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Multiscale thermomechanical contact: Computational
homogenization with isogeometric analysis
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SUMMARY

A computational homogenization framework is developed in the context of the thermomechanical contact
of two boundary layers with microscopically rough surfaces. The major goal is to accurately capture the
temperature jump across the macroscopic interface in the finite deformation regime with finite deviations
from the equilibrium temperature. Motivated by the limit of scale separation, a two-phase thermome-
chanically decoupled methodology is introduced, wherein a purely mechanical contact problem is fol-
lowed by a purely thermal one. In order to correctly take into account finite size effects that are inherent
to the problem, this algorithmically consistent two-phase framework is cast within a self-consistent iterative
scheme that acts as a first-order corrector. For a comparison with alternative coupled homogenization
frameworks as well as for numerical validation, a mortar-based thermomechanical contact algorithm is
introduced. This algorithm is uniformly applicable to all orders of isogeometric discretizations through
non-uniform rational B-spline basis functions. Overall, the two-phase approach combined with the mortar
contact algorithm delivers a computational framework of optimal efficiency that can accurately represent the
geometry of smooth surface textures. Copyright © 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Almost all engineering surfaces are significantly rough on the microscale. Therefore, the modeling
and simulation of an engineering design can critically rely on accurately capturing the effect of
microscale roughness on the macroscale response. This effect is typically reflected through an appro-
priate modeling of contact interface boundary conditions. Because these boundary conditions drive
the overall bulk response, it is important to develop appropriate scale transition techniques for a
predictive macroscopic framework. Examples to multiscale contact interface phenomena of interest
include classical tribological phenomena such as friction [1] and lubrication [2]. Another classical
phenomenon is the so-called thermal contact resistance [3], which essentially models the observed
temperature jump across the macroscopic contact interface. Technologically, this resistance plays an
important role in the design of modern electronic devices. An outstanding example is the packaging
problem for microprocessors where multiple contact interfaces exist. Because novel processors can
easily dissipate power at more than 1 W/mm?, any additional interface resistance due to roughness
significantly contributes to overall heating, which, in turn, directly impacts the efficiency and the
functionality of the device [4]. In order to reduce this undesirable macroscopic effect of rough
contact interfaces, thermal interface materials (TIMs) are typically employed in electronics
packaging [5]. TIMs could be gels, elastomeric pads and more recently nanowire forests [6]. In
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all cases, they constitute a highly deformable medium that fills up the gaps between the surfaces,
thereby leading to a continuous conduction domain and, hence, to a lower macroscopic resistance.
One goal of this work is to develop a framework that is suitable for the modeling and analysis of
interfaces with TIMs. From a broader perspective, a computational approach will be developed that
is suitable for microscopically rough contact interfaces, which are subjected to finite deformations
and finite deviations from the equilibrium temperature.

The following series of modeling choices will be made in order to develop a multiscale approach.
First, because of the multiscale nature of the problem, the interaction between the surfaces may be
modeled starting from the atomic scale [7, 8]. In this work, emphasis will be on the transition from
one continuum scale to another. Moreover, it is well known that the thermal interaction between
surfaces in proximity, rough or not, is governed not only by contact but also by radiation as well as
convection through an interstitial fluid medium [3, 9], the latter usually being constrained to non-
standard conduction in significantly small gaps [10]. The majority of works addressing the class
of problems that are of concern, on the other hand, concentrate on what appears to be the more
dominant factor, namely the contact resistance. This will also be the emphasis of this work in order
to establish a predictive framework for the problem at hand. Within these modeling choices, it is
clear that the major challenge to the problem is the difference in the scales of the device to be
analyzed and the roughness on the microscale. Homogenization appears as a natural methodology
to link these two scales. Indeed, most approaches to the modeling of thermal contact resistance
have been based on some form of analytical homogenization. The literature on this approach is
extremely rich. Here, one can mention the reference works [3, 11] as well as some representative
recent studies [9, 10, 12—-16] where detailed references may be found. Homogenization approaches
that are based on analytical techniques have the major advantage that they can elegantly incorpo-
rate the effect of arbitrarily rough surfaces across multiple scales and can match experimental data
quantitatively and qualitatively well. For this reason, they continue to constitute the majority of
contributions that address thermal contact resistance modeling. However, they are unable to model
the exact geometry of roughness at any one scale or the detailed asperity interactions, in particular
when these interactions are nonlinear as in the finite deformation regime with finite deviations from
the equilibrium temperature. Computational homogenization techniques are more appropriate for
the latter purpose. A comparison of analytical and computational homogenization techniques per-
taining to the present problem may be found in [17]. There are few computational homogenization
approaches in the literature, see for instance [18-20]. Although randomly rough topographies
have also been incorporated into these frameworks with accurate resolutions of the contact inter-
face, they have been limited to small deformations. A finite deformation methodology has been
proposed and investigated in the context of periodic [21] and random [17] contact microstructures,
which will be taken as the basis of the present work. Therein, one of the surfaces was modeled as a
smooth and rigid heat bath. The major extension pursued in this work is to drop this considerably
simplifying assumption.

The construction of an appropriate computational thermomechanical contact homogenization
framework will be realized in three major steps. In a first step, Section 2 introduces the homog-
enization of an entire boundary layer where absolute size effects are inherent to the problem.
Subsequently, the approach is refined toward the homogenization of the contact interactions only,
which will eventually recover some of the ideas introduced in earlier work. Finally, certain size
effects that are implied by this framework but that are not entirely physical will be pointed out.
Section 3 aims to resolve the issue of these non-physical size effects through a two-phase com-
putational homogenization framework that is motivated by the scale separation limit. Highlighting
physical size effects that are inherent to the multiscale problem at hand, this framework is then com-
plemented by a self-consistent scheme that introduces a first-order corrector to account for the lack
of asymptotic scale separation. The resulting approach calls for a numerically robust and efficient
thermomechanical contact algorithm. The construction and discussion of such an algorithm, in light
of recent developments, are the subject of Section 4 where the relevant literature review is provided.
Here, the entire approach is cast within an isogeometric framework that has the significant advantage
of being able to accurately represent smooth interface textures and contact geometries in addition to
guaranteeing the uniform applicability of the contact algorithm to all orders of non-uniform rational
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B-spline (NURBS) discretizations. Section 5 addresses all the issues raised throughout the theoret-
ical developments of the earlier sections and demonstrates the quantitative and qualitative accuracy
of the homogenization approach as well as the numerical robustness and efficiency of the com-
putational framework. An outlook toward the further development of the advocated approach for
realistic thermal contact interfaces is outlined in the conclusion.

2. HOMOGENIZATION WITH SIZE EFFECTS

2.1. Dissipation in a contact boundary layer

The approach developed in an earlier work is first extended to the contact of two rough and
deformable boundary layers. The aim is to highlight size effects which are intrinsic to this
homogenization methodology. The continuum framework for the problem is briefly reviewed in
Appendix A.

The macroscopic homogenized response will be extracted from the microscale thermomechan-
ical contact analysis of two samples with reference (spatial) configurations Cél) (D) from the
boundary layers BY) of two contacting bodies (Figure 1). The starting point is the monitoring of the
thermal dissipation per unit volume of the spatial configuration:

D=—q-g/0=—q- grad[In?9]. (2.1)

Here, ¢ is the heat flux, which defines the normal heat flux # = —¢ -n on a surface with outward unit
normal n, 0 is the temperature and g = grad[f] is the temperature gradient. The total volumetric
dissipation &, may be expressed in terms of boundary data as follows:

®, = Ddv = h 1n6d
=Z(/ hln@da—l—/ hlneda+/ hlneda).
7 ac).e ac).r ac).i

In order to isolate roughness effects in a first step, it is assumed that contacting points on the
microscale pick the same temperature—the case with microscopic contact resistance will be
addressed later. It is well-known that there is a possible non-existence of solutions for thermo-
mechanical contact whenever such a temperature continuity assumption is made [22]. Nevertheless,
this problem will not be encountered in the class of problems considered below. The integrals over
the rough surfaces now sum to zero because either /2 vanishes where there is no contact on dC r or
it is of equal magnitude but with opposite sign on the contacting portions. On the other hand, each
integral over the internal surfaces dC/)# also vanishes owing to the boundary conditions (BCs)
employed. Here, only the thermal BCs are stated. By decomposing dC/)# to opposing surfaces
aCDi+ and 9Ci~ BCs are either of the linear (LN) or periodic (PR) type:

(2.2)

Linear: h =0, Periodic: T =6~ and ht=-h". 2.3)
acs
BY | e ’
o (D),r (1)
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REFERENCE CONFIGURATION SPATIAL CONFIGURATION HOMOGENIZED INTERFACE

Figure 1. The setup for the homogenization of an entire boundary layer is depicted, within which one
identifies samples C((,I ) from the boundary layers B/ in the vicinity of the contact interface.
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Finally, the flux and temperature distributions on the observable test surfaces dC/)¢ are uniform,
and the surfaces remain flat under the imposed macroscopic pressure for samples of sufficient
height. The respective distributions are denoted by 6@ and hD. The flux integrals must match
the macroscopic normal heat flux / via

—/ hda = / hda = h|Al. 2.4
ac(e ace

Here, |A| is the area of dC/)¢ and represents the macroscopic contact area associated with these
samples. Consequently, the dissipation per unit macroscopic contact area reads

by = @y /| Al =T (1n9<1> - 1n9<2>). 2.5)

2.2. Macroscopic temperature jump

2.2.1. Homogenization of the entire boundary layer. There are two cases of interest associated
with the present setup. In the first case, the entire contact boundary layer with a finite thickness
is homogenized toward a macroscopic contact interaction (Figure 1). Within a standard computa-
tional contact mechanics setting on the macroscale, the temperature 6 of a point on the slave surface
and the contact surface temperature 6. at its projection onto the master are known. The macroscopic
temperature jump is of finite magnitude

Pe=0—10, (2.6)
and delivers the normal heat flux 7, positive values denoting flow from master to slave, via
h=—k.Je, (2.7)

where EC is the macroscopic contact conductance or 7, = %C_l is the resistance. The unknown con-
ductance is to be determined by homogenization. Presently, this is straightforward in view of the
procedure leading to (2.5). Assuming B® is the master, one prescribes 63 to 6, and 8V to 6 and
measures the corresponding flux / via (2.4). In other words,

Fe =600 — 9@, (2.8)

Alternatively, if one wishes to monitor the trends in the macroscopic response at constant h, then
6 may be measured for prescribed /. In either scenario, k. is easily determined, and the associated
macroscopic contact dissipation reads

b.=—h (lng—ln@,), (2.9)

which, by construction, matches the microscale one (2.5). Therefore, an alternative starting point
would be to enforce this equality, which then induces the homogenization procedure described. In
other words, homogenization should preserve dissipation through the scale transition. Clearly, the
thicker the boundary layer, the higher the dissipation so that this case intrinsically has size depen-
dence: ¥, increases with increasing thickness. Moreover, k. is expected to be highly dependent on
the deformation of the boundary layer and the magnitude of the heat flux, due to thermomechanical
coupling and the evolution of the contact interface.

2.2.2. Homogenization of the contact interactions. In the second case, only the contact interactions
associated with the previous setup are homogenized. It is assumed that the macroscopic normal heat
flux & is imposed. The idea is to reduce the original problem to one where the surfaces are macro-
scopically smooth, yet they display a contact resistance. To characterize this additional resistance,
the original heterogeneous and homogenized problems must be compared with a homogeneous
problem where the surfaces are microscopically flat, and therefore, no macroscopic resistance is
displayed. Because the homogeneous and homogenized problems have flat contact surfaces, it is
sufficient to represent them via two contacting bars (Figure 2).
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Figure 2. The three problems designed for the homogenization of the contact interactions are depicted. Here,
itis assumed that B® is associated with the master surface on the macroscale. The initial heights HO(I ) of the

samples in the three problems should match by construction. For the samples Cél ), the heights are measured
with respect to the mean planes of the rough surfaces. See also Figure 1 for boundary designations.

The dissipation in the homogeneous accompanying bar problem (ABP) may be decomposed as

3 B =—h (ln 9/?3313 —In 9/(33)13)
_ B (2.10)
=1 (06 —n0c) —F (I ~In 63, ).

This decomposition then suggests that the unknown 9/&)], are computed by imposing the master

temperature A, on the contacting surfaces together with £ on the external ones.
The dissipation in the homogenized bar problem (HBP) may be decomposed as

E BP=—h (ln QIEIEP —In 9}(53)13)
- N @.11)
= —h (ln O —1n0) + @, — 1 (I8 —In 9}‘33)1,),

where $C is now associated with the contact dissipation due to roughness alone. Here, B® was
assumed to be the master. This problem is never solved, unless for validation, although QIE[QP need
to be related to the original heterogeneous problem (OHP) for which the dissipation is of the form
(2.5). Because h is prescribed, either 0W or @ can be set in OHP, and the other must be computed.
Simultaneously, 6. must be projected into the OHP. One choice would be to assign the macroscopic
contact temperature . to the surface that is associated with the master. Presently, this corresponds
to setting 0 = 0. on 3C®" . However, this is unrealistic because the temperature fields on the rough
surfaces are highly oscillatory. The choice made here mimics the case where the boundary layer
B® is rigid with a smooth surface. In that case, & = 6, on IC?”" essentially implies = 9/(33)},
on dC®-¢_ Enforcing this equality even for the non-rigid B3 emulates this situation and offers an

indirect method of projecting the macroscopic contact temperature onto the contact interface:

B.-Projection : if B is the master, then set 6 = %), on 9C(/)<. (2.12)
The complementary condition on the slave is to enforce /2, for example, # = —h on dC1)¢—

see (2.4).

Once 6, is projected as described and 6@ in (2.5) are determined, the remaining step is to iden-
tify the intrinsic unknown ¥, in ¢, of (2.11). Proposing that the additional dissipation ¢, in HBP,
which has the explicit form (2.9), is due to the difference in the dissipations of OHP and ABP,
that is,

be =y — 2", (2.13)
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one obtains the explicit expression
9 = (6D /05~ 1) e, 2.14)

where the superscript denotes the macroscopic algorithmic designation of slave. This expression is
entirely equivalent to the result obtained for a rigid smooth B®@ at a constant temperature 6. [21].
Note that there is a sign difference: if 521) > 0, then 552) < 0. In order to obtain the result (2.14)
according to this convention for the case when B@ is the slave (I =2), 6 and 56 must be switched
in (2.9) and in (2.11) for completeness, for use in (2.13).

Incorporating microscopic contact resistance due to roughness on lower scales is straightforward.
The resistance is simply omitted from ABP and incorporated only into OHP. The quantities ()
then reflect the accumulated resistance due to roughness on multiple length scales [17].

2.2.3. Size effects. The choice of the master/slave on the macroscale should be properly reflected
onto the microscale. For instance, when B® is the master, then prescribing 6 = 9/(\}3)1, on 9CM-e g
an incorrect procedure. This would lead to significantly different temperature distributions in both
samples, and because of thermomechanical coupling, |5§1) | = |§§2)| is not expected. However, this
equality is not expected even without thermomechanical coupling. To see this, the physical setting
is further simplified by assuming the following: (i) the thermal conductivities k, are temperature
independent and equal, (ii) the samples are rigid with equal heights H,, (iii) the surfaces are smooth
but display a contact resistance such that at the prescribed 4 > 0, the microscopic temperature jump
from B® to BY is . > 0. In this simplified case, one does not expect an explicit effect of 6., and
hence, its mere presence in (2.14) is questionable. In fact, if g = h/k, is the normal component
of the temperature gradient within both boundary layers in the vicinity of the contact interface and
B®@ is the master with a surface temperature 6., then 9&)1) =0® =90, —-gH,, nggp =0.+gH,
and 0V = 0, + 9, + gH, such that 05" is obtained directly from (2.14). Similarly, if BD is
the master with the elevated surface temperature 6. = 6. + ¥, then (9/83)1) =00 =0, + gH,,
G(BP = 9’ —gH, and 6@ =9, — gH,, delivering the expression for 59. The combined result is

. - - .
(1—_g—_") 9. =00 <9, <P = (1 +_g—_“) .. (2.15)
0.+gH, 0'c.—gH,

Therefore, only in the limit as H, — 0 does (2.14) deliver the expected simple result |5£1)| =0,
indicating a size effect, despite the fact that the macroscopic surface temperatures were kept the
same (at 5(; + ¥, and 50 for B and B?, respectively) and only the macroscopic master/slave
designation was switched. It is proposed that this effect and similar ones, which will be further
demonstrated in the numerical investigations, are spurious in the sense that they do not reflect the
macroscopic homogenized response to desired accuracy. An approach to alleviate this shortcoming,
which is not as easy to detect when one surface is a rigid heat bath, is investigated next.

3. ATWO-PHASE SELF-CONSISTENT FRAMEWORK

3.1. Limit of scale separation: algorithmic consistency

Physically relevant samples have prescribed in-plane and out-of-plane statistical characteristics,
such as the root-mean-square (RMS) roughness and autocorrelation. The limit of scale separation
for the present problem is enforced by scaling down samples with given characteristics by a factor
of & — 0. If the applied flux is simultaneously scaled by ¢!, then the jump will remain at a constant
value, essentially preserving all size effects. On the other hand, when the flux is a constant, the
measured jump will vanish because ¢ drives the surfaces to microscopic smoothness. To obtain a
meaningful limit in this case, scaled temperature jumps

o) =19 3.1
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are monitored. These are expected to converge to a scale separation limit

lim \55{8) =Veo (3.2)

e—0

that is independent of which macroscopic surface is at 0. In order to build a basis for the veri-
fication of this expectation, it is necessary to go back to (2.1). For small ¢, the deviations of the
temperature from the contact temperature 6. are small. In this regime, the volumetric dissipation
can be evaluated as in linear thermoelasticity where 6. serves as the reference temperature:

D=—q-g/0.. 3.3)

This simplification leads to the replacement of In 6 with 9/§c in all subsequent steps, thereby
leading to the final result

7D =D g (3.4)

As expected, this result can alternatively be directly obtained from the linearization of (2.14). Hence,
it will be referred to as the linearized identification for the macroscopic temperature jump. This
expression successfully delivers the expected response in the simplified test of Section 2.2.3 and
agrees with some of the classical identifications of the macroscopic temperature jump [3].

In order to apply (3.4) within a computational setting, it is proposed that all temperature-
dependent material properties be explicitly evaluated at the contact interface temperature 6, within
the microscale thermomechanical contact analysis for measuring ) and 9&)},. This modification
reflects the macroscopic observation that as £ — 0, the temperature within the material in the vicin-
ity of the contact interface remains approximately equal to 6.. This explicit enforcement of 6.,
similar to the ideas in [23,24], decouples the micromechanical analysis into two phases:

(i) Mechanical phase: The macroscopic contact pressure is applied to the two samples within
a purely mechanical contact problem to solve for the deformed configuration and thereby
resolve the real contact area. Within this setup, all temperature-dependent material properties
are evaluated at 6.

(ii) Thermal phase: On the frozen mechanical configuration with a resolved contact interface, a
purely thermal problem is solved where the macroscopic normal heat flux /4 is enforced and

the temperature jump EE” is measured via (3.4).

Within the mechanical phase, it is also possible to apply the macroscopic surficial stretch as pursued
in earlier works. Additionally, note that a thermal contact formulation is still relevant because of
the necessity of coupling the possibly non-matching discretizations on the two sides of the interface
within the thermal phase. Finally, this two-phase framework delivers 59) = —522) , the equality
being a consequence of the explicit enforcement of 6.. In other words, the overall framework is
algorithmically consistent in the sense that the purely algorithmic choice of master and slave on the
macroscale does not affect the outcome of the homogenization process.

3.2. An application to textured interfaces

As a special case of the scale separation limit, consider two textured surfaces that form a perfectly
conforming resistive contact interface (Figure 3). Because contact resistance is already present, the
macroscopic temperature jump converges to a non-zero limit even as ¢ — 0. Presently, model-
ing and analysis will be carried out by mapping all quantities to the reference configuration of the
interface—see also Section 4.1. Modeling the interface heat flux on the reference configuration by
h, = —k.0,, it is assumed that s, < 0 and ¥, = 551) > 0. The microscopic conductance is
modeled by the relatively general expression k. = kg p%;, where kg and « are interface constants
and py is the contact pressure on the reference configuration. At scale separation, the temperature
jump is uniform throughout the interface and therefore must correspond to .. Making use of this
observation together with (2.4) and a thermal balance on the sample, one obtains

— h

Ve =———, 3.5

c ko %] (3.5

—
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Figure 3. Texturing of a perfectly conforming resistive interface.

where [p%] = |A|7' [, acshr P dA has been introduced. Therefore, the calculation of 9, is based

on a purely mechanical problem that delivers the pressure distribution at the interface. On the other
hand, if the interface is smooth, then the setup simplifies to the test case of Section 2.2.3, delivering
the jump for a smooth interface:

Ve = U (3.6)
T kepy’ '
Combining these two expressions, one obtains
—
oy p
Ve = —;V Pe. (3.7
[P5]

Clearly, because [p%] is not necessarily equal to pY, 9. # U, in general. In fact, [P%] > PX
is possible. In other words, texturing of perfectly conforming resistive interfaces may lead to a
reduction in the observed macroscopic resistance. This observation will be verified numerically
for three-dimensional random and periodic interface textures. The simple texture in Figure 3
demonstrates the idea. The pressure on the inclined planes is equal to the macroscopic pressure,
which also corresponds to the pressure on the smooth interface. However, because the interface
pressure is distributed on a larger area for the textured case, [p%] = [py] > PY is guaranteed, and
the effect follows.

3.3. Accounting for finite temperature changes

The described micromechanical analysis of Section 3.1 has the significant advantage that it deliv-
ers a single, well-defined macroscopic temperature jump magnitude for a given microstructure and
macroscopic control parameters. In particular, the result does not depend on arbitrary modeling
parameters, such as the height of the samples beyond a certain value. Consequently, as the height
of the sample is varied, the extracted macroscopic response rapidly converges to a limit. This is
a significant advantage that avoids any ambiguity in the identification of the macroscopic interface
resistance and is not strictly satisfied by (2.14). Numerical investigations will demonstrate the degree
to which the two formulations deviate from each other.

There is, however, a shortcoming in the procedure described. As a special case, it is assumed that
there is no microscale contact resistance. From a theoretical point of view, the described procedure
is exact only when |5£I) |/ 0. < 1. However, the temperature jumps are negligibly small in this
scenario. In other words, there would be no loss of accuracy in the macroscale thermomechani-
cal contact analysis if the roughness-induced jump is omitted altogether. From a practical point of
view, on the other hand, finite macroscopic temperature jumps are typically observed. This is in
general true when the presence of microscale contact resistance is admitted. In this scenario, the
assumption of both boundary layers being approximately at the constant temperature 6. is unreal-
istic. Instead, this condition holds only for the master. The slave boundary layer is approximately
at 6 = 56 + 521). This condition is now introduced into an iterative two-phase micromechanical
analysis as a first-order corrector through a self-consistent procedure:
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(i) Initial assumption: Evaluate all material properties at 6.

(i) Two-phase analysis: Solve the mechanical phase followed by the thermal one to find Egl).
(iii) First-order correction: Reevaluate the slave material properties at 0=0.+ 5&1).
(iv) Self-consistency iterations: Check if 521) has converged. Otherwise, resolve.

The framework is depicted in Figure 4. In this work, the mechanical and thermal phases, although
decoupled, are solved simultaneously by eliminating all coupling due to temperature-dependent
material properties. Hence, a coupled thermomechanical contact algorithm was employed, which
will be delineated in the following section.

Within this framework, Eﬁl) #* —522) in general because the material properties of, say, cWM are
evaluated at 6 = 0. + ¥, in one case and at 6. in the other, thereby leading to different temperature
distributions within the thermal phase from which 5((31) are measured. But this effect is not spurious,
it is physical. Indeed, to obtain the same value with 521), the computation of —59) requires setting
the macroscopic contact surface temperature to 6. In this sense, the macroscopic algorithmic choice
of master/slave does not influence the outcome of the homogenization process.

This updated two-phase framework with self-consistency retains the advantage of a uniquely iden-
tifiable macroscopic temperature jump while additionally accounting for finite temperature changes
due to the observed jump. It should be noted that self-consistency is a minor requirement when
the thermal conductivities of the involved materials are temperature independent. This is due to the
small microstructural changes induced by the temperature-dependent mechanical properties of most
materials. On the other hand, self-consistency can favorably improve the predictive capability of
the framework in case of temperature-dependent thermal properties as to be demonstrated in the
numerical investigations.

4. MORTAR-BASED ISOGEOMETRIC THERMOMECHANICAL CONTACT

In this section, a mortar-based isogeometric thermomechanical contact framework will be
summarized. Numerical investigations will demonstrate the necessity of a robust contact
formulation for the following: (i) the accurate resolution of the interface temperature field and (ii)
the numerically efficient identification of the macroscopic response. The mortar-based approach to
be developed to address this need is uniformly applicable to isogeometric discretizations of the test
samples and the macroscopic bodies for all orders of NURBS basis functions; that is, no modifi-
cations are needed for higher-order basis functions that deliver an efficient resolution of smooth
microscale and macroscale features. The distinguishing feature of NURBS basis functions that
enables this uniform applicability is that they are non-negative so that their integrals over element

SELF-CONSISTENCY \
la+m

MECHANICAL THERMAL
/" PHASE /" PHASE N\
Imposed: {Zy,0.} Imposed: h
Extract: 9,
(0 e e
, Il |
|T| [N/mm?] 0.02 0.1 0.18 0.26 0.34 llgl| [W/mm?] 0.00.306091.215

Figure 4. The two-phase computational contact homogenization framework is demonstrated. The self-
consistency iterations act as a first-order corrector that takes into account finite temperature changes. Here,
T is the Cauchy stress and ¢q is the heat flux.
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domains are guaranteed to be positive [25]. This feature, which is valid only for first-order Lagrange
basis functions, hence requiring special care with quadratic Lagrange discretizations [26, 27], is
intrinsically being made use of while summarizing the mortar-based framework. For various demon-
strations of isogeometric contact and domain decomposition algorithms, see [28—-33]. An important
feature of these algorithms is that they are mostly based on the mortar method, which was shown to
demonstrate various advantages over more classical contact algorithms even in the purely mechan-
ical case, in particular for non-matching discretizations. For detailed discussions, the interested
reader is referred to the extensive lists of references in these works—see also a recent review by
[34]. Presently, the contributions by [35, 36] are specifically highlighted because they pertain to
finite deformations, with and without friction, and employ an intermediate surface for integration
as a main feature of mortar methods. On the other hand, mortar methods have been applied to
thermomechanical contact and domain decomposition in few works [37-39]. In the following, an
isogeometric thermomechanical contact treatment will be developed, based on earlier works on mor-
tar methods. Although this approach does not make use of an intermediate integration surface, it will
be shown to satisfy the requirements stated at the beginning of this section. The presentation will
concentrate on thermal contact because its mechanical counterpart has been extensively investigated
in the cited works.

4.1. Thermal contact interface modeling

In computational mechanics of frictionless thermomechanical contact, the standard contact
contribution to the weak form of the energy balance is

8Gg = 89 hodA, 4.1)
rs
where I'; is the contact interface I'° mapped onto the referential surface of the slave. Here,
89, = 60 — 56, has been introduced for mere notational convenience, with 6 as the temperature
at a slave point and 6, is the temperature at its projection onto the master. This notation, and the
lack of an explicit notation for projected quantities, is used for compactness at the risk of oversim-
plification. In particular, the linearization Ad, is not equal to A6 — A6, because of the missing
derivatives associated with varying projection points. Computational and theoretical aspects of ther-
momechanical contact are discussed in the monographs by [40,41]. For early developments as well
as theoretical and computational aspects, see also [42—44]. In particular, it is worth pointing out
that a thermomechanical contact framework that provides more theoretical generality than the one
employed here, which is captured as a special case, was presented in [43].
In order to model /,, a thermal interface dissipation potential H, (¥, pn’) is introduced such that
it delivers the contact heat flux:

0H,
A

ho (9c, pn) = (4.2)

Two particular models for H, are of interest:

(i) Constraint model: | H, = —691962/ 2|

Here, €g has the role of a penalty parameter that enforces 1%, — 0. The contact heat flux
h, = —e€gV, is pressure independent. This model is central to the micromechanical modeling
of macroscopic thermal contact resistance where the continuity of the temperature across the
real contact interface, that is, ¥, = 0, is postulated.

(ii) Constitutive model: | H, = —kgp%92/2 |.

The contact heat flux is h, = —kgp% e, Where {kg,a} are material constants with o
typically of order O(1). This model reflects a microscopically non-conforming contact
interface due to roughness.

The choice of modeling based on %, versus & has no consequence for the constraint model, both
delivering the same asymptotic behavior as €9 — oo. This is also true for the constitutive model at
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infinitesimal deformations. In the scope of this work, on the other hand, finite deformations are of
concern. In this context, modeling with /4, is a choice made on convenience and could be extended
to match formulations that are expressed in the spatial configuration. As a special case, it is noted
that because py > 0 is the referential pressure, for the case of « = 1, one observes

595 = / 8190 (—kOPNﬂc) dA = 8190 (_thNﬁc) da, (4 3)
TS ~—————— re ————— .
=h, =h

thereby capturing the spatial counterpart H = —kgty 92 of the dissipation potential with 7y > 0 as
the spatial pressure—see Appendix A.

4.2. Mortar discretization

The constraint model, in which H,, is a classical penalty potential, suggests the need for a robust
framework for enforcing %, = 0. Such a framework is offered by mortar-based methods. The
presentation is brief, as the structure of the problem condenses to that of normal contact for the
constraint model, yet necessary in order to clarify various possible choices. A variational basis for
the derivation of the framework is outlined in Appendix B.

A mortar variable yp is introduced, and together with the contact heat flux, it is assigned the
discretization of the slave surface as in [37,38]:

yo=Y N'yd. ho=) N'hl. (4.4)
1 1

Here, the sum is over all the points associated with the shape functions N /. These points could be
nodes, as in classical Lagrange basis functions, or control points in the context of isogeometric anal-
ysis. By using the notation (e) = fr‘g e dA, the overlap matrix components ®// = (N INY ) may be
defined. The interface dissipation potential is evaluated using the mortar variable yg for variational
consistency, that is, H, = H, (9, pn)—see Appendix B, such that

(NTyg)=(NT9.), (NTh,)= <NI%> (4.5)
e
then deliver the discrete variables
Y= e N9, =Y a>”<Nf"’a_7:;> (4.6)
J J

where !/ are the components of the inverse of the overlap matrix. In the particular case of a
constraint model, it is observed that

hl == 0" (N egyg)=—> " 0" o' Kegyf = —egyy. 4.7
J J K

On the other hand, having to compute the inverse of the overlap matrix is unfavorable. Row-sum
lumping diagonalizes the matrix such that one obtains the simplified formulation

e =(NT9.)/(NT). (4.8)

This is introduced directly into the form of /. for the constraint formulation as derived earlier.
For the constitutive model, hg are again recovered by lumping. Because (N ! ) > 0 is guaranteed
for NURBS, this framework is uniformly applicable to all orders of isogeometric discretizations.
Earlier, it was assumed that all slave points are in contact. Incorporating an active set indicator in
the formulation requires some care but is standard.

The constitutive formulation of H,, typically delivers a temperature jump that can be significantly
different from zero. However, in regions of very high pressure, the jump may be driven toward the
constraint limit. This is the motivation for pursuing an approach that is common to both formulations
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of H,. If it is determined that the solution will be far from the constraint limit, a more straightfor-
ward formulation that is significantly easier to implement may be pursued by directly using the
continuum formulation, for example, (4.3), without a mortar approach. Both choices are expected
to deliver identical results away from the constraint limit. In the constraint limit, however, it will be
demonstrated that the mortar approach delivers superior numerical performance. For this reason, it
is additionally advantageous to enforce the constraint of a vanishing temperature jump as efficiently
and accurately as possible. This is discussed next.

4.3. Constraint enforcement with the augmented Lagrangian approach

As €g — o0 in the constraint model, the mortar variables yel are driven to zero. Section 4.2 enforces
this limit through a penalty approach. Within a thermomechanical problem, the magnitude of the
heat flux may vary significantly, and therefore, it is difficult to ensure that €y is sufficiently large.
To ensure yel — 0 independent of €y, the penalty formulation may be complemented by Uzawa
iterations, as is often performed in mechanical contact [40,41]. This framework corresponds to a
staggered multiplier update form of the augmented Lagrangian framework. The disadvantage of
this approach is that the number of Uzawa iterations needed to reach a desired tolerance on the mul-
tiplier convergence depends on a number of parameters, including the discretization, and may be
significantly large. For this reason, the original augmented Lagrangian approach will be made use
of in this work [45]. It is remarked that the same approach is presently also used for normal contact
within a mortar setting, following [46] and others. In the lumped form, a mechanical formulation
that makes use of the advantages offered by NURBS has been presented in [28].
In the mortar-based augmented Lagrangian framework, the discrete heat flux is represented as

hl =L — eyl (4.9)

and is non-zero only if / belongs to the contact active set .A. Associated with the Lagrange mul-
tipliers Ag are the additional equations that augment or deactivate them depending on whether the
point remains in contact or loses contact. These equations constitute a variational form §£¢, which

enforces yel = 0 where there is contact:

)‘é/ée otherwise . (4.10)

I .
if ITeA,
8LG = SAN)Af=0 — A= { v
I
For both the present constraint formulation and the constitutive formulation, the coupled mechan-
ical and thermal contributions are linearized consistently within an iterative Newton—Raphson
framework that guarantees asymptotically quadratic convergence when A does not change.

5. NUMERICAL INVESTIGATIONS

In this section, various aspects of the homogenization approach will be demonstrated. The
investigations start with the analysis of an asperity contact problem in the context of the
thermomechanical extension to the classical Hertzian contact setup. This is followed by a patch
test study on flat and curved interfaces, which is an important assessment of the contact algorithm
but is also relevant for the analysis of perfectly conforming interfaces. Overall, these two examples
motivate the use of a mortar approach through the demonstration of a quantitatively and qualita-
tively better solution in comparison with a formulation where the thermal contact constraints or
constitutive formulations are directly applied pointwise throughout the interface. This latter
alternative will be referred to as the continuum approach. Presently, this continuum approach also
constitutes the only alternative to mortar-based algorithms because there is no straightforward
extension of the classical node-to-surface type formulations to isogeometric discretizations. In all
examples, an augmented Lagrangian-based mortar method is used to model frictionless mechanical
contact. Therefore, only the penalty and constitutive parameters employed for thermal contact will
be explicitly denoted. The penalty parameter €y reported is the base value. It is divided by the length
scale inherent to the problem, which is 10~ in the numerical investigations.
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The examples are based on finite thermoelasticity as the underlying bulk constitutive for-
mulation. Additionally, a temperature-dependent thermal conductivity k is employed within the
micromechanical tests such that

k =ko+ k1 (6 —6,), (5.1)

where 6, denotes the initial equilibrium temperature of the medium. An exception is the Hertzian
contact example where the linearized formulation was employed with a constant conductivity k.
Some of the fundamental material parameters employed are summarized in Table I. The remaining
aspects [33] of the employed finite thermoelasticity model are omitted—see also Appendix A.

The numerical discretization follows isogeometric analysis through the use of second-order
NURBS basis functions unless otherwise noted, with four/eight Gauss—Legendre quadrature points
per spatial direction of the bulk/interface. For rough surfaces, the RMS roughness will be explic-
itly denoted where necessary. In most investigations, sinusoidal roughness with a period of 10 pm
and an RMS of 1 pm will be employed. Both bodies are assigned the same height H,. Finally,
the macroscopic algorithmic designation of master will be reflected onto the lower body so that the
superscript on 9, will not be explicitly denoted unless necessary. Consequently, 8(3((,2)’8 (Figures 1
and 2) will be kept at a fixed temperature and displacement, whereas {p,/,} are applied uni-

formly on SC(gl)’e (Figure 5). Because macroscopic in-plane deformation is not imposed, fy = Py
and h = EO.

5.1. Asperity contact: singular solutions

Contact on the microscale is dominated by the interaction between the asperities of the two rough
surfaces. Hence, it is of fundamental importance to be able to accurately model contact between
two asperities. This situation is idealized in the context of the thermoelastic extension to the clas-
sical Hertzian contact problem in a plane strain setting. The geometry of the problem is described

Table I. Major simulation parameters employed are summarized.

Parameter Unit Symbol  Value
Young’s modulus N/mm? E 1.0
Poisson’s ratio N/mm? v 0.3
Linear thermal expansion coefficient K1 o 107>
Thermal conductivity W/mK ko 1
W/mK? &y 0.01
Initial temperature of the medium K Bo 293.15
Macroscopic heat flux (from B to B3))  W/mm? |70 1.0
P ho w=0,0=0,+10 | ﬁlN:lO’lﬁol
RN ENEERRENERE AEEEEE!
@
z 3
\/\/\ 3 =3 interface
ae] o
T\ A
g, <
G
u=0,0=0%), u=0,0=06, u=0,0=0,
MICROMECHANICAL TESTS ASPERITY CONTACT Parca TESTS

Figure 5. The boundary conditions employed in the numerical investigations are summarized in a
two-dimensional setting. Here, u is the displacement. For the micromechanical tests, see also Figure 2.
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in [32] along with the three choices of discretization, namely coarse/intermediate/fine, and there-
fore is not repeated. All solutions are based on the coarse discretization except for the study on
third-order NURBS discretizations. The deviation from this classical purely mechanical setting is as
follows. The top and bottom cylindrical bodies are kept fixed under displacement control. Simulta-
neously, the temperature at the non-contact portion of the upper body is elevated by 10 K, whereas
its counterpart for the lower body is kept at the initial temperature. The bodies expand and come
into contact (Figure 5). The solutions were obtained in a coupled thermomechanical framework. The
induced pressure distribution follows the classical Hertz solution so that the numerical trends previ-
ously reported in [33] for the purely mechanical case hold again. By concentrating on the thermal
aspects, the accompanying normal heat flux distribution was obtained by [47]

hmin
hy = —2—.
V1= (r/a)?
Here, r is the distance to the center of the contact interface with width 2a and

hn = 2, (5.3)
wa

(5.2)

with Q as the total heat flux through the interface. This solution is based on the assumption of a
constraint model for the dissipation potential H,. In the figures, the non-dimensional parameters
ho' = ho/h™™ and r’ = r/a are employed.

The analytical solution displays the singularity that is inherent to the thermal problem, unlike
the mechanical problem. The development of this singularity, as the parameter kg of the constitu-
tive model is increased, is demonstrated in Figure 6 for the mortar method and compared with the
analytical solution for the constraint limit kg — co. A smooth solution is obtained for kg = 1
with no visible singularity development. A solution that is closer to the constraint limit is observed
for kg = 10%. For both cases, an agreement between the mortar and the continuum solutions is
observed. In [48], solutions are presented for a range of constitutive models where the gradual devel-
opment of such singularities toward the constraint limit is analyzed. Finally, the constraint model is
solved on the basis of the augmented Lagrangian approach. The singularity places stringent require-
ments on the numerical method. The solution accurately matches the analytical one in the middle
of the contact zone; however, oscillations are induced toward the edges owing to the inability of
the finite element solution to capture the singularity. Similar problems have been observed in the
context of the purely mechanical Hertz problem, although much milder owing to the absence of a
singularity, in which case they have been attributed to the use of higher-order basis functions [49].
Such an observation appears to hold for the present case as well, as summarized in Figure 7. Here,
third-order NURBS basis functions are employed. In the coarse discretization, the solution is slightly
more oscillatory than the corresponding second-order discretization. On the other hand, the qual-
ity of the solution rapidly increases with mesh refinement, where an accurate agreement with the
analytical solution is observed away from the singular region. These results seem to indicate that
linear elements may be more suitable to this class of problems. On the other hand, the results

constraint limit constraint limit constraint limit
6 mortar 6 mortar 6 mortar
continuum continuum
I\
4 4 4t |
<o <o S I\
= < |
2 e e e 2 KON X 2
Pa - \ 7 -~ v
0 B o} N 0
2 -2 -2
-1.2 -0.8 -0.4 0 0.4 0.8 1.2 -1.2 -0.8 -0.4 0 04 0.8 1.2 -1.2 -0.8 -0.4 0 0.4 08 1.2
’ N o
A T
(a) constitutive model (kg = 1) (b) constitutive model (kg = 10?) (c) constraint model

Figure 6. The development of the heat flux singularity is demonstrated for the thermoelastic Hertzian contact
problem. The constraint model is solved by the augmented Lagrangian algorithm.
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Figure 7. For third-order NURBS basis functions, the effect of discretization is summarized for the
thermoelastic Hertzian contact problem with the constraint model—cf. Figure 6.

also demonstrate the uniform applicability of the mortar approach to higher-order NURBS dis-
cretizations. In view of the additional advantages that NURBS basis functions offer, particularly
in terms of smoothness, second-order NURBS basis functions will be employed throughout the
remaining analysis.

Figure 6 shows the equivalence of the continuum approach with the mortar algorithm for the
constitutive model at finite temperature jumps. As the parameter kg is driven to infinity, the mortar
approach develops toward the solution obtained with the augmented Lagrangian algorithm. The con-
tinuum approach, on the other hand, delivers an ill-conditioned behavior as summarized in Figure 8.
The oscillations induced by the singularities propagate inwards from the edges, causing unaccept-
able solution quality in the center region as well. Lower values of the penalty parameter are also
unacceptable because these deliver a non-negligible temperature jump across the contact interface.
Moreover, the continuum approach cannot converge in a single load step for large values of the
penalty parameter, thus rendering this approach numerically inefficient compared with the mortar
one that converges in a single step for all simulations presented in this section. To summarize, the

8 8 8
constraint limit constraint limit ‘ constraint limit
6 continuum 6 continuum 6 | continuum i
0
I l
W ‘
4 4 A 4 |
< |\ ‘/\ W‘ '“ ‘\ﬂ
\ I N =L ol
2 ;/ 2 f 2 f\ [ "
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| ——1] Nlinaieaasaniri
0 1 0 ft \ Ve 1’ 0 \) J‘/ K/ Voo J % ‘q
I | L Nl
2 2 | | ‘ 2 \ I
-1.2 -0.8 -0.4 0 0.4 0.8 1.2 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 -1.2 -0.8 -0.4 0 0.4 0.8 1.2
7 q q
(a-1) constraint model (e = 10) (a-2) constraint model (e = 10%) (a-3) constraint model (e = 10%)
12 0.1 0.008
continnum —— continnum —— continuum
1 0.08 0.006
08 0.06 0.004
ES 06 = 004 = 0002
0.4 N S e
0.02 0
0.2
0 -0.002
0
-0.02 -0.004
-1.2 -0.8 -0.4 0 0.4 0.8 1.2 12 -08 -04 0 0.4 0.8 1.2 1.2 -08 -04 0 0.4 0.8 1.2
r’ 7! r
(b-1) constraint model (eg = 10) (b-2) constraint model (e = 10?) (b-3) constraint model (ep = 10°)

Figure 8. The interface heat flux and the temperature jump are summarized for various penalty parame-
ters in the context of the continuum constraint enforcement algorithm, which displays a behavior that is
significantly inferior to the mortar results in Figures 6 and 7 near the constraint limit.
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mortar approach delivers a unified treatment of both the constitutive and constraint models where
the transition from the former to the latter is captured in a numerically efficient manner.

5.2. Patch tests

The thermoelastic Hertzian contact problem of the previous section demonstrated the local quality
of the solution provided by the mortar-based method in the context of the constraint model. The
present example constitutes a global solution quality demonstrator through three-dimensional patch
test studies (Figure 9). Within these tests, two bodies with an edge length of 10 pm are held together
at zero pressure while a heat flux %, is applied in ten load steps (Figure 5). Because of the exact
geometry representation by NURBS, the interfaces are perfectly conforming geometrically although
the discretizations are clearly non-matching and coarse. When the interface is flat, both the contin-
uum method with €y = 10 and the mortar method with the augmented Lagrangian algorithm deliver
a uniform flux distribution as expected since the bodies should behave as one. When the interface
is curved, the bodies should still behave as one, which, indeed, is the case with the mortar method
where the temperature jump is exactly enforced to zero. If the augmented Lagrangian algorithm was
not employed, the flux would clearly not be uniform. This appears to be reflected in the continuum
method solution, where a highly non-uniform flux is obtained although the maximum temperature
jump is slightly less than 1 K across the interface, while the temperature variation from the bottom
surface to the top surface is more than 30 K. The major difference, however, is that whereas the mor-
tar method in the penalty setting easily delivers a solution of acceptable quality at €5 = 10° with
a corresponding temperature jump of less than 10~ K across the interface, the continuum method
fails to converge at this value of the penalty parameter. Smaller values of the penalty parameter,

FLX: 999999 1000001 FLX: 999999 1000001
(a-1) flat interface (a-2) continuum (eg = 10) (a-3) mortar

FLX: 983066 992258 1000550 FLX: 999999 1000001
(b-1) curved interface (b-2) continuum (ep = 10) (b-3) mortar

Figure 9. The patch tests as discussed in Section 5.2 are summarized. Here, FLX: ||¢q].
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on the other hand, fail to deliver a satisfactory solution. This result is conceivably due to the infe-
rior behavior of the continuum method as earlier demonstrated in Figure 8. Because the interfaces
are geometrically perfectly matching and mechanical contact is based on augmented Lagrangian
with mortar in all cases, one can safely state that these observations pertain neither to the geometry
nor to the mechanical contact algorithm but purely to the method used for thermal contact. In all
subsequent examples, the mortar method will be used for thermal contact.

5.3. Boundary conditions

The influence of the BCs on the macroscopic response is well-known in the homogenization liter-
ature. In this section, this influence is briefly addressed using periodic samples with a sinusoidal
surface while assuming the constraint model for the interface dissipation potential. Figure 10 dis-
plays a three-dimensional sample with matching surfaces such that the whole interface is in contact.
In this case, both PR-BCs and LN-BCs deliver the same result. When the interface is mismatched,
LN-BCs predict a gap for a single unit cell with the prescribed height H, so that ¥, = 6.4 K
is observed. The PR-BCs, on the other hand, predict a slightly smaller gap because they allow
the samples to slide over each other freely, leading to a smaller jump ¥, = 5.8 K. The situation
is more easily observed in a two-dimensional setting (Figure 11). As the height of the samples
increases, PR-BCs deliver smaller and smaller gaps because of the degree of freedom in lateral
motion. This motion essentially corresponds to the macroscopic sliding of the surfaces so that the
interface matches exactly. In other words, the exact value of ¥, for this setup is zero. LN-BCs do
not provide this degree of freedom and therefore deliver always the same result for a unit cell of any
given height. In order to approach the anticipated result, an increase in height must be accompanied
by sample enlargement where more unit cells are involved.

(a) matching (b) mismatching (¢) LN-BCs (d) PR-BCs

Figure 10. Sinusoidally rough surfaces in contact: linear (LN) and periodic (PR) boundary conditions (BCs)
are compared. Note that PR-BCs allow the samples to slide with respect to each other during contact.

=¥ e

(a) PR-BCs (H,) ) PR-BCs (2H,) (c) LN-BCs (H,) (d) LN-BCs (2H,)

Figure 11. Sinusoidally rough surfaces in contact: the effects of sample height and width are demonstrated.
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These observations highlight the advantages of PR-BCs. A complication with their use is that
they must be complemented by PR-BCs on the contact interface, that is, the portion of the upper
body protruding over the lower one must eventually come into contact with the periodic image of
the lower body. To avoid this complication, in the majority of the remaining calculations, periodic
microstructures will be employed where PR-BCs and LN-BCs will deliver the same results irre-
spective of the sample size. Consequently, it will be sufficient to use a single unit cell provided the
height of the samples, which is always a free variable, is suitably chosen.

5.4. Textured interfaces

The analysis of Section 3.2 is numerically investigated in this section. For this purpose, the sinu-
soidal matching texture of Figure 10 is employed together with the random matching interface
texture in Figure 12 where the RMS roughness is 0.5 jwm. The random texture is generated through
a random-field model that displays in-plane isotropy as well as out-of-plane Gaussian features [17].
In the present analysis, the interface dissipation potential employs k9 = 10 and o« = 1. The two-
phase homogenization setup is used where self-consistency iterations are not necessary because of
interface conformity. Clearly, both periodic and random textures display a macroscopic jump that
is less than the jump for a flat interface, thereby verifying the analysis of Section 3.2. Indeed, the
two-phase approach delivers the same macroscopic response as that predicted by (3.5). Moreover,
the jump decreases further when the texture RMS is increased. Clearly, perfect interface confor-
mity is the key to these observations. Interfaces that slightly mismatch may easily lead to a higher
macroscopic resistance.

5.5. Spurious size effects

Figure 13 displays several size effects. In the first scenario, the setup of Section 2.2.3 is considered
where the macroscopic jump is expected to correspond to the microscopic one, which is 10 K under
the prescribed test conditions. The two-phase framework correctly captures the macroscopic jump,
and this value is independent of the sample height. The fully coupled frameworks based on Equa-
tions (2.14) and (3.4) fail to capture the macroscopic jump, both significantly deviating from the
correct value with increasing sample height. In a second scenario, a sinusoidal surface contacting
an initially flat one is considered in the framework of the constraint model, and a macroscopic flux
of h, = 0.01 W/mm? is applied. Here, the discussion of Section 3.1 is demonstrated. The scale
& denotes the initial width of the sample. Beyond a certain limit, it is expected that 1}, — 0 such
that the measured jump ¥, scales linearly with e. For all sample sizes, the two-phase framework
without self-consistency iterations retains this linear relation since the scale separation limit was the
motivation behind the framework. Moreover, because the self-consistency iterations are omitted, the

10 flat interface

periodic texture —e—
gl random texture —e—

9 \\\ higher roughness ---o--

< e
<

=
4 L
2 L
0 L L L L L

0.02 0.04 0.06 0.08 0.1
Pressure — b [MPa]
(a) random interface texture (b) dissipation reduction

Figure 12. The analysis of Section 3.2 is demonstrated numerically. The higher roughness results correspond
to the periodic case with a root-mean-square roughness of 1.5 pm.
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Figure 13. (a) A flat, resistive interface is chosen such that the microscopic temperature jump is 10, which
is correctly captured on the macroscale by the two-phase framework only. (b) A sinusoidal surface contacts

an initially flat one in the constraint setting. ¥+ are based on the coupled result (2.14).

results are independent of which surface is chosen as master/slave. The result (2.14) clearly displays
size effects and additionally reflects the effect of the master/slave choice, both of which disappear
at scale separation only.

5.6. Self-consistency and sample height

Self-consistency iterations in the two-phase framework typically converge rapidly, as summarized
in Figure 14. In particular, the iterations converge faster when 1}, is smaller. Additionally, the effect
of the sample height, which was also discussed in Section 5.5 in the context of resistive interfaces,
should be investigated. The two-phase framework with self-consistency iterations delivers a macro-
scopic response that is virtually independent of the sample height for samples that are sufficiently
high. This response is compared with the results obtained using the coupled framework and equation
(2.14) as well as with its linearized counterpart (3.4). Additionally, the surface average of the tem-
perature jump throughout the whole interface, including the non-contact portion, is plotted. Because
the interface is rough, the average is conducted over the slave surface by projecting the value of the
jump to the mean plane of either surface. It is observed that this value is also independent of the
sample height but is different than the two-phase framework result that will be shown to deliver a
more accurate homogenized response in the next section. Finally, the coupled frameworks deliver
height-dependent results that improve in quality as the height decreases. Although it seems that

13.2 T T T T 34 12.4
Py =1072 MPa ——
Py = 1071 MPa —e— ol
12.8 1 3.3
— — — 116
= &, =)
= == 2
124 132 two-phase
108 | w/ size effect —o—
' linearized ——
surface-averaged -
L - X a4l .
1 2 3 4 5 6 04 05 06 07 08 09 1
Iteration Count Height — H, x 107! [pm)]
(a) self-consistency (b) size effects

Figure 14. (a) Convergence of self-consistency iterations is demonstrated for the two-phase framework
based on the constraint model for the contact interface. (b) The effect of the sample height is shown for

various methods of characterizing 9.
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driving the height to zero is an appropriate approach, similar to the resistive interface example of
Figure 13, this is not possible with rough interfaces as shown in Figure 15, in this case with a coupled
analysis. Unless the sample height is an appropriately large value, for example, more than 2 jum, the
contact interface is unrealistic. As the height increases, both the deformation and the temperature
distribution become independent of the height in the vicinity of the contact interface. Addition-
ally, the same solution is obtained irrespective of the surface on which the pressure is applied.
All of these observations indicate the necessity for a framework that delivers a saturated response
with increasing sample height. The two-phase framework with self-consistency appears to be one
such framework.

5.7. Pressure dependence and validation

Independent of whether microscale contact resistance exists (3. # 0) or not (¥, = 0), the
macroscopic response represented by . displays pressure dependence. This dependence is exem-
plified by the results summarized in Figure 16 where the sinusoidal-on-flat setup of Figure 15 is
employed. For the case with microscale contact resistance, the homogenization framework was
extended along the discussion of Section 2.2.2. In all computations, the sample heights were chosen
to be 7 wm, whereas the width and the RMS roughness remain at the previously chosen values (10
and 1 pm, respectively). Because increasing pressure drives the jump to zero, the results with alter-
native approaches match closely at high pressures. However, the deviation of alternative methods
from the two-phase self-consistent framework is observed to be more than 10% at low pressures.
Moreover, it should be recalled that the sample height choice of 7 um remains arbitrary for these
alternative methods because no clear asymptotic response was observed in Figure 14 with varying

N N u B .
T™P: 2 1 1 2 3 T™P: 4 -1 2 4 7 T™MP: 5 -2 1 5 8
(a-1) Ho = 2 pum (a-2) Ho = 4 pm (a-3) Ho = 6 pm

i . N w N .
TMP: 2 0 2 3 5 TMP: 3 -1 1 4 6 T™P: 5 -2 1 4 7
(b-1) Ho =2 pum (b-2) Ho, =4 pm (b-3) Ho = 6 pm

Figure 15. The effect of the sample height on the deformation and temperature fields in the vicinity of the
contact interface is shown: (a) the pressure is applied at the top surface while the bottom surface is held
fixed, (b) the ordering is switched. Here, T™MP: 6 — 6,,.
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Figure 16. (a) Pressure dependence of . is demonstrated both for the constraint model (¢, = 0) and

for the presence of microscale contact resistance (¢, # 0). (b) For validation, the homogenization predic-

tions with and without self-consistency corrections are compared with the original heterogeneous problem

via the temperatures measured at the top of the original heterogeneous and homogenized bar problems of
Section 2.2.2.

sample heights. Additionally, the validation of the advocated framework further supports its advan-
tages. The validation is carried out by solving the OHP of Figure 2 in a fully coupled setting. The
height for this purpose is chosen to be relatively high (30 wm) so that the computational difficulty
of dealing with such heterogeneous problems partially appears, namely that the interface must be
numerically resolved together with the remaining portion of the domain in order to obtain a reliable
value for the monitored quantity. In this case, the monitored quantity is the temperature 6(!) at the
top surface of the upper body. Simultaneously, the homogenized bar problem is solved by enforc-
ing the jump that was computed and the temperature 91({%, at the top surface of the upper body is

recorded. As also indicated in Figure 2, one expects QSQP = 6O if the homogenization frame-
work is accurate. In Figure 16 for the constraint model, it is observed that the two-phase framework
without self-consistency is close to the heterogeneous result and the framework prediction is very
accurate after self-consistency. The mismatch without self-consistency is expected because it was
motivated by the scale separation limit. The higher accuracy with self-consistency demonstrates the
ability of the first-order corrector to take into account finite size effects appropriately. However, the
framework remains approximate even after the correction. This is reflected in the case when there
is microscale contact resistance and the macroscopic jump is higher. In this case, finite temperature
changes dominate the response, and self-consistency does not act as an equally accurate corrector,
suggesting possibilities for further improvement.

Finally, it is noted that mortar-based frameworks are expected to deliver a contact response that
varies smoothly with an evolving contact interface. This was advocated as a primary strength of
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these approaches in the initial works [35, 36], provided that mortar integrals were evaluated accu-
rately using an intermediate surface. From this point of view, the non-smooth variations in the
pressure-dependent behavior, which eventually reflect to the validation problem, are unsatisfactory
to a certain extent. This non-smoothness was observed to decrease with mesh refinement. Because
an intermediate integration surface was not employed in the present work, this is one potential source
for this observation. Nevertheless, no degradation was observed in the numerical reliability.

5.8. Effects of randomness

Various three-dimensional computations were presented in the preceding discussions. In particular,
the depiction of the self-consistent two-phase framework in Figure 4 is based on a computation
where randomly rough surfaces were employed. With such random contact interface topographies,
the classical homogenization approach requires the determination of a statistically representative
sample based on the procedures of ensemble averaging combined with sample enlargement,
which lead to a rapidly increasing computational cost. To highlight the effects of randomness, a
two-dimensional setup is considered with one-sided as well as two-sided (non-matching) random
roughness. The results are summarized in Figure 17. For small sample sizes, the pressure
dependence varies significantly with the choice of the sample. For a given pressure, on the other
hand, the scatter in the responses from 10 different samples decreases with increasing sample size.
The results indicate that it may be necessary to consider even larger sample sizes for a statistically
representative macroscopic response. This sample enlargement procedure is manageable in two
dimensions (Figure 18) but remains challenging in three dimensions.

10 i T i T 14
sample 1 —e— 12l sample 1 ——
8 sample 2 e sample 2 e
sample 3 —e— 10 | sample 3 —e—
el sample 4 o o
3 S
\Cg 4t |°§ 6 |
4 L
2 L
2 L
0 : : : : 0 : : : :
0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 0.08 0.1
Pressure — py [MPa] Pressure — pyy [MPa]
(a-1) one-sided roughness (size=1) (a-2) two-sided roughness (size=1)
4 : : . . . 6 . . .
> o — : Fux:
0.1 2.1 o 0.1 2.1
S \ = °
|8 | . s =) o i
Lo ] 8
1= °\ E 1= ° 8
\\ R 2k ° a
// //

o ‘ s . ‘ 0 ‘
Sample Size /

(b-1) one-sided roughness (pp = 0.05) (b-2) two-sided roughness (pp = 0.05)

Figure 17. The effect of randomness is demonstrated. The qualitative effect appears already without self-

consistency which, therefore, is not employed. The size indicator scales the width of the sample, with

1 corresponding to the default width (10 um). FLX denotes the magnitude of the heat flux in W/mm?.
Two-sided roughness employs the same root-mean-square roughness (0.5 jum) on both surfaces.
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Figure 18. A two-dimensional random interface topography computation. The width of the samples is
100 pm whereas the height is 10 um and the root-mean-square roughness is 0.5 wm. The computation
is thermomechanically fully coupled. Along with the original undeformed samples (top), the magnitude

STR of the Cauchy stress in MPa (middle) and the magnitude FLX of the heat flux in W/m m? (bottom)
are shown.

6. CONCLUSION

The major advantage of computational homogenization techniques over analytical ones is their abil-
ity to incorporate the exact topology and the material behavior of the microstructure, to within
modeling approximations, into the analysis framework. In this work, a computational homogeniza-
tion framework was developed in the context of the thermomechanical contact of two boundary
layers with microscopically rough surfaces. The major goal was to accurately capture the macro-
scopic thermal contact response, which reflects as a temperature jump, and at the same time obtain
a homogenized behavior that is independent of algorithmic choices such as master/slave surface
designation within the macroscale contact formulation. The framework that was developed for this
purpose was motivated by the limit of scale separation such that an algorithmically consistent two-
phase computational test was induced: a purely mechanical analysis followed by a purely thermal
one. However, the homogenization problem becomes practically irrelevant as the scale separation
is enforced in the classical asymptotic sense because the macroscopic temperature jump vanishes
whenever contacting points pick the same temperature on the microscale. In order to correctly take
into account finite size effects that are inherent to the problem, the two-phase framework was cast
within a self-consistent iterative scheme that acts as a first-order corrector. Numerical investiga-
tions demonstrated various aspects of the proposed homogenization framework and compared it
with alternative approaches as well as with the solution of the original heterogeneous problem
for purposes of validation. It should be highlighted that while the two-phase framework decouples
the mechanical and thermal fields on the microscale, the homogenized thermomechanical contact
problem on the macroscale is always coupled. Specifically, a coupled problem must be solved for
validation and also for comparison with coupled homogenization frameworks. For this purpose,
and in order to offer an alternative to recently proposed mortar-based thermomechanical contact
algorithms, an isogeometric approach that was motivated by a classical three-field mixed varia-
tional formulation was additionally presented. Overall, the two-phase framework combined with

the mortar-based contact algorithm delivers a computationally efficient framework.

The present approach emphasized finite deformations and finite temperature changes in the
context of a two-body contact problem. A more realistic setup for the analysis of TIMs is a
three-body contact problem where a layer of a finitely deformable material is compressed between

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 97:582-607
DOI: 10.1002/nme



MULTISCALE THERMOMECHANICAL CONTACT 605

two other relatively stiff metallic surfaces. Large plastic deformations near the contacting asperi-
ties of such metallic surfaces, the modeling of which requires employing small-scale models such
as crystal plasticity, also call for a finite deformation framework even without an interface mate-
rial. A detailed analysis of such problems in a three-dimensional setting with random interface
topographies is left for future investigation.
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APPENDIX A: CONTINUUM FRAMEWORK

The reference (current) configuration R, (/R) occupied by a body is assigned a position vector X
(x), outward unit normal vector N (r) on the boundary dR, (0R), infinitesimal volume dV (dv),
infinitesimal surface area dA4 (da) and an absolute temperature distribution 6. The gradient operator
on R, (R) is denoted as Grad[e] (grad[e]) and the divergence as Div[e] (dive). The deformation
gradient F = Grad[x], with J = det F, maps the first Piola—Kirchhoff stress P to the Cauchy
stress T = J~'PFT. The induced temperature gradient and heat flux vectors on the reference
(current) configuration are denoted, respectively, as g, = Grad[d] (g = grad[f] = F 'g,) and g,
(¢ = J"'Fq,). Corresponding to these are the Piola (Cauchy) traction vector p = PN (¢t = Tn),
with pressure py = —p -n (ty = —t - n) and normal heat flux 1, = —¢q,- N (h = —q - n).

For the specific class of thermomechanical problems considered, all rate and supply terms are
omitted from the linear momentum and energy balance equations:

Div[P] =0, —Div[g,]=0. (A.1)

The constitutive model for the heat flux employs Fourier’s law on the deformed configuration such
that g, = —Jk C g, with k as the conductivity from (5.1) and C = F ' F . Finally, the Helmholtz
energy delivers the stress and is modeled according to the modified entropic theory of elasticity
[50,51]. Note that thermomechanical coupling persists in the present quasistatic setting owing to
the temperature dependence of the stress and the deformation dependence of ¢,. While the pre-
sented homogenization approach excludes rate affects such as in viscoelasticity, a thermoplastic
material model may also be employed without any modifications to the overall framework.

APPENDIX B: ON A FORMULATION OF MORTAR-BASED THERMAL CONTACT

The classical steady-state linearized thermal conduction problem may be stated as the minimization
of a potential. This potential may be supplemented by a thermal contact potential

Co [Be. vo.hol = / HodA + / o (D — y5)dA, B.1)
rs rs

which is motivated by the classical three-field mixed variational formulation of [52] for normal con-
tact. For simplicity, assuming a frozen mechanical configuration, the interface dissipation potential
Ho = Ho(yp) is postulated. Here, #, must be evaluated via yg for variational consistency. Upon
enforcing the stationarity of the total potential, one obtains the contribution (4.1) to the energy
balance, with £, of yet undetermined value. Additionally, one obtains the equalities

/ Sho(ys — De)dA = O, / 86 (o — 3Ho/dyg)dA = 0. (B2)
TS TS

If {J¢. yo, ho} have infinite degrees of freedom on I'S, yy = ¥, is implied by the first equality, and
the classical continuum formulation (4.2) is recovered from the second. However, ¢, varies accord-
ing to the discretizations of the master and slave surfaces, whereas {yy, s, } inherit the discretization
of the slave according to (4.4), thereby inducing (4.5). This formulation addresses the discretization
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associated with the modeling of thermal contact independent of any constraint idea. In particular, it
is valid also for the constitutive model of H,. In that case, the pressure in H,, is kept fixed during the
variation, similar to the treatment of the frictional slip contribution in the variational setting of [45],
but contributes to subsequent consistent linearization. Overall, this formulation offers a convenient
framework for the derivation of the mortar-based approach presented in Section 4.2. See [32] for a
similar derivation in the case of frictionless contact.

When H, = —ep )/02 /2, the penalty method acts as the underlying constraint enforcement
methodology with €y as the penalty parameter. To extend the formulation to the numerically
superior augmented Lagrangian setting in this constraint case, it is sufficient to augment Cy by
classical terms:

/\2
C2 A2 D v o] = Co e o hol + / AayedA + / 26 44, (B.3)
rs [o\TS 2€6

When taken as the starting point, the variations of Cé yield (4.9) and (4.10) in addition to (4.5);.
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