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Abstract In this study the surface of Ti-47Al-2Cr (at. %) was modified by heating

and exposure to nitrogen gas flow to form a predominantly oxide layer on the

surface. Samples were then immersed in Ringer’s solution and 3.5 wt. % sodium

chloride solution and electrochemical impedance spectroscopy tests were performed

at regular intervals. The results showed that the layer is highly resistant to corrosion.

The equivalent circuit proposed for the impedance curves includes a Warburg

element, because diffusion is controlling charge transfer through the passive surface

layer. The resistance of the layer was not significantly reduced even after 300 h

exposure to solutions and scanning electron micrographs showed the surface was

not damaged.
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Introduction

Titanium aluminide-based alloys, are interesting because of their outstanding

performance at high temperatures and their ability to withstand challenging

environmental conditions. A new generation of TiAl alloys is being considered for a

wide range of civil and military applications. Among these applications are high and

low-pressure compressor blades, stators, casing and combustor components, fuel

injector components, external casing, pipes and rotors of car turbochargers, and

exhaust valves [1–3]. This intermetallic alloy has recently been introduced as a

biomaterial for implantation [4–6].

The corrosion resistance of single (c) and duplex (a2 ? c) titanium aluminides is

the same as, or better than, that of titanium, and the alloys also have higher yield

strength and rigidity and are of lower density than common titanium alloys. When

heated to high temperatures titanium aluminide forms a bio-inert oxide layer which

is resistant to both corrosion and wear [5, 7]. It has been reported that titanium oxide

debris on titanium implants as a result of wear results in immunological response of

the body and, eventually bone–metal detachment [8]. c-TiAl implants preferentially

form aluminium oxide [9], which is more wear and fretting resistant. As a result

immunological responses are prevented.

Investigation has revealed that Ti-6Al-4 V might release vanadium, which is

toxic and increases biological problems [10]. Use of c-TiAl as a substitute for

Ti-6Al-4 V can prevent vanadium problems and, therefore, its effects on the bone–

implant interface are reduced. Preliminary investigation of c-TiAl in-situ implan-

tation in rats with cell attachments and osteoblast cell culture showed that the tissue

response was suitable and the alloy is acceptable for use as an implant [6]. In

another study, corrosion resistance of c-TiAl in simulated body fluid was evaluated

to assess the possibility of its being used as a biomaterial; the results showed

corrosion resistance is similar to that of Ti-6Al-4V in the same solution [4]. In

addition, thermal treatment of the alloy in air resulted in oxidation, resulting in good

corrosion resistance in sea water [11].

Titanium alloys have a strong tendency to react with oxygen, which increases

formation of an adherent oxide barrier layer; this is the reason for the high corrosion

resistance of these materials. In biological applications, chemical composition and

the stability of the oxide layer are important, because the biomaterial surface is

directly exposed to biological tissues [12]. Thermal oxidation of titanium alloys is a

well known means of improving corrosion resistance. Many investigations [4, 13]

have been performed to optimize this thermal treatment. In an investigation by

Garcı́a-Alonso et al. [8], the effect of thermal oxidation of Ti-6Al-4 V on corrosion

behavior and in-situ osteoblast cell-culture response was evaluated. In another study

by Güleryüz and Çimenoglu [13], Ti-6Al-4 V was heated for 60 h at 600 and

650 �C, and it was observed that corrosion resistance was improved by formation of

an oxide layer consisting of anatase and rutile. Lu et al. [14] studied the process of

oxidation of Ti-45Al-8Nb-0.2W-0.2B-0.02Y (at. %) for 100 h at 900 �C. They

showed that TiO2 and Al2O3 were present in the metastable oxide layer even in the

at early stages of oxidation, i.e. during first 5 min. In another investigation, the

surface of c-TiAl was treated in an autoclave and by oxidation in air. It was
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observed that the surface oxidized at 500 and 800 �C had outstanding corrosion

resistance in comparison with untreated Ti-48Al-2Cr-2Nb, which is characterized

by high polarization resistance, high noble corrosion potential, and lower corrosion

current density and rate of corrosion [4].

As previously mentioned, heating alloys at rather high temperatures is a method

for ceramic layer formation to improve corrosion resistance. For binary Ti–Al

alloys, the oxidation products are oxides of Ti and Al, including rutile titania (TiO2)

and alpha alumina (Al2O3), among others. In comparison with alumina, titania is

more conductive and less protective. Nevertheless, similar activity for titanium and

aluminium lead to the formation of both titania and alumina simultaneously [15,

16]. In most of the literature, the oxide layer is discussed from the perspective of

oxidation resistance, but there is a lack of knowledge about protection of this layer

against electrochemical corrosion at ambient temperature [17]. Even so, the ceramic

layer can improve the characteristics of the alloy, including better protection at

ambient temperature.

In our previous study [7], a Ti-47Al-2Cr (at. %) alloy was heated at different

temperatures, 750, 850, 950, and 980 �C, in the presence of a flow of nitrogen gas

and the surface was thermally passivated. The results confirmed that the sample

treated at 950 �C had the highest resistance. In this study, the electrochemical

behavior of the sample with the best modification (i.e. that treated at 950 �C), was

examined after exposure to sodium chloride solutions for different times, to

determine the stability of the oxide layer in the presence of chloride ion.

Experimental

Titanium aluminide was cast and remelted in a vacuum arc remelting (VAR)

furnace with non-consumable tungsten electrode. Relatively pure raw materials

were used (titanium rod of purity 99.7 %; aluminium ingot of purity 99.9 %;

chromium granules of purity 99.97 %). To prepare the Ti-47Al-2Cr alloy, Ti, Al,

and Cr with the weigh percentages 64.07, 33.21, and 2.72 %, respectively, were

precisely weighed then degreased with acetone in an ultrasonic bath for 20 min.

Melting and alloying was performed under an argon atmosphere at a pressure of

300 mbar in a copper water-cooled mold with vacant space of dimensions

10 9 2 9 1 cm3. To achieve homogenous composition and remove microscopic

segregation, the alloy was remelted five times. The ingot was placed in a quartz

vacuum tube (0.5 torr) and the homogenizing heat treatment was performed below

the eutectic temperature of 1,125 �C. The final microstructure consisted of 70 %

lamellar gamma phase and 30 % blocks of gamma and alpha phases (not shown).

The samples of Ti-47Al-2Cr were cut into 30 9 20 9 5 mm3 sheets then

abraded by use of silicon carbide paper (up to 1,200 grit) before surface treatment.

The samples were then degreased with ethanol and rinsed with distilled water. To

ensure a completely clean surface and removal of natural surface oxides, the

samples were acid pickled in 30 % sulfuric acid for 10 min. In the next stage, the

sample was heated at 950 �C in nitrogen gas flow for 1 h. Additional details are

presented in Ref. [7].
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Cross-section compositional and elemental analysis was performed with a

Cambridge S360 SEM equipped with an Inca Operator EDS detector. Surface

analysis of the sample was also performed by scanning electron microscopy (SEM)

(Philips XL30 SEM with EDS detector).

Electrochemical testing was performed in Ringer’s solution (8.402 g/l NaCl,

0.302 g/l KCl and 0.298 g/l CaCl2) and in 3.5 % NaCl solution. Electrochemical

impedance spectroscopy (EIS) was performed with different exposure time.

EIS tests were performed by applying a 10-mV perturbation at open circuit

potential. The ac frequency ranges varied from 100 kHz to 10 mHz. An EG&G

potentiostat with 1,025 frequency response detector was used for plotting EIS

curves. Power Suite software was used for measurement of impedance and the

Zview software was used to fit the proposed equivalent circuits. Electrochemical

testing was performed to ASTM G5 standard in an EG&G flat cell with saturated

calomel reference electrode, platinum mesh counter electrode, and Ti-47Al-2Cr

alloy working electrode. The solution temperature was not controlled and was left at

ambient temperature.

Results and discussion

Figure 1 shows line scan analysis of the cross section of the sample thermally

treated at 950 �C in an atmosphere of nitrogen gas flow. Although in this sample the

titanium content is higher than that of aluminium, in the surface layer formed the

opposite trend is observed and the aluminium was present in greater quantities than

the titanium. Furthermore, the variation of nitrogen levels shows that nitrides exist

throughout the layer, and that the quantity increases with depth. The titanium depth

profile to a depth of 2 lm from the outer surface includes a peak which indicates a

titanium oxide-rich portion in the layer.

At a depth of 15–20 lm in the oxide layer, the concentration of titanium

compounds (oxides, nitrides, or metal) is greater than that of aluminium

compounds; at shorter distances from the surface aluminium compounds predom-

inate. Variation of elements with depth is shown in Fig. 1.

Analysis of the surface oxide layer is shown in Fig. 2. In the inner parts of the

surface oxide layer, compaction is greater than that in outer part, because the

outermost surface is of high porosity. Maps showing the distribution of elements

(elemental analysis) in selected parts of the surface oxide layer and the layer

beneath are shown in Fig. 3. Uniform distribution of the elements can be observed

in both the oxide layer and the alloy.

Results from EDS analysis of a surface selected from the whole thickness of the

surface oxide layer are presented in Table 1. Here, more than 5 atomic percent of

nitrogen was detected. As can be seen, the atomic percentage of titanium is greater

than that of aluminium and the substantial amount of oxygen implies that the layer

is mostly oxide. This analysis varied at different points; sometimes the amount of

nitrogen was lower or even negligible. It is also noticeable that the chromium

content of the surface layer was negligible. Although the alloy contains 2 atomic

percent of chromium, on average there was only 0.12 % in the surface layer.
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Fig. 1 Line scan analysis of the oxide layer formed on the surface of a sample of Ti-47Al-2Cr modified
at 950 �C
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Fig. 2 Cross-sectional scanning-electron microscope image of surface oxide film formed by thermal
treatment of Ti-47Al-2Cr at 950 �C
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Fig. 3 EDS map analysis from of a cross section of the substrate and surface oxide film formed by
thermal treatment of Ti-47Al-2Cr at 950 �C
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It has been reported that in pure oxygen a continuous dense layer of Al2O3 is

formed on Ti–Al (47–49 at. %) and that at lower oxygen content the presence of

titanium oxide in the surface oxide layer would be greater [18, 19]. It has also been

mentioned that higher aluminium content is needed for the alloy to form a barrier of

alumina. By thermodynamic calculation it has been shown that for titanium

aluminide with 50 % aluminium content or less, the titanium oxide is more stable

than the aluminium oxide [18]. Moreover, increase in the nitrogen partial pressure in

the gas flow enhances the amount of nitride phases.

On the basis of these observations, it can be predicted that surface modification of

Ti-47Al-2Cr samples by thermal treatment in the presence of nitrogen gas flow is

suitable for improving corrosion resistance.

To evaluate the stability of the formed layer over time, electrochemical

impedance spectroscopy testing was performed on samples treated at 950 �C then

placed in Ringer’s solution or in 3.5 % NaCl solution at open circuit potential.

Figure 4 shows the impedance curves acquired after exposure for different times

in Ringer’s solution. It is apparent from the Nyquist and Bode modulus diagrams

that there is high resistance in the system and the impedance at low frequencies is of

the order of some 10 billion ohms. The Bode phase diagram shows that the curve is

almost falling and starts from about 90 degrees at high frequencies and decreases

steadily to low frequencies and finally slightly increases. Large angles at the start of

the Bode phase diagram are indicative of high resistance of the surface layer. In

addition, no peak in the Bode phase diagrams suggests one RC loop in the

equivalent circuit. The almost linear plot at low frequencies, with slope of -1,

suggests the presence of a Warburg element in the equivalent circuit; this, in turn,

suggests diffusion of a reactant or a reaction product on the surface of the electrode

which occurs here for charge carrier diffusion through the barrier surface layer. In

general, when the mechanism of an electrochemical process is under control of the

diffusion effect, the impedance response is characterized by a unique element

known as the Warburg element. For this response, the current differs by 45� from

the applied potential, so that at all frequencies the real and imaginary parts of

impedance vector would be the same. The impedance behavior of a Warburg element

(phase difference of 45�) is behavior between a resistor (phase difference 0�) and a

capacitor (phase difference 90�). There is no simple element to describe the Warburg

impedance so it is represented with a W [20].

The value of Z for a system controlled by diffusion changes by the second root of

frequency. So, the Warburg impedance can be written as the complex number:

Table 1 Elemental analysis of

the part of the oxide layer

marked in Fig. 2

Element Weight (%) Atom (%)

N 2.73 5.85

O 16.05 30.16

Al 26.78 29.84

Ti 54.23 34.03

Cr 0.21 0.12

Totals 100.00 100.00
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Fig. 4 EIS curves obtained from Ti-47Al-2Cr sample thermally treated at 950 �C then placed in
Ringer’s solution for different exposure times
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Zw ¼
r
ffiffiffiffi

x
p � r

ffiffiffiffi

x
p j ð1Þ

where, x is the angular frequency and r the Warburg coefficient, which can be used

for calculation of the diffusion coefficient. This equation states that at each fre-

quency the real and imaginary parts of the Warburg impedance are equal, and are

proportional to 1
ffiffiffi

x
p . In the Nyquist curve the Warburg impedance is shown by a

straight line with a slope of -1 [20].

It is apparent from Table 2 that values did not change with increasing exposure to

Ringer’s solution. Although changes in resistance, capacitance, and Warburg

impedance occurred, it seems that the layer gradually became more resistant and

then lost some of its resistance and reach to the initial values after 500 h. Errors

were greatest for the solution resistances indicated.

Figure 5 shows the impedance curves for a sample tested in more aggressive

solution, i.e. 3.5 % NaCl solution. It is apparent that, initially, the total resistance

(the impedance modulus at low frequency) was almost a factor of 100 less than that

for Ringer’s solution, but as time increased (35 h) the resistance increased

substantially and reached values approximately one tenth of values for Ringer’s

solution. A similar equivalent circuit was used to fit the results. For the first and

third hours different circuits were used for fitting; this was similar to use of a circuit

with two RC loops that is used for coatings with defects.

Table 3 shows the equivalent circuit and fitted results for the impedance curves.

By comparing these results with those obtained from use of Ringer’s solution, it can

Table 2 Fitted results from EIS curves obtained from Ti-47Al-2Cr sample thermally treated at 950 �C

then placed in Ringer’s solution for different exposure times

Rs CPE1

R1 W1

Exposure time (h) Rs (X cm2) R1 (MX cm2) CPE1-T (nF cm-2) CPE1-P r (MX cm2 S1/2)

1 1,805a 23 75 0.53 0.91

3 201a 23 70 0.55 1.00

5 20 23 70 0.55 1.05

25 268 22 80 0.54 1.40

97 392 24 60 0.50 1.50

143 351 24 70 0.50 1.70

191 92a 21 70 0.50 1.60

265 165 16 75 0.50 1.55

288 375 16 70 0.53 1.25

363 160a 13 70 0.55 1.10

503 205a 11 70 0.58 1.00

a Denotes more than 10 % error in fitting the equivalent circuits
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Fig. 5 EIS curves obtained from Ti-47Al-2Cr sample thermally treated at 950 �C then placed in 3.5 %
NaCl solution for different exposure times
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be seen that the biggest difference is for the Warburg element, which is almost a

factor of 100 less, which is indicative of easier charge carrier diffusion through the

surface film in the presence of higher concentrations of chloride ion in solution.

Nevertheless, the values are still high in comparison with those for other coatings.

Table 3 Fitted results from EIS curves obtained from Ti-47Al-2Cr sample thermally treated at 950 �C

then placed in 3.5 % NaCl solution for different exposure times

Rs CPE1

R1 W1

Rs CPE1

R1 CPE2

R2

Exposure

time (h)

Rs

(X cm2)

R1

(kX cm2)

CPE1-T

(lF cm-2)

CPE1-P r
(kX cm2

S1/2)

R2

(MX cm2)

CPE2-T

(lF cm-2)

CPE2-P

1 45a 7.9 3.0 0.50 10 – – –

1 40a 8 2.9 0.53 – 1.50 70 0.50

3 10a 4.6 0.7 0.55 – 0.15 80 0.58

35 280a 1,000 2.0 0.50 92 – – –

131 212a 1,200 1.8 0.50 80 – – –

179 50 1,300 2.0 0.50 85 – – –

275 35a 1,300 1.8 0.50 78 – – –

a Denotes more than 10 % error in fitting the equivalent circuits
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Fig. 6 Variation of the free potential of Ti-47Al-2Cr sample thermally treated at 950 �C then placed in
3.5 % NaCl solution for different exposure times
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Figure 6 shows free potential changes of the sample at different times.

Measurement was performed immediately before performing impedance tests.

Exactly similar to the impedance changes, the sample potentials in the first and third

Fig. 7 Scanning electron micrographs, with different magnification, of the upper surface of the oxide
film formed by thermal treatment of Ti-47Al-2Cr sample at 950 �C
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hours decreased, then rose substantially again and remained constant. This can be

explained by studying the scanning electron micrographs of the sample surface. As

observed in Fig. 7 at different magnifications, the oxide surface of the outer layer is

Fig. 8 EDS analysis of the upper surface of the oxide film formed by thermal treatment of Ti-47Al-2Cr
sample at 950 �C
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Fig. 9 Potentiodynamic polarization curve of Ti-47Al-2Cr sample thermally treated at 950 �C then
placed in 3.5 % NaCl solution for 275 h
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scaly in form, with overlapping scales. Evidently there is a barrier layer underneath,

which can be identified from the cross section (Fig. 2). The outer layer is composed

of titanium oxides with a compositional analysis given in Fig. 8. Initially,

aggressive ions diffuse from the surface holes to the inner parts and cause charge

transfer and corrosion, but over time, the titanium and aluminium oxides hydrolyze

in the inner parts and form voluminous hydroxides and the holes blocked from the

interior so the impedance of the system increases; because of the more difficult

Table 4 Results extracted from potentiodynamic polarization curve of Ti-47Al-2Cr sample thermally

treated at 950 �C then placed in 3.5 % NaCl solution for 275 h

Corrosion rate

(mpy)

E (I = 0)

(mV)

Icorr

(nA)

Beta anodic

(V/decade)

Beta cathodic

(V/decade)

Epit

(mV)

0.711 -198 244 0.617 0.182 1,070

Fig. 10 Scanning electron micrographs of the upper surface of the oxide film formed by thermal
treatment of Ti-47Al-2Cr sample at 950 �C after potentiodynamic polarization test in 3.5 % NaCl
solution
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diffusion the Warburg values increase. Because of the presence of the barrier layer

and surface blockages, the surface potential changes to a more positive value.

After exposure to 3.5 % NaCl solution for 275 h the sample was examined by

potentiodynamic polarization. The resulting curve is illustrated in Fig. 9. The rate of

corrosion and breakdown of potential are presented in Table 4. Figure 10 shows the

surface of the sample after 2,000 mV anodic polarization; it is little different from

that of the sample without exposure or polarization (Fig. 7). It can be concluded that

the Ti-47Al-2Cr sample coated by this method has outstanding resistance against

corrosion in chloride solutions and for extended periods of time.

In an study conducted by Alvarado et al. [4, 11], a passive oxide film formed on

Ti-48Al-2Cr-2Nb by oxidation in air at 500 and 800 �C enhanced the corrosion

resistance by a factor of 100. The high corrosion resistance of the oxide film

observed in this study can be attributed to the composition and morphology of the

layer formed. The outstanding and rather unusual corrosion resistance of modified

TiAl intermetallic alloy in Ringer’s solution can be justified qualitatively by

considering the composition and microstructures of the oxide phases formed.

Because of the low conductivity of Al2O3 and TiO2, electron transfer through the

surface layer is difficult and the resistance to electrical charge transfer is increased;

both prevent electrochemical corrosion [21]. Furthermore, the compact interface

and excellent contact of the surface oxide layer with the metal substrate is another

important factor for improvement of corrosion behavior.

Conclusion

Thermal passivation of Ti-47-2Cr (at. %) samples in the presence of nitrogen gas

flow has been tested by immersion of the samples in Ringer’s solution and in 3.5 %

NaCl solution for different times and study by electrochemical impedance

spectroscopy. The proposed equivalent circuit for fitting the impedance curves

included a Warburg element, which was indicative of diffusion control of charge

transfer through the passive surface layer. The results showed that layer resistance

did not decrease substantially after exposure for up to 300 h and, on the basis of

SEM images, the surface was not damaged.
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