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Abstract—Compressive Sensing theory details how a sparsely
represented signal in a known basis can be reconstructed with
an underdetermined linear measurement model. However, in re-
ality there is a mismatch between the assumed and the actual
bases due to factors such as discretization of the parameter
space defining basis components, sampling jitter in A/D con-
version, and model errors. Due to this mismatch, a signal may
not be sparse in the assumed basis, which causes significant per-
formance degradation in sparse reconstruction algorithms. To
eliminate the mismatch problem, this paper presents a novel
perturbed orthogonal matching pursuit (POMP) algorithm that
performs controlled perturbation of selected support vectors to
decrease the orthogonal residual at each iteration. Based on de-
tailed mathematical analysis, conditions for successful reconstruc-
tion are derived. Simulations show that robust results with much
smaller reconstruction errors in the case of perturbed bases can
be obtained as compared to standard sparse reconstruction tech-
niques.

Index Terms—Compressive sensing, basis perturbation, basis
mismatch, perturbed OMP.

I. INTRODUCTION

S PARSE signal representations and the compressive sensing
(CS) theory [1], [2] has received considerable attention in

recent years in many research communities. In particular, CS
changed the way data is acquired by significantly reducing the
data acquisition number or cost, which has been applied to a
wide range of important applications, such as computational
photography [3], medical imaging [4], radar [5], [6] and sensor
networks [7].
Compressive sensing states that a sparse signal in some

known basis can be efficiently acquired using a small set of
nonadaptive and linear measurements. Suppose dimensional
signal has a -sparse representation in a transform domain
, as and . Given linear measurements in

the form , by using compressive sensing techniques,
the sparse signal , hence , can be recovered exactly with very
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high probability from measurements by solving a
convex optimization problem of the following form:

(1)

which can be solved efficiently using linear programming.
Stable reconstruction methods for noisy measurements or
compressible signals based on minimization have been de-
veloped [8]–[10] for the known basis case. Suboptimal greedy
algorithms have also been used in many applications. Matching
pursuit (MP) [11], orthogonal matching pursuit (OMP) [12],
compressive sampling matching pursuit (CoSaMP) [13], iter-
ative hard/soft thresholding (IHT) [14] are among the most
commonly used greedy algorithms. Apart from greedy algo-
rithms, approximate message passing (AMP) uses the idea of
belief propagation to achieve high reconstruction performance
with low complexity [15]. If the sparse signal has a structure,
such as a wavelet tree, techniques proposed in [16] can exploit
those models for better reconstruction. The study in [17] as-
sumes a Markov-tree structure in the sparse coefficients and
adapts the AMP algorithm in a Bayesian framework.
Commonly used sparse reconstruction techniques assume

that the basis is exactly known and the signal is sparse in
that basis. However, in some applications there is a mismatch
between the assumed basis and the actual but unknown one.
For example in applications like target localization [18], radar
[19], [20], time delay and doppler estimation, beamforming
[21], [22] or shape detection [23], the sparsity of the signal is
in a continuous parameter space and the sparsity basis is
constructed through discritization or gridding of these param-
eter spaces. In general, a signal will not be sparse in such a
dictionary created through discritization, since no matter how
fine the grid dimensions are, the signal parameters may not,
and generally do not, lie in the center of the grid cells. As
a simple example; consider a general signal which is sparse
in the continuous frequency domain. This signal may not be
sparse in the DFT basis defined by the frequency grid. A
continuous frequency parameter lying between two successive
DFT grid cells will affect not the only the closest two cells,
but the whole grid with amplitude decaying with , where
T is the sampling time interval. This off-grid phenomena
violates the sparsity assumption, resulting in a decrease in
reconstruction performance. In addition to these structured
perturbations, random time jitter in A/D conversion, modeling
errors in construction of the dictionary create perturbations
on the dictionary columns. Hence, in general, the signal will
be sparse in an unknown basis where is the
adopted basis and is the unknown perturbation matrix.
In the literature, the effect of this basis mismatch has been

observed and analyzed in some applications such as radar [19],
[24] and beamforming [25]. In problems due to parameter space
discritization, a simplistic approach is to usemulti-resolution re-
finement and decrease the grid size. Decreasing the grid size is
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not a direct solution to the basis mismatch problem, because it
increases the coherence between dictionary columns, violating
the restricted isometry property (RIP) [26] and increasing the
computational complexity of the reconstruction. In [27]–[29]
the effect of the basis mismatch problem on the reconstruction
performance of CS has been analyzed and the resultant perfor-
mance degradation levels and analytical norm error bounds
due to the basis mismatch have been investigated. However,
these works do not offer a systematic approach for sparse recon-
struction under random perturbation models. In [30], the dictio-
nary is extended to several dictionaries and solution is pursued
not in a single orthogonal basis, but in a set of bases using a tree
structure, assuming that the given signal is sparse in at least one
of the basis. However, this strategy does not provide solutions if
the signal is not-sparse in the extended dictionary. In the Con-
tinuous Basis Pursuit approach [31], perturbations are assumed
to be continuously shifted features of the functions on which
the sparse solution is searched for, and based minimization
is proposed. Also in this method, perturbations are assumed to
have structure, and are modeled with a first order Taylor approx-
imation or polar interpolators. In [32], minimization based
algorithms are proposed for linear structured perturbations on
the sensing matrix. In [33] a total least square (TLS) solution
is proposed for the problem, in which an optimization over all
signals , perturbation matrix and error vector spaces should
be solved. To reduce complexity, suboptimal optimization tech-
niques have been pursued in [33].
In this paper, a novel perturbed orthogonal matching pursuit

(POMP) algorithm is presented. In the standard OMP algorithm
[12] the column vector that has the largest correlation with the
current residual is selected and the new residual is calculated
by projecting the measurements onto the subspace defined by
the span of all selected columns. This procedure is repeated
until the termination criteria is met. In the proposed POMP al-
gorithm, controlled perturbation mechanism is applied on the
selected columns. The selected column vectors are perturbed in
directions that decrease the orthogonal residual at each itera-
tion. Proven limits on perturbations are obtained. The proposed
method is fast, simple to implement and successful in recovering
sparse signals under random basis perturbations. A preliminary
form of this approach has been presented in [34].
The organization of the paper is as follows. Section II out-

lines the formulation of the problem and details the development
of the proposed POMP algorithm with a pseudo code and sup-
porting theorems. Results covering performance comparisons of
the proposed method and applications on a set of examples are
given in Section III. In Section IV, concluding remarks are pre-
sented and detailed proof of a theorem is given in the Appendix.

II. PERTURBED ORTHOGONAL MATCHING PURSUIT

In compressive sensing, a sparse signal is reconstructed
from its given underdetermined linear measurements:

(2)

where with and is addi-
tive noise, typically assumed to be independent and identically
distributed (i.i.d.) Gaussian noise with known variance . The

matrix may be known, as in the case of row decimated ver-
sions of Fourier or wavelet transformation matrices, or it might
be a randomly selected one. The ideal reconstruction problem
can be formulated as an minimization problem,

(3)

where is the cardinality of , and the fit error constraint
has a bound that is related to the measurement noise statistics.
However, solution of the minimization problem requires
a combinatorial search, thus it is not feasible for practical
applications.
Another challenge is reconstruction in the presence of errors

in . When is not known precisely, may not be sparse in
the assumed . However, sparsity of the signal can be revealed
under a certain perturbation, , on the given . In this case,
the problem can be recast as,

(4)

where is some bounded perturbation space. This problem can
be viewed as a generalized version of the problem given in [31],
in which is considered as a Taylor series or polar approxi-
mation of and is the sufficient limits, also relaxing with
. The solution to this general problem is also combinatoric

in nature, and infeasible in practice.
To reduce the complexity of the problem of (4), sub-op-

timal greedy techniques can be developed as well. In these
greedy approaches, the support set of the reconstruction is iter-
atively increased until the constraints are satisfied. Assuming
that at iteration , the support set contains columns of ,
which we will call as for simplicity. At
the th iteration, new vector is obtained from the
solution of the following optimization problem:

(5)

where matrix is the projection operator to the column space
of perturbed and is the set of all
basis vectors that are not contained in . For each , this
perturbation problem can be solved by using the technique given
in [35]. However, due to its associated gradient descent based
iterations, the complexity of solution is still a practical limitation
for large . In this work, we propose a simpler non-iterative
perturbation for each , to maximize the projection under
bounded perturbations. At any iteration , the measurement
can be decomposed as:

(6)

where is the projection of onto the span of vectors in
and is the orthogonal residual. Since vectors in are lin-
early independent, this projection can be uniquely expressed as:

(7)

where is the weight of the corresponding th column vector.
In the proposed approach, as shown in Fig. 1, the ’s will be
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Fig. 1. One dimensional example for perturbed and unperturbed column vec-
tors. As the basis vector rotates, residual decreases.

perturbed by rotating them towards to by an angle , where
is the normalized residual:

(8)

Since both and have unit norms and they are orthog-
onal to each other, , which is the perturbed version of , has
also unit norm. If the angle of rotation, or equivalently, the al-
lowed amount of perturbation on is large enough, then
can be aligned with and there will be no residual left in the
perturbed basis. If the ’s are rotated more than adequate, ’s
can overlap with each other. When more than one vector span
the overlapping region, uniqueness of the projection is lost. In
order to avoid such overlaps, rotation of should be limited
to the half of the minimum angle between and other for

. More precisely, the maximum perturbation angle, ,
for a vector should satisfy:

(9)

where is the mutual coherence of and
. This case is illustrated in Fig. 2, where the

maximum allowed perturbation of a vector is such that the
cones around the columns of do not overlap with each other.
Perturbations beyond this limit generate switch-over between
the chosen set of vectors and cause non-unique projection.
Therefore, at each step of the proposed approach, only pertur-
bations satisfying this limit will be considered.
The approach of perturbations embedded in the iterations of

Orthogonal Matching Pursuit(OMP) provides a practical tech-
nique for sparse reconstruction when basis mismatch is present.
In the following discussion, we will provide a detailed theoret-
ical investigation of this approach that will be referred to as Per-
turbed-OMP, or POMP in short.
Theorem 1: For the largest perturbation angle satisfying

and , the perturbed sup-

port vectors defined in (8), has an orthogonal residual
whose norm is upper bounded as:

Proof: From (8), can be written as:

(10)

Fig. 2. Each unit column of has a maximum perturbation angle so that the
perturbed vectors do not overlap with each other.

Replacing this decomposition of in terms of and in
(7), measurements can be written as:

(11)

which can be regrouped to obtain:

(12)

In this decomposition of , the second term is in the span of
the perturbed vectors . Therefore, the orthogonal decompo-
sition of in the perturbed basis is:

(13)

where is the projection of onto the span of the perturbed
basis vectors, and is the corresponding residual. Thus,

(14)

Since, the norm of the projection operation is less than one,
we have:

(15)
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From the hypothesis, , thus we obtain

the desired upper bound:

(16)

The proof of Theorem 1 also reveals the following fact:
Corollary 1: The upper bound derived in Theorem 1 is mono-

tonically decreasing as a function of as long as the condition

is satisfied.

Proof: In Theorem 1, it is shown that:

As long as , the right hand side is a

valid non-negative upper bound for , and is a continuous
function of all , with partial derivatives:

(17)

which are all strictly negative for . Thus, the upper
bound decreases monotonically as a function of ,
q.e.d.
The first implication of Corollary 1 is that once a candidate

support set is available and , rather

than searching for a perturbation that minimizes , one
can minimize its upper bound simply by perturbing each vector
in the support up to its allowed limit.
The second implication of Corollary 1 is that if the perturba-

tion angles are increased, i.e., more freedom for the adjustment
of the basis exists, the derived upper bound decreases. There-
fore, for a certain amount of perturbation, this raises the possi-
bility of driving the upper bound to zero.
Corollary 2: Let . Then if

, perturbation of the support vectors up to ,

results in , yielding a -sparse reconstruction with
no residual error.

Proof: Simply replace

in the upper bound given in the (16) to get:

(18)

It is important to note that Theorem 1 and Corollaries 1 and 2
are valid for any set of linearly independent vectors from the
columns of . Even though chosen subset does not include
any component from the correct support, this theorem guaran-
tees that by using perturbation, the residual can be decreased. If
is the correct support, or some subset of the correct support,

then becomes a good approximation of . In this
case, becomes smaller and hence , the angle of per-
turbation at which the upper bound becomes zero, is a smaller
angle.
Proposition 1: A perturbed set of support vectors

will have if and only
if the upper bound in (16) is zero.

Proof: Using perturbations up to , the residual will be
zero; hence we can expand as:

(19)

Assume there is another angle resulting also a zero
residual. Hence, we can expand as:

(20)

If we subtract (19) from (20) term by term, we get the fol-
lowing:

(21)

Since and are orthogonal to each other,
and . If we divide both equa-

tions term by term, we get . Since we only
consider acute angles, , which contradicts the assump-
tion. Hence, the perturbation angle which results upper bound
in (16) to be zero is unique, q.e.d.
Although in the proposed perturbation approach norm of the

residual can be made zero for large enough perturbation angles,
a relaxed constrained optimization problem, where
, is more appropriate when there is noise in . Under this re-
laxation, more sparse reconstructions can also be obtained. In
Fig. 3 as an illustrative case, the error residual is shown as a
function of perturbation angle. It is seen that the constraint line

intersects with the error norm curve at , which is
the first intersecting angle smaller than . The following the-
orem provides an estimate for by using the intersection of

with the upper bound in (16).
Theorem 2: If the perturbation angles of support vectors in

are all chosen as , where

, then .
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Fig. 3. Upper bound and as a function of .

Proof: If in (16) is replaced with , then the upper
bound becomes:

(22)

Note that for small enough , the residual error of projec-
tion onto the perturbed support vectors, i.e., , the above
bound will also be tight and will be close to . Therefore,
for the th iteration of the proposed POMP approach, there are
three limits on the perturbation angles: first, , which is the
limit predefined by the coherence of as defined in (9); second
, beyond which the residual error norm is lower than ; and

third , the user-defined limit. A user may want a solution with
larger or smaller perturbations and, therefore maywant .
Hence, the allowable perturbation angle for the th support
vector should be

(23)

In general, is a larger angle compared to other two. In
the early phases of POMP, where the number of chosen support
vectors are lower than actual sparsity level, is expected to be
larger than the allowed perturbation, . Therefore, in the early
phases of the iterations, the residual error norm of the perturbed
support vectors is typically larger than the termination criterion
. Yet, it is expected that as new columns are added to the cur-
rent support during the iterations, will decrease and will be
less than eventually. Once ,
iterations will stop, since after the perturbation the residual will
have a norm less than . The following theorem, whose proof is
provided in the Appendix, states this expectation formally.
Theorem 3: Let be the support estimation in the th it-

eration and be the required perturbation angle as derived
in Corollary 2 and let be the basis vector chosen in the

TABLE I
PERTURBED-OMP (POMP) ALGORITHM

th iteration. If , then, ,
where .
Since is full rank, iterations stop when reaches
without any perturbation in the worst case. Therefore,

is zero. According to Theorem 3, when the required condition
is satisfied, produces a monotonically decreasing sequence
throughout the iterations. Since we know that , there
exists a such that due to monotonicity of the
angles. Therefore, Theorem 3 indirectly guarantees the termi-
nation of iterations.
It is important to note that Tropp’s Exact Recovery Condi-

tion for OMP [36], which simply states that if for
all un-selected basis vectors, OMP will select one of the cor-
rect support vectors in the next iteration, is a stricter version
of Theorem 3. Hence, we can safely guarantee that maximum
required angle, , will always decrease throughout the itera-
tions as long as OMP is guaranteed to provide exact reconstruc-
tion. This point will be revisited with numerical simulations in
Section III.
The steps of the proposed Perturbed Orthogonal Matching

Pursuit (POMP) algorithm is detailed in Table I. Starting with
a set of unit norm vectors, in the th iteration, POMP searches
over the dictionary to find the vector providing the largest ab-
solute inner product with the residual. After the selection of the
new vector, POMP computes the projection of themeasurement,
, onto the new larger support and finds the residual. OMP con-
tinues with the next iteration here. However, POMP proceeds
with the perturbation. Given and is computed according
to (23). It is assumed that user provides an angle, , less than
the mutual coherence of the basis, , oth-
erwise perturbations are limited by the basis itself. After that
POMP starts to perturb each vector in the current support as
given in (8). Then, the measurement vector, , is projected onto
the perturbed support and the new residual is found. If the norm
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of the residual is less than , iterations are terminated, otherwise
POMP continues with the next iteration.
One important characteristic of POMP is the promise of the

sparser solutions. This property can be revealed as follows. As-
sume that POMP has produced a -sparse solution. Iterations
can be terminated due to two reasons. If the observation is al-
ready sparse in , then at the th iteration we get .
Since OMP and POMP have the same selection criteria, OMP
also chooses the very same and obtains the same sparse
solution. However, if is not sparse in , POMP obtains the
sparse solution using the perturbation. Since

but , OMP iterates at least one more time resulting
a denser solution. Therefore, for any observation , OMP pro-
duces denser, or equally sparse at best, solutions than POMP.
OMP is preferred in many applications due to its computa-

tional efficiency. In the perturbation stage of the proposed algo-
rithm, the inverse tangent operation can be well approximated
by using tables and low order power series expansion, therefore
the computational order is determined by the least-squares solu-
tion on the perturbed basis, which has a complexity of
in the th iteration, which is the same as the standard OMP algo-
rithm. If the algorithm terminates in the th iteration, overall
complexity becomes for both POMP and OMP. In
the worst case, algorithm will terminate eventually in the th
iteration, which results in complexity of .

III. SIMULATION RESULTS

In this section, performance of POMP algorithm will be
investigated and compared with alternative techniques under
random basis mismatch. For this purpose, sparse reconstruction
of sinusoids from their time samples will be considered. In this
example, following dictionary vectors are used:

(24)

where is the frequency of the th dictionary vector and is the
vector of time samples at which the signal is sampled. However,
in practice, due to time jitter in the sampling, the observed signal
is not sampled at the nominal sampling times, resulting in a
dictionary mismatch:

(25)

where can be modeled as a vector of independent and
uniformly distributed random variables in the range of

where represents the level of jitter. The
overall effect of time-jitter can be considered as a random
perturbation on the dictionary . In this more
realistic scenario, is typically non-sparse in the assumed
dictionary .
In the first simulation, the dictionary is constructed by using

frequencies Hz for and frequency
separation of Hz. The sampling time vector is created
over the second interval with randomly chosen
time samples. A 25-sparse signal is randomly generated with
non-zero coefficients selected uniformly random from the range

. Observations, , are generated with time
jitter of sec. The same termination criteria of

is used for all compared techniques.

To select a proper maximum perturbation angle for POMP,
the expected value of the perturbation angles are calculated.
Based on the following, the normalized inner products of
and :

Since the sampling jitter is modeled as an i.i.d. se-

quence, and

for large . Therefore, the
expected value of the cosine of the perturbation angles can be
approximated as:

(26)

Using the small angle approximation of cosines, (26) can be
further simplified as:

where is the jitter variance. Since jitter is assumed to be
uniform in the interval . Finally,
using a small angle approximation for , we obtain,

(27)

Therefore, in the implementation of POMP, the allowed pertur-
bation angles are selected according to (27) for each column,
respectively. For the th column of that corresponds to

Hz, the maximum perturbation angle is
.

Fig. 4 shows actual and reconstructed signal coefficients for
OMP and POMP techniques for a random realization of jitter. In
this specific case, while POMP correctly reconstructs the sparse
signal coefficients, OMP generates a highly non-sparse signal.
For this realization, Fig. 5 shows , the Tropp’s Exact
Recovery Condition (ERC) [36] and the proposed bound of The-
orem 3. Even though ERC is not satisfied for , the pro-
posed conditions of Theorem 3 are satisfied for this case. There-
fore, this example shows that, the guarantees given by Theorem
3 provide a larger regime in which POMP is successful.
In this section of the simulations, we will investigate perfor-

mance of POMPwhen the condition of the Theorem 3 is not sat-
isfied. For this purpose, we conduct a large set of Monte-Carlo
simulations in excess of trials in which the sparsity level
and number of measurement are swept from 2 to 85 and
to 200, respectively. For each pair, 100 cases are

simulated. In each of these simulations, cases where the pertur-
bation angle decrease, i.e., , are identified as event
, and the sufficiency condition of Theorem 3 is satisfied, i.e.,

, are identified as . Out of all the runs
at each sparsity level, the cases where only is valid and both
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Fig. 4. A realization of the reconstruction problem under time-jitter where
OMP drastically fails and produces 167-sparse solution.

Fig. 5. and its bound as a function of iterations. Even
though ERC is not satisfied for , condition in Theorem 3 is satisfied
due to large value of , ensuring the decrease of maximum perturbation angle
during the iterations.

and are valid are counted separately. In Fig. 6, the statis-
tics of the cases are shown for all the experiments conducted.
It can be observed that for , the case is satisfied

with empirical probability of 1, and as sparsity level increases,
the probability of the case being satisfied decreases. Themax-
imum perturbation angle decreases consistently when the case
is satisfied. Note that, Theorem 3 is only a sufficiency condi-

tion and in the simulated scenario for its requirements
are not guaranteed to met. Nevertheless, in all the simulations
conducted, it is observed that the perturbation angle decreases.
To compare the overall performance in the above described

set of simulations, the following metrics are used: the nor-
malized signal reconstruction error, ; the
level of sparsity, ; the distance between signal sup-

ports, ; and the normalized residual norm,

, where is the correct signal and its
support, and is the obtained solution and its corre-
sponding support [37].

Fig. 6. Empirical probabilities of is valid and is jointly valid.

In Figs. 7 and 8, the average performance results obtained for
OMP and POMP are shown. Fig. 7 shows the normalized re-
construction error for both OMP and POMP in dB, while the
corresponding support distances can be seen in Fig. 8. For the
same number of measurements and range of sparsity levels, it
can be observed from Fig. 7 that both OMP and POMP have
similar phase transition curves; however POMP produces sig-
nificantly lower reconstruction errors. In Fig. 8, it can be seen
that POMP provides more reliable supports as well.
Instead of using perturbation procedure, one can try to use

OMP in a finely discretized frequency domain. This way, the
required perturbations on the dictionary vectors can be reduced.
However, increasing the density of the basis also increases
the coherence of the dictionary which adversely affects per-
formance of the CS techniques. In the simulated scenario, the
effect of increasing frequency density in the dictionary is shown
in Fig. 9. In this case number of measurements is kept constant
at , however the size of the dictionary is increased
as . The frequency range of Hz
is considered in the simulations. Random time samples are
chosen in time interval with a jitter of sec
time jitter. Compared to , when is
used, this corresponds to approximately 1000 times denser
sampled frequency dictionary with . Sparsity of
the signal is kept constant at , and the SNR of the
observed signal is kept at 60 dB to better observe the effect of
using a denser dictionary in the reconstructions. As seen in the
Fig. 9(a), using a denser basis can decrease the reconstruction
error up to approximately dB for OMP. However, beyond
this point, OMP reaches an error floor. Also, as seen from
Fig. 9(b), obtained sparsity is reduced significantly. On the
other hand, reconstruction performance of POMP is almost
independent from the density of the dictionary. For all tested
cases of , POMP has a reconstruction error below dB
and yields a 10 sparse solution, that matches the actual sparsity.
Note that using a denser basis significantly increases the mutual
correlation of the dictionary vectors as well as the required
number of inner-products. Therefore, rather than using OMP
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Fig. 7. Sparse signal reconstruction average error is in dB,

as a function of measurement number and
sparsity. (a) POMP. (b) OMP.

over a larger and denser dictionary, it is advisable to use POMP
over a moderate size dictionary. Note that if the frequencies of
the signal components were known precisely, the linearization
based techniques proposed in [32], [33], [38] could have been
used for the estimation of the jitter in the sampling times.
In this part of the simulations, we compare POMP with OMP,

CoSaMP, Basis Pursuit, and Sparse Total Least Squares (S-TLS)
[33] algorithms. Since POMP is based on OMP iterations, they
have similar phase transition characteristics as given in Fig. 7.
Hence, in the following simulations, we will stay in the
regime in which OMP works successfully.
Unlike OMP and POMP, CoSaMP requires the correct spar-

sity level of the signal. Since, such information is not avail-
able in general, CoSaMP reconstructions obtained at all sparsity
levels starting from until the residual error is below the
specified level.
Basis Pursuit (BP) which is also known as reconstruction

is implemented using the convex optimization toolbox CVX. To

Fig. 8. Average distances between actual and obtained supports,

as a function of measurement number and sparsity. (a)

POMP. (b) OMP.

induce sparsity, hard thresholding is applied to BP reconstruc-
tion results. Let be the BP reconstruction sorted
in the absolute sense and be the vector containing largest
coefficients. Then, in the reported results here, the threshold, ,
is selected as such that .
In [33], two algorithms have been proposed for S-TLS; one

finds the global optimum with highly demanding computational
cost, and the other one is computationally more efficient but
only guaranteed to converge to a local minima. Here, this more
efficient technique which is called as coordinate descend (CD)
based S-TLS is used for comparison. Since S-TLS has an it-
erative structure, the stopping criteria is important. To obtain a
consistent comparison of algorithms, S-TLS is terminated when
the residual error is below the specified at the end of an iter-
ation. Rather than an all-zero vector, iterations are started with
the solution of the obtained BP reconstruction to achieve faster
convergence for S-TLS. In the following results, STLS-1 cor-
responds to and STLS-2 corresponds to ,
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Fig. 9. Reconstruction performance with respect to density of the complex ex-
ponentials. (a) Sparse signal reconstruction error in dB, (b) Obtained sparsity
level for POMP and OMP algorithms.

where is the sparsity-tuning parameter of the CD based S-TLS
algorithm.
For all the techniques compared, Figs. 10 and 11 shows the

obtained sparsity levels and support distances as a function of
sparsity, respectively. POMP and S-TLS, being perturbation
based techniques, can achieve the correct sparsity level for
smaller . As the actual sparsity increases, S-TLS fails to ob-
tain the correct sparsity, whereas POMP successfully finds the
support up to . Techniques that do not employ dictio-
nary perturbation provided results that are significantly inferior
than POMP and S-TLS at all sparsity levels. The performance
of these techniques saturates and produce solutions at about the
same sparsity, irrespective of the actual sparsity level. Since the
observed signal is not sparse in the assumed dictionary with

, OMP goes up to two-third of the rank
whereas CoSaMP uses approximately 90% of the rank. On the
other hand, POMP obtains the correct sparsity level and the
support as shown in Fig. 11. S-TLS gradually produces higher
support distances due to denser solutions obtained in less sparse

Fig. 10. Obtained sparsity of the reconstructed signal as a function of actual
sparsity.

Fig. 11. Distances between actual and obtained supports as a function of actual
sparsity.

signals. Since techniques that do not employ perturbation has
a saturated sparsity estimate, , and

increases gradually as increases. Therefore, their
distance metric produces smaller values. However, this situa-
tion should not be considered as performance improvement for
less sparse signals. It is because they simply fail to recover the
correct support at all tested sparsity levels.
Fig. 12 shows the average normalized reconstruction error in

dB as a function of true sparsity for each of the compared re-
construction techniques. As expected, BP performs better than
OMP. However, even though S-TLS employs perturbation, it
has very similar performance to BP. POMP, on the other hand,
has a significantly lower, dB, signal reconstruction error
as compared to S-TLS and BP. CoSaMP has the worst perfor-
mance among all the compared techniques with significantly
higher reconstruction errors.
In the above simulations, termination criteria of all algorithms

are determined by the residual norm level . We assume that
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Fig. 12. Signal reconstruction error in dB as a function of actual sparsity.

observation has the form of . If we write
the residual as,

(28)

hence if noise variance is small.
Therefore, can be chosen. More specifically, if the
noise has a variance , then . Since the sig-
nals are error free in previous simulations, is chosen.
However, if the signal comes from a perturbed dictionary, then

, hence,

(29)

where noise and perturbations are assumed to be independent.
It is appropriate to define

(30)

as the Signal-to-Perturbation Ratio (SPR). Therefore according
to (29), . In our frame-
work, , since .
Using simple geometry, the perturbation amount can
be written as . Hence, the
perturbation amount is ,
where . Therefore,

. If
the perturbations are small, it can be approximated as:

(31)

In the following simulations, we aim to analyze the SNR and
SPR regions in which POMP and compared techniques can suc-
cessfully work. For this purpose sparsity is fixed at and
average reconstruction performance is found for varying SNR
and SPR levels.
In Fig. 13, the perturbation level is kept constant at
dB, which corresponds to sec according to (31),

and the SNR is varied from 20 dB to 60 dB. In Fig. 14, we keep
the noise level constant at dB and the is
varied from 30 dB to 70 dB. In both figures, the reconstruction

Fig. 13. Signal reconstruction error in dB for fixed dB and
varying SNR from 20 dB to 60 dB.

Fig. 14. Signal reconstruction error in dB for fixed dB and
varying SPR from 30 dB to 70 dB.

performances are shown as a function of the Noise-to-Perturba-
tion Ratio (NPR) defined as . It
is clear that two distinct performance regions are determined by
the sign of .
As shown in Fig. 13, although POMP has the lowest re-

construction error, all compared techniques have acceptable
performances for positive . In that regime, noise power
dominates the perturbation on the dictionary. Since the perturba-
tions are relatively insignificant, OMP and CoSaMP can achieve
similar results to POMP.However,when is negative, the
perturbation on the dictionary is more dominant than the noise
level.OMP,BP andCoSaMPhave nomechanism to handle these
perturbations, hence they treat the perturbations as additional
noise. However, in this case it is highly improbable to decrease
the residual error to the actual noise level. Thus, they saturate and
produce reconstructions with larger errors. On the other hand,
even if perturbations dominate the noise, POMP can handle
perturbations and produces reconstruction with significantly
lower errors. Fig. 14 displays similar results, where SNR is fixed
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and SPR is varied. For high NPR regime, all algorithms result
in similar errors, whereas for low NPR, only POMP produces
acceptable reconstructions. Higher perturbation causes larger
reconstruction errors in POMP.However, it is muchmore robust
to dictionary mismatch than the compared techniques.

IV. CONCLUSION

Compressive sensing reconstruction techniques suffer from
significant performance degradation when there is a mismatch
between the actual and the chosen signal dictionaries. Such mis-
match generally occurs in practice due to modeling errors, pa-
rameter space discritization or simply by sampling jitter. In gen-
eral, this mismatch problem cannot be solved using denser basis.
Also, density of the basis adversely affects the algorithms due to
high correlation. In this paper, a novel perturbed greedy recon-
struction technique is proposed for the case of signal reconstruc-
tion in the presence of perturbations in the signal dictionary.
The proposed Perturbed OMP (POMP) technique performs con-
trolled perturbations of selected support vectors. Limits on the
required perturbation for exact fit to observation signal at any
sparsity is found. Also, for a given acceptable residual level,
limits on the required perturbation are also provided. A suf-
ficiency condition that assures monotonic decrease on the re-
quired perturbations as a function of sparsity is given. The per-
formance of the proposed algorithm is investigated on a time
jitter example that causes a random dictionary mismatch. As an
extension to SNR, Signal-to-Perturbation (SPR) and Noise-to-
Perturbation (NPR) are used for better characterization of the
performance limits of POMP. Results show that, in comparison
with well known CS reconstruction techniques, POMP provides
efficient reconstructions with significantly lower reconstruction
error in a wide range of sparsity levels.

APPENDIX
PROOF OF THEOREM 3

Let be the matrix whose columns cor-
respond to the current estimate for the support of . Since is
full rank, we can define and .
The following equations provide recursive relations for
and :

(32)

(33)

where and . Since
the norm of a partitioned vector is the sum of the norms of
each partition:

(34)

which can be written as:

(35)

where and .
To have , we need the following inequality to hold

true:

(36)

Using the triangle inequality on (35), the following bound can
be obtained,

(37)

Since , (37) be-
comes:

(38)

By adding to both sides of (38), we obtain:

(39)

The desired condition on angle decrease requires
, which is always achieved if:

(40)

or equivalently:

(41)

Therefore, by using (36), (41) and definition of , the non-
negative constant in the statement of Theorem 3 can be ob-
tained as:

(42)
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