs and explain its group theoretical
tructure.
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The RLCT of f�u� with real parameter matrix MR is de-
oted as fMR

�u�= �CMR
f��u�,

�CMR
f��u� =�

−�

�

KR�u,u��f�u��du�,

KR�u,u�� = e−i�/4�� exp�i���u2 − 2�uu� + �u�2�	, �3�

here �, �, and � are real parameters independent of u
nd u� and where CMR

is the RLCT operator. The trans-
orm is unitary. The 2�2 matrix M whose elements are
,b ,c ,d represents the same information as the three pa-
ameters �, �, and � which uniquely define the LCT,

MR = �a b

c d� = � �/� 1/�

− � + ��/� �/�� = � �/� − 1/�

� − ��/� �/� �−1

.

�4�

he unit-determinant matrix MR belongs to the class of
nimodular matrices. From a group theoretical point of
iew RLCTs form the three-parameter symplectic group
p�2,R�.
The CLCT of f�u� with a complex parameter matrix MC

s denoted as fMC
�u�= �CMC

f��u�,

�CMC
f��u� =�

−�

�

KC�u,u��f�u��du�,

KC�u,u�� = e−i�/4��̄ exp�i���̄u2 − 2�̄uu� + �̄u�2�	, �5�

here �̄, �̄, and �̄ are complex parameters independent of
and u� and where CMC

is the CLCT operator. MC again
as a unit determinant and is given by

MC = �a b

c d� = �ar + iac br + ibc

cr + icc dr + idc
� =� �̄/�̄ 1/�̄

− �̄ + �̄�̄/�̄ �̄/�̄
� ,

�6�

here ar, ac, br, bc, cr, cc, dr, and dc are real numbers. The
verbar in the parameters �̄, �̄, and �̄ is to emphasize that
hese parameters are now complex, corresponding to a to-
al of six real parameters: �̄=�r+ i�c, �̄=�r+ i�c, and �̄
�r+ i�c. In terms of these parameters the kernel KC can
e rewritten as

KC�u,u��

= e−i�/4��r + i�ce
i���ru

2−2�ruu�+�ru�2�e−���cu
2−2�cuu�+�cu�2�.

�7�

he bidirectional relationship between the �̄, �̄, �̄ param-
ters and the matrix entries are given as follows:

�r =
drbr + dcbc

br
2 + bc

2 , �c =
dcbr − drbc

br
2 + bc

2 ,

�r =
br

br
2 + bc

2 , �c =
− bc

br
2 + bc

2 ,
�r =
arbr + acbc

br
2 + bc

2 , �c =
acbr − arbc

br
2 + bc

2 , �8�

ar =
�c�c + �r�r

�r
2 + �c

2 , ac =
�r�c − �c�r

�r
2 + �c

2 ,

br =
�r

�r
2 + �c

2 , bc =
− �c

�r
2 + �c

2 ,

dr =
�c�c + �r�r

�r
2 + �c

2 , dc =
�c�r − �r�c

�r
2 + �c

2 . �9�

. PRELIMINARIES
. Wigner Distributions
ere we will review the relationship between LCTs and

he WD, which will aid us in understanding the effects of
he elementary blocks used in our decompositions. The

D, Wf�u ,��, of a signal f�u� can be defined as follows
53,54]:

Wf�u,�� =�
−�

�

f�u + u�/2�f��u − u�/2�e−2�i�u�du�. �10�

oughly speaking, W�u ,�� is a function which gives the
istribution of the signal energy over space and fre-
uency. Its integral over space and frequency,

−�
� 
−�

� W�u ,��dud�, gives the signal energy.
Let f denote a signal and fM be its LCT with parameter
atrix M. Then, the WD of fM can be expressed in terms

f the WD of f as [1]

WfM
�u,�� = Wf�du − b�,− cu + a��. �11�

his means that the WD of the transformed signal is a
inearly distorted version of the original distribution. The
acobian of this coordinate transformation is equal to the
eterminant of the matrix M, which is unity. Therefore
his coordinate transformation does not change the sup-
ort area of the WD. The invariance of the support area
eans that LCTs do not concentrate or deconcentrate en-

rgy. The support area of the WD can also be approxi-
ately interpreted as the number of degrees of freedom of

he signal. Therefore, the number of samples needed to
epresent the signal does not change after a RLCT opera-
ion.

For the purpose of space–bandwidth tracking as em-
loyed in our algorithm, we do not require a full charac-
erization of the effects of CLCTs on the WD. However, we
o need to know the effect of multiplying a function with
nother function on the WD to derive a space–bandwidth
roduct tracking method for CLCTs. This multiplication
roperty is not required in deriving our previous algo-
ithms for RLCTs [42,47], but it will be necessary in our
LCT algorithm. The WD has the following multiplica-

ion property [1]: let h�u� and f�u� be two functions and let
h�u ,�� and Wf�u ,�� be their corresponding WDs. Then

�u�f�u� has the WD given by
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�Wh�u,� − ���Wf�u,���d��. �12�

n other words, when two functions are multiplied, the
D of the resulting function is given by the convolution of

he WDs of the initial two functions along the frequency
imension.
It is well known that a nonzero function and its FT can-

ot both be confined to finite intervals. However, in prac-
ice we always work with samples of finite extent signals.
e assume that a large percentage of the signal energy,

s represented by the WD, is confined to an ellipse with
iameters �S in the space dimension and �B in the
patial-frequency dimension, which can be ensured by
hoosing �S and �B suitably. This implies that the space-
omain representation is approximately confined to the
nterval �−�S /2 ,�S /2	 and that the frequency-domain
epresentation is approximately confined to �−�B /2 ,
B /2	. We then define the space–bandwidth product
S�B, which is always 	1 because of the uncertainty re-

ation. Let us now introduce the scaling parameter s and
caled coordinates, such that the space- and frequency-
omain representations are confined to intervals of
engths �S /s and �Bs. Let s=��S /�B so that the lengths
f both intervals become equal to the dimensionless quan-
ity ��B�S, which we denote by �u, and the ellipse be-
omes a circle with diameter �u. It will not make much
ifference if we assume that the signal is contained
ithin the smallest square containing this circle. In the
ew scaled coordinates, signals can be represented in
oth domains with �u2 samples spaced �u−1 apart. We
ill assume that this dimensional normalization has been
erformed and that the coordinates u and � are dimen-
ionless.

For a signal with rectangular space-frequency support,
he space–bandwidth product is equal to the number of
egrees of freedom. This is not true for signals with other
upport shapes [55]. While we have observed that LCTs
o not change the number of degrees of freedom of a sig-
al, they may change its space–bandwidth product. This
ill be evident when we examine some of the basic special

ases of the LCT.

. CLCTs in Optics and Special CLCTs
agnification (scaling), FT, real fractional Fourier trans-

ormation (RFRT), real chirp multiplication (CM), CCM,
auss–Weierstrass transform, and CFRT are all special

ases of CLCTs that have optical realizations. Scaling, FT,
FRT, and CM, which have real parameters, belong to the
arrower class of RLCTs and have been reviewed in [47].
n this section, we only review complex-parametered
ases that are essential for our development.

. Complex Scaling (Magnification)
imple scaling with a real parameter M is an operation
hich corresponds to optical magnification [47]. If the pa-

ameter M is allowed to be complex, we obtain the com-
lex scaling operation, which is a special case of CLCTs.
ith complex scaling, the real axis on which the input

unction is defined is mapped to a straight line in the com-
lex plane passing through the origin and making an
ngle arg�M� with the real axis. The mapping becomes
→C. The interpretation of complex scaling in quantum
echanics has been discussed in [56,57], while an inter-

retation from a signal processing perspective can be
ound in [58]. However, we are not aware of the realiza-
ion and application of complex scaling from a purely op-
ical point of view.

. Gaussian Apertures (Complex Chirp Multiplication)
aussian apertures, also called soft apertures, are a spe-

ial case of CLCTs. They are actually CMs with a complex
arameter and are the complex counterparts of CM op-
rations. We will hereafter refer to them as CCM. The
efinition of CCM is similar to the definition of real CM,
here we replace the chirp parameter with a purely

maginary complex parameter,

CQiq
f�u� = Qiqf�u� = e�qu2

f�u�, �13�

Qiq = � 1 0

− iq 1� = � 1 0

iq 1�−1

, �14�

here q is real and so iq is a purely imaginary parameter.
t essentially behaves like a multiplicative filter where
he transmission is dependent on the transverse dimen-
ion quadratic-exponentially. To exclude the unbounded
ase we require q
0.

We now discuss the effect of CCM on the WD. We need
his result in order to track and control the space–
andwidth product of CLCTs. This result is not needed in
lgorithms for RLCTs because there are no CCM stages in
LCTs and is of a considerably different nature than the
perations employed there. We use the property given in
q. (12) with h�u�=e�qu2

. The WD of h�u�, denoted by
h�u ,��, can be obtained by directly using the definition

f the WD [Eq. (10)],

Wh�u,�� =� 2

− q
e2�qu2

e�2�/q��2
, q � 0. �15�

he WD of the Gaussian function is a 2D Gaussian func-
ion in the space-frequency plane. Since q�0, this func-
ion decays with increasing u and �. Therefore, we can
pecify a rectangular region which contains almost all of
he energy of the function. We will choose the extent of
his rectangle to correspond to plus/minus four standard
eviations of the Gaussian in both the space and fre-
uency dimensions, which defines a rectangle with extent

g1 = �16/��q�,

g2 = �16�q�/� �16�

n the space and frequency dimensions, respectively.
hen the WD of the input function and the WD of the
aussian function are convolved along the � direction to
nd the resulting WD of the output function (as illus-
rated in Fig. 1), the resulting space extent of the support
f the output WD will be given by min�d1 ,g1� and the re-
ulting frequency extent will be given by d2+g2, where d1
nd d2 are the space and spatial-frequency extent of the
nput function.
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. Gauss–Weierstrass Transform
he Gauss–Weierstrass transform with parameter t is
iven by the integral transform [4]

Gtf�u� = �1/t�
−�

�

e−��u − u��2/tf�u��du�. �17�

t gives the solution of the heat equation. The complex
hirp convolution (CCC) operation, which is a special case
f CLCTs, is represented by the transform matrix

Rir = �1 ir

0 1� , �18�

nd is equivalent to convolution by a Gaussian function,

CRir
f�u� = Rirf�u� = f�u� � ei�/4�1/r exp��u2/r�. �19�

e observe that CCC is the same as the Gauss–
eierstrass transform when we choose the CCC param-

ter r=−t. As in the case of the FT, there is again the in-
onsequential constant phase factor e−i�/4 difference
etween the two definitions. CCC operations are covered
y our algorithm since they are a special case of CLCTs.
CC operations are most conveniently calculated by ex-
ressing them as a FT followed by a CCM operation fol-
owed by an inverse FT.

The combined effect of two CCM (or CCC) operations
ollowing each other is again a CCM (or CCC) operation,
hose parameter is found by summing the parameters of

Fig. 1. The effect of th
he two constituent operations. If two CCM operations
ith real or complex parameters q1 and q2 follow each

ther, the equivalent operation is a new CCM operation
ith parameter q1+q2. If two CCC operations with real or

omplex parameters r1 and r2 follow each other, the
quivalent operation is a new CCC operation with param-
ter r1+r2.

. CFRT
he ath order RFRT (or simply FRT) is well studied in the

iterature [1,59–67]. Complex FRTs are FRTs whose order
arameter is complex [34–38].
When the order is an imaginary number ib, then we ob-

ain the following special case of CLCTs with the trans-
orm matrix:

Flc
ib = � cosh�b�/2� i sinh�b�/2�

− i sinh�b�/2� cosh�b�/2� � , �20�

hich again differs only by the factor eb�/4 from FRTs as
ommonly defined,

CFlc
ibf�u� = Flc

ibf�u� = eb�/4Fibf�u�. �21�

ince FRTs are additive in index, a real-ordered and a
urely imaginary-ordered FRT can be combined as Fa+ib

FaFib to yield a general CFRT, where the complex order
ay be denoted by ac=a+ ib. CFRTs can be optically real-

zed by using thin lenses, free-space propagations, and
aussian apertures or by combination of Gauss–

operation on the WD.
e CCM
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eierstrass transforms with Gaussian apertures [34].

. ALGORITHM
e now show how given abcd matrices can be decom-

osed in a manner that leads to a fast algorithm for the
omputation of CLCTs. In the most general case, the ma-
rix MC is composed of the four complex parameters
,b ,c ,d, whose real and imaginary parts add up to a total
f eight parameters. These eight parameters are re-
tricted by the unimodularity condition on MC, which re-
uires the real part of the determinant to be 1 and the
maginary part to be zero. Because of these two equations,
he total number of independent parameters of a general
LCT is 6. These six parameters correspond to the six pa-
ameters of the group HSp�2,C�, which is a six-parameter
emigroup of the complex symplectic group Sp�2,C�. Be-
ore giving the main decomposition which covers the gen-
ral case, we start with a special case whose treatment is
traightforward.

. b=0 Case
hen b=0, the unimodularity requirement requires a
0 and the transform output can be written as

�CMC
f��u� =

1

�a
ejcy2/2af�y/a�. �22�

n this case, the output is given by a scaling operation
ith parameter a followed by a CM operation with pa-

ameter −c /2a. We will restrict ourselves to the case
here a is real since only in this case will the scaling op-
ration result in a R→R mapping. The case where a is
omplex produces complex scaling operations and there-
ore causes mappings from functions on the real line to
unctions on the complex plane. This case would require
pecial treatment, which we do not attempt since we are
ot aware of any optical realization or application of such
ransforms. Also necessary is the condition Im�c /a�,
hich is necessary to ensure boundedness. In order to
ave a bounded and R→R mapping, it becomes necessary
or a to be real and Im�c /a�	0. Together with the unit-
eterminant condition, these conditions can be explicitly
ummarized as follows:

ar � 0,

d = 1/a,

ac = 0,

arcc 	 0, �23�

here the first two are intrinsically required to define any
CT �det MC=1� and the last two are required to obtain a
ounded R→R mapping. When the conditions in 23 are
atisfied, the matrix M can be decomposed as
C
MC = �ar 0

c 1/ar
� = � 1 0

c/ar 1��ar 0

0 1/ar
� = � 1 0

cr/ar 1�
�� 1 0

icc/ar 1��ar 0

0 1/ar
� . �24�

he above decomposition can be used for the fast compu-
ation of the special case b=0.

. bÅ0 Case
ow, we turn our attention to the more general case in
hich the following decomposition will be the basis of our

ast algorithm:

MC = � 1 0

− q3r 1�� 1 0

− iq3c 1��0 − 1

1 0 �� 1 0

− q2r 1�� 1 0

− iq2c 1�
�� 0 1

− 1 0�� 1 0

− q1r 1�� 1 0

− iq1c 1� . �25�

his decomposition consists of three imaginary CM and
eal CM pairs with Fourier/inverse Fourier transform op-
rations in between. The imaginary CM and real CM
airs can also be viewed as CCM operations,

MC = � 1 0

− �q3r + iq3c� 1��0 − 1

1 0 �� 1 0

− �q2r + iq2c� 1�
�� 0 1

− 1 0�� 1 0

− �q1r + iq1c� 1� . �26�

he three matrices in the center can also be expressed as
CCC operation,

MC = � 1 0

− �q3r + iq3c� 1��1 �q2r + iq2c�

0 1 �� 1 0

− �q1r + iq1c� 1� ,

�27�

hich is nothing but the complex version of the well-
nown CM-CC-CM decomposition [1].
When we multiply out the matrices on the right-hand

ide of Eq. (25), equate the result to the general CLCT
atrix given in Eq. (6), and solve for our decomposition

arameters in terms of the CLCT parameters, we get the
ollowing:

q1r =
br − brar − acbc

br
2 + bc

2 ,

q1c =
bcar − bc − brac

br
2 + bc

2 ,

q2r = br,

q2c = bc,

q3r =
br − brdr − dcbc

br
2 + bc

2 ,
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q3c =
bcdr − bc − brdc

br
2 + bc

2 . �28�

hus, all six parameters of our decomposition have been
xpressed in terms of the six parameters of the CLCT
hich we desire to compute. By using Eq. (9), we can also

asily calculate the decomposition parameters in terms of
he complex � ,� ,� parameters if needed. The decomposi-
ion in Eq. (25) can also be expressed in operator notation
s follows:

CM = Qq3r
Qiq3c

Flc
−1Qq2r

Qiq2c
FlcQq1r

Qiq1c
. �29�

We now discuss the various cases that arise depending
n the values of the parameters. When b�0, a separate
reatment is required depending on whether a is zero or
ot. First, consider the case when a=0. The decomposi-
ion parameters given in Eq. (28) become

q1r =
br

br
2 + bc

2 ,

q1c =
− bc

br
2 + bc

2 ,

q2r = br,

q2c = bc,

q3r =
br − brdr − dcbc

br
2 + bc

2 ,

q3c =
bcdr − bc − brdc

br
2 + bc

2 . �30�

s discussed in Subsection 3.B.2, the CCM parameters
1c, q2c, and q3c should be 
0 leading to the conditions

− bc

br
2 + bc

2 
 0, �31�

bc 
 0, �32�

bcdr − bc − brdc

br
2 + bc

2 
 0. �33�

quations (31) and (32) imply bc=0 and Eq. (33) becomes
rdc	0. When we set bc=0 in Eq. (30), we obtain the fol-
owing decomposition parameters:

q1r = 1/br,

q1c = 0,

q2r = br,

q2c = 0,

q3r = �1 − dr�/br
2,
q3c = − dc/br, �34�

ith the condition brdc	0. The decomposition we should
se in this case therefore can be expressed as

MC = � 1 0

− �1 − dr�/br 1�� 1 0

idc/br 1��0 − 1

1 0 �� 1 0

− br 1�
�� 0 1

− 1 0�� 1 0

− 1/br 1� . �35�

We now turn our attention to the case b�0 and a�0.
he decomposition given in Eq. (25) and the decomposi-
ion parameters given in Eq. (28) are applicable. The be-
ow three conditions should be satisfied to have a bounded
nd R→R mapping:

bc 
 0,

bcar − brac 
 bc,

bcdr − brdc 
 bc, �36�

hich can be equivalently expressed in terms of the
,� ,� parameters,

�c 	 0,

�c 	 �c,

�c 	 �c, �37�

hich depends only on the imaginary parts. This is ex-
ected since RLCTs are always bounded and unitary, and
t is the imaginary parts that are involved in issues of
oundedness. These conditions are derived by restricting
he parameters of the Gaussian aperture steps in the
LCT decompositions we employ. There are no such con-
itions required for RLCTs. However, these constraints
re crucial for the computation of CLCTs. To better illus-
rate these conditions, we summarize them in Table 1.

The special case b=0 requires the computation of only
eal CM and CCM and a real scaling operation. The de-
omposition for the general case includes CMs and FTs.
Ms require only N multiplications and can be done in
N times. The FT and inverse FT can be computed in
N log N times by using the fast Fourier transform (FFT)

lgorithm. We also note that the scaling operation merely
hanges the sampling interval in the sense of reinterpre-
ation of the same samples with a scaled sampling inter-
al, in a manner which corresponds to scaling of the un-
erlying continuous signal. Thus the cost of the scaling

Table 1. Summary of the Conditions to Have
Bounded R\R CLCTs

ase 1 Case 2 Case 3

=0 b�0 and a=0 b�0 and a�0

r�0 bc=0 bc
0
=1/a brdc	0 bcar−brac
bc

c=0 bcdr−brdc
bc

rcc	0
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peration is minimal and not of consequence since it
mounts only to a reinterpretation of the samples. There-
ore, the overall CLCT can be computed in �N log N
imes. To ensure that the number of samples required to
epresent the function is sufficient in the Nyquist–
hannon sense at each step of the decomposition, we will
rack the space–bandwidth representation of the function
y using the WD and increase the sampling rate when
ecessary. We will do this with the help of the procedures
ummarized in [47] for real steps and with the help of Fig.

and the discussion given in Subsection 3.B.2 for the
omplex components. Since the FRT corresponds to rota-
ion and the scaling operation only to a reinterpretation of
he samples, these steps never require us to increase the
umber of samples. CMs, however, require careful han-
ling of the space–bandwidth and sampling issues.
Finally, we summarize our algorithm and the associ-

ted space–bandwidth product tracking and sampling
ontrol methodology for the most general case. [For the
=0 and b�0, a=0 special cases, this procedure can be
asily simplified to correspond to the simpler decomposi-
ions in Eqs. (24) and (35), respectively.] Whenever the
urrent number of samples will not be sufficient to fully
epresent the operated-on signal in the Nyquist–Shannon
ense, an increase in the number of samples is required
rior to performing the operation.

1. We will use Es and Ef to denote the spatial and fre-
uency extent of the function as we go through the stages
f the algorithm. We assume that the initial space-
requency support is a square of edge length �u so that at
he beginning Es=Ef=�u, and the signal can be repre-
ented with EsEf=�u2 samples.

2. The first step of the decomposition is the first CCM
ith parameter q1c. We use Eq. (16) to obtain the space
nd frequency extent of the Gaussian function, which we
enote by Gs1 and Gf1, respectively. Es and Ef are changed
ccording to Es→min�Es ,Gs1� and Ef→Es+Gf1. The re-
uired number of samples then becomes Es�Ef which are
aken in the interval �−�Es /2 ,�Es /2	 with a spacing of
/Ef apart from each other. This may or may not require
n increase in the number of samples depending on
hether the new Es�Ef product is bigger than the start-

ng number of samples, �u2. If an increase in the number

Fig. 2. Example function F4.
f samples is required, we oversample the signal using an
ppropriate interpolation scheme and then the CCM op-
ration is performed on the input samples.

3. The second step is a CM operation with parameter
1r. We see that the extent must now become Es→Es and
f→Ef+ �q1r�Es. The number of samples required becomes
s� �Ef+ �q1r�Es� which will require oversampling with a

actor k=1+ �q1r�Es /Ef. After this oversampling is per-
ormed, the CM operation is performed.

4. We now take the FT of the samples by using the FFT
lgorithm. We have Es→Ef and Ef→Es since FT only
witches the spatial variable and its spatial-frequency
ariable. The FT operation does not change the space–
andwidth product of the signal, so oversampling is not
equired at this stage.

5. Repeat Steps 2 and 3 with the parameters q2c and
2r corresponding to subsequent stages of the decomposi-
ion.

6. Repeat Step 4, this time with an inverse FT opera-
ion instead of a forward FT operation.

7. Repeat Steps 2 and 3 with the parameters q3c and
3r corresponding to the final stages of the decomposition
o get the final output samples.

. NUMERICAL EXAMPLES
e have considered several examples to illustrate the

erformance of the presented algorithm. We consider the
hirped pulse function exp�−�u2− i�u2�, denoted by F1,
nd the trapezoidal function 1.5 tri�u /3�−0.5 tri�u�, de-
oted by F2 �tri�u�=rect�u��rect�u�	. Since these two

unctions are well confined to a circle in the space-
requency plane with a diameter of �u=8, we take N=82.

Fig. 3. Example function F5.
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e also consider the binary sequence 01101010 occupying
�8,8] with each bit 2 units in length so that N=162. This
inary sequence is denoted by F3 and the function shown
n Fig. 2 is denoted by F4, again with N=162. Addition-
lly, we also test the example function given in Fig. 3 with
=82 that has complex values (i.e., amplitude and

hase). These choices for �u result in �0%, 0.0002%,
.47%, 0.03%, and 0.25% of the energies of F1, F2, F3, F4,
nd F5, respectively, to fall outside the chosen frequency
xtent. The chosen space extent includes all of the ener-
ies of F2, F3, F4, and F5 and virtually all of the energy
f F1. We consider three transforms: the first �T1� with
arameters ��r ,�r ,�r ;�c ,�c ,�c�= �−2,1.2,−0.9;0.04,0.02,
.12�, the second �T2� with parameters (1.15,�0.14,
0.1;0.003,0.001,0.002), and the third �T3� with param-

ters (�1.2,�0.3,0.1;0.6,0.5,1). The CLCTs T1, T2, and T3
f the functions F1, F2, F3, F4, and F5 have been com-
uted both by the presented fast algorithm and by a
ighly inefficient brute force numerical approach based
n Simpson’s numerical integration, which is taken here
s a reference.
The results for all functions (F1, F2, F3, F4, F5) are

lotted in Figs. 4 and 5 for transforms T1 and T2, respec-

ig. 4. Transform �T1� of F1, F2, F3, F4, and F5. The results ob
lotted with dotted and solid lines, respectively. However, the tw

lose.
ively, and are tabulated in Table 2 for all transforms T1,
2, and T3. Also shown are the errors that arise when us-

ng the discrete Fourier transform (DFT) in approximat-
ng the FT of the same functions, which serves as a refer-
nce. (The error is defined as the energy of the difference
ormalized by the energy of the reference, expressed as a
ercentage.)
We also tested our algorithm for the CFRT, which is an

mportant special case of CLCTs and the complex exten-
ion of the real-parametered FRT. A CFRT with order
.8− i0.2 is calculated with our algorithm and the refer-
nce method and the results are plotted for all functions
F1, F2, F3, F4, F5) in Fig. 6 and again are tabulated in
able 2. The CFRT order 0.8− i0.2 corresponds to CLCT
arameters ��r ,�r ,�r ;�c ,�c ,�c�= �0.292,0.9919,0.292;
.3331,0.098,0.3331�.
Examination of the table shows that our algorithm can

ccurately compute CLCTs for a variety of transforms and
unctions. We observe that the main determinant of the
rror is not the transform, but the function, and more spe-
ifically the energy of the function lying outside the as-
umed extent. If we require the error to be further re-

with the presented algorithm and the reference result have been
s of lines are almost indistinguishable since the results are very
tained
o type
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uced, we can reduce the excluded energy by increasing
he extent and the number of samples involved.

. CONCLUSIONS
e presented an algorithm for the fast and accurate digi-

al computation of the general family of complex-
arametered linear canonical transforms (LCTs). This
amily of transform integrals can represent a general
lass of complex quadratic-phase systems in optics. Our
pproach is based on concepts from signal analysis and
rocessing rather than conventional numerical analysis.
ith careful consideration of sampling issues, the num-

ig. 5. Transform �T3� of F1, F2, F3, F4, and F5. The results ob
lotted with dotted and solid lines, respectively. However, the tw
lose.

Table 2. Percentage Errors for Di

T1 T2

1 4.12�10−6 2.19�10−6

2 3.73�10−4 7.1�10−3

3 0.53 0.35
4 1.2�10−3 4.96�10−2

5 0.11 0.2
er of samples, N, can be chosen very close to the space–
andwidth product of the functions. A naive approach
ased on the examination of the frequency content of the
ntegral kernels would, on the other hand, result in an
nnecessarily high number of samples being taken due to
he highly oscillatory nature of the kernels, which would
ot only be representationally inefficient but also increase
he computation time and storage requirements. The
ransform output may have a higher space–bandwidth
roduct than the input due to the nature of the transform
amily. Through careful space–bandwidth tracking and
ontrol, we can assure that the output samples obtained
re accurate approximations to the true ones and that

with the presented algorithm and the reference result have been
s of lines are almost indistinguishable since the results are very

t Functions F and Transforms T

T3 CFRT DFT

2.8�10−3 1.24�10−5 2.0�10−21

1.4�10−3 1.2�10−3 6.2�10−4

0.26 0.22 1.2
2.0�10−3 2.2�10−3 7.1�10−2

8.0�10−3 6.4�10−3 1.7
tained
o type
fferen
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hey are sufficient (but not unnecessarily redundant) in
he Nyquist–Shannon sense, allowing a full reconstruc-
ion of the underlying continuous output functions. The
lgorithm takes the samples of the input function and
aps them to the samples of the continuous CLCT of this

unction in the same sense that the fast Fourier trans-
orm (FFT) implementation of the DFT computes the
amples of the continuous FT of a function.

Complex-parametered LCTs allow several kinds of op-
ical systems to be represented, including lossy as well as
ossless ones. When complex parameters are involved,
CTs may no longer be unitary and boundedness issues
ay arise. We have identified the conditions for a CLCT

o constitute a bounded map from functions on the real
xis to functions on the real axis. As a special case of our
eneral CLCT algorithm, we have also obtained an effi-
ient and accurate algorithm for complex-ordered frac-
ional Fourier transforms (CFRTs).
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