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Estimation of Spurious Radiation from Microstrip 
Etches Using Closed-Form Green’s Functions 
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Abstract-The problem of spurious radiation from electronic 
packages is considered in this paper by investigating the power 
radiated from microstrip etches that are excited by arbitrarily- 
located current sources, and terminated by complex loads at 
both ends. The first step in the procedure is to compute the 
current distribution on the microstrip line by using the method 
of moments (MOM). Two novel contributions of this paper are: 
(i) employing the recently-derived closed-form Green’s func- 
tions in the spatial domain that permit an efficient computation 
of the elements of the MOM matrix; (ii) incorporating complex 
load terminations in a convenient manner with virtually no in- 
crease in the computation time. The computed current distri- 
bution is subsequently used to calculate the spurious radiated 
power and the result is compared with that derived by using an 
approximate, transmission line analysis. 

I. INTRODUCTION 
NE OF THE most commonly-used numerical tech- 0 niques for solving electromagnetic problems is the 

method of moments (MOM), which is based upon the 
transformation of an operator equation into a matrix equa- 
tion [ l ] .  Although the MOM is preferred over differential 
equation methods for the microstrip circuits and radiation 
problems because it is relatively efficient in terms of com- 
putation time, MOM is still quite time-consuming to use 
owing to the oscillatory nature and slow convergence of 
the integrals involved. One approach to alleviating the 
above difficulties is to employ closed-form Green’s func- 
tions in the spatial domain, that can speed up the com- 
putation of the MOM matrix elements for planar micro- 
strip structures by several orders of magnitude as com- 
pared to the Sommerfeld integral or spectral domain 
method. Closed-form Green’s functions in the spatial do- 
main have been derived recently for microstrip geome- 
tries on a thick substrate by Chow et al. [2]-[3], and ex- 
tended to general microstrip geometries with a substrate 
and a superstrate of arbitrary thickness by Aksun and Mit- 
tra [4]. Once the improper and infinite range integrals for 
the Green’s functions have been expressed in closed- 
forms, the remaining integrals need be computed only 
over finite supports associated with the basis and testing 
functions. In this paper, we present the application of the 
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closed-form Green’s functions to the problem of spurious 
radiation calculation from an interconnect that is typically 
modeled as a microstrip line fed by a current source and 
terminated by complex loads at both ends. Our objective 
is to compute the current distribution on the line and the 
level of spurious radiation, as functions of the length of 
the line and the load impedances, under the assumption 
that both the location of the current source and the com- 
plex load impedances terminating the line are arbitrary. 

The current distribution on a microstrip line is calcu- 
lated in Section I1 of this paper by using the Galerkin’s 
method in the spatial domain that incorporates the closed- 
form Green’s functions in the MOM matrix computation. 
We begin by presenting a brief description of the appli- 
cation of the MOM and the derivation of a set of linear 
equations for computing the current distribution on a mi- 
crostrip line fed by a localized current source. Since the 
current density on the line is expanded in terms of basis 
functions in the context of MOM, the choice of these func- 
tions is important from the point of view of the conver- 
gence of the integrals involved [5], and we include a brief 
discussion of this issue in this section. Next, we compute 
the current distributions for various lengths and load 
impedances and compare these results with those calcu- 
lated by using an approximate transmission line (TL) 
model for the problem. 

In Section 111, the level of spurious radiation, which is 
defined as the radiated power crossing the plane parallel 
to the plane of the microstrip line, is calculated by making 
use of the current distribution obtained in the previous 
section. The results for the radiated power for some rep- 
resentative termination impedances are given as functions 
of the line length of the microstrip etch. 

11. CURRENT DISTRIBUTION ON A MICROSTRIP LINE 
TERMINATED BY COMPLEX LOADS 

Fig. 1 shows the geometry of a microstrip line fed by 
an arbitrarily-located current source and terminated by 
complex impedances at both ends. The substrate is as- 
sumed to be infinitely wide in the x- and y-directions with 
a thickness dl and a relative permittivity cr l .  The super- 
strate above is air for this example. 

A .  Formulation of the Problem 
The electric field along the line can be expressed in 

terms of the surface current density J and the vector and 
scalar Green’s functions, Gtx and Gq, respectively, as fol- 
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Fig. 1 .  Geometry of a microstrip line terminated by complex loads 

lows: 
i a  

Ex = - jw G!, * J ,  + - (Gq * v J), (1) 
J w  ax 

where * implies convolution. The derivation of the closed 
form expressions for the Green’s functions have been de- 
scribed in detail in [4] and will be omitted here. In the 
above equation we have assumed that the y-component of 
the current density is negligible, which is justified be- 
cause the width of the microstrip line w is much smaller 
than the wavelength in the dielectric medium. Next, we 
express the x-directed current density in terms of the basis 
functions as 

JAX, Y) = c InJxn(X7 Y) + JdX, Y) (2) 

where I ,  is the unknown coefficient of the basis function 
and J ,  is the basis function associated with the current 
source. The choices of these basis functions will be de- 
tailed in the next section from the convergence point of 
view. Upon substituting (2) into ( l ) ,  and testing the re- 
sulting equations with the basis functions J,,, i.e., fol- 
lowing the Galerkin’s procedure with a suitable definition 
of inner product, we obtain the following algebraic equa- 
tion for coefficients I, for each m: 

( 3 )  

The number of equations, i.e., m,  must be commensurate 
with the number of unknowns n ,  or additional conditions 
must be imposed in order that the resultant matrix is square 
and the solution for the coefficients I,, is unique. 

B. Choices of Basis Functions 
It is well-known that the choice of the basis and testing 

functions plays an important role in determining the rate 
of convergence of the integrals associated with the mo- 
ment method matrix ( 3 ) .  An improper choice can lead to 
non-convergent integrals [5] and, consequently, erro- 
neous results [6 ] .  After a thorough examination of the 
convergence of the integrals involved in the MOM matrix, 
the basis and testing functions must satisfy the following 
criteria [5]: (i) In the direction of the polarization of the 
current, the sum of the order of the differentiability of the 
basis and testing functions must be equal to or greater 
than one; (ii) in the orthogonal direction of the polariza- 
tion of the current, any piecewise continuous function or 
even functions with singularities of the order of less than 
one are admissible. 

In view of the above criteria, the basis functions, apart 
from those that represent the source and load currents, are 
chosen to be rooftops, which are triangular functions in 
the longitudinal direction, uniform in the transverse di- 
rection, and are defined mathematically as 

(m - l)h, 5 x I (m + l)h, 

elsewhere 
Jxm(x, Y) = 

(4) 

where 2h, is the support of the basis functions (see Fig. 

The source and load contributions to the current density 
on the microstrip line are taken into account by employing 
suitable basis functions for them and relating them to the 
other equations. The basis functions for the current dis- 
tribution associated with the source and loads are given 

W)).  

by 

W 
-h, I x I 0, JyI 5 - 2 

0 elsewhere 

L o  elsewhere 
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tions Jxm, as in (4), (3) can be rewritten as 

I -  I 
‘ 2 4  

x=x, x=X, 

I.M-1 ‘Nrcl 

(C) 
Fig. 2 .  Basis functions representing the current density (a) on the line, (b) 

at the source, and (c) at the load terminals. 

and are plotted in Fig. 2(b) and (c), respectively. These 
basis functions have been chosen to be compatible with 
the rooftops (4), which have already been employed to 
represent the current density on the microstrip line. How- 
ever, these functions are piecewise continuous while the 
rooftops are piecewise differentiable. Consequently, the 
integrals corresponding to the basis functions of the source 
and loads in (3) would be divergent unless we impose cer- 
tain constraints that render them convergent. We will ad- 
dress this question next. 

The problem with using piecewise continuous functions 
as basis functions for the current density is that, upon dif- 
ferentiation, they give rise to infinite, nonphysical charge 
density distributions. However the integrals containing 
these basis functions and their derivatives do become con- 
vergent once these singularities are removed. This 
prompts us to examine the question whether or not it is 
legitimate to ignore the impulse functions arising from the 
differentiations of the piecewise-continuous basis func- 
tions. 

For the source basis function (5a), the principle of con- 
servation of charge at the junction x = 0, where the cur- 
rent-carrying probe is connected to the microstrip line, 
implies that the charge density cannot be singular. We can 
similarly argue that the divergence of the current at the 
load terminals must be finite. In view of this, we conclude 
that the singularities in the derivatives of the source and 
load basis functions are non-physical and should therefore 
be ignored wherever they appear as a result of differentia- 
tion of the current. 

If we choose the basis functions given above, and ig- 
nore the singularities generated by taking the divergence 
of the current, we can justify the step of integration by 
parts in (3). Then, by transferring the derivatives in front 
of the convolution integrals in (3) over to the basis func- 

~ 
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m = - N I ,  * * , N ,  (6) 

In the above equation the number of equations ( N ,  + 
N,  + 1) is two less than the number of unknowns (NI + 
N,. + 3). However, we can supplement these missing con- 
ditions by enforcing the necessary boundary conditions at 
the load terminals. The procedure for doing this is de- 
tailed in the next section. 

Each of the inner-product terms in (6) is a four-dimen- 
sional integral, provided that the closed-form Green’s 
functions are used. Since the numerical integration of a 
four-dimensional integral is quite expensive, even though 
this integration is required to be carried out only over a 
finite range, the convolution over the Green’s function and 
the basis function is transferred to the two basis functions 
involved in each term. If the basis functions have been 
chosen such that their convolution can be performed an- 
alytically, which is the case for the choice of the basis 
functions given in (4), (5a), and (5b), the inner products 
in (6) are reduced to double integrals over finite domains. 

C. Supplemental Equations for the Load Basis 
Functions 

In order to relate the coefficients of the load basis func- 
tions to those of the other basis functions, we need to im- 
pose two boundary conditions, each of which is related to 
the complex load impedances at the two ends. Since, at 
the terminations, the load impedance and the terminal 
current are related by the voltage difference between the 
line and the ground plane, these voltages can be expressed 
in terms of the impedances of the loads, the coefficients 
of the load basis functions, and the coefficients of the other 
basis functions used in the representation of the current 
on the microstrip line. 

Here, we will investigate two different approaches to 
deriving the supplementary equations, the first of which 
is based on a rigorous definition of voltage in terms of 
field components, while the second employs a transmis- 
sion line analysis using the current and voltage waves. 

In the rigorous approach, the voltages at the load ter- 
minals is defined by 

dz E,,(x = -xI, y = 0, z )  (7a) 

Eli n 
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where El is the spatial domain representation of the 
z-polarized electric field in the substrate. The z-component 
of the electric field in the spectral domain can be obtained 
in terms of the basis functions on the microstrip line and 
the z-directed current on the probe as 

where - implies Fourier transform and superscript E de- 
notes electric field, i.e., the Green's functions in (8) are 
for the electric fields. It should be noted that the z-directed 
current on the probe is employed in the calculation of the 
z-polarized electric fields, although it has not been used 
for the calculation of the current distribution on the line 
(see (6)). The x-polarized electric field, which is used to 
obtain (6), is the secondary field for the z-directed cur- 
rent. At this point, it becomes obvious that there are two 
major disadvantages of using this rigorous approach to 
obtain the relationship between the load impedances and 
the coefficients of the basis functions. The first of these is 
the need to use the probe current which requires a good 
model for the source connection [7], while the second is 
the necessity to apply the computationally-expensive step 
of inverse Fourier transform of the z-polarized electric 
field (8) for each of the basis functions in order to obtain 
its spatial domain representation. In view of this, we pro- 
pose a simple and computationally efficient approach 
based on the transmission line analysis to relate the load 
impedances to the surface current density on the line. 

In the transmission line analysis, it is well-known that 
the total voltage V(x)  and total current Z(x) on the line are 
related by the following first-order differential equations: 

where Y = j/3/Z, and Z = jPZ, are the series impedance 
and shunt admittance per unit length of the line, respec- 
tively. The characteristic impedance 2, and propagation 
constant /3 of the line are calculated by using empirical 
formulas based on a quasi-static analysis [8]. If the deriv- 
atives in (9a) and (9b) are approximated by finite differ- 
encing and the resulting equations are related to each other 
for the load terminals at x = x1 and x = xrr the following 
equations are obtained (see Fig. 2 ( a )  and 2(c)): 

where V ( - x l ) / Z ( - x l )  = -ZLl and V(x,)/Z(x,)  = ZLr are 
employed. Note that (loa) and (lob) are dependent upon 
the finite-difference approximation; for example, here we 
have used central differencing for (9a) and forward differ- 
encing for (9b) to obtain (loa). 

By using the (loa) and (lob) together with the equa- 
tions given in (6), the current distribution on the micro- 
strip line terminated by the complex load impedances ZLl 
and Z,, is obtained. The current distribution on a trans- 
mission line fed by a unit amplitude current source at x = 
0 is also calculated in closed-form by using the TL ap- 
proach [9], and is given by 

1 
2 1 - r Lr r Ll e -j2k(xi + x d  

1 + e -j2kxr r Lr i -- 
1 -x, 5 x 5 0  

O 5 x s x r  (1 1) 

where F L l  and rLr are the voltage reflection coefficients 
defined on the load terminals x = -xI and x = x r ,  re- 
spectively. The results that are obtained by the MOM and 
the transmission line approach (1 1) are presented and 
compared in the next section. 

D.  Results and Discussions on the Current Distribution 
The following parameters have been chosen for the ex- 

amples given below: the dielectric constant of the medium 
E , ]  = 4.0; the ratio of the width of the microstrip line w 
to the thickness d l  of the substrate = 4.0; the thickness 
of the substrate d l  = 8.0 mils (0.203 mm); and the fre- 
quency of operation = 1.0 GHz. The current source is 
located at 1 cm away from the left edge, and has a mag- 
nitude of 2A. 

The current distribution on a line can often be predicted 
intuitively for standard terminations e.g. a match, open- 
circuit or a short-circuit. This prompts us to use these 
cases as examples of our calculations. As expected, the 
magnitude of the current distribution becomes zero at the 
ends of the line while the phase shows a standing wave 
type of behavior and, as shown in Fig. 3(a) and (b), it 
switches between 0" and 180". Excellent agreement is 
observed between the current distributions calculated by 
the TL approach and the MOM for a microstrip line ter- 
minated at both ends by matched loads, open or short cir- 
cuits, excepting in the vicinity of the resonance for the 
last two cases. This behavior is attributable to the differ- 
ence in the resonant lengths of the line predicted by the 
MOM and the TL approaches. As an example of a com- 
plex termination, we have chosen a resistance of 20 K in 
parallel with a 8 pF capacitance, which represents the typ- 
ical input impedance of a TTL circuit. The current distri- 
butions for this termination have been calculated by using 
both the TL and the MOM approaches, and are exhibited 
in Fig. 4. It is observed that the magnitude of the current 
calculated by the TL approach is slightly different from 
that of the MOM, because, as mentioned above, the length 
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A study of the current distributions for different lengths 
of the line leads us to conclude that, in general, the TL 
approach predicts the current distribution reasonably well, Once the current distribution on the microstrip line has 
provided that the frequency of operation is not too close been derived, whether by using the TL approach or the 
to the resonant frequency of the resonator represented by MOM, the field distribution produced by the line currents 
the truncated line. However, as we will see in the next can be readily calculated, both in the near and far-field 
section, the spurious radiated power is the highest at res- regions, by using the field representations in terms of ap- 
onance. propriate Green's functions. The spurious radiated power 

111. SPURIOUS RADIATION CALCULATION 
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can then be obtained through the integration of the Poyn- 
ting vector over a closed mathematical surface, e .g . ,  a 
rectangular box enclosing the microstrip line. 

A .  Formulation of the Problem 
In this section, we will calculate the spurious radiation 

defined as the total power crossing a plane parallel to the 
plane of the substrate. The total power is expressed as 

P = ; R e  s s  ds . E x H* 
S 

= ; Re 51 dw dy (E,H; - E,H.F) (12) 
S 

Since the calculation of the field components requires the 
evaluation of a convolution integral for each basis func- 
tion that is used to represent the current density on the 
microstrip line, implementing (12) in the spatial domain 
becomes computationally expensive. Therefore, the field 
components used in (12) are transformed into the spectral 
domain and the total power is expressed in terms of the 
transform quantities as 

m 

--OD 

where the electric field in the spectral domain can be ob- 
tained by multiplying the spectral domain Green's func- 
tions by the Fourier transform of the current distribution 
on the microstrip line, which has been obtained in the pre- 
vious section. Thus, the total power radiated can be writ- 
ten as 

P = Re [$ ij dk, dk, [(GfXjr)(GKJr)* 
- m  

where the Green's functions are obtained by the using im- 
mittance approach [lo], and given by 

GE, = 12' cos2 4 + Zh sin' 4le -Jkgz forz  > 0 

(1 5a) 
Gf, = [(Z' - 2") sin 4 cos 4 le -jkg: for z > 0 

I 

-41 

0 10 20 30 40 50 
Length (cm) 

Fig 6 Radiated power as a function of the length of the line for matched 
termination on both ends 

where YTEO, YTM0 and YTEI, YTMl are wave admittances in 
the free space and in the dielectric medium, respectively; 
4 = tan-' (k,/k,);  and, 

-1 2' = 

Z h  = 

YTM0 - jYTMi cot (kzidi) ' 

(16) 
- 1  

YTEO - ~ Y T E I  cot ( k i d , )  

Since the value of z is greater than zero, the Green's func- 
tions (15a)-( 15d) become decaying functions for a bulk 
of the spectral components, and this leads to the rapid 
convergence of the double integral (14). 

B. Results and Discussions 
In this part of the study, the length of the line is con- 

sidered to be the independent variable while the spurious 
radiated power is viewed as the dependent one. The di- 
electric constant of the medium is = 4.0,  the width of 
the line w to the thickness of the substrate dl ratio is 4.0, 
and the thickness of the substrate is d l  = 8.0 mils (.203 
mm). The current source is again located 1 .O cm from the 
left edge of the microstrip line; however, its amplitude is 
normalized to 1 mA for the calculation of spurious ra- 
diated power. 

The spurious power, as defined by Equation (14), is 
calculated for a microstrip line terminated by matched 
loads, open circuits and short circuits at both terminals 
and, a matched load on the left and a complex load of 8 
pF//20 KQ on the right terminal. The results are given in 
Figs. 6 ,  7, 8, and 9, respectively. The radiation from a 
microstrip line terminated by a pair of matched loads is 
very small (see Fig. 6) as compared to those terminated 
by other loads. The highest radiation occurs for the open- 
circuited and the short-circuited transmission lines of res- 
onant lengths. The radiated power has a sharp peak around 
the resonance length of the line, and it becomes essen- 
tially negligible for off-resonance lengths. For the com- 
bination of matched and complex load terminations, Fig. 
9, the total radiated power is slightly larger than that of 
matched load termination case shown in Fig. 6 .  
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Fig. 7 .  Radiated power as a function of the length of the line for open- 
circuit termination at both ends. 
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Fig. 8. Radiated power as a function of the length of the line for short- 
circuit termination at both ends. 
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Fig. 9. Radiated power as a function of the length of the line for a matched 
load and a complex load Z, = (20 K//8 pF) terminations. 

IV. CONCLUSIONS 
The current distribution on a microstrip line, which is 

fed by a current source at an arbitrary location and ter- 
minated by complex loads at both ends, has been com- 
puted by using the closed-form representations of the spa- 
tial domain Green’s functions. 

It has been found that the use of closed-form spatial 
domain Green’s functions in the context of the method of 

moments formulation reduces the computation time sig- 
nificantly as compared to the conventional formulation in 
the spectral domain. For instance, in a numerical experi- 
ment with 40 roof-top basis functions, the computation 
time for the current distribution is on the order of 50-60 
CPU sec on the DECstation 5000/200 system when the 
closed-form Green’s functions in the format given in [41 
are used, whereas it takes on the order of 10 CPU mins. 
on Cray/YMP for the same calculation using the spectral 
domain approach. The method described is quite general 
and is useful for arbitrary geometrical disposition of the 
microstrip etches, e.g., arbitrary bends, and not just 
straight sections. 

The investigation of the radiation leakage from a mi- 
crostrip line terminated by complex loads has shown that 
the highest radiation occurs when the length of the line is 
near resonance, and the terminations are either open or 
short circuits. It is also observed that a matched load ter- 
mination at one of the terminals of the microstrip inter- 
connect reduces the radiation leakage significantly, as 
compared to the radiation levels for other terminations that 
can cause resonances to occur. 
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