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SUMMARY

Customer demand is sensitive to the price paid for the service in many service environments. Using
queueing theory framework, we develop profit maximization models for jointly determining the price and
the staffing level in a service company. The models include constraints on the average waiting time and
the blocking probability. We show convexity of the single-variable subproblem under certain plausible
assumptions on the demand and staffing cost functions. Using numerical examples, we investigate the
sensitivity of the price and the staffing level to changes in the marginal service cost and the user-specified
constraint on the congestion measure. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Determining the best level of production capacity to install is not an easy decision since the
customer demand faced by a company in many cases is unpredictable and varies over time. Making
frequent changes in capacity in accordance with fluctuations in the demand level usually is not an
acceptable strategy since this may entail high costs or firms may not possess the resource flexibility
needed to closely match demand and supply over time. As a result of insufficient service capacity,
arrival of a large number of customers over a short time interval creates congestion in the system.
While these service delays undoubtedly cause customer dissatisfaction, nonetheless companies
consider these delays necessary in order to keep operating costs in control. Thus, given randomly
arriving customers at a service facility, the service providing firm has to build an appropriate level
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of service capacity in advance by considering the trade-off between the cost of capacity and the
waiting time experienced by the customers. Various researchers have used queueing theory as a
tool to analyze the performance of stochastic manufacturing and service systems. In a well-known
model in the literature for determining the optimal capacity level (see, e.g. [1]), the objective
is defined as the minimization of the sum of the service capacity cost and the cost of waiting
(measured based on the customers’ average waiting time).

In this paper, we explore the issue of coordinating the staffing and pricing decisions in a service
facility using mathematical models based on queueing theory. Since in many cases arrival rate
to the system depends on the price of the service charged to customers (e.g. [2]), we focus on
the joint optimization of price and service capacity. Thus, rather than cost minimization, we adopt
the objective of profit maximization in our study. To determine the optimal price and capacity, the
joint impact of these decisions on the profit margin, the congestion level, and the cost of servers
should be taken into account.

To broaden the scope of application, we investigate three different types of multiserver queueing
systems, categorized according to the maximum length of the waiting line allowed: (1) infinite
queue capacity (M/M/s), (2) loss model with no waiting in line (M/G/s/s), and (3) finite queue
capacity (M/M/s/K). In the M/M/s system, all customers will be eventually served regardless of
their arrival times. In the no queue and finite queue systems, the occurrence of a high number of
arrivals within a short time interval may cause some customers to be blocked when they arrive,
resulting in lost business for the firm.

The particular queueing systems (M/M/s, M/G/s/s, and M/M/s/K) underlying the optimiza-
tion models are fairly suitable for representing a wide range of real-world settings. Single-stage,
multiple server queueing models have been applied in areas including tele-marketing, emergency
calls for police and ambulances, fast food restaurants, consumer banking, supermarkets, and call
centers (e.g. [3, 4]).

To incorporate the service providing firm’s concern with customer dissatisfaction into the
model, we include constraints defining maximum allowable limits on the average waiting time
or the probability of blockage by the system. In many service environments, delays beyond a
certain threshold evoke negative reactions by customers. For the over the counter service in a
bank, it is possible to talk about a typical patience threshold of 3min for the customers. Customers
waiting more than 3 min show various signs of impatience such as checking their watches,
angrily watching the tellers, and discussing the wait with others in the queue [5]. The delay
threshold for airline departure times is around 30 min [6]. Hui and Tse [7] observed that the
users did not show signs of disapproval when the wait was 5min or less in a computerized
course registration service at a Canadian university. Some studies have found that up to 27% of
customers who cannot get through on the telephone will either purchase elsewhere or not recall
again [8].

The remainder of the paper is organized as follows. After reviewing the related literature, we
discuss key modeling assumptions in Section 3. The mathematical formulations of the M/M/s
system and its variants are presented in Section 4. Under mild conditions on the demand and
server cost functions, for each type of queueing system, we show the convexity of the problem
in the single-variable maximization case and analyze properties of the optimal solution. We
show that when the elasticity of arrivals is increasing in price and the number of servers is
kept fixed, the optimal price is higher than the price that maximizes the revenues. In Section 5,
we provide numerical examples to illustrate our methodology. Concluding remarks are given in
Section 6.
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2. LITERATURE REVIEW

The problem of optimally determining the service capacity in a queueing system has been studied
extensively in the literature, e.g. [9, 10]. Since our work primarily concerns the use of price to
influence the arrival rate of customers, we concentrate on this part of the literature.

Various researchers have studied the problem of choosing the optimal price in a service facility.
Assuming users with delay costs and a fixed level of service capacity, it has been shown that the
socially optimal level of congestion (or equivalently, the optimal level of arrivals) in a queueing
system can be attained by imposing fees on the users [11]. Mendelson [12] proposes an economic
model where the service price is determined optimally to minimize the sum of service capacity
and user waiting costs, assuming that the user delay cost accrues at a constant rate over waiting
time. Dewan and Mendelson [13] extend that model to the case where a general delay cost
function is allowed. Using a similar model, Stidham [14] investigates the properties of the optimal
solution when there is an upper bound on the arrival rate. Ha [15] studies the problem of finding
the optimal class-specific pricing schemes that can coordinate a multiclass system where service
requirements are chosen by the customers. Several other papers in this research stream incorporate
the effect of guarantees on the maximum waiting time. Palaka et al. [16] treat demand as being
linear in price and quoted lead time and employ an M/M/1 queueing model to study the firm’s
price and quoted lead time choices. So and Song [17] study a similar model with a demand
function log-linear in price and quoted lead time. Ray and Jewkes [18] consider delivery time-
dependent price and also allow economies of scale by assuming that the unit operating cost is
a decreasing function of the mean demand rate. Larsen [19] develops a model where the value
placed upon service by a potential customer is a random variable, and the customer enters the
system if this value exceeds the sum of the price charged for his job plus the expected waiting
costs.

Our research is closer to several papers that assume that the mean arrival rate is inversely related
to price and/or the average waiting time of customers. Ittig [20] investigates the problem of finding
the optimal number of servers in an M/M/s system when the arrival rate is negatively related to
the average waiting time. Jahnke et al. [21] study an M/M/1 system with a kinked demand curve.
Up to a threshold capacity utilization level, demand is a decreasing linear function of price only;
if the capacity utilization is greater than the threshold level, decreasing service level (caused by
higher capacity utilization) also negatively affects demand.

While in general a single-channel (server) delay system is assumed in the papers cited above,
there are also studies on Erlang loss systems with multiple channels. In a loss system, no queue is
allowed, and customers finding all servers busy at their arrival are not served and rejected from the
system. Carrizosa et al. [22] study the optimal admission policy when the arrivals at a loss system
can be classified into different groups. Caro and Simchi-Levi [2] explore the pricing problem
faced by a network service provider that has a fixed capacity and different classes of customers.
Ziya et al. [23] look into a similar problem in which there is only one class of customers, and
the waiting line has a finite capacity. Each arriving customer has her own reservation price and
enters the system only when this reservation price is higher than or equal to the price charged by
the firm.

We note that there are numerous other economic models for the multiserver systems proposed in
the literature assuming a price-independent arrival rate. For example, Borst et al. [24] minimize the
sum of staffing and waiting costs in an M/M/s system in which the waiting cost is an increasing
function of the waiting time experienced by a customer. Kochel [25] explores the problem of
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optimally choosing the number of servers and number of waiting places in an M/M/s/K finite
queue system. For a recent literature review, see Tadj and Choudhury [9]. In general, in the previous
literature either the service capacity or price is assumed given, and the optimization is carried
out on only one of these two variables. The models that consider the joint selection of capacity
and price have generally used the single-server M/G/1 framework. Hence, previous studies have
not fully explored the issue of jointly determining the optimal price, service capacity, and queue
capacity in a single-stage, multiple server queueing system subject to price-dependent customer
demand.

3. MODELING FRAMEWORK

We address the problem of optimally choosing the price p, and the number of servers s, to maximize
the expected profit per hour in a single-stage system consisting of identical server stations working
in parallel with a mean service rate of � per server per hour. Throughout the paper, we assume �
is fixed and given. In a single-stage system, the customer receives service from only one station
and then leaves the system. Customers arrive at the system following a Poisson process with a
price-dependant mean arrival rate of � per hour; they join a single waiting line and are served by the
first available server. In Sections 4.1–4.3, we separately consider three cases: (1) an Erlang delay
system (M/M/s) in which the waiting line capacity is infinite, and service times are exponentially
distributed; (2) an Erlang loss system (M/G/s/s) where no distributional assumption is made for
the service times, and there are no waiting places; and (3) an M/M/s/K system with s servers,
finite waiting line capacity m=K −s, and exponentially distributed service times. Thus, because
some customers are blocked from entering the system when they arrive, the average number of
customers served per hour will be less than � in the second and third cases.

The average arrival rate � is inversely related to the price p. To simplify the analysis, we will
work with the inverse demand function p(�) and assume that p(�) is concave and nonincreasing
in �. The hourly cost of staffing g(s) is assumed to be an increasing convex function of the number
of servers s. This assumption implies that the marginal cost of using an additional server does
not decrease as the number of servers increases. For instance, in tight labor markets, the hourly
wages increase with the demand for labor, resulting in a convex staffing cost function [24]. In a
tight labor market, the workers are hired at relatively low wage initially; as the available supply of
potential workers decreases, higher wages should be offered in order to attract additional workers
who will not accept lower wages. We remark that a linear relationship between � and p, and
the linear capacity cost css (with cs as the server cost per hour) belong to the set of functions
satisfying our assumptions regarding p(�) and g(s). We also assume that the marginal cost of
each service to the firm is c, such that each served customer contributes (p−c) to the profit.
Thus, the total hourly cost of the firm is a function of both the cost of service c and the staffing
cost g(s).

As noted previously, there are situations where the quality of a service perceived by a customer
rapidly deteriorates if the waiting time experienced by the customer exceeds a certain threshold
level. To incorporate this factor into our model, we include a constraint setting an upper limit for
the average waiting time in our optimization model of the M/M/s system. A similar constraint
on the Erlang loss probability is imposed on the M/G/s/s loss system and the M/M/s/K finite
queue system, based on the idea that limiting the probability of rejection at arrival helps increase
customer satisfaction. We note that models with this kind of constraints on congestion measures
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have also been investigated by other researchers, e.g. Berman and Larson [26] and Jahnke et al.
[21]. In the facility location literature, the constraint on the congestion measure has been specified
as an upper bound on the probability of encountering more than a certain number of users in queue
at arrival [27–29]. In Section 4.4, we study the extension of the M/M/s infinite queue model
to the case where the total hourly cost also explicitly includes the estimated cost of customer
dissatisfaction due to waiting.

4. DETERMINATION OF THE OPTIMAL PRICE AND STAFFING LEVEL

In this section we present optimization models for queueing systems under three different scenarios
regarding the maximum allowable queue length. We first consider an M/M/s system in which
customers finding all servers busy at their arrival wait in line until a server becomes available.

4.1. Profit maximization in the M/M/s model

Let a=�/� (the offered load) and �=�/s� (the traffic intensity). To maximize the expected profit
per hour, �D (s,�), the service provider should solve the following nonlinear programming model.

(P1) Max �D(s,�)=[p(�)−c]�−g(s)

s.t. w(s,a)�wmax

�<s�

where w(s,a) is the average waiting time in the M/M/s system and wmax is the prespecified upper
bound on the average waiting time. The stability condition �<s� ensures that the overall system
capacity is greater than demand. The average waiting time in the system (including the service
time), w(s,a), is given by

w(s,a)=C(s,a)/[�(s−a)]+(1/�) (1)

where C(s,a) is the Erlang-C probability of delay defined as

C(s,a)=
as

s!(1−�)∑s−1
i=0 a

i/i !+as/s!(1−�)
(2)

C(s,a) gives the probability that an arriving customer has to wait in line.
We show in Lemma 1 that the objective function in (P1) is jointly concave in s and �.

Lemma 1
�D (s,�) in (P1) is jointly concave in s and �.

Proof
The elements of the Hessian matrix of �D (s,�), ∇2�D=H(s,�)=[hi j ] are

h11= p′′(�)�+2p′(�), h12=h21=0 and h22=−g′′(s)
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By assumption p′′(�p)�0, p′(�p)�0, and g′′(s)�0, implying that h11 and h22 are nonpositive.
Thus, H (s,�) is negative semidefinite and �D(s,�) is jointly concave in s and �. �

The constraint function �−s� is jointly convex in s and �. If the other constraint function
w(s,a) is also jointly convex in s and �, (P1) would be a convex program, guaranteeing a unique
local maximum. Unfortunately, we are not able to show joint convexity of w(s,a). Nonetheless,
we can prove that (P1) has a unique local maximum if one of the variables is kept fixed. Using
Lemma 1, we prove in Proposition 1 that (P1) is a convex program if one of the variables is
fixed.

Proposition 1
When (P1) is solved for a fixed value of � or s, the local maximum point will also be a global
maximum.

Proof
First we consider a fixed s. From Lemma 1, �D(s,�) is concave in �. The average waiting time
w(s,�) is convex in � in an M/M/s system [30]. The constraint �<s� also defines a convex region
because it is linear in �. Hence, the feasible set of constraints is convex when we treat s as fixed.
Thus, the local maximum of (P1) will be the global maximum when s is fixed. Now we fix �.
The negative of a convex function is concave; hence, −g(s), and as a result of that, the objective
function �D(s,�) is concave in s. The convexity of w(s,�) in s has been shown in Dyer and Proll
[31]. The constraint �<s� is linear in s. Hence, there exists only one local maximum of (P1) when
� is fixed. �

To solve (P1), we use a sequential search method in which we find the optimal arrival rate
and profit keeping the number of servers fixed. We increase the number of servers by one at each
iteration and continue to iterate until the expected profit starts to decrease. This method converges
to the optimal solution if w(s,a) is jointly convex in s and �, but it may be trapped in a local
optimum if there are multiple local optima in the search space. Note that, using an off-the-shelf
nonlinear optimization software, we can also attempt to find the optimal solution by searching
over s and � simultaneously. As discussed in Section 5, in our numerical study, we have observed
that the solutions obtained from our method are consistent with the global optimal solutions found
via grid search, suggesting that our approach can be successfully used at least in a certain set of
problems.

In Proposition 2, we show that, for a given s, the price maximizing the (partial) profit (p−c)
�(p) is larger than the price maximizing the revenue p�(p).

Proposition 2
For a fixed number of servers s, the optimal price in (P1) increases in the marginal service cost c.

Proof
To show that p∗(c) is increasing in c, it is sufficient to show that �D (s,�) is submodular in (�,c)
[32], which is true if fD(�,c)≡−�c is submodular in (�,c). The lower bound for price is the
marginal service cost c, and this lower bound increases as c increases. Since the mixed partial
derivative �2 fD/���c=−1<0, fD(�,c) is submodular and �∗(c) is decreasing in c. Hence, p∗(c)
is increasing in c. �
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4.2. Profit maximization in the M/G/s/s loss model

In the loss system, the expected number of customers served per hour will be �[1−B(s,a)], where
B(s,a) is the Erlang loss probability, i.e. the fraction of customers finding all servers busy at their
arrival. B(s,a) can be computed from (see, e.g. [33])

B(s,a)= (as/s!)∑s
i=0(a

i/ i !) (3)

The optimization problem in the loss system can be expressed as

(P2) Max �L(s,�)=[p(�)−c]�[1−B(s,a)]−g(s)

s.t. B(s,a)�bmax

where bmax is the maximum loss probability allowed and�L (s,�) is the service provider’s expected
profit per hour. Although we are not able to show that (P2) is a convex program, in Proposition 3,
we show that problem (P2) has properties similar to (P1). To that end, we first present Lemma 2.

Lemma 2
If f is a nonnegative, increasing, and concave function of a single variable x , and g is a nonnegative,
nonincreasing, and concave function of x , then the multiplication of f and g is concave in x .

Proposition 3
When (P2) is solved for a fixed value of � or s, the local maximum point will also be a global
maximum.

Proof
We first treat s as fixed. The term �[1−B(s,a)], expected number of customers served per hour,
has been shown to be concave in � [33, 34]. It is also increasing in � [35]. The function [p(�)−c]
is nonnegative, nonincreasing, and concave in �. Hence, from Lemma 2, �L(s,�) is concave
in �. Although B(s,a) is not convex in � in general [33], we can show that the feasible region
is convex. We can rewrite the constraint on the loss probability as 1/[1−B(s,a)]�1/(1−bmax).
Since 1/[1−B(s,a)] is convex in � [22], (P2) has a single maximum when s is fixed. When � is
fixed, it is easy to show that �L(s,�) is concave in s due to the concavity of �[1−B(s,a)] and
−g(s). It is known that B(s,a) is convex in s [36]. Thus, the local maximum of (P2) is also the
global maximum when � is fixed. �

To determine the optimal solution to problem (P2), we use the sequential search approach
described for problem (P1). If the arrival rate function �(p) exhibits increasing price elasticity,
we can describe the optimal arrival rate for a given s in more detail. The coefficient of demand
elasticity, e(p), is defined as

e(p)=−(p/�)(d�/dp) (4)

The price elasticity of demand measures the responsiveness of demand to a change in price. If the
percentage of change in demand is larger than the percentage of change in price, e(p)>1, and the
demand is described as elastic. If the demand is elastic, a price increase results in a lower revenue.
Conversely, if the demand is inelastic (e(p)<1), a price increase leads to a higher revenue. If
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e(p) is increasing in p, a 1% change in price results in a higher percentage change in demand at
higher prices, and p�(p) is maximized for the unitary elasticity e=1. From Proposition 2, if e(p)
is increasing in p, (p−c)�(p) is maximized in the region e(p)>1.

Let �p be the arrival rate maximizing [p(�)−c]�, and el>1 be the price elasticity of demand
when �=�p. If the elasticity of arrival rate e is increasing in price, then we can establish an upper
bound on the optimal arrival rate when (P2) is solved for a given s. This bound is described in
Proposition 4.

Proposition 4
Suppose that the elasticity of demand is increasing in p, that is, e′(p)>0. When (P2) is solved for
a fixed value of s, the optimal arrival rate �∗ is less than or equal to �p.

Proof
Let pmin be the minimum feasible price and pm be the price satisfying e=el . The loss probability
B(s,a) is increasing in �. Hence, 1−B(s,a) increases as price increases. The term (p−c)�(p)
is increasing in p in the region e<el . Since e(p) is increasing in p, (p−c)�(p)[1−B(s,a)] is
increasing in p for e�el . The constraint B(s,a)�bmax is satisfied more easily as p increases.
Hence, the optimal price cannot be in the interval between pmin and pm . Correspondingly, the
optimal arrival rate cannot exceed �p. �

As an example for the case of increasing price elasticity, assume that the arrival rate depends
linearly on price:

�(p)=�−�p (5)

where � and � are positive parameters. Using (4), the coefficient of demand elasticity is

e(p)= p�/(�−�p) (6)

which is increasing in p.
It can also be shown that the optimal price increases in c when the number of servers s is

kept fixed. Analogously to Proposition 2, define fL(�,c)=−c�[1−B(s,a)]. Then �2 fL/���c=
−�[�−�B(s,a)]/��<0 since the throughput [�−�B(s,a)] is increasing in � [35]. Thus, �∗(c) is
decreasing in c and p∗(c) is increasing in c.

We also note that the optimal unconstrained price in problem (P2) for a given s can be obtained
by using the first-order condition:

��L

�p
=

[
�(p)+(p−c)

��

�p

]
[1−B(s,a)]−(p−c)�(p)

�B(s,a)

�p
=0 (7)

The first partial derivative of the Erlang loss probability with respect to price is

�B(s,a)/�p=[�B(s,a)/��](��/�p) (8)

where �B(s,a)/��= B(s,a)[B(s,a)+(1/�)−1]/� [30]. Thus, substituting (8) into (7), the optimal
unconstrained p can be determined by finding the zero of a nonlinear equation.

4.3. Profit maximization in the M/M/s/K finite queue model

In this subsection we consider the case where the maximum queue length is finite. If the waiting
line capacity is finite, new arrivals will be blocked when there are already K customers in the
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system (including those at server stations). The Erlang loss probability in the M/M/s/K system
with line capacity m=K −s, B(s,a,m) is given by

B(s,a,m)= (as/s!)(a/s)m∑s
i=0 a

i/i !+(as/s!)∑m
i=1(a/s)i

(9)

Thus, B(s,a,m) is the probability that an arriving customer will not enter the system. In this
scenario, we can incorporate the cost of waiting line capacity into our model. Let h(m) be the hourly
cost of maintaining m units of queue capacity. We assume h(m) is an increasing convex function
of m. To make the model more general, we allow the possibility that the queue capacity m is a
decision variable. Since the throughput rate (the fraction of arrivals served) will be �[1−B(s,a,m)],
the relevant optimization problem now is

(P3) Max �FQ(s,�,m)=[p(�)−c]�[1−B(s,a,m)]−g(s)−h(m)

s.t. B(s,a,m)�bmax

where bmax is the maximum limit on the proportion of customers rejected and �FQ(s,�,m) is
the service provider’s expected profit per hour. Lemma 3 presented below indicates that the term
[1−B(s,a,m)]−1 in the M/M/s/K system is convex in �.

Lemma 3
The inverse of the nonblocking probability in the M/M/s/K finite queue system is a convex
function of the arrival rate �.

Proof
The nonblocking probability for a new arrival is

1−B(s,a,m)=
∑s

i=0 a
i/i !+(as/s!)∑m−1

i=1 (a/s)i∑s
i=0 a

i/i !+(as/s!)∑m
i=1(a/s)i

(10)

Then, we have

1

1−B(s,a,m)
=1+ (as/s!)(a/s)m∑s

i=0 a
i/i !+(as/s!)∑m−1

i=1 (a/s)i
(11)

or, equivalently,

[1−B(s,a,m)]−1=1+(a/s)B(s,a,m−1) (12)

The loss rate �B(s,a,m−1) is convex in � [37]. Hence, it follows that [1−B(s,a,m)]−1 is convex
in � [22, cf. Lemma 7.1]. �

In Proposition 5, we show that when we fix two of the three decision variables, problem (P3)
has a unique optimal value for the remaining variable.

Proposition 5
When (P3) is solved by treating two of the three variables (s,�, and m) as fixed, the maximum
expected profit is unimodal in the remaining third variable.
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Proof
We first treat s and m as fixed. The throughput �[1−B(s,a,m)] is increasing concave in � [37].
Using Lemma 2, �FQ (s,�,m) is concave in �. As B(s,a), B(s,a,m) is not convex in � for all
values of a [37]. However, similar to Proposition 3, we rewrite the constraint on the loss probability
as 1/[1−B(s,a,m)]�1/(1−bmax). From Lemma 3, 1/[1−B(s,a,m)] is convex in �, and thus,
(P3) is unimodal in � when s and m are fixed. Now fix � and m. The term �[1−B(s,a,m)] is
increasing concave in s [25, 38], and g(s) is convex by assumption; hence, �FQ(s,�,m) is concave
in s. Since B(s,a,m) is decreasing convex in s [25, 38], (P3) is unimodal in s when � and m are
fixed. Finally, we consider the behavior of (P3) with respect to line capacity m. The throughput
�[1−B(s,a,m)] is increasing concave in m [37, 39]. Combining this result with convexity of
h(m),�FQ(s,�,m) is concave in m. The Erlang loss probability B(s,a,m) is convex in m [37, 39].
Thus, (P3) is unimodal in m. �

For solving problem (P3), we extend the sequential search method described in Section 4.1. We
first find the optimal number of waiting places and arrival rate keeping the number of servers s
fixed, and then conduct a search over s in order to arrive at the optimal solution.

For the case of increasing price elasticity, the arrival rate �=�p leading to e=el defines an
upper bound on the optimal arrival rate when (P3) is solved for fixed s and m. This can be shown
in a similar manner to Proposition 4.

4.4. M/M/s model with customer waiting cost

We now consider a different economic model for the M/M/s system in which the objective
function also explicitly includes the cost of waiting by customers. As noted earlier, economic
models of this kind are well established in the literature. Let L(s,a) be the average number of
customers in the system, and cw be the cost of waiting per customer per hour. It can be thought that
this cost is caused by customer dissatisfaction and lost goodwill. Higher waiting times typically
lead to a decrease in customer loyalty, and consequently lower future purchases. By Little’s Law,
L(s,a)=�w(s,a). Thus, the expected customer waiting cost is L(s,a)cw per hour. We can express
the optimization problem as

(P4) Max �D2(s,�(p))=(p−c)�(p)−g(s)−L(s,�(p))cw

s.t. w(s,�(p))�wmax

�(p)<s�

Instead of the arrival rate, we consider price p as the decision variable in problem (P4). In addition
to revenues from service, price now also has an impact on the customer waiting cost through the
function �(p). An increase in price results in a decrease in waiting cost. Lemma 4, stated without
proof, will be helpful in showing the uniqueness of the local optimal solution in the single-variable
maximization case.

Lemma 4
Suppose f (y) is a nondecreasing convex function of y and y(x) is convex, then f (y(x)) is convex
in x .

If �(p) is convex in p and p �(p) is concave in p, then (P4) is a convex program when
one of the variables is treated as fixed; consequently, Proposition 6 holds. The second condition
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is satisfied when �′(p)<−0.5p�′′(p). For example, a negative linear relationship between
price and arrival rate satisfies these two conditions. Another example is that the double-log
model

ln(�)=�−� ln(p)

meets these conditions when �>0 and 0<�<1. The exponential demand function �(p)=
� exp(−�p) satisfies the conditions if �<2/p or, equivalently, if the price elasticity of demand
is less than 2. The convexity of �(p) implies that as price decreases, the arrival rate increases
at an increasing rate. Various convex demand functions such as linear and log-linear have been
employed in the literature and used in empirical studies [16–18, 20]. The linear, log-linear, and
exponential demand functions have successfully fit the optical scanner data for a number of
nondurable household and grocery store items sold in supermarkets [40]. The concavity of the
revenue function p�(p) means that as the price increases the revenue will increase at a decreasing
rate.

Proposition 6
Suppose �(p) is convex and p�(p) is concave. When (P4) is solved for a fixed value of p or s,
the local maximum point will also be a global maximum.

Proof
The proof is similar to Proposition 1. The average number of customers in the system L is
nondecreasing and convex in � [41, 42]. Then, for fixed s, by Lemma 4, L(s,�(p)) is convex in p.
By convexity of �(p), the constraints define a convex region; hence, we have a unique maximum
for a given s. For fixed p, L is convex in s [31]. Using same arguments as in Proposition 1, it
follows that there is only one local maximum of (P4) when p is fixed. �

To solve problem (P4), the sequential search approach described in Section 4.1 can be applied in
conjunction with the objective function �D2(s,�(p)). A possible extension is to consider a convex
waiting cost rather than a linear waiting cost cw. If the waiting cost is convex, as the waiting time
increases, the waiting cost will increase at an increasing rate. To respond to increasing waiting
cost, the price and/or the number of servers should be increased.

Mandelbaum and Shimkin [43] argue that the waiting cost can be divided into two parts: a
linear alternative waiting cost related to the actual value of time and a convex psychological
waiting cost caused by the impatience that develops during waiting. The psychological cost
is affected by the feeling of waste of invested time as well as the stress related to uncer-
tainty associated with the remaining waiting time [44]. In a study of a fast food chain’s
customers, it has been found that after the actual waiting time in queue exceeds 5min, customer
perception of waiting time increases exponentially and differs from the actual time spent
in line [45]. Nonlinear waiting cost functions may be observed in industries such as secu-
rities trading, food processing, banking and communication systems, and airline reservation
systems [13, 46].

Let D(t) be the waiting cost incurred by a customer who waits t units of time before the service
begins. Assume D(t) is increasing in t . Without loss of generality, assume D(0)=0. The expected
waiting cost per hour is

�(p)E[D(wait)]=�(p)C(s,a)G(s,�(p)) (13)
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where G(s,�(p))=E[D(wait)|wait>0]=(s�−�)
∫ ∞
0 D(t)e−(s�−�)t dt . Hence, we can rewrite the

objective function of the service provider as (cf. [24])
Max �D3(s,�(p))=(p−c)�(p)−g(s)−�(p)C(s,a)G(s,�(p)) (14)

Proposition 6 will also hold under the objective function �D3(s,�(p)) if we show that the expected
total waiting cost per hour �(p)C(s,a)G(s,�(p)) is component-wise convex in s and p. First
consider that p is fixed. Borst et al. [24] have shown that �(p)C(s,a)G(s,�(p)) is convex in
s for a fixed p. This follows from the fact that G(s,�) is convex decreasing in s [24, Lemma
C.1], the Erlang-C probability C(s,a) is convex decreasing in s [47], and the multiplication of
two nonnegative convex decreasing functions is convex. We now show convexity of the total
waiting cost function in p. C(s,a) is convex increasing in � [42]. Then �C(s,a), a product of
two nonnegative convex increasing functions, is convex increasing in �. To show the convexity of
G(s,�), let �(�)=s�−�, and consider the function:

�(�)=�
∫ ∞

0
D(t)e−�t dt

Borst et al. [24] have shown that �(�) is decreasing and convex in �; hence, �(�) is increasing in �.
Since �(�) is linear in �,�(�(�)) is convex in �. Thus, we have shown that �(�(�)) or, equivalently,
G(s,�) is convex and increasing in �. Consequently, multiplication of �C(s,a) and G(s,�) is
convex increasing in �. Since �(p) is convex in p, by Lemma 4, the expected total waiting cost
per hour, �(p)C(s,a)G(s,�(p)), is convex in p when s is kept fixed. In sum, Proposition 6 also
holds when the objective function is given by (14).

5. NUMERICAL EXAMPLES

In this section we present some numerical examples to illustrate the models developed in earlier
sections. We consider the linear demand function �(p)=100−6p,0<p< 100

6 . The service rate
�=5 per hour and the marginal cost of serving a customer c∈{6,10}. We also assume linear
hourly staffing cost function g(s)=$css,cs ∈{3,10} and linear waiting line maintenance cost
h(m)=$1m per hour. We also consider several different values for bmax and wmax. We remark that
in all numerical examples we have identified the optimal solution by both the sequential search
method and the exhaustive grid search method. The results have turned out to be the same in both
approaches.

We first assume that infinite queue space is available, i.e. the M/M/s system. The results are
given in Table I. For example, given wmax=0.5, cs =10, and c=10, we obtain �∗ =12.62, p∗ =
14.56, and s∗ =3. The optimal expected profit �D(s,�) is $27.58 per hour. Note that the arrival
rate maximizing the partial profit [p(�)−c]� is �p =20, and the corresponding unconstrained
maximum profit (with s=3) is $36.67 per hour. As the results in Table I indicate, the optimal
arrival rate is not smoothly related to the upper limit on the average waiting time. For cs =3 and
c=6, �∗ decreases as wmax increases from 0.25 to 0.3, but �∗ increases when wmax increases from
0.3 to 0.5.

Next, we look into the Erlang loss system for which the results are reported in Table II. When
the maximum loss probability bmax is 0.2, cs =10, and c=10, the optimal solution is �∗ =14.73,
p∗ =14.21, and s∗ =4. The corresponding optimal profit is �L(s,�)=$9.62 per hour. Note that for
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Table I. Optimal solution for the M/M/s model.

wmax cs c �∗ p∗ s∗ �D

0.25 3 6 31.44 11.43 8 146.61
10 17.48 13.75 5 50.60

10 6 26.74 12.21 7 96.05
10 12.96 14.51 4 18.41

0.3 3 6 29.32 11.78 7 148.47
10 19.69 13.38 5 51.65

10 6 24.49 12.59 6 101.26
10 14.95 14.18 4 22.41

0.5 3 6 32.00 11.33 7 149.67
10 17.53 13.75 4 53.65

10 6 27.42 12.10 6 107.17
10 12.62 14.56 3 27.58

0.7 10 6 28.30 11.95 6 108.39
10 13.39 14.44 3 29.39

Table II. Optimal solution for the M/G/s/s model.

bmax cs c �∗ p∗ s∗ �L

0.02 3 6 29.21 11.80 11 132.98
10 18.14 13.64 8 40.77

10 6 25.42 12.43 10 60.18
10 11.38 14.77 6 −6.80

0.1 3 6 29.96 11.67 11 133.09
10 17.24 13.79 6 42.22

10 6 23.33 12.78 7 72.33
10 10.23 14.96 4 5.67

0.2 3 6 29.96 11.67 11 133.09
10 17.24 13.79 6 42.22

10 6 25.03 12.49 7 72.92
10 14.73 14.21 4 9.62

0.3 10 6 25.03 12.49 7 72.92
10 13.17 14.47 3 11.22

bmax=0.02, cs =10, and c=10, the best solution satisfying the constraint on the loss probability
results in a negative expected profit, implying that the optimal decision in this case is to drop the
offering of the service. The effect of bmax on �∗ is not predictable since the loss probability B(s,a)

also depends on the number of servers. For cs =10 and c=6, �∗ decreases when bmax changes
from 0.02 to 0.1, but �∗ is higher when bmax=0.2 than when bmax=0.1.

The results for the finite queue problem are shown in Table III. For bmax=0.2, cs =10, and c=10,
we obtain �∗ =14.28, p∗ =14.29, s∗ =3, and m∗ =5. The optimal expected profit is �FQ(s,�,m)=
$19.72 per hour. The probability of blocking B(s,a,m)=0.106<0.2, indicating that the constraint
is not binding at the optimal solution. Moving from an M/G/s/s to an M/M/s/K system, �∗
may increase or decrease. The optimal number of servers s∗ appears to decrease when waiting is
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Table III. Optimal solution for the M/M/s/K model.

bmax cs c �∗ p∗ s∗ m∗ �FQ

0.02 3 6 29.45 11.76 8 5 137.19
10 17.51 13.75 5 5 44.32

10 6 25.42 12.43 6 10 90.18
10 12.11 14.65 3 9 16.15

0.1 3 6 29.58 11.74 8 5 137.20
10 17.75 13.71 5 3 44.83

10 6 26.58 12.24 6 8 91.12
10 14.06 14.32 3 5 19.70

0.2 3 6 29.58 11.74 8 5 137.20
10 17.75 13.71 5 3 44.83

10 6 26.58 12.24 6 8 91.12
10 14.28 14.29 3 5 19.72

Table IV. Optimal solution for the M/M/s model with waiting cost.

wmax cs c �∗ p∗ s∗ �D2

0.25 3 6 28.49 11.92 8 125.36
10 16.32 13.95 5 37.89

10 6 22.07 12.99 6 77.69
10 12.96 14.51 4 8.69

0.3 3 6 28.49 11.92 8 125.36
10 16.32 13.95 5 37.89

10 6 23.97 12.67 6 79.39
10 10.29 14.95 3 11.68

0.5 10 6 23.97 12.67 6 79.39
10 11.02 14.83 3 12.09

allowed. As expected, under similar conditions, the optimal profit in the M/M/s/K system is not
lower than that in the M/G/s/s system.

Finally, we consider the M/M/s model with linear customer waiting cost. Assuming cw =$3
per customer per hour, wmax=0.5h, cs =10, and c=10, after solving (P4) we find �∗ =11.02,
p∗ =14.83, and s∗ =3. The average number of customers in the system L is 3.71 at this optimal
point. The maximum expected profit �D2(s,�(p))=$12.09 per hour. The constraint on the average
waiting time is nonbinding since the resulting w is 0.34 h. Other computational results for this
model are listed in Table IV.

In Tables I–IV we observe some similar patterns. Analogously to our earlier analytical results,
as the cost of service per customer c increases from 6 to 10, the optimal price p∗ is observed
to increase. The optimal number of servers s∗ is nonincreasing with respect to the server cost
cs . Similarly, s∗ does not increase when wmax or bmax increases; we observe no change in s∗ as
bmax changes in the numerical examples for the M/M/s/K finite queue. As expected, the optimal
expected profit is always nondecreasing in wmax and bmax.
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6. CONCLUSION

In this paper, we have explored the pricing and capacity decisions in a service organization
using an analytical framework built upon standard queueing models in the literature. On the basis
of the steady-state performance measures, we have developed practical optimization models for
coordinating the staffing and pricing decisions. It can be expected that rather than selecting the
price and staffing level independently of each other, simultaneous consideration of these decisions
will improve the profitability of a business organization.

We have considered service systems ranging from those with no waiting space to those with
infinite waiting space. Constraints on the average waiting time and the blocking probability have
been included to limit the level of customer dissatisfaction caused by excessive delays or busy
servers. Under certain conditions of the parameters, we have shown the concavity of the objective
function and convexity of the feasible region for each model in the single-variable optimization case
and subsequently proposed solution procedures. We have also investigated structural properties of
the optimal solution. When the number of servers is fixed and the elasticity of arrivals is increasing
in price, the price maximizing the revenues is a lower bound on the optimal price. In our numerical
study, using a linear demand curve and a linear staffing cost function, we have observed that the
optimal price is nondecreasing in the service cost per customer, and the optimal number of servers
is nonincreasing in the maximum allowable average waiting time and the maximum allowable
blocking probability.

Future research may study the impact of different forms of demand and staffing cost functions.
Another possibility is to extend the current single-class setting to the case where multiple customer
classes with different service time requirements exist.
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