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the multicomputer, since the whole object space data may 
Parallel ray tracing of complex scenes on multicomputers not fit into the local memory of each processor for 
requires the distribution of both computation and scene data complex scenes. 
to the processors. This is carried out during preprocessing and The approach taken in this paper is to subdivide the 
usually consumes too much time and memory. The paper 3D space containing the scene into disjoint rectangular 
presents an efficient parallel subdivision algorithm that subvolumes and assign both computation and the object 
decomposes a given scene into rectangular regions adaptively data within a subvolume to a single processor. The 
and maps the resultant regions to the node processors of a proposed subdivision algorithm recursively bipartitions 
multicomputer. The proposed algorithm uses efficient data the rectangular subreglons into two rectangular subsub- 
structures to identify the splitting planes quickly. Furthermore regions starting from a given initial window until P 
the mapping of the regions and the objects to the node rectangular subreglons are obtained, where P denotes the 
processors is performed while parallel spatial subdivision total number of processors in the multicomputer. The 
proceeds. The proposed algorithm is implemented on an Intel subdivision and mapping should be performed in such a 
iPSC/2 hypercube multicomputer and promising results have way that each processor is assigned an equal corn- 
been obtained, putational load. Furthermore, the neighbouring objects 

should be maintained in the local memories of adjacent 
Keywords: ray tracing, spatial subdivision, multicomputers node processors to achieve better data coherence 1. The 

proposed subdivision algorithm also achieves the 
mapping of the rectangular subvolumes to processors 
during the decomposition process. The subdivision 

In recent years, research on ray tracing has mostly algorithm has efficient data structures to locate the 
concentrated on speeding up the algorithm by paralleliza- splitting planes. 
tion 1. There are two main approaches to the parallelization The spatial subdivision problem is a preprocessing 
of ray tracing. One of them is image-space subdivision overhead introduced for the efficient implementation of 
in which the computation related to various rays is object-based parallel ray tracing on the target multi- 
distributed to the processors. The other approach is computer. If the spatial subdivision algorithm is 
object-space subdivision, which should be adopted for implemented sequentially, this preprocessing can be 
the parallelization of ray tracing on distributed-memory considered in the serial portion of the parallel ray tracing 
message-passing architectures (multicomputers). Multi- which limits the maximum parallel efficiency. For a fixed 
computers are very promising architectures for massive input scene instance, the execution times of the parallel 
parallelism because of their nice scalability features, ray tracing and the sequential subdivision programs are 
In a multicomputer, there is no global memory, and expected to decrease and increase, respectively, with an 
synchronization and coordination between processors is increasing number of processors in the target multi- 
achieved through message exchange. For an efficient .computer. Thus, this preprocessing will begin to 
parallelization on a multicomputer (called object-based constitute a significant limit on the maximum efficiency 
parallel ray tracing), the object space data (the scene of the overall parallelization owing to Amdahl's law. 
description with the auxiliary data structure) and Hence, parallelization of the subdivision algorithm on 
computation should be distributed among processors of the target multicomputer is a crucial issue for efficient 
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tO be used for the object-based parallel ray tracing ~ , A S  ( ~  
algorithm. After an initial random distribution of objects 
to processors, objects intermittently migrate during the 
execution of the recursive bisection algorithm in 
accordance with the mapping strategy such that all Y 
objects arrive at their home processors at the end of the 
parallel subdivision process. Each object traverses at ~ 
most log 2 P processors to reach its home processor. ~ 

The decomposition of object space data can be performed 
by utilizing the techniques that are developed to improve ~ 
the naive ray tracing algorithm. These techniques are the 
hierarchy of bounding volumes 2 and spatial subdivision 3"', l ~ g ;  Spa~ 
and they can be adapted to parallel ray tracing as follows. ~ ~ ~ X 
The first technique forms a hierarchy of clusters / 
consisting of neighbouring objects. In the parallel 
processing case, there might be two approaches, namely Z WING 
static and demand-driven, to accomplish a fair distribution 
of computation and storage. The former approach / DIRECTION 
performs a static allocation by partitioning the entire Figure 1 4-way subdivision of scene using BBSP 
hierarchy into a set of clusters, each of which is assigned 
to a node processor. This resembles a graph partitioning 
process 5. The latter approach allocates object space data scene and the image-space computation associated with 
and relevant computation to the node processors on the pixels on the window are performed. It is assumed 
demand. The second technique, spatial subdivision, that the viewing volume and the 3D volumes produced 
decomposes the 3D space containing the scene into have a rectangular (parallepiped)shape rather than a 
disjoint rectangular prisms. As in the first technique, the pyramid shape. 
resulting prisms are distributed to the node processors The proposed BBSP algorithm starts by projecting all 
either statically or on demand 1'5-7. the objects in the view volume onto a given window IV. 

In this paper, the second technique, spatial subdivision, The window W is the initial rectangular region for the 
is used to decompose the object space data. Spatial recursive subdivision process. In the following steps of 
subdivision can be performed in several ways that give the algorithm, each rectangular subregion generated is 
rise to different rectangular volumes. Regular sub- subdivided into two subsubregions by a splitting plane 
division a, octrees 3 and binary space partitioning(BSP) 4'9 which is parallel to either the xz (horizontal) or yz 
are widely used spatial subdivision schemes. (vertical) plane as shown in Figure 1. This recursive 

subdivision process proceeds in a breadth-first manner 
until the number of generated subregions (at the leaves 

Utilizing BSP in parallel ray tracing of the recursion tree) becomes equal to the number of 
procesors. Here, the number of processors is assumed to 

Although both octree and regular subdivision schemes be a power of 2. 
have very useful properties when used with a conventional The proposed algorithm decomposes both the image 
ray tracing algorithm, it is difficult to achieve a space and the object space, and meanwhile maps the 
computational load balance among processors if some resulting image-space subregions and the respective 
coherence properties, such as object, data, and image object-space subvolumes to the processors in one phase. 
coherence, are to be utilized. A manifestation of coherence Each 3D subvolume is labelled using the label of the 
called data coherence, first exploited by Green and respective 2D subregion from which the 3D volume has 
Paddon 1, is a very powerful and useful property that may been obtained. Each 3D volume and its corresponding 
reduce the communications overhead. Communications 2D region are then assigned to the node p r ~ s o r  that 
among the node processors is one of the most time has a node number that is equal to the label of the volume. 
consuming operations in an object-based parallel ray Identifying the position of the splitting plane (i,e. 
tracing system. Therefore, exploiting data coherence is subdivision) and labelling the generated regions (i.e. 
essential in speeding up object-based parallel ray tracing, mapping) are key operations in the algorithm. 
In order to exploit data coherence, we propose a variant 
of BSP which we call balanced binary space partitioning Identifying optimal slditting planes 
(BBSP), since a complete binary tree is generated at the The subdivision is practically carried out on the screen 
end of the subdivision. The subdivision is carried out for since the window is mapped to the viewport that is 
a window defined over a viewing plane onto which the defined on a display device (screen). A splitting plane thus 
objects in the scene are projected (in parallel) (see Figure divides a given rectangular region of the screen into two 
1). The subdivision produces a set of rectangular regions disjoint rectangular subregions consisting of pixels. A 
on the window, and a set of 3D volumes is obtained by rectangular region on the screen can be subdivided into 
extending the rectangular regions in the viewing two using either a horizontal splitting plane or a vertical 
direction. By means of this subdivision preprocess, the splitting plane. Either a vertical or a horizontal splitting 
decomposition of both object space data describing the plane with minimum cost is chosen from all the possible 
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vertical and horizontal splitting planes on the basis of directions. The splitting plane with the smallest cost is 
an objective (cost) function. Hence, a splitting plane is chosen as the optimal splitting plane. Hence, the objective 
characterized by its cost, direction (vertical or horizontal) function should be efficiently computed. The objective 
and its location where the screen is cut. function for vertical splitting planes can be simplified 

In BSP trees, the location of the splitting plane is as _ 
usually chosen along either the object median or the 
spatial median. MacDonald and Booth 1° have examined 1 _ 
two heuristics for space subdivision using BSP. They Cv(b) = m x N  {[b x Lb-- (m-- b) x Rb[ + m x Sb} (2) 
pointed out that the probability of the intersection of a 
given ray with an object is proportional to the surface for b = 1 . . . . .  m. The simplification for horizontal 
area of the object; this is called the surface area heuristic, splitting planes can be obtained by replacing m with n 
Using this heuristic, they have also found out that the in Equation 2. The parameter 1/N can be neglected since 
optimal splitting plane lies between the object median it is a constant factor common in all cost computations 
and the spatial median. This result reduces the search (both vertical and horizontal). Similarly, the parameters 
range required to find out the location of the splitting 1/m and 1/n appear as constant factors that are common 
plane. However, it is still an expensive operation to search in vertical and horizontal splitting plane computation, 
within the reduced search range. Furthermore, the respectively. Hence, it is sufficient to compute the 
analysis in Reference 10 neglects the existence of shared following functions: 
objects between the generated subregions. 

In this work, we propose an efficient search algorithm Cv(b) = I{b × Lb + (m-  b) x Rb}l+ m x Sb (3) 
for identifying optimal splitting planes during recursive 
space subdivision. The proposed search algorithm uses Ch(b) = I{b x Lb + (n-- b) x Rb}l + n x Sb (4) 
efficient data structures and requires only integer 
arithmetic. In the proposed algorithm, the position of an for b=  1 . . . . .  m and b = 1 . . . . .  n, in order to find the 
optimal splitting plane is determined by using an optimal vertical and horizontal splitting planes b~ i" and 
objective function that considers both the minimization b~ in, respectively. The optimal splitting plane is then 
of the computational load imbalance and the number of chosen from these two splitting planes by comparing 
objects shared between the generated subregions. The Cv(bmin)/m with Ch(b~i")/n. This formulation enables only 
proposed objective function exploits the surface area integer arithmetic to be used during the cost computation. 
heuristic to maintain the computational load balance 
between the generated subregions. 

Data structures 
Objective function Horizontal and vertical splitting planes subdivide a given 
The cost of a vertical splitting plane b on a window W rectangular region in 2D and 1D, respectively. Two 
consisting of n x m pixels (resolution)is defined as integer arrays are defined to hold the information 

related to the distribution of objects along each one of 
Cv(b)= In x b x Lb--n x (m-b )  x Rbl ~_S b these two dimensions. To form the data structures, the 

n x m× N N (1) objects are projected onto the viewing plane and the 
projections of the objects are surrounded by bounding 

for b = 1, ..., m, where N denotes the total number of boxes to simplify the computation as seen in Fiaure 2. 
objects projected onto the window W under consideration. After this operation, each object o in the scene has four 
The objective function for a horizontal splitting plane attributes: xmin[o], xmax[o], ymin[o] and ymax[o]. 
can easily be obtained by exchanging n with m in Here, xmin[o] (ymin[o])andxmax[o] (ymax[o])denote 
Equation 1. Here, L~ and R b denote the number of objects the left (bottom) and the right (top) borders of the 
on the left (below) and right (above) of the vertical bounding box of an object o, respectively. Assuming that 
(horizontal) splitting plane b, respectively. Furthermore, the window W consists of n x m pixels (resolution), the 
S~ denotes the number of shared objects straddling the arrays for x and y dimensions have a size of m and n, 
splitting plane b. respectively. The following major data structures are 

The denominator of the first term in Equation 1 constructed and used for the x dimension: XMinCntr 
denotes the total computational load associated with the and XMaxCntr. XMinCntr[b] and XMaxCntr[b-I 
window when only primary rays are considered. Hence, contain the number of objects whose xmin and xmax 
the first term in Equation 1 represents the percentage values are equal to b, respectively, for b=  1, 2 . . . . .  m. 
load imbalance between the two subregions generated YMinCntr and YMaxCntr are similar data structures 
by a particular splitting plane. Similarly, the second term constructed and used for the y dimension. 
in Equation 1 denotes the percentage of objects shared Having formed these data structures, a prefix sum 
between these two subregions. The shared objects cause operation is performed on these integer arrays. These 
several problems. First, the shared objects are duplicated integer arrays are then used in the computation of the 
in the local memories of the processors to which these objective functions in Equations 3 and 4. These equations 
objects are assigned. Second, an intersection test with a need the values of Rb, Lb and S~ for each possible splitting 
shared object might be repeated if the first intersection position b. After prefix sum operations, XMinCntr[b] 
point was not inside the subvolume that was assigned to and XMaxCntrl-b] contain the number of objects whose 
the processor performing the test. As in conventional ray xmin and xmax values are equal to or less than b, 
tracing, there might be another closer intersection point respectively. Hence, XMinCntr[b] (YMinCntr[b])denotes 
within the next subvolume along the path of the ray. the number Lb of objects in the left (bottom) subregion 

The objective function in Equation 1 is computed for of the vertical (horizontal) splitting plane. Similarly, 
all the splitting planes in both the vertical and horizontal XMaxCntrl-b] (YMaxCntr[b]) denotes the number of 
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I~/ 4 ]! ~'7~--~: recursive definition of the hypercube interconnection 
topology as the target architecture for the object-based 

1 , _ ~ i  ~ 5 ). parallel ray tracing algorithm. However, the proposed 
[ [I _~__J_~_~  t ] ] ! [ - ] ~ ] - J  labelling can easily be adapted to other parallel 

architectures implementing symmetric and recursive 
I [ ~ "~ ~ interconnection topologies (e.g. 2D mesh and 3D mesh) 
I I 'l ~ -' . , ~  i with minor modifications. 

Here, we briefly summarize the topological properties ¢ I I I I of hypercubes exploited in the proposed labelling. A 
I 1 ! - ~ - ~  multicomputer implementing the hypercube intercon- 

nection topology consists of P = 2 d processors with each 
processor being directly connected to d other neighbour 

~- . processors. In a d-dimensional hypercube, each processor 
can be labelled with a d bit binary number such that the 

] l: /7 ~ Ij binary label of each processor differs from its neighbour I ]', l/ 2 ~.~, ] i i i~]~~._ byexactly l bit. A channelcdefinesthe setof P/21inks 
~__~__~ ~ connecting neighbour processors whose binary labels 

- ~: ] differ only by bit c, for c = 0, 1, 2 . . . .  , d -  1. In the recursive 
definition of the hypercube topology, a d-dimensional 

XMinCntr hypercube is constructed by connecting the processors 
I ° 121 31 31 31 31 31 3 '1 51 51 51 71 81 81 81 of two (d-1)-dimensional hypercubes in a one-to-one 

manner. Hence, a d-dimensional hypercube can be 
XMaxCntr subdivided into two disjoint (d-1)-dimensional hyper- 
10 I 01 01 0[ I ] 21 213 3] 31 31 51 5[ 51 71 s I cubes, called subcubes, by tearing the hypercube across 

a particular channel (e.g. c = d -  1). Each one of these two 
Figure 2 Sample scene projected onto viewing plane (d -  1)-dimensional subcubes can in turn be divided into 
[XMinCntr and XMaxCntr contain values after the prefix sum two disjoint(d-2)-dimensionalsubcubesbytearingthem 
operation.] across another channel (e.g. c = d - 2 ) .  Hence, d such 

successive tearings along different channels (e.g. c = d -  1, 
d - 2  . . . . .  1, 0) result in 2 a 0-dimensional subcubes (i.e. 

objects in the left (bottom) subregion which do not processors). An h-dimensional subcube in a d-dimensional 
straddle the vertical (horizontal)splitting plane b. Hence, hypercube (0~<h ~<d) can be represented by a d-tuplet 
Sb and R b can easily be computed as containing h free coordinates (xs) and d - h  fixed 

coordinates (0s and Is) it. 
Sb = Lb--XMaxCntr[b] (5) In the proposed mapping scheme, the label Q of the 

initial rectangular region (window W) is initialized to 
R b = (N + Sb)--L b (6) null. Consider the subdivision of a particular subregion 

labelled as Q by a vertical or horizontal splitting plane. 
for a vertical splitting plane b. For a horizontal splitting Note that the label Q of this subregion is a q bit binary 
plane b, Sb and R~ can similarly be computed using these number, where q denotes the depth of this subregion in 
two equations by replacing XMaxCntr in Equation 5 the subdivision recursion tree. Hence, subregion Q is 
with YMaxCntr. Note that the values of Rb, Lb and Sb already mapped to the (d-q)-dimensional subcube 
are efficiently computed using only three integer Qx... x. The left (below) and right (above) subsubregions 
additions which will be performed for all possible splitting generated by a vertical (horizontal) splitting plane are 
planes, labelled as Q0 and Q1, respectively. This labelling 

corresponds to tearing the subcube Qx. . .x  across 
Mapping channel d - q - 1  and mapping the resulting ( d - q - l ) -  
The proposed algorithm carries out the mapping of the dimensional subsubcubes QOx... x and Qlx. . .  x to left 
generated subregions during the recursive subdivision (below) and right (above) subsubregions, respectively (see 
process. Each generated subregion is assigned a label Figure 3). However, if two subregions Q0 and Q1 
that corresponds to the processor group to which it is generated from the same region by a vertical (horizontal) 
assigned. Initially, the window W is assumed to be splitting plane are both split again by vertical (horizontal) 
assigned to all the processors in the parallel architecture, planes, then the subsubcube-to-subsubregion assignment 
While splitting a region into two subregions, the in one of these two subregions is performed in reverse 
processor group assigned to that region is also split into order. The proposed labelling scheme tries to maximize 
two halves, and these two halves are assigned those two the data coherence by mapping neighbouring subregions 
subregions, respectively. This recursive spatial subdivision to neighbouring subcubes, to as great a degree as possible, 
of the window proceeds together with the recursive during the recursive subdivision process. Figure 4 
subdivision of the processor interconneetion topology, illustrates the possible labelling combinations in a 
The recursive subdivision and assignment scheme to be particular subpath of the recursion tree. 
adopted for the processor interconnection topology is a 
crucial factor in achieving the data coherence mentioned PARALLEL SPATIAL SUBDIVISION 
above. 

In this work, we propose a recursive labelling scheme For complex scenes, spatial subdivision using the 
for the regions generated during the recursive subdivision proposed BBSP scheme may still take too much time. 
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oloo tlto We may therefore use the node processors of the target 
~ ;  ~ ~ "  ~ 1 1 ~ j -  multicomputer to speed up the subdivision process. 
• ooto- - 1oo6 " lore- - Furthermore, these processors are already idle waiting 

for the start of the ray-tracing loop. This approach 
• .o~o~ . =ol H • •11o~ ~ increases the utilization of the parallel system. Reduction 

J "  ~ . ~ - ~ ---, I~,l~t of the spatial subdivision time has also been studied by 
o o t  1oll other researchers. McNeill et al. 12 have suggested an 

S u b d i v i s i o n  across  c h a n n e l  c----3 algorithm for dynamic building of the octree to reduce 
the data structure generation time. In this work, we 

~ i ! ~  "~'- . . . .  ~ ~ ~}!i!'f propose a parallel subdivision algorithm, a parallel 
version of the BBSP scheme for hypercube multi- 
computers. The proposed BBSP algorithm is based on 
the divide-and-conquer paradigm. Hence, the BBSP 
algorithm is very suitable for parallelization on hyper- 
cubes because of their recursive structures, mentioned 

oo~r" ̀ - ool i w-. Z above. The proposed parallel BBSP algorithm has a very 
. . . . . . . . .  - regular communications structure and it requires only 

S u b d i v i s i o n  ac ross  c h a n n e l  c = 2  concurrent single-hop communications (i.e. communica- 
1 1 ~ ~ L o  tions between neig hbour pro cessor s) on hypercubes. The 

proposed parallel BBSP algorithm may also be adapted 
oolo'~' to other interconnection topologies. However, multihop 

' ' ' ' ' ' ' communications may be required in other topologies. I ! I I I I I I 

' , ' , ' , ' , In the proposed scheme, the host processor randomly 
I ~ L O 1 0 1  I _t._ O 1 1 1  

_~a/a~.. _in/a=.. -_. I ~  decomposes the object database into P even subsets such 
" ~  m= ~ 1 1 1 1  

" - - "Wlo~1- - -_ - -'~'ol i that each subset contains either IN~P] or [N/PJ  objects, 
I M ~  '~ ` -  ~ O O 1 1  ~ ' =  ~ ~ - -  and it sends each subset to a different node processor of 

S u b d i v i s i o n  ac ross  c h a n n e l  c = l  the hypercube. Then, the following steps are performed 
~ ~ 1  in a divide-and-conquer manner (d =log 2 P times) for 

o each channel c from c = d -  1 down to c = 0. 

i ~ ~ 1 :  i ~ . ~  (1) Node processors concurrently construct their 
local integer arrays corresponding to their local 

o o ~  "z_ ~--~--- 7. ~ . ' ~ " S - ~ o l l  i object database. 

(2) Processors concurrently perform a prefix-sum 
S u b d i v i s i o n  ac ross  c h a n n e l  c-----O operation on their local integer arrays. 

Figure 3 Operation structure of proposed parallel BBSP algorithm (3) Processors of each (c + 1)-dimensional disjoint 
subcube perform a global vector sum operation 
on their local integer arrays. Note that 2 d-~- 
global vector-sum operations are performed 
concurrently. At the end of this step, pro- 

Q cessors of each (c + 1)-dimensional subcube will 
accumulate the same local copies of the 

J o r ~ . . , ~  ~ prefix-summed integer arrays. 

(4) Replicated integer arrays on the x and y 
dimensions in each subcube are virtually 

QO Q 1 QO divided into T +t even slices, and each slice is 
assigned to a different processor of that subcube. 

Q 1 Then, processors perform the cost computation 
of the splitting planes corresponding to their 

: ~ ~ ~ ~  sliceSsplittingin planes.°rder to find their local optimum / o  \ 
~ o ~ r  (5) Processors of each subcube perform a global 

QlO minimum operation to locate the optimal 
QOO QlO Q11 splitting plane corresponding to the subregion 
QOl QOl Q11 mapped to that subcube. 

(6) Processors of each subcube determine their  IliE  local subsubregion assignment for the following 
QOl Q1 | QlO stage c -  1, according to the proposed mapping 

scheme. Then, processors concurrently perform 
a single pass over their local object database to 

v gather and send the objects which belong to the 
r e v e r s e  m a p p i n g  other subsubregion to their neighbours on 

Figure 4 Subregion labelling for sample case channel c. Hence, two subsubcubes of each 
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subcube effectively exchange their subset of integer arrays (Steps 2, 3 and 4) within a subcube are 
local object databases such that each subsubcube proportional to the number of local objects and the 
collects the object database corresponding to semiparameter (height plus width), respectively, of the 
its subsubregion assignment in the following rectangular subregion assigned to that subcube. Hence, 
stage c -  1. Note that 2 d-c- 1 subsubcube pairs the complexities of local computations within a subcube 
perform this exchange operation concurrently, during the parallel ray tracing and parallel subdivision 

algorithms depend on the same factors: the number of 
local objects, and the height and width of the rectangular 
subregion assigned to that subcube. However, the 

During Step 6, processor pairs also determine their local dependence is multiplicative in parallel ray tracing, 
shared objects which are not involved in the exchange whereas it is additive in parallel subdivision. Hence, this 
operation. However, processors update either xmin deviation in the load balance measures of these two 
(ymin) or xmax (ymax) values of their local shared objects parallel algorithms may introduce a load imbalance 
according to their subsubregion assignment for a vertical among subcubes during parallel subdivision, since the 
(horizontal) splitting plane. Hence, processors maintain proposed parallel subdivision algorithm inherently 
and process disjoint rectangular parts of the bounding operates in accordance with the mapping strategy 
boxes corresponding to the shared objects, adopted by the recursive spatial bisection scheme, which 

Figure 3 illustrates the operation structure of the tries to maintain a load balance during parallel ray 
proposed parallel BBSP algorithm on a 4D hypercube tracing. This type of load imbalance is referred to here 
topology. In Figure 3, links drawn as broken lines as intersubcube imbalance. There is no load imbalance 
illustrate the idle links in a particular stage of the parallel among the processors of the individual subcubes during 
algorithm. Links drawn as solid lines illustrate the the local integer computation at Steps 2, 3 and 4, since 
disjoint subcubes working concurrently and independently each processor of a subcube operates on local integer 
for the subdivision of their subregions at each stage. That arrays of the same size. However, processors of the same 
is, processors of each subcube work in cooperation to subcube may hold different numbers of local objects 
determine the optimal subdivision of the subregion belonging to the respective subregion during a particular 
assigned to that subcube. These links also show the stage ofthealgorithm. This type ofload imbalance, which 
subcubes in which intrasubcube global vector-sum and is referred to here as intrasubcube imbalance, may 
global minimum operations are performed. In Figure 3, introduce an imbalance during the concurrent object- 
links drawn as solid lines with arrows illustrate the based computations (Steps 1 and 6) between the 
channel over which the object-exchange operation takes processors of the same subcube. An intrasubcube load 
place. These links also illustrate the subdivision of each imbalance may introduce processor idle time during both 
subcube into two disjoint subsubcubes at the end of each the global synchronization at Step 3 (global vector-sum 
stage. As is also seen in Figure ~,'all the objects arrive operation) and object exchange synchronization at Step 
at their home processors after log2 P concurrent 6 within subcubes. The initial random distribution of 
object-exchange operations. Note that shared objects will objects to processors is an attempt to reduce intrasubcube 
have more than one home proSessor, and they will be load imbalances. 
replicated in those processors. The communications overhead of the proposed parallel 

algorithm involves two components: the number and 
volume of communications. In a medium-to-coarse grain 

E X P E R I M E N T A L  R E S U L T S  architecture with high communications latency, the 
number of communications may be a crucial factor in 

The proposed parallel subdivision algorithm is imple- the performance of the parallel algorithm. Each one of 
mented on an Intel iPSC/2 hypercube multicomputer the intrasubcube global operations at Steps 3 and 5 
with 16 processors. The performance of the parallel require c+  1 concurrent exchange communication steps 
program is tested on several scenes containing different at stage c. Under perfect load balance conditions, these 
numbers of objects, global communications within different subcubes will be 

As mentioned above, the computational load balance performed concurrently. Hence, the total number of 
and communications overheads are two crucial factors concurrent communications due to these intrasubcube 
that determine the efficiency of a parallel algorithm. The global operations is d(d + 1). Thus, the total number of 
recursive spatial bisection scheme used in the BBSP concurrent communications becomes d(d+2) since the 
algorithm tries to maintain a load balance among the object exchange operations (Step 6)require d concurrent 
disjoint (c + 1)-dimensional subcubes at each subdivision communications in total under perfect load balance 
stage c during the first level of the parallel ray tracing conditions. Hence, the percentage overhead due to the 
computation. That is, in a particular subdivision stage c, number of communications is negligible for sufficiently 
the products of the numbers of local objects and areas large granularity (N/P) values, 
of the rectangular subregions assigned to disjoint The volume of concurrent communications during an 
subcubes are approximately equal to each other. Note individual intrasubcube global minimum operation (Step 
that, at the end of each stage of the parallel subdivision 5) is only 2(c + 1) integers at stage c. On the other hand, 
algorithm (Step 6), objects always migrate to their the volume of the concurrent communication during an 
destination subcubes for the following stage. That is, at individual intrasubcube global vector-sum operation 
the beginning of each subdivision stage, each subcube (Step 3) is 2(c + 1Xn + m) integers, where n + m denotes the 
holds only the local objects which belong to its respective semiperimeter of the rectangular subregion assigned to 
local rectangular subregion. However, in the subdivision that subcube at stage c. That is, the total volume of this 
algorithm, the complexities of local object-based corn- type of communications depend on the semiperimeter of 
putations (Steps 1 and 6) and computation on local the initial window and d. Hence, the percentage overhead 
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due to these types of integer communications decreases the first stage of the parallel BBSP algorithm. However, 
with increasing scene complexity for a fixed window size. for a fixed scene instance, the efficiency decreases 
The total volume of communication due to the object considerably with an increasing number of processors. 
migrations is a more crucial factor in the parallel This decrease is mainly due to the increase in the 
performance of the proposed algorithm. Under average- intersubcube load imbalances, since each doubling of the 
case conditions, half of the objects can be assumed to number of processors introduces an extra stage to the 
migrate at each stage of the algorithm. Hence, if shared algorithm. Therefore, load rebalancing algorithms should 
objects are ignored, the total volume of communications be developed for larger numbers of processors. 
due to object migrations can be assumed to be 
(N/2)log2 P objects. Experiments on various scenes 
yield results that are very close to this average-case C O N C L U S I O N S  
behaviour. 

Under perfect load balance conditions, each processor An efficient subdivision algorithm based on BSP (caged 
is expected to hold N / P  objects and each processor pair a BBSP algorithm) is proposed for object-based parallel 
can be assumed to exchange N/2P objects, at each stage, ray tracing. The proposed BBSP algorithm tries to 
Hence, under these conditions the total concurrent minimize the communications overhead during object- 
volume of communications due to object migrations will based parallel ray tracing by exploiting data coherence. 
be (N/2P) log 2 P objects. Experiments on various The other advantage of the proposed BBSP algorithm is 
uniform scenes yield results that are very close to these that the subdivision process does not generate empty 
expectations. However, results slightly deviate from these boxes. Empty boxes may occupy significantly large 
expectations for nonuniform scenes with objects clustered spaces. Besides, rays may take time skipping the empty 
toward particular positions, boxes. The subdivision of space into 3D grid elements 

Figure 5 shows the efficiency curves for hypercubes of and in octree fashion is affected by these factors. 
various dimensions as functions of the scene complexity. The preprocessing due to the subdivision of the 3D 
Efficiency values for a hypercube with P processors are space may be time consuming for complex scenes. An 
computed as Ep = TI/PTp, where TI and Te denote the efficient parallel BBSP algorithm is proposed to reduce 
execution times of the sequential and parallel subdivision the preprocessing time. The implementation on an Intel 
programs on 1 and P node processors, respectively. As iPSC/2 multicomputer has shown promising results. 
seen in Figure 5, efficiency increases with increasing scene 
complexity for a fixed window resolution size. This 
increase can be attributed to two factors. The total A C K N O W L E D G E M E N T S  
number of communications stays fixed for a fixed 
hypercube size. Hence, the percentage overhead due to The work described in this paper is partially supported by 
the total number of communications decreases with Intel Supercomputer Systems Division grant SSD100791-2, 
increasing scene complexity. Similarly, the volume of and Turkish Scientific and Technical Research Council 
integer communications also stays fixed for fixed (Tt3BITAK) grant EEEAG-5. 
hypercube size and window resolution size. Hence, the 
percentage overhead due to the volume of integer 
communications also decreases with increasing scene 
complexity. As seen in Figure 5, efficiency values of close R E F E R E N C E S  
to 100% are obtained for P = 2 processors since the initial 
even distribution of objects entirely avoids both 1 Green, S A and Paddon, D J 'Exploiting coherence for 

multiprocessor ray tracing' Comput. Graph. & Applic. Vol 9 No 
intrasubcube and intersubcube load imbalances during 6 (1989) pp 12-26 

2 Goldsmith, J and Salmon, J 'Automatic creation of object 
1 .O hierarchies for ray tracing' Comput. Graph. & Applic. Vol 7 No 

3 (1987) pp 14-20 
0.9 3 Glassner, A S 'Space subdivision for fast ray tracing' Comput. 

Graph. & Applic. Vol 4 No 4 (1984) pp 15-22 
0.8 4 Kaplan, M R 'The use of spatial coherence in ray tracing' in 

Techniques for Computer Graphics Springer-Verlag (1987) 
pp 173-193 

0.7 5 l~ier, V, Aykanat, C and Ozgfi~, B 'Subdivision of 3D space based 
on the graph partitioning for parallel ray tracing' Prec. 2nd 

~ O.O Eurographics WTcshp. Rendering (1991) 
6 Kobayashi, H, Nishimura, S, Kubota, H, Nakamura, T and 

0.5 Shigei, Y 'Load balancing strategies for a parallel ray-tracing 
system based on constant subdivision' Visual Comput. Vol 4 

ILl 0.4 (1988) pp 197-209 
7 Priol, T and Bouatouch, K 'Static load balancing for a parallel 

ray tracing' Visual Comlmt. Vol 5 (1989) pp 109-119 
0.3 8 Fujimoto, A, Tanaka, T and Iwata, K 'ARTS: accelerated 

ray-tracing system' Comput. Graph. & Applic. Vol 5 No 2 (1985) 
0.2 pp 16-26 

9 Fuchs, H, Kedem, Z M and Naylor, B F 'On visible surface 
O.1 generation by priori tree structures' Siggraph "80 Prec. Vol 14 

No 3 (1980) pp 124-133 
O.O [ 10 MacDonald, J D and Booth, K S 'Heuristics for ray tracing using 

5K 1OK 20K ~ 40K 50K 60K space subdivision' Visual Comput. Vol 6 (1990) lap 153-166 
N u m b e r  of Objects  (N)  11 Ozgiiner, F and Aykanat, C 'A reconfiguration algorithm for fault 

tolerance in a hypercube multiproeessor' Inf. Prec. Lett. Vol 29 
Figure 5 Efficiency curves for total number of objects in scene (1988) pp 247-254 

Computer-Aided Design Volume 26 Number 12 December 1994 889 



Efficient parallel spatial subdivision algorithm for object-based parallel ray tracing: C Aykanat et al. 

12 McNeill, M D J, Shah, B C, H~bert, M P, Lister P F and 
Grimsdale, R L 'Performance of space subdivision techniques in " Cevdet Aykanat received a BS and an 
ray tracing' Comput. Graph. Forum Vol 11 No 4 (1992) pp 213-220 M S  from the Middle East Technical 

University, Turkey, and a PhD from 
Ohio State University, USA, all in 
electrical engineering. He was a Fulbright 
scholar during his PhD studies. He 
worked at the lntel Supercomputer 
Systems Division, USA, as a research 
associate. Since October 1988, he has 
been with the Department of Computer 
Engineering and Information Science, 
Bilkent University, Turkey, where he is 

an associate professor. His research interests include parallel 
Biilent Ozgii#joined the Bilkent Univer- computer architectures, parallel algorithms, parallel computer 
city Faculty o f  Engineerin o, Turkey, in graphics applications, neural network algorithms, and Jault-tolerant 
1986. He is a professor o f  computer computing. 
~elence and the dean o f  the Faculty of  
~rt, Desion and Architecture. He has 
fawoht at the University o f  Pennsylvania, 
USA, Philadelphia College o f  Arts, ~ Veysi i~ler received a BS in computer 
USA, and the Middle East Technical ~.enoineerino from the Middle East 
University, Turkey, and he worked as a ~:~ Technical University, Turkey, and an 
member o f  the research staff at the ~; M S  in computer engineering and informa- 
~anlumberger Palo Alto Research Center, ~ tion science from Bilkent University, 

. . . . . . . . . . . . . . . . . .  USA. For the last 15 years, he has been Turkey, in 1987 ana~1989, respectively. 
active in the field o f  computer graphics and animation. He received He is working toward a PhD in the 
a BAtch and an MArch in architecture from the Middle East i Department o f  Computer Engineering 
Technical University in 1972 and 1973. He received an M S  in ~ and Information Science at Bilkent 
architectural technology from Columbia University, USA, and a PhD University. His research interests include 
in a joint program of  architecture and computer graphics from the animation, rendering, visualization, and 
University o f  Pennsylvania in 1974 and 1978. parallel processing. 

890 Computer-Aided Design Volume 26 Number 12 December 1994 


