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Synthesis and Characterization of Polysulfone/
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Crosslinked polysulfone/polyhedral oligomeric silsesquioxane (POSS) hybrid networks were
synthesized in this work by photoinduced copolymerization of polysulfone dimethacrylate
(PSU-DMA) and multifunctional POSS-methacrylamide (POSS-MAAm) with various feed
ratios. The morphology of the nanocomposites was investigated by transmission electron
microscopy (TEM), which suggests the random dispersion of POSS in the PSU matrix without
macroscopic agglomeration. Thermogravimetric
analysis results confirmed that the thermal
stability and char yield of PSU-DMA/POSS-
MAAm nanocomposites increased with the
increase of POSS loading. Enhanced glass tran-
sition temperatures and storage modulus of the
networks were observed to be higher than its
precursor polymer.
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1. Introduction

Polysulfone (PSU) is an amorphous engineering thermo-

plastic with exceptional thermal, mechanical, and chemical

properties such as thermal stability, mechanical strength,

stiffness, high rigidity, excellent resistance to hydrolysis,

and acids and bases, oxidative resistance, resistance to

creep, and has an extensive operative range of temperature

and pH.[1–3] PSUs are often modified by chemical or

physical means to tailor their properties for use in some

specialized processes. These include: (i) using functional

co-monomers during polycondensation,[4–7] (ii) post-

synthesis modification processes,[8–16] and (iii) synthesis

of PSU-based composites.[17–25] Hybrid inorganic–organic

materials based on incorporation of nano-sized inorganic

particles into polymer matrices have gained considerable

attention due to their markedly superior mechanical and

thermal properties.[26–28] Nanostructured fillers have dimen-

sions typically ranging from 1 to 100 nm. Based on the

nanoscale dimension, they are classified as one-dimensional
elibrary.com DOI: 10.1002/mame.201200351 1117
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(clays and graphites),[29–35] two-dimensional (nanofibers,

nanotubes, or whiskers)[36–38], and three-dimensional

(spherical silica, metal particles, and semiconductor

nanoclusters).[39–46] Polyhedral oligomeric silsesquioxanes

(POSS) are three-dimensional oligomeric, organosilicon

compounds with cage frameworks surrounded by func-

tional groups on the periphery. In addition to their well-

defined nanostructures, high compatibility with polymers,

and the commercial availability of various useful pre-

cursors, POSS derivatives impart excellent thermal and

mechanical properties to polymer nanocomposites.[47–49]

Unlike other nano-sized materials including carbon

nanotubes, clays, and zeolites, a dispersion problem

is not associated with POSS molecules due to their solubility

in common organic solvents.[50–52] POSS has been success-

fully incorporated into various polymers such as poly-

olefins,[53–56] polynorbornenes,[57] polystyrenes,[58–60]

poly(meth)acrylates,[61–67] polysiloxanes,[68–71] epoxies,[72–75]

polyurethanes,[76–80] polyimides[81,82] etc. However, to our

knowledge, there has not been a report of the preparation

of POSS-containing PSU networks in the literature.

In this study, we report the first synthesis of a POSS

macromonomer bearing multi-functional methacryl-

amides by amidation of POSS-amine with methacryloyl

chloride. The subsequent photoinduced crosslinking poly-

merization of this macromonomer with PSU dimethacryl-

tate leads to the one-pot preparation of a series of hybrid

networks. The effects of POSS nanoparticles on the

properties of the hybrid networks, such as thermal and

morphological properties have been systematically inves-

tigated using techniques including transmission electron

microscopy (TEM), differential scanning calorimetry, and

thermogravimetric analysis.
2. Experimental Section

2.1. Materials

Tetrahydrofuran (THF, 99%, Fluka) was dried and distilled over

benzophenone/sodium metal. Bisphenol A and bis(p-chloro-

phenyl) sulfone (Hallochem Pharma Co. Ltd, China), methanol

(Merck), dimethyl acetamide (DMAC, 99%, Merck), and triethyl-

amine (TEA, Aldrich, HPLC grade), dichloromethane (99%, Aldrich),

chloroform (þ99%, Aldrich), methacryloyl chloride (þ97%, Merck),

2,2-dimethoxy-2-phenylacetophenone (DMPA, 99%, Acros) were

used without any additional treatment. PSU dimethacrylate (PSU-

DMA) macromonomer has been synthesized by condensation

polymerization and subsequent esterification processes according

to the published method.[83]
2.2. Synthesis of POSS-Methacrylamide (POSS-MAAm)

Octa (aminophenyl) silsesquioxane was synthesized according to

the literature reported by Ak et al.[84] (1H NMR in DMSO-d6: 7.9–6.1
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(Ar, 4.0H) and 5.5–4.4 (–NH, 2.0H); Fourier transform infrared (FT-IR)

(cm�1): 3368 (nN–H asym.), 3456 (nN–H sym.) and 1304–990 (vSi–

O–Si)). POSS-amine (0.2 g, 0.17 mmol) and triethylamine (0.19 mL,

1.39 mmol) were added in dry THF (20 mL) and cooled to 0 8C.

Excess amount of methacryloyl chloride (0.28 mL, 3.47 mmol)

was added dropwise while stirring. The reaction mixture

was allowed to heat up to room temperature and stirred for

24 h. After removing the solvent by rotary evaporation, POSS-

methacrylamide was extracted by ethyl acetate using a separation

funnel. POSS-MAAm was obtained by rotaevaporation of ethyl

acetate.
2.3. Preparation of the PSU/POSS Nanocomposites

POSS-MAAm (1, 5, and 10% of the monomer by weight) and DMPA

(1% of the oligomer by weight) were mixed with PSU-DMA

oligomer dissolved in dry THF in tubes via a magnetic stirrer at

room temperature for 2 h in a dark place. Then, the mixed solutions

were poured into petri dishes and set apart for the removal of the

solvent at room temperature in a dark place. Then, UV irradiation

was applied for about 4 h for the preparation of the hybrid

networks.
2.4. Characterization

FT-IR spectra were recorded on a Perkin–Elmer FT-IR Spectrum One

B spectrometer. 1H NMR spectra of 5–10% w/w solutions of the

intermediates and final polymers in CDCl3 with Si(CH3)4 as an

internal standard were recorded at room temperature at 250 MHz

on a Bruker DPX 250 spectrometer. Differential scanning calori-

metry (DSC) was performed on a Perkin–Elmer Diamond DSC with a

heating rate of 10 8C min under nitrogen flow. Thermal gravimetric

analysis (TGA) was performed on Perkin–Elmer Diamond TA/TGA

with a heating rate of 10 8C min under nitrogen flow. TEM imaging

of the samples was carried out by FEI Tecnai G2 F30 instrument

operating at an acceleration voltage of 300 kV. About 100 nm

ultrathin TEM specimens were cut by using cryo-ultramicrotome

(EMUC6þ EMFC6, Leica) equipped with a diamond knife. The

ultrathin samples were placed on copper grids for TEM analyses.

Dynamic mechanic analysis (DMA) was performed on a ExStar

6100, SII Nanotechnology operating in the tension mode at an

oscillation frequency of 1 Hz. Data were collected from room

temperature to 300 8C at a scanning rate of 3 8C �min�1. The

sample specimens were cut into rectangular bars, 1 mm� 20 mm�
10 mm.
3. Results and Discussion

The POSS methacrylamide (POSS-MAAm) was prepared by

the amidation reaction of POSS-amine with methacryloyl

chloride. The chemical structure of POSS-MAAm was

confirmed by FT-IR and 1H NMR analysis. FT-IR spectrum

showed new peaks at 1660 and 1620 cm�1 for amide

carbonyl and carbon-carbon double bonds, respectively

(Figure 1). Moreover, disappearance of symmetric and
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Figure 1. FT-IR spectra of neat polysulfone dimethacrylate (PSU-
DMA), POSS-amine and POSS-methacrylamide (POSS-MAAm).
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asymmetric nN–H peaks at 3368 and 3456 cm�1 and

appearance of a new broad peak near the 3265 cm�1

confirmed that a complete transformation of amine to

amide group. Also, a strong absorption band appeared in the

FTIR spectra in the range 990 and 1190 cm�1 assigned to the

asymmetric stretching vibration of nSi–O–Si groups,

indicating the precence of POSS.

Figure 2 shows 1H NMR spectra obtained for POSS amine

and the corresponding POSS-methacrylamide macromono-

mer. The efficient transformation of amine to amide was

evidenced by complete disappearance of amine protons

(a) at 5.0 ppm and appearance of new amide protons (b) and

vinyl protons (c) at 9.8 and 5.9 ppm, respectively. Moreover,

the aromatic peaks of POSS were also shifted at higher

magnetic fields in the range of 6.7–7.5 ppm. These results

confirmed that the successful incorporation of methacry-

lamide into POSS. PSU-DMA macromonomer was synthe-

sized by condensation polymerization between bisphenol A
Figure 2. 1H NMR spectra of POSS-amine and POSS-methacryl-
amide in DMSO-d6.
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and bis(p-chlorophenyl) sulfone, and subsequent esterifi-

cation process and detailed chemical characterization has

given in the literature.[83]

Our concept is based on the incorporation of polymeriz-

able groups on both POSS-MAAm and PSU-DMA which

provides chemical linking of the diverse molecules. For this

purpose, POSS-MAAm, PSU-DMA macromonomer, and 2-2-

dimethoxy-2-phenylacetophenone (DMPA) photoinitiator

were mixed in tetrahydrofuran (Scheme 1). Photochemi-

cally generated radicals were utilized as reactive species for

the formation of chemical crosslinks in an organic–

inorganic–organic hybrid network. The same amount of

photoinitiator was used in all formulations in order to keep

photopolymerization conditions identical.

Thermal stability of the photocured hybrid networks was

investigated by TGA under nitrogen atmosphere and

(Figure 3). According the TGA results, decomposition

temperatures and char yields of PSU-DMA/POSS-MAAm

nanocomposites were higher than that of pristine PSU-

DMA under nitrogen atmosphere. The char yield was

improved considerably from 18.8% for PSU-DMA to 37.6%

for PSU-DMA/POSS-MAAm-10 at 700 8C. A plausible expla-

nation for these results is that the multi-functional POSS

fillers not only increase the cross-linking densities that

hinder the segmental motion of the polymer chains and

retarded diffusion of gaseous fragment product, but also

increase the inorganic content in the nanocomposites.[85]

The effect of POSS content on the glass transtion

temperature of PSU was also investigated by DSC under
Scheme 1. Preparation of PSU/POSS hybrid networks by photo-
initiated cross-linking polymerization.
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Figure 3. TGA thermograms of neat PSU-DMA and resulting
hybrid networks containing 1, 5 and 10% POSS.

Figure 4. DSC traces of neat PSU-DMA and resulting hybrid net-
works containing 1, 5 and 10% POSS-MAAm.
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nitrogen atmosphere (Figure 4). All DSC thermograms

displayed single glass transition temperatures (Tg). Nota-

bly, theTg of precursor PSU oligomer was observed at 136 8C.

With the addition of the POSS to the polymer matrix, Tgs

of the PSU-DMA/POSS-MAAm were 180, 187, and 189 8C,

respectively.[86] From the DSC results it can be seen that the

crosslinking and incorporation of the POSS resulted in an

increase in the Tg relative to virgin PSU-DMA, as summar-

ized in Table 1. Apparently, due to the presence of

polymerizable groups, the PSU-DMA matrix is crosslinked

by itself. However, addition of octa-unsaturated POSS-

MAAm molecules results in co-crosslinking through the

double bonds present in the components. Thus, both

crosslinking and POSS addition contribute to the increase

in the observed Tg. It was previously reported that the

crosslinked PSU exhibits much higher Tg than that of its

precursor polymer.[83] Further increase in the amount of

POSS seemingly results in some but slight increase in Tg.

The morphology of resulting hybrid networks was

further characterized by means of transmission electron

microscopoy (TEM). As represented, the PSU-DMA/POSS-

MAAm-10 nanocomposite was chosen to analyze the

distributions of nanoparticles in the networks. Figure 5

represented the TEM micrographs of PSU-DMA/POSS-

MAAm-10, it could be seen that considerable amounts of
Table 1. Thermal properties of neat PSU-DMA and PSU-DMA/POSS-M

Sample POSS[wt%] Tga) [-C

PSU-DMA – 137

PSU-DMA/POSS-MAAm-1 1 180

PSU-DMA/POSS-MAAm-5 5 187

PSU-DMA/POSS-MAAm-10 10 189

a)Determined by DSC with a heating rate of 10 8C min under nitrog

under nitrogen flow.
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dark spherical particles uniformly dispersed in the net-

works. These dark particles could be attributed to POSS

nanoparticles because of the high electron density of the

POSS nanocages.[87] Moreover, with higher magnification

(Figure 5B), spherical POSS nanoparticles with a diameter

ranging from 1.5 to 3 nm were clearly observed, which was

close to the dimensions of a single POSS molecule. Evidently,

these results demonstrated that POSS cages were homo-

geneously distributed in polymer matrix at the nanometer

scale.

The values of E (Young’s modulus) and tan d from the

dynamic mechanical analysis study of cured PSU-DMA/

POSS-MAAm-10 and PSU-DMA (pure resin) samples are

shown in Figures 6 and 7. The addition of 10 wt% of POSS-

MAAm was found to result in a considerable increase of the

Young’s modulus (Figure 6). In the temperature region from

30 to 80 8C, the Young’s modulus of the sample PSU/POSS-10

was about two times greater than that of PSU-DMA. As

the temperature incresead, the gap between the Young’s

moduli of the samples PSU/POSS-10 and PSU-DMA

decreased. The position of a peak maximum in the tan d

versus temperature curve can be related to the glass

transition temperature. It was seen that the addition of

10 wt% POSS-MAAm shifted Tg of PSU towards a higher

value by about 25 8C (Figure 7). This result suggested that
AAm hybrid networks.

] Weight loss temperatureb) Char

yieldb) [%]
20wt% [-C] 60wt% [-C]

464.8 531.9 18.8

480.6 546.7 23.6

494.8 561.6 28.8

508.5 653.8 37.6

en flow. b)Determined by TGA with a heating rate of 10 8C min
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Figure 5. TEM micrographs of PSU-DMA/POSS-MAAm-10 hybrid
network in low (A, scale bar: 100nm) and high (A, scale bar:
20 nm) magnification.

Figure 6. Storage modulus versus temperature plots of PSU-DMA
and PSU-DMA/POSS-MAAm-10 hybrid network.

Figure 7. Loss factor versus temperature plots of PSU-DMA and
PSU-DMA/POSS-MAAm-10 hybrid network.
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the presence of POSS molecules resulted in a decrease of

molecular mobility in PSU either due to the induced

constrains of the PSU chains, or due to enhanced van der

Waals bonding forces between POSS and the PSU chains.

In other words, the POSS nanostructures exhibited some

physical interactions with the PSU polymer chains. Similar

behavior was also observed in structurally different

POSS/polymer nanocomposites.[88–90]
4. Conclusion

Conclusively, a series of novel inorganic–organic network

hybrids was successfully prepared by photoinduced cross-

linking polymerization of PSU dimethacrylate and multi-

functional POSS-methacrylamide. The good compability of

methacrylate and methacrylamide groups provided homo-

genous crosslinking reaction to form hybrid network.

Thermal analysis showed improved thermal stability with

higher glass transition and degradation temperatures and

char yields, demonstrating that the inclusion of the

inorganic POSS nanoparticles makes the organic polymer

matrix more thermally robust. The remarkable increase of

the thermal properties of is mainly due to high-crosslink

density and three-dimensional network structure. The TEM

analysis confirms nanoscale dispersion of POSS cages in

the PSU networks. The storage modulus of the network was

observed to be somewhat higher than that of the precursor

polymer. Thus, these hybrid networks can be used as an

advanced composite material in membrane technology

for better performances.
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