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ABSTRACT

ASIC IMPLEMENTATION OF HIGH-THROUGHPUT
REED-SOLOMON PRODUCT CODES

Evren Göksu Sezer

M.S. in ELECTRICAL AND ELECTRONICS ENGINEERING

Advisor: Erdal Arıkan

July 2021

A detailed ASIC implementation study of a decoder architecture for the prod-

uct of two Reed-Solomon (RS) codes is presented. The implementation aims to

achieve high throughput (more than 1 Tb/s) under low power and area consump-

tion constraints while having more than 9 dB coding gain compared to uncoded

transmission when concatenated with an inner polar code. The scope of work

includes a comprehensive design space exploration for very high rate RS codes.

Novel algorithms and architectures are introduced to achieve the design goals.

High-throughput is achieved through a combination of pipelining and unrolling

methods, while a fully-automated register balancing technique is used to mini-

mize the implementation complexity. The implementation has been carried out

using the 28nm TSMC library.

Keywords: Reed Solomon Codes, Fiber Optics, High-Throughput, ASIC, FEC.
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ÖZET

YÜKSEK VERİ HIZLI REED-SOLOMON ÇARPIM
KODLARIN ASIC ÜZERİNDE GERÇEKLENMESİ

Evren Göksu Sezer

Elektrik ve Elektronik Mühendisliği, Yüksek Lisans

Tez Danışmanı: Erdal Arıkan

Temmuz 2021

Çarpım Reed-Solomon kod çözücü ve kod çözücünün mimarisinin ASIC üzerinde

gerçeklemesine dair detaylı bir çalışma sunulmuştur. Gerçekleme düşük güç har-

cayan, az alan kaplayan fakat yüksek veri hızına sahip bir kod çözücü tasarla-

maktır. Bu çalışma yüksek kodlama oranlı Reed-Solomon kodların detaylı bir

incelemesini de kapsamaktadır. Belirlenen hedeflere ulaşmak amacıyla bazı yeni

algoritmalar ve mimariler kullanılmıştır. Gerçekleme 28nm TSMC kütüphanesi

kullanılarak yapılmıştır.

Anahtar sözcükler : Reed-Solomon kodlar, FEC, ASIC, yüksek veri hızı.
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Ayça Osunluk, Yiğit Ertuğrul and in particular, Ertuğrul Kolağasıoğlu.
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Chapter 1

Introduction

1.1 Objectives of the Thesis

The goal of this thesis is to investigate the possibility of finding a Reed-Solomon

(RS) based product decoding scheme in order to satisfy current demands of fiber

optical communication. If necessary, new decoder algorithm and architecture will

be developed. The developed RS decoder will be coded using Very High-Speed

Integrated Circuit Hardware Description Language (VHDL) and its implementa-

tion will be carried out using the Taiwan Semiconductor Manufacturing Company

(TSMC) 28nm library synthesized by Genus tool of Cadence. Our performance

criteria is as follows:

� Throughput, higher than 1 Tb/s

� Coding gain, higher than 9dB at 10−15 bit error rate (BER) compared to

uncoded transmission

� Power consumption, lower than 20 Watts

� Area consumption, lower than 40 mm2
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1.2 Work Done

First, we have developed RS(208,204) decoder with the purpose of using it as a

component code for the product architecture. It is a rather unconventional design

for Reed-Solomon decoders as it has an error correction capability of only two

symbols. Such decoder would not be used as a stand-alone decoder due to its low

error correction capability. On the other hand, it has a very low complexity. By

taking advantage of the low complexity of the RS(208,204), we have developed

product RS(208,204) (PRS(208,204)) by using RS(208,204) as building blocks.

The main output of this thesis is PRS(208,204), iteratively working

RS(208,204) in product structure. Thanks to the very low implementation com-

plexity of RS(208,204), it is possible to use multiple RS(208,204) decoders in par-

allel, in series or in this case both. Moreover, this product RS code is designed

with the purpose of concatenating it with another forward error correction (FEC)

code: polar code. Therefore, given that an efficient concatenation scheme is cho-

sen, it could provide very high coding gain as well as very high throughput. In

this thesis, a polar decoder is chosen as an inner decoder and a Reed-Solomon

based decoder with product architecture is chosen as an outer decoder. Transmis-

sion and reception chain is shown in Figure 1.1. This concatenated decoder puts

out 1.040 Tb/s net throughput while achieving 11.5 dB coding gain at 10−15 BER

compared to uncoded transmission [1]. This thesis focuses on the implementation

of the outer decoder, namely, the product Reed-Solomon (PRS) decoder.

Implementation of the PRS(208,204) is carried out on ASIC, using the 28 nm

technology of TSMC. The design of PRS(208,204) is carried out using the bottom

to top methodology. First, multiplier circuits using the Karatsuba Algorithm is

designed and implemented. A special methodology is developed to reduce the

complexity of the multiplier unit when one of the multipliers is constant. Folded

structure is used for syndrome calculation and inversionless Berlekamp-Massey

algorithm is used for the calculation of error locator polynomial. In order to

solve the error locator polynomial, novel approach is developed where we solve

the equation by taking advantage of its low degree. Error locations are calculated

2



Figure 1.1: Transmit and receiver chain

using the Forney algorithm. Several correction methods are developed to check

correctness of decoding process of reached codeword, which is different from the

regular RS decoders. Using RS(208,204) as a building block, PRS(208,204) is

implemented. PRS(208,204) can provide more than 1 Tb/s throughput while

consuming around 6.24 W power and fitting into 13.34 mm2 area.

1.3 Organization of the Thesis

This thesis is organized as follows. Chapter 2 presents a review of Reed Solomon

codes and explains the mathematics behind it. Then shows the place of Reed-

Solomon codes in the standards and literature. Chapter 3 explains the design

process of RS(208,204), presents the algorithms, architecture and implementa-

tion result of RS(208,204). Chapter 4, shows the design of PRS(208,204) and

presents the implementation results. Chapter 5 concludes the thesis with a brief

explanation of the results and our comments on them.

3

Produd 
RS Encoder 

Produd 
RS Decoder 

lnterleaver 

De rıterleave r 

Polar 
Encoder 

Polar 
Oecoder 



Chapter 2

Review of Reed-Solomon Codes

Reed-Solomon (RS) codes are class of forward error correcting (FEC) codes that

are developed by Irving Reed and Gus Solomon in 1960 [2]. They are subset

of the Bose-Chaudhuri-Hocquenghem (BCH) [3] codes. RS codes have various

application areas such as storage devices, satellite communications, digital tele-

vision broadcast, wireless communications, QR codes etc. In Section 2.1, the

properties and behavior of RS codes are presented. In Section 2.2, Galois Fields

and their properties are explained. In Section 2.3, the encoder of RS codes and in

Section 2.4 RS decoder and its historical development are presented. In Section

2.5, some of the standards that are using RS codes and in Section 2.6, literature

survey of Reed-Solomon codes with high throughput are presented.

2.1 What are Reed-Solomon Codes?

RS codes are linear non-binary cyclic block codes that are mapped on m dimen-

sional vector space. A RS code can be specified as RS(n,k). ‘k’ shows the number

of m-bit data symbols which are to be encoded. These symbols represent the co-

efficients of a (k-1)th order polynomial in Galois Field (2m) (GF(2m)). In order

to encode ‘k’ symbols, they are multiplied with the generator polynomial. ‘n’

4



shows the number of m-bit symbols in an encoded block. Encoded symbols also

represent the coefficients of a (n-1)th order polynomial in GF(2m).

Given a symbol size m, symbol wise block length ‘n’ is bounded by the inequality:

n ≤ 2m − 1 (2.1)

When n− k is even, number of parity symbols are equal to:

n− k = 2t (2.2)

where t is the symbol wise error correction capability of RS(n,k) code.

Figure 2.1: Structure of RS code

RS codes are maximum distance separable (MDS) codes and they achieve

Singleton bound [4]. RS(n,k) has a minimum distance of dmin = n− k + 1.

2.2 Galois Field

Galois Field (GF) is a field with finite elements whose multiplicative group is

cyclic. GF(2m) is constructed on a prime polynomial (p(x)) of order m. Prim-

itive element (α) is a value such that each non-zero element of the field can be

expressed as the power of α. [4] The sequence of the elements in the GF and their

binary representations are calculated using the prime polynomials and primitive

element. Non-zero elements of GF(23) constructed with the prime polynomial

p(x) = x3 + x + 1 are shown in Table 2.1 as a small example. As it can be seen

from the Table 2.1, α7 is equal to α0 hence the cyclic group.

5



Table 2.1: Different representations of non-zero elements of GF(2m), constructed
with p(x) = x3 + x+ 1

Primitive
Element

Representation

Polynomial
Representation

Binary
Representation

α0 1 001
α1 x 010
α2 x2 100
α3 x+ 1 011
α4 x2 + x 110
α5 x2 + x+ 1 111
α6 x2 + 1 101
α7 1 001

Addition operation can be easily performed in polynomial or binary represen-

tation, it is a bit-wise XOR operation. For example:

α4 + α5 = (x2 + x)⊕ (x2 + x+ 1)

= 1

= α0

(2.3)

Multiplication operation can be easily performed in primitive element repre-

sentation, summing the powers under the modulo 2m − 1 is enough. However,

multiplication in polynomial representation can be calculated as polynomial mul-

tiplication modulo prime polynomial. For example:

α4 × α5 = (x2 + x)× (x2 + x+ 1) (mod(x3 + x+ 1))

= x4 + x3 + x2 + x3 + x2 + x (mod(x3 + x+ 1))

= x4 + x (mod(x3 + x+ 1))

= x2

= α2

(2.4)

6



2.3 Encoding

Encoding of RS codes are done by multiplying the data polynomial with the

generator polynomial (g(x)). The calculation of g(x) is carried out as follows [4]

:

g(x) = (x− αj0)× (x− αj0+1)× (x− αj0+2)× ...× (x− αj0+2t−1) (2.5)

Any integer value can be chosen for j0. In order to simplify the circuitry, j0 is

usually chosen as ‘1’, which simplifies g(x) to:

g(x) = (x− α1)× (x− α2)× (x− α3)× ...× (x− α2t) (2.6)

Using GF(23) with the prime polynomial p(x) = x3 + x + 1, g(x) for RS(7,5)

can be calculated as follows:

g(x) = (x− α1)× (x− α2)

= x2 − α2x− αx+ α3

= x2 + (α2 + α)x+ α + 1

= x2 + α4x+ α3

(2.7)

Calculated g(x) can be represented in binary as ‘001 110 011’. Assume input

signal, i(x), for RS(7,5) is i(x) = x4 + α2x3 + α6x2 + x + α5 . Multiplication of

the input signal, i(x), and generator polynomial, g(x), results in non-systematic

encoding. Non-systematic encoding example is shown in Equation 2.8.

7



g(x)× i(x) = (x2 + α4x+ α3)× (x4 + α2x3 + α6x2 + x+ α5)

g(x)× i(x) = x6 + α2x5 + α6x4 + x3 + α5x2 + α4x5 + α6x4

+ α10x3 + α4x2 + α9x+ α3x4 + α5x3

+ α9x2 + α3x+ α8

g(x)× i(x) = x6 + (α2 + α4)x5 + (α6 + α6 + α3)x4

+ (1 + α3 + α5)x3 + (α5 + α4 + α2)x2

+ (α2 + α3)x+ α

g(x)× i(x) = x6 + αx5 + α3x4 + α6x3 + α6x2 + x+ α

(2.8)

In binary representation, the resulting non-systematic codeword is represented

in seven symbols as ‘001 010 011 101 101 001 010’. This encoding procedure is not

systematic because the input signal i(x) does not appear in the codeword. Sys-

tematic encoding is somewhat more complex. Systematic codeword is calculated

with Equation 2.9 where p(x) is the polynomial that carries parity symbols [4]. A

way of calculating p(x) is given in Equation 2.10. Using the value of the modulo

g(x) as parity symbols ensures that, encoded signal is polynomial multiplicative

of g(x).

c(x) = xn−ki(x) + p(x) (2.9)

p(x) = xn−ki(x) (mod(g(x)) (2.10)

Calculation of p(x) for our example is as follows:

p(x) = (x2)× (x4 + α2x3 + α6x2 + x+ α5) (mod(x2 + α4x+ α3)

= x6 + α2x5 + α6x4 + x3 + α5x2 (mod(x2 + α4x+ α3)

= α2x+ α4

(2.11)

8



Systematic codeword c(x) = x6 +α2x5 +α6x4 + x3 +α5x2 +α2x+α4 contains

the sequence from i(x). The codeword can be represented in binary form as

‘001 100 101 001 111 100 110’.

Encoders are implemented using Linear Feedback Shift Registers (LFSR) [5].

The design of the LFSR for the previously calculated example g(x) is given in

Figure 2.2. g0 represents the coefficient of the 0th order term of g(x) and g1

represents the coefficient of the first order term. If g(x) has the rth order, r − 1

number of Galois multipliers and adders are needed to implement the circuitry.

From 0th coefficient to (r− 1)th coefficient should be inputs of the multipliers in

the increasing order from left to right. Input symbols in descending order should

be fed into the circuitry one symbol at a clock period. After kth clock period,

values registered in the registers are the parity symbols. Since our example is

RS(7,5), encoding takes 5 clock cycles for the example.

Figure 2.2: LFSR encoder example

The state of the registers and signals are given in Table 2.2. The state of

the registers after 5th clock cycle matches the parity symbols calculated using

9



Equation 2.10.

Table 2.2: The state of the registers and signal of LFSR example
Input MS Register Feedback Registers Clock Cycle

1 0 1 α3 α4 1
α2 α4 α α4 α2 2
α6 α2 1 α3 0 3
1 0 1 α3 α6 4
α5 α6 α α4 α2 5

2.4 Decoding

RS decoder decodes the received signal, r(x), in five steps, shown in Figure 2.3.

These steps are syndrome calculation, finding error polynomial, finding the loca-

tion of the errors, finding the magnitude of the errors and correcting the errors

to reach a valid codeword, c(x). The following sections explain the purpose of

each step, mathematical calculations, algorithms and architectures for their im-

plementations.

2.4.1 Syndrome Calculator

The main purpose of the syndrome calculator is to check if the received signal,

r(x), is a valid codeword, in another words, whether it has errors or not. If it

is not a valid codeword and some transmission errors are present in r(x), the

syndrome calculator catches that there is at least one erroneous symbol which

needs to be corrected. If the syndrome calculator shows that there is no error,

this indicates that r(x) is a valid codeword and output of the decoder.

Whether a signal encoded with non-systematic or systematic encoder, the en-

coded signal yields zero at the roots of the generator polynomial, g(x). If r(x) is

a valid member of the codeword set, syndrome values yield zero. If all the syn-

drome values are not equal to zero, it shows the presence of one or more errors.

10



Figure 2.3: Steps of Reed-Solomon decoder

For simplicity of the implementation, g(x) is usually calculated using Equation

2.6. There are 2t roots of g(x); thus, 2t syndromes should be calculated. Equation

2.12 shows the syndromes.

S1 = r(α) = r0 + r1α + r2α
2 + ...+ rn−1α

n−1

S2 = r(α2) = r0 + r1α
2 + r2(α

2)2 + ...+ rn−1(α
2)n−1

...

S2t = r(α2t) = r0 + r1α
2t + r2(α

2t)2 + ...+ rn−1(α
2t)n−1

(2.12)
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Implementing the calculation of the various powers of α is quite costly. There-

fore, the implementation is performed using Equation 2.13. This architecture

uses only one multiplier and one adder per a syndrome calculation, total of 2t

multipliers and 2t adders. Recursive calculation of one multiplication followed by

one addition operation is performed n times. If one multiplication and one addi-

tion operation can be performed in one clock cycle, the latency of the syndrome

calculator is n clocks.

S1 = ((αrn−1 + rn−2)α + rn−3)α + ...+ r1)α + r0

S2 = ((α2rn−1 + rn−2)α
2 + rn−3)α

2 + ...+ r1)α
2 + r0

...

S2t = ((α2trn−1 + rn−2)α
2t + rn−3)α

2t + ...+ r1)α
2t + r0

(2.13)

Latency of the decoder is also an important parameter. Depending on the

design or the use case the decoder is going to be used, a designer might wish

to use an architecture that has lower latency than the architecture shown in

Equation 2.13. Thankfully, architecture is a foldable architecture, which means

there is a trade-off between latency and implementation complexity. It is possible

to reduce the latency of the syndrome calculator by constant c times by increasing

the complexity c times. Equation 2.14 shows how S1 can be calculated in n/2

clock cycles. The same approach can be used for other syndromes or for higher c

values.

S1even = ((α2rn−2 + rn−4)α
2 + rn−6)α

2 + ...+ r2)α
2 + r0

S1odd = (((α2rn−1 + rn−3)α
2 + rn−5)α

2 + ...+ r3)α
2 + r1)α

S1 = S1even + S1odd

(2.14)

After the calculation of the syndromes are done; if all of the syndromes are

equal to zero, r(x) is the output of the decoder; however, if any of the syndromes

are non-zero, the decoder continues with the calculation of the error polynomial.
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2.4.2 Finding Error Locator Polynomial

The step called ‘Finding Error Locator Polynomial’ takes the syndrome values

as input and calculates a polynomial whose roots are equal to the inverse of the

location of the erroneous symbols. The mathematical relation between the error

locator polynomial, Λ(x), and syndromes is given in Equation 2.15 where Λj

represents the coefficients of Λ(x) and Λ0 is equal to 1. The degree of Λ(x) is

equal to the number of erroneous symbols. If the number of errors is less than t,

the coefficients of higher orders will be calculated as 0.


S1 S2 ... St−1 St

S2 S3 ... St St+1

...

St St+1 ... S2t−2 S2t−1




Λt

Λt−1
...

Λ1

 =



St+1

St+2

...

S2t−1

S2t


(2.15)

Calculation of the error locator polynomial is the core component of RS de-

coder. Therefore, throughout the years, it has been the main focus of studies

in order to improve the decoder. There are three main algorithms for calculat-

ing Λ(x): Berlekamp-Massey (BM) algorithm [6], extended Euclidian algorithm

(EEA) [7] and Welch-Berlekamp (WB) algorithm [8]. WB algorithm has not

been used much due to its irregularity and high implementation complexity. The

first VLSI implementation of RS decoder is implemented using EEA [9]. During

the early days of VLSI implementation of RS decoders, EEA was more com-

monly used compared to BM algorithm due to its high regularity. However, in

1991 Reed et al. discovered inversionless Berlekamp-Massey algorithm (IBMA)

which is highly regular and easy to implement. After the discovery of IBMA,

BM based algorithms dominated the scene such that nowadays the step ‘Finding

Error Locator Polynomial’ is called as ‘Berlekamp-Massey step’. Some improve-

ments to reduce the complexity or shorten the critical path etc. of IBMA have

been discovered; however, the main structure has stayed the same. Reformu-

lated Inversionless Berlekamp-Massey Algorithm (RiBMA) [10], enhanced IBMA

(eIBMA) [11], enhanced parallel IBMA (ePIBMA)[11] can be named as examples

13



of improved algorithms.

After Λ(x) is calculated, the roots of the polynomial are calculated to find the

locations of the errors.

2.4.3 Error Locator

When the order of Λ(x) is high, it is very costly to solve the equation mathe-

matically to find its roots. Such an approach would require enormous amount

of circuit components and power usage. Therefore, instead of solving the equa-

tion, brute force extensive search operation is performed. This search is called

Chien search [12], named after inventor of the method. For this method; first, we

calculate

Λ(αj) for j ∈ {1, 2, ....., n− 1, n} (2.16)

If Λ(αj) = 0, (αj) is one of the roots of the polynomial, ri (i ∈ {1, 2, ..., t}),
inverse of the roots:

(αj)−1 = α−j = α2m−1−j (2.17)

α2m−1−j = `i shows the location of an erroneous symbol. `i (i ∈ {1, 2, ..., t})
values point to the error locations.

2.4.4 Finding Error Magnitude

The magnitude of the errors at each location is calculated by using the error

evaluator polynomial Ω(x) defined in Equation 2.18.

Ω(x) = S(x)Λ(x) (mod x2t) (2.18)
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The Forney Algorithm, developed by Forney in 1965 [13], utilizes both the error

locator polynomial (Λ(x)) and error evaluator polynomial (Ω(x)) to calculate the

error magnitude ei associated with each location `i. Equation 2.19 shows the

mathematical formula to find the error magnitudes.

ei =
Ω(`i

−1)

Λ′(`i
−1)

(2.19)

2.4.5 Error Corrector

Computationally, correcting the errors is rather trivial after error locations and

magnitudes are calculated. Error polynomial is written in 2.20.

e(x) =
t∑

i=1

ei`i (2.20)

Simple addition of e(x) to the received signal, r(x), is enough to get the desired

output signal: the codeword, c(x).

r(x) = c(x) + e(x)

r(x) + e(x) = c(x) + e(x) + e(x)

r(x) + e(x) = c(x)

o(x) = c(x)

(2.21)

If r(x) has less than or equal t symbol errors, RS decoder catches all the errors

and corrects them with the explained process. If r(x) has more than t error, error

locator polynomial fails to find all the error locations; therefore, decoder cannot

output a valid codeword.
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2.5 Reed-Solomon Codes in Standards

For our point of interest, there are various standards for data transmission and

FEC. RS codes are selected error correcting codes for some of these FEC stan-

dards. The following sections present the RS codes that appear in standards and

their technical properties and requirements.

2.5.1 RS(255,239)

RS(255,239) is one of the most popular RS codes. RS(255,239) has been the

choice for many standards such as IEEE 802.16 (Worldwide Interoperability for

Microwave Access, commonly known as WiMAX), ITU-T G.975 [14] (Optical

Fiber Submarine Cable Systems), ITU-T G.709 (Digital terminal equipments)

and ITU-T Y.1331 (Internet Protocol Aspects Transport). Due to its common

appearance in standards, RS(255,239) decoders have been studied and researched

quite extensively. It has a 8-bit symbol length and an error correction capability

of up to 8 symbols. It has a code rate of 0.937 and at 10−15 BER 6.2 dB net

coding gain compared to the uncoded transmission. Because of the higher coding

gain requirements of the Optical Fiber Submarine Cable Systems, ITU-T G.975

is no longer actively used. It has been replaced by ITU-T G.975.1 [15]. However,

in other mentioned standards, RS(255,239) is still actively in use.
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2.5.2 RS(255,223)

RS(255,223) has a 8-bit symbol length and an error correction capability of up

to 16 symbols with a code rate of 0.875 and; thus, it has better communication

performance compared to RS(255,239). However, it is more complex due to the

increased computations resulting from the increased error correction capability.

RS(225,223) appears in the use-cases where better performance is required and

complexity does not pose a huge problem. The Consultative Community for

Space Data Systems (CCSDS) recommends using RS(255,239) in their standard

document ”Recommendation for Space Data System Standards - Synchronization

and Channel Coding (CCSDS 131.0-B-3).”

2.5.3 RS(255,191)

RS(255,191) has a 8-bit symbol length and an error correction capability of up to

32 symbols. It is very complex and rarely used. However, it is the chosen standard

error correcting code for DVBH (Digital Video Broadcasting Handheld). High

reliability is required for this standard and RS(255,191) is able to provide it with

its high error correction capability. RS(255,191) has a code rate of 0.749.

2.5.4 RS(204,188)

RS(204,188) has a 8-bit symbol length and an error correction capability of up

to 8 symbols. It is the chosen standard error correcting code for DVBT (Digital

Video Broadcasting Terrestrial). RS(204,188) has a code rate of 0.922.
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2.5.5 RS(2720,2550)

RS(2720,2550) has a 12-bit symbol length and an error correction capability of 85

symbols with a code rate of 0.937. It is significantly more complex than RS codes

that have lower symbol lengths or block lengths. Nonetheless, communication

performance is considerably better; at 10−15 BER it has a coding gain of 8 dB

compared to uncoded transmission. Due to its high coding gain, RS(2720,2550) is

one of the recommended error correcting codes in ITU-T G.975.1 [15]. Although

there have not been any newer standards to replace this code; nowadays, other

FEC codes are used for fiber optical communication due to demand for increased

coding gain and higher throughput.

2.5.6 Summary of the Standards

RS codes are the chosen error correcting codes for some of the most critical stan-

dards. However, they have lost some of their value due to increasing demand for

higher throughputs and better communication performance. Their implementa-

tion complexity increases rapidly if these demands are met. Therefore, as it can

be seen from Table 2.3, RS codes that appear in the standards have high code

rates and relatively short block lengths and the maximum throughput require-

ments are not up to par with current high throughput demands. The highest

throughput of these standards is 40 Gb/s while throughput requirements, espe-

cially for fiber optical communications, could reach up to 1 Tb/s. The capability

of RS codes whether they can satisfy higher throughput demands needs to be

studied.

2.6 Literature Survey

In this chapter, the state of the art of the Reed-Solomon codes and other error

correcting codes developed for fiber optical communications are presented. The
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Table 2.3: RS codes in standards, their properties and requirements
Code RS(255,239) RS(255,223) RS(255,191) RS(204,188) RS(2720,2550)

Standard
IEEE
802.16

ITU
G.975

ITU
G.709

ITU
Y.1331

CCSDS
131.0-B-3

DVB-H DVB-T
ITU

G.975.1
Symbol
Length

8 8 8 8 12

Code
Rate

0.937 0.875 0.749 0.922 0.937

Error Corr.
Capability

8 16 32 8 85

Maximum
TP

1 Gb/s 40 Gb/s 40 Gb/s 40 Gb/s NS 10 Mb/s 32 Mb/s 40 Gb/s

Status of the
Standard

Active Inactive Active Active Active Active Active Inactive

criteria for the decoders are high throughput, coding gain and complexity of the

implementation with an emphasis on the high throughput. Section 2.6.1 presents

the state of the art of RS codes while Section 2.6.2 presents the other error

correcting codes with high throughputs. We will present our conclusions of the

chapter in Section 2.6.3.

2.6.1 Survey on Reed-Solomon Decoders

Reed-Solomon decoders with at least 100 Gb/s throughput are presented in this

section. Due to its lower implementation complexity, RS(255,239) is more suitable

for higher throughputs compared to other RS codes with more error correction

capability; thus, all of the presented decoders are of RS(255,239). RS(255,239)

is also the most used RS code as explained in Section 2.5; therefore, it is widely

researched in literature, which is another reason why all of the presented decoders

are different implementations of RS(255,239). Unfortunately, none of the papers

mentions the power consumption of the decoder and only one of them mentions

the area consumption. Their results are presented using the criteria “number of

gates”, which will be used in our comparison.

Decoder presented in [16] uses two parallel channels in order to re-use some of

the components and match the latency of the blocks. For solving the key equation,

Euclidian based algorithm, pipelined degree-computationless modified Euclidean

(pDCME) [17], is used. For calculating the roots, Chien Search [12] is used as
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for all the other RS algorithms mentioned in this section. When implemented on

180nm CMOS technology, the net throughput of the decoder is 96 Gb/s.

Lee developed a decoder [18] which uses the same algorithms as [16]; how-

ever, on three channels instead of two, thus it can reach a higher throughput.

Throughput of the decoder is 108 Gb/s when implemented on 130nm CMOS.

Decoder developed by Park [19] uses three parallel channels, as well. As a key

equation solver algorithm, it deploys BM based pipelined truncated Inversionless

Berlekamp Massey algorithm (pTiBM). When implemented on 90nm CMOS, the

decoder can reach 225 Gb/s net throughput.

16 parallel channels are used by [20]. For solving the key equation BM based

compensated simplified reformulated inversionless Berlekamp-Massey (CS-RiBM)

algorithm is used. The decoder is implemented using 90nm CMOS technology

and can reach to net throughput of 146 Gb/s.

Decoder developed by Perrone [21] is a single channel RS decoder published

in 2018. Therefore, it employs state-of-the-art RS algorithms, namely enhanced

Parallel Inversionless Berlekamp-Massey algorithm (ePIBMA) [11] for key equa-

tion solver and Chien Search for calculating the roots from key equation. When

implemented on 90nm CMOS technology, its net throughput is 132 Gb/s with

only 113,442 gates.

The summary of the mentioned decoders and their parameters are shown in

Table 2.4. [19] reaches the highest throughput among the decoders; however, it

falls behind [21] on throughput/complexity ratio.

2.6.2 Survey on FEC Decoders for Optical Communica-

tions

FEC decoders with high throughput and high coding gain, which are developed

for optical communications, are presented in this section. Achieving both high
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throughput and high coding gain is a formidable task and decoders that can

achieve both usually have very high implementation complexity. Due to their

high implementation complexity, most of the decoders in this category leave the

research at algorithm level and do not actually implement it on FPGA or ASIC.

Our main priority is comparing the complexity of the decoders for optical commu-

nications. Therefore, decoders without implementation results are not presented.

Survey of such decoders can be read from [1].

BCH codes in staircase architecture running iteratively are examined in [22].

Several different inner BCH codes are implemented. Decoder with the highest net

throughput achieves 1 Tb/s with 1.87 W power dissipation when implemented on

28nm CMOS technology. Communication performance of the decoders are mea-

sured analytically and with extrapolation. All of the configurations can achieve

more than 9 dB coding gain compared to uncoded transmission.

BCH codes implemented in product architecture running iteratively are pre-

sented in [23]. Decoder has the code block length of 65025 bits. The inner code

is BCH(255,231,3). Different configurations with different number of iterations

are implemented. When the number of iterations is 5, decoder achieves 1 Tb/s

throughput with 0.633 W power dissipation while having 10.3 dB estimated cod-

ing gain.
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Table 2.4: State of the art of high throughput RS codes

Reference Code
Freq

(MHz)
Latency

(CC)
Latency

(ns)
Net TP
(Gb/s)

No. of
Gates

Technology
(nm)

Voltage
(V.)

[16] (255, 239) 400 260 650 96 434800 180 1.8
[18] (255, 239) 300 242 800 108 378000 130 1.2
[19] (255, 239) 640 161 260 225 417600 90 1.2
[20] (255, 239) 625 260 416 146 269000 90 1.2
[21] (255, 239) 555 31 56 132 113442 90 1.2
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2.6.3 Conclusion of the Literature Survey

Surveys on RS decoders and other FEC decoders developed for optical communi-

cations clearly show that RS decoders are falling behind on both high throughput

and high coding gain demands. They lose their places in the standards where

such are demanded. Reaching 1 Tb/s throughput while having more than 10 dB

coding gain is distant target for regular RS decoders.

Section 2.6.2 shows that it is very hard to implement high throughput and good

performance decoder because they are very complex. It is not a coincidence that

two decoders that can be implemented use iterative architecture and relatively

simple inner codes. Iterative architectures are highly regular and with simple

inner codes, they are much simpler compared to other highly complex decoders

developed for fiber optics. This has led us to consider using simple RS codes with

low error correction capability in product architecture.

The idea of using PRS codes concatenated with polar codes is introduced in [1]

and satisfactory results are presented. This novel approach is promising enough

to be contender for the decoder to satisfy requirements of fiber optical communi-

cations. In this thesis, we have focused on the implementation of the PRS decoder

and carried on the synthesis of PRS(208,204) using the Genus tool with the 28nm

TSMC library. The results show that PRS(208,204) can be implemented with an

energy efficiency of 6 pJ/bit.
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2.7 Summary of Review of Reed-Solomon

Codes

The essence of the Reed-Solomon codes is linear algebra in Galois Fields. In

order to calculate 2t unknowns (t error locations and t error values at those cor-

responding locations), 2t syndrome values are calculated to generate 2t equations.

Decoding process of RS codes is very structured. Strict mathematical model of

RS codes does not allow flexible structure; therefore, there has not been a major

algorithmic change in decoding of RS codes at least for a decade. Thus, studies of

RS codes have been slowed down and RS codes have started to lose their places

in some of the standards such as fiber optics. In fiber optics area, the state of RS

decoders compared to other decoders is shown in Section 2.6. We have tried to

tackle the problem of RS codes falling behind and in Chapters 3 and 4, our pro-

posed solution, a polar decoder concatenated with PRS, and its implementation

are explained.
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Chapter 3

Implementation of RS(208,204)

In this chapter, the implementation of RS(208,204) is addressed. We discovered

some new methods and some new architectures for existing methods during the

implementation studies of RS(208,204). Implementation parameters, architec-

tures and algorithms are explained and results such as power consumption, area

usage, communication performance etc. are presented in their respective sec-

tions. This section presents the design of the RS(208,204) decoder. Although

implementation is carried with RS(208,204) many of the developed methodology

and algorithms can be used for RS decoders with symbol length (m) equal to

8, and error correction capability (t) equal to 2. Prime polynomial used for the

design is p(x) = x8 + x4 + x3 + x2 + 1 .

Chronological order of the algorithms that are deployed during RS(208,204) is

shown in Figure 3.1. As it can be seen from Figure 3.1, the latency of the decoder

is 19 clock cycles (CCs). After the syndrome calculation is performed, new input

signal is fed to the decoder; thus, making the pipeline level of the decoder equal

to 2. Every 10 CCs, a new output is delivered.

As it is shown in Section 2.4, addition and multiplication in GF(28) are fre-

quently used operations during the decoding process of RS codes. Addition in

GF(28) is a very simple operation, bit-wise XOR. However, multiplication is
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Figure 3.1: Chronological order of the processes during RS(208,204)

rather complex and the design of the multiplication circuit is very important

as multiplication operation is performed many times during the decoder. The

design of the multiplication circuitry is explained in Section 3.1. Section 3.2-3.5

presents the designs and algorithms used for implementing the various stages of

the decoder. Implementation results of the decoder is given in Section 3.7 while

communication performance of the decoder is given in Section 3.8 .

3.1 GF(28) Multiplier Design

The choice for the multiplier design is rather important due to its repetitive

usage throughout the decoder. Both complexity and latency of the decoder are

important parameters. The simplest design for the multiplier is memory based

tables where m bit binary symbols are matched to power of the alpha value they

represent. Multiplication is performed by summing the powers of the alpha values

and m bit binary result is found from another table that stores the m bit values

for each power of alphas. These memory based tables are called logarithm and

anti-logarithm tables and there are methods to construct them [24]. However,

this design has one major drawback; each memory unit can be called only once

each clock cycle. Therefore, number of tables implemented must be equal to the

number of multiplications performed in each clock cycle. Implementing a lot of

tables are very costly in terms of area, routing complexity and latency.

Therefore, we used another multiplier design which is based on the Karatsuba

Algorithm [25]. The Karatsuba Algorithm aims to reduce the complexity of the
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multiplication by using the method “divide and conquer”. This algorithm reduces

the complexity of multiplication from O(n2) to O(nlog23). A slight modification

to original Karatsuba Algorithm enables it to be used for GF multiplication

operations, as shown in [26]. We unrolled the algorithm in [26] and used it as our

GF multiplier.

Using the Karatsuba Algorithm based multiplier and unrolled design has an-

other very important benefit. There are some multiplication operations in Reed-

Solomon chain in which one of the multipliers is constant. For example, for the

multiplications during the syndrome calculation; one multiplier comes from the

input signal which is variable and the other multiplier comes from the polynomial

which is constant. By taking advantage of this constant multiplier, we can re-

duce the complexity of the multiplication operation where one of the multipliers

is constant.

Table 3.1 shows the complexity values of the multiplication circuit with two

variable multipliers and several multiplication circuits where one variable is con-

stant. As it can be seen from the Table 3.1, multiplication circuits with one

constant multiplier are four to eight times simpler.

There are 255 different multiplication circuits with one constant input. Al-

though all of the possible multipliers are not used in a single decoder design,

significant amount of them are used; therefore, there are still a lot of design work

to be done. Instead of designing all of the circuits by hand, I have developed a

Python script that writes the VHDL code of the required multipliers when the

constant input and prime polynomial are provided.

3.2 Syndrome Calculator

Syndrome calculator block is the part of the decoder where the syndromes are

calculated. The main algorithm of syndrome calculation is given in Section 2.4.1,

Equation 2.13. There are not many things that can be improved from Equation
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Table 3.1: Multipliers Synthesized using TSMC 40nm Library at 400 MHz and
VDD = 0.81V

First
Multiplier

Second
Multiplier

ASIC
Synthesis

Cells Power (uW) Area (umˆ2) Slack (ps)

Variable

Variable 137 202 405 107
00000010 9 23 56 1352
00000100 13 30 63 1483
00001000 13 29 68 1235
00010000 15 36 75 1468
00100000 17 41 78 1251
01000000 18 43 82 1038
10000000 20 47 87 1214
01110101 18 43 82 1207
11001110 19 53 91 935
11010111 22 62 97 891
11111110 20 53 90 663
00111110 20 55 92 936

2.13; however, folding the equation to reduce the latency of the calculation while

increasing the implementation complexity is one of the changes that can be made

on the equation. Our implementation of RS(208,204) aims to reach very high

throughputs. Therefore, we preferred to reduce the latency of the syndrome

calculator as much as possible and folded the equation as much as necessary to

reach the latency of 10 clocks. While we used 10 clock version of syndrome decoder

for this implementation, we are also aware that latency parameter depends on the

requirements and parameters of the decoder and it can change if requirements

of the decoder change. In order to avoid rewriting the syndrome calculator after

every change, we coded a Python script the parameters prime polynomial, number

of received symbols, number of received data symbols and desired latency of the

syndrome calculator block are given; Python script can write the VHDL code of

the entire syndrome calculator block. Thus, we automatize the VHDL coding of

the block in this way. The inputs and output of the Python based automation

script is shown in Figure 3.2.

Input and output ports of the block is given in Figure 3.3. ‘clk’ refers to the
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Figure 3.2: Inputs and outputs of Python Automation Script

clock signal which is synchronized throughout the decoder, it is a one bit signal.

’reset’ refers the reset signal which is synchronized throughout the decoder and

resets the decoder into its original state. ‘clken’ is a one bit wide input signal

that provides the information that received signal at the receiver port is valid or

not; if ‘clken’ port is at low ‘(0)’, it means received signal is not valid and we

should not make calculations on it, if the port is high ‘(1)’, it suggests that the

received signal is valid and syndromes can be calculated for that signal. ‘r(x)’

is the received signal and port width is equal to the n × m, which is equal to

208 × 8 = 1664 bit for our design RS(208,204). Synd.Pol(S(x)) is the main

output signal of the block, denoted as S(x) = s0 + s1x
1 + s2x

2 + s3x
3. S(x) is 4

symbols long and carries the syndrome information to the other blocks.

3.3 Calculation of the Error Locator Polynomial

Calculation of the error locator polynomial has been the most challenging part

of RS decoders since their existence and; therefore, many methods have been
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Figure 3.3: Inputs and outputs of Syndrome Calculator Block

developed to calculate the polynomial. We choose to implement this block with

one of the current state of the art algorithms: enhanced parallel Inversionless

Berlekamp-Massey algorithm (ePIBMA) [11]. Inputs and outputs of this block

are given in Figure 3.4.

‘clk’, ‘clken’, ‘reset’ and ‘valid’ signals are the same for all of the blocks. There-

fore, they will not be explained again to avoid repetition.Input signal ‘Synd.Pol.’

is the output of the Syndrome Calculation block and carries the same properties.

The output of this block is error locator polynomial which is polynomial whose

roots are the location of the errors. Therefore, the degree of the polynomial is at

most 2.

Python based automated VHDL creator is coded for this block as well as the

following blocks. In order to avoid repetition, it will not be mentioned in this

section or the following sections.
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Figure 3.4: Inputs and outputs of Calculation of Error Locator Polynomial Block

3.4 Calculation of the Roots of the Error Loca-

tor Polynomial

Error locator polynomial, Λ(x), is a polynomial that is used to calculate the

locations of the erroneous symbols as explained in Section 2.4.2. Most of RS

decoders use the method called Chien Search for this step [12]. Chien search

is a brute force method that tries every possible error location and calculates if

the result is equal to zero. If the result is equal to zero, it means that location

is one of the roots of the Λ(x). When the degree of the Λ(x) is high, which is

the case for most of RS decoders in literature, Chien search is very cost efficient

compared to solving the Λ(x) for the roots. Therefore, Chien Search is almost

used exclusively for this step of the decoder. However, complexity of Chien Search

depends on the number of symbols; thus, the complexity of Chien Search does

not change because RS(208,204) has a low error correction capability. Chien

Search for RS(208,204) would require 416 multipliers and 3328 XoR gates [11].

In our decoder RS(208,204), error correction capability of the decoder is two and;
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Figure 3.5: Input and output ports of calculation of the roots of the error locator
polynomial block

consecutively, degree of the Λ(x) is at most two. Solving the Λ(x) is a lot more

efficient than calculating the result in a brute force manner. Our solution uses 6

multipliers, 72 XoR gates and one look-up table for the inversion operation which

is significantly much simpler than using Chien Search.

If there are no errors, the decoder detects that the received signal is a valid

codeword at the syndrome calculation stage. Therefore, if there are no errors,

Λ(x) is never calculated. Thus, there are only two possible degrees that Λ(x)

can have, which are one or two. We use similar but different approaches for

different degrees of Λ(x). For the following discussions, we will use the definition

Λ(x) = ax2 + bx+ c.

We can easily detect the degree of the Λ(x) by examining the coefficient of the

second order term a. If a is equal to zero, the degree of Λ(x) is equal to one,

otherwise it is equal to two. We will start by finding the location of the error

when there is only one. Calculation process is shown in Equation 3.1. Calculation
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is quite simple, since a is equal to zero, Λ(x) is equal to bx+ c. We add c to both

sides of the equation because adding same values in GF(28) results in zero, left

hand side is equal to bx and right hand side is equal to c. To find x1 where x1

is the root of the equation, we only need to divide c by b. Implementation wise,

division in GF(28) is very costly. Therefore, we used a look-up table for taking

the inverse of the symbols and multiplied the inverse of b with c. The size of the

look-up table used for taking the inverse is 255× 8 = 10.2 kbits.

ax2 + bx+ c = 0

bx+ c = 0

bx+ c+ c = 0 + c

bx = c

x1 =
c

b

x1 = c× b−1

(3.1)

Finding the roots of Λ(x) when degree of Λ(x) is equal to two is much challeng-

ing. It is shown by Berlekamp and co. [27] that square and square root operations

are linear operations in GF(28). Adding the two same values in GF(28) results

in zero. Therefore, during the squaring operation, the middle term 2 × a × b

disappears as shown in Equation 3.2.

(a+ b)2 = a2 + a× b+ a× b+ b2 = a2 + b2 (3.2)

Before taking advantage of the linearity property of the square operation in

GF(28), we need to manipulate the error locator polynomial according to our

needs. These manipulations are shown in Equation 3.3.
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ax2 + bx+ c = 0

x2 +
b

a
x+

c

a
= 0

x2 +
b

a
x =

c

a

(3.3)

At this point we use the change of variable y = a
b
x.

b

a

2

y2 +
b

a
× b

a
y =

c

a

y2 + y =
a× c
b2

(3.4)

We use the change of variable again such that d = a×c
b2

.

y2 + y = d (3.5)

Solving Equation 3.5 to find the root y1 and y2 is very costly. We can store the

roots for each d value in a look-up table and get the roots from there; however, the

size of such a look-up table would be enormous when we want to store the roots

for every possible d value, which leads us to taking advantage of the linearity of

the square operation in GF(28). The left hand size of Equation 3.5, y2 + y is

linear due to the linearity of both square and addition operations. If we treat

d as a 8 dimensional vector and store the roots for these dimensions, we can

calculate the root y1 from the stored results. For our decoder RS(208,204) with

p(x) = x8 + x4 + x3 + x2 + 1, we calculated the solutions using a software code

written in Python and stored them in a look-up table. Stored values can be seen

in Table 3.2.

For example, let us calculate the y1 when d = 01000101. We check the Table

3.2 for which bits of the d are equal to ‘1′ and perform summation in GF(28) of

those values to find y1. These calculations are shown in Equation 3.6.
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Table 3.2: Solution Table for y-d Pairs

d y1
00000001 11010110
00000010 11101000
00000100 11101010
00001000 00101101
00010000 11101110
00100000 -
01000000 00100101
10000000 01010000

y11 = 11010110

y12 = 11101010

y13 = 11101000

y1 = y11 + y12 + y13

y1 = 11010100

(3.6)

Finding the second root y2 from y1 is really simple: y2 = y1 + 1. The solution

can be verified easily using Equation 3.5. Steps are shown in Equation 3.7

y22 + y2 = d

(y1 + 1)2 + y1 + 1 = d

y21 + 12 + y1 + 1 = d

y21 + 1 + y1 + 1 = d

y21 + y1 = d

(3.7)

Instead of the memory block presented in Table 3.2, it is possible to use a

memory block that represents y1 values for every possible d value. This approach
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would spare us from calculating the linear combination of the solution; however,

it would require a much bigger look-up table. Although look-up tables are good

solutions to many implementation problems we encounter, excessive use of them

increases the area usage; thus, make the design harder to route. Therefore, we

preferred to use smaller look-up tables or solutions without a look-up table when

we can.

We find the roots of the equation using the calculated value y and coefficients

of Λ(x), namely a and b.

y =
a

b
x

b

a
y1 = x1

b

a
y2 = x2

(3.8)

We have already implemented a look-up table for calculating the reverse of the

symbols and we can calculate the locations of the erroneous symbols x1 and x2by

taking the inverse of the roots y1 and y2.

Using the values calculated up to this point, we will evaluate the errors and

correct them as a last duty of the decoder, which is explained in Section 3.5.
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3.5 Error Evaluation and Error Correction

Figure 3.6: Input and output ports of error evaluation and correction block

Evaluating the errors at the locations we previously calculated is carried out

by using the Forney Algorithm(FA) [13]. FA is used pretty much exclusively at

this step for every decoder. Equation 3.9 shows the formulation of the FA.

ei =
Ω(xi

−1)

Λ′(xi−1)
(3.9)

Ω(x) is calculated according to Equation 3.10. Three multiplications and one

summation operation are enough to calculate the Ω(x).

Ω(x) = [S(x)× Λ(x)] (mod xt)

Ω(x) = (s0 + s1x+ s2x
2 + s3x

3)× (ax2 + bx+ c)) (mod xt)

Ω(x) = s0 × c+ (b× s0 + c× s1)× x

(3.10)
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Calculation of Λ′(x), where “ ’ ” denotes the derivation, is shown in Equation

3.11. We take the derivative of Λ(x) like a regular derivation is carried out which

makes the derivation equal to 2ax + b. In GF(28), ‘2’ is equal to ‘0’; therefore,

the end result is Λ′(x) = b.

Λ(x) = ax2 + bx+ c

Λ′(x) = 2ax+ b

Λ′(x) = b

(3.11)

Since Λ′(x) is constant, calculating it for the different locations is not needed.

We calculate Ω(xi
−1) values for both of the locations and multiply them with b−1.

Taking the inverse of b is performed using the look-up table.

After the calculation of the location and error values at those locations, cor-

recting the errors is quite easy. Error values should be added to symbols that are

at the calculated error locations. The calculations are shown in Equation 3.12.

c(`1) = r(`1) + e1

c(`2) = r(`2) + e2

c(`i) = r(`i) (`i 6= {`1, `2)}

(3.12)

After the correction of the errors, the decoder performs some additional cal-

culations to check if the reached codeword is valid. Section 3.6 explains which

check steps are performed at which steps of the decoder and what is the reason

for performing those checks.
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3.6 Correction Check

RS(208,204) contains some additional calculations compared to regular RS de-

coders. These operations are performed during various stages of the decoding

process; however, they are mentioned in this section together.

The reason for performing these additional calculations is explained using Fig-

ure 3.7. On Figure 3.7, only two codewords (c1 and c2) out of 2204×8 possible

codewords are shown for the sake of simplicity. Circles around the c1 and c2 rep-

resent the decode-able area for each codeword and received signals are represented

by ri.

Figure 3.7: Representative Decoding Space

Assume c1 is sent from the encoder, different cases will be examined for differ-

ent received signals:

Case 1: r1 is received

When the received signal is two or less symbols away from the sent codeword,

RS(208,204) can correctly decode and reach to the sent codeword. In this case,

when r1 is received, the output of the decoder will be c1, which is the correct

result.

Case 2: r2 is received
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When the received signal is more than two symbols away from the sent code-

word, output of the decoder cannot be correct as RS(208,204) has only a two

symbols correcting capability. However, if the received signal is in the solvable

space of another valid codeword, the output of the decoder will be that codeword

and decoder would think that it solved the signal correctly. In this case, when r2

is received, the output of the decoder will be c2, which is not the correct output;

however, on the receiver side, there is no way of knowing that this is not the

correct result. Therefore, mistakes performed because of the situations like Case

2 cannot be corrected.

Case 3: r3 is received

When the received signal is more than two symbols away from the sent code-

word and it is not inside the decode-able area of any other codeword either;

decoder tries to decode the received signal; however, output will not be a valid

codeword and; therefore, it will not be correct. In this case, when r3 is received,

output of the decoder will be some point which is not a valid codeword. In such

cases, the frame error is not corrected and number of bit errors might increase or

decrease depending on the output signal; however, increase in the number of bit

errors is more likely.

There is nothing to correct in “Case 1” and there is nothing that can be

corrected in the receiver side in “Case 2”. Therefore, the aim of performing

the checks is to avoid the further corruption of the received data when “Case 3”

happens. Regularly used RS decoders do not have these anti-corruption measures

mainly because of two reasons. First, most RS decoders have a higher error

correction capability, which means their decode-able area circles are much bigger;

thus, the number of received signals that fall into the “Case 3” type areas is

very low. Therefore, it is not worth to add more circuit elements and increase the

latency to avoid a case that happens very rarely. Second, RS(208,204) is designed

to be used in product structure; corrupting some symbols during vertical decoding

would harm the horizontal decoding which will happen during the next iteration

and vice versa. If the output of RS decoder is the final step of the system and if

it will not be used as an input for any other components, it is not worth to add
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extra components to avoid slight increase in BER.

RS(208,204) uses three different check measures to avoid the mentioned prob-

lem. These checks are explained in the following sections.

3.6.1 Solution Check

During the calculation of the roots of the error locator polynomial, explained in

Section 3.4, the solution table for y-d pairs is implemented, Table 3.2. There are

no solutions presented in Table 3.2 when d = 00100000. There is no solution

presented for d = 00100000 because there is none available. None of the valid

“d” value can have “1” in their 3rd most significant bit. However, sometimes 3rd

significant bit of “d” is “1” in which case the decoder knows that the received sig-

nal cannot be decoded correctly. Thus, instead of carrying on with decoding and

spending power for a futile effort, RS(208,204) terminates decoding and outputs

the received signal without change. Implementation cost of this check is almost

zero as it can be implemented with a single gate checking whether the 3rd most

significant bit is “0” or “1”. However, terminating the decoder early can have

substantial power savings.

3.6.2 Location Check

During the calculation of the location of the errors step, the location of the erro-

neous symbols is calculated. Since RS(208,204) consists of 208 symbols, all the

calculated locations should be in range [0,207]. If any of the error locations is big-

ger than 207, which means calculation is wrong and “Case 3” applies. Therefore,

decoding process is terminated and the received signal is fed into the output with-

out change. Implementation of this check can be performed with two MUXes.

Much like aforementioned “Solution Check” this check is very cheap, as well, and

it also saves considerable amount of power by terminating the decoder early.
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3.6.3 Syndrome Update

If the output of the decoder is a valid codeword, syndromes of that codeword

should be equal to zero. Calculating the syndromes from scratch is not a viable

option due to vastly increased latency and implementation complexity. However,

after the calculation of error locations and corresponding error magnitudes, syn-

drome values can be updated easily. To update the syndromes, we use Equation

2.12. We implement 4 memory blocks to store the values of location multipliers

for S1, S2, S3 and S4. Multiplying the error values with corresponding memory

entry and adding it to initial syndrome yield the updated syndrome values. If the

values are not equal to zero, this means that the output is not a valid codeword

and the received signal is given as the output.

Syndrome check could catch all the “Case 3” type inputs; thus, it encapsulates

both solution and location checks. Performing only the syndrome check would

yield the same performance. However, syndrome update is much more costly than

other checks; thus, it should be avoided if possible. Therefore, we perform the

solution and location checks to see if the possible faulty outputs can be caught

by using those cheaper methods.

3.7 Implementation Results

Implementation of RS(208,204) carried out using the Genus tool and 28nm library

of TSMC (tcbn28hpcbwp12t30p140ssg0p72v125cccs). The decoder runs at 200

MHz, which resulted in 32.64 Gb/s net throughput. Total power consumption

of the decoder is 8.965 mW which is a minuscule amount and it uses 0.059 mm2

area. Other important parameters are given in Table 3.3. As it can be seen from

Table 3.3, RS(208,204) is very energy efficient.
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Table 3.3: Implementation results of RS(208,204)

Technology (nm) 28
Throughput (Gb/s) 32.64
Area (mm2) 0.059
Power (mW ) 8.965
Area Eff. (Gb/s/mm2) 564.068
Pow. Den. (W/mm2) 0.152
Energy Eff. (pJ/bit) 0.269
Frequency (MHz) 200

3.8 Communication Performance

The communication performance of RS(208,204) is calculated using the Monte

Carlo simulations using Python software. BER and FER of RS(208,204), when

BPSK modulation and demodulation is used and channel is AWGN, is presented

in Figure 3.8. The first generation fiber optic FEC RS(255,239) has a 6.2 dB cod-

ing gain at BER 10−15 while the second generation fiber optic FEC RS(2720,2550)

has an 8 dB coding gain at BER 10−15. Compared to earlier FEC solutions,

RS(208,204) has an abysmal communication performance with less than 3 dB

coding gain at BER 10−15. The reason for this very poor communication perfor-

mance is the very low error correction capability of the code. Fortunately, we are

not planning on using RS(208,204) alone, we are planing to use it in an iterative

manner with product RS(208,204) decoder, which is explained in Section 4.
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Figure 3.8: Communication performance of RS(208,204) tested on software.
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3.9 Summary of the Chapter

Error correcting codes with very high code rates are very rare and RS(208,204)

is no exception. Therefore, decoding methods, algorithms and architectures for

such decoders are not well explored. Our implementation of RS(208,204) explores

some original methods. For example, calculating the roots of the error locator

polynomial instead of finding them by trial-and-error method is our unique ap-

proach. Furthermore, applying checks to avoid worsening the communication

performance is another unique approach of ours.

The main reason why these high rate error correcting codes are unexplored is

that they have abysmal communication performance as mentioned. However,

thanks to such high code rate, RS(208,204) consumes only 8.965mW , which

makes it excellent for using as building block to other decoders rather than de-

ploying it as a stand-alone decoder. Implementation of product RS(208,204)

(PRS(208,204)) tries to take advantage of the implementation simplicity of

RS(208,204) by using it both in parallel and serially. Chapter 4, explains the

implementation of the PRS(208,204) and its parameters.
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Chapter 4

Implementation of Product

RS(208,204)

Product RS(208,204) (PRS(208,204)) decoder uses the algorithms and architec-

tures developed during the implementation of RS(208,204) as a building block and

decodes the symbols in an iterative manner. Product structure of PRS(208,204)

is shown in Figure 4.1 where small squares represent the symbols. The total of

43264(208 × 208) symbols are placed in the PRS structure, 41616(204 × 204) of

those symbols represents data and the rest are overhead symbols.

PRS(208,204) works in an iterative manner as mentioned. First, we fill the

product structure with 43264 symbols and calculate the syndromes for both ver-

tical and horizontal code words. These syndrome values are stored, then we start

decoding vertically from the calculation of error locator polynomial step. Af-

ter the vertical decoding is performed, both vertical and horizontal syndromes

are updated according to changed symbols. After vertical decoding, horizontal

decoding is performed. Then consecutive vertical and horizontal decoding is per-

formed two more times, making it total of three times. PRS(208,204) does not

utilize pipelining; thus, new input is only taken after the output is out of the

decoder.

46



Figure 4.1: Product Structure of PRS(208,204)

PRS(208,204) is implemented using the 28nm TSMC library, running at 200

MHz frequency. The total latency of the decoder is 64 CCs, at every 64 CCs

332, 928(204× 204× 8) information bits are decoded. When decoder runs at 200

MHz, net throughput of the decoder is 1.040 Tb/s satisfying the 1 Tb/s condition.

Implementation methodology and steps are explained in the following sections.
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4.1 Syndrome Calculation

The first step of PRS(208,204) is syndrome calculation, same as RS(208,204).

However, in this instance, instead of calculating the syndrome vector for a single

decoder, 416 syndrome vectors are calculated for 416 decoders. 208 of them are

from vertical decoders while 208 them are from horizontal ones. These syndrome

values for all of the decoders are stored in registers for later use.

We use the same syndrome implementation with folded architecture, which we

also used for RS(208,204) and explained in Section 3.2. Latency of the syndrome

calculation is 10 for PRS(208,204), as well. Therefore, the complexity and area

of the block increased 416 times.

In a regular RS decoder, if all of the syndrome values are equal to zero, the

received signal is a valid codeword and it is given to the output without further

calculation. The same approach applies to PRS decoder as well. However, PRS

decoder having all zero syndrome values is highly unlikely especially when the

channel SNR is low. Therefore, optimization should prioritize the cases where

some of RS decoders inside the PRS having zero syndromes. If a syndrome value

of a single RS decoder inside the PRS is equal to zero, we consider these vertical

or horizontal symbols as correct and we froze those symbols, which means during

the iterations, those symbols cannot be changed. With the frozen and non-frozen

symbols, we start calculation of the following blocks in an iterative manner, which

will be explained in Section 4.2.

4.2 Iterations Block

The calculation of the error polynomial, calculation of the roots of the error

polynomial, calculation of the error locations, error evaluation, correction and

syndrome update are components of a single iteration block of PRS(208,204)

decoder. These processes are performed 6 times in total during PRS, starting

with vertical decoders and rotating between the vertical and horizontal decoders.
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Algorithms and architectures of each block are the same as RS(208,204) decoder

except for the syndrome update block. Therefore, only the syndrome update

block is explained for PRS(208,204) decoder.

4.2.1 Syndrome Update

For RS decoder, the reason for deploying syndrome is to see if the resulting signal

is a valid codeword. The same reason applies for PRS decoders, as well. However,

the syndrome update in PRS has a more important role. Thanks to the syndrome

update block, syndrome values after each iteration can be calculated in a power

and area efficient way. Thus, in this way, syndromes are calculated only at the

start of the decoder and syndrome calculation is not part of the iterative circuitry.

Syndrome does not have to be calculated but only updated after each iteration,

which saves time and energy.

The syndrome update of PRS is much more complex than the syndrome update

of RS codes. Although algorithm and methodology for updating the syndrome

values are the same; updates should be performed for both vertical and horizontal

decoders and they have to be performed simultaneously, which is the reason

syndrome update of PRS is more complex. A simple example of 10 × 10 PRS

decoder is demonstrated in Figure 4.2. After the horizontal iteration, erroneous

symbols were found for RS decoders at 5th and 8th rows. Decoder at 5th row

had erroneous symbols at 4th and 8th symbols while the decoder at 8th row

had erroneous symbols at 2nd and 8th symbols, shown with blue on Figure 4.2.

The syndromes of the 4th and 8th horizontal decoders are updated according

to the methodology explained in Section 3.6.3. Moreover, the of the 2nd, 4th

and 8th vertical decoders should also be updated with the same methodology

because some of their symbols are also changed after the horizontal iteration.

This simple method of updating the syndromes instead of re-calculating them

from the beginning allows PRS to become much simpler in implementation terms.
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Figure 4.2: Example for syndrome update for PRS

4.3 Implementation Results

Implementation of the PRS(208,204) carried out using the Genus tool and 28nm

library of TSMC (tcbn28hpcbwp12t30p140ssg0p72v125cccs). Decoder runs at 200

MHz and puts out 1040.4 Gb/s net throughput. The total power consumption

of the decoder is 6.245 W, which is not ideal; however, an acceptable power

consumption considering the size of the design. Other important parameters are

given in Table 4.1.

4.4 Communication Performance

Measuring the communication performance of PRS via Monte Carlo simulations

is a very hard task due to the complex structure and high throughput demand of

PRS. Even the state-of-the-art FPGAs do not have enough look-up tables (LUT)

to run PRS and testing system together. However, there is an existing work [1],
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Table 4.1: Implementation Results of PRS(208,204)

Technology (nm) 28
Throughput (Gb/s) 1040.400
Area (mm2) 13.341
Power (W ) 6.245
Area Eff. (Gb/s/mm2) 77.985
Pow. Den. (W/mm2) 0.468
Energy Eff. (pJ/bit) 6.002
Frequency (MHz) 200

which analyzes the performance of PRS codes when they are concatenated with

polar decoders [28] where polar decoders are inner and PRS decoders are outer

decoders with an interleaver in between. [1] shows that polar successive cancel-

lation list of 4 decoder with 512 block length and 416 data length concatenated

with PRS(208,204) achieves up to 11.5 dB coding gain at 10−15 BER compared

to uncoded transmission. Polar decoder can also run at 1 Tb/s rates [29]. The

work also examines other concatenation schemes that involve other PRS type

decoders.

As another communication performance parameter, minimum distance of

PRS(208,204) is equal to 9.
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4.5 Summary of the Chapter

In this chapter, the design and architectures of PRS(208,204) decoder is explained

and its ASIC implementation results are shown.

Using an out-of-the-box very high rate decoder RS(208,204), we build

PRS(208,204) decoder, which is the final product of this thesis. An iterative

PRS(208,204) decoder can provide 1.04 Tb/s net throughput while spending

around 6 W of power when the synthesis of the decoder is performed using the

Genus tool of Cadence using the 28 nm TSMC library.
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Chapter 5

Conclusion

A decoder for product Reed-Solomon codes has been designed and implemented

in ASIC, which provides more than 1 Tb/s net throughput. The decoder is

developed with the use-case of fiber optical communications in mind. Therefore,

the requirements of the decoder are chosen accordingly: high throughput, good

communication performance and low power usage.

In Chapter 4, the main work of the thesis is presented. In order to implement

this rather complicated design, bottom to top design methodology is utilized.

Firstly, the building blocks for operations in GF are developed and tested. Using

these operation in GF, RS(208,204) is developed. Due to the unusually high code

rate of RS(208,204), some novel algorithms and architectures, that are better

suited for high rate RS decoders, are developed and used. An automated Python

script is coded, which codes RS decoder in VHDL when the necessary parameters

are given; such script reduces the workload enormously in case some parameters

of the decoder changes. Using RS(208,204) as a component code, PRS(208,204)

is developed and implemented on 28nm ASIC. PRS decoder can provide 1 Tb/s

net throughput with 6 pJ/bit energy efficiency. When PRS(208,204) is used as a

outer code to the polar decoder, analytical work shows that 11.5 dB coding gain

at 10−15 BER is achieved.
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Using RS decoder as an outer decoder allows us to take advantage of the

correlation between the output bits of the polar decoder. Both, architecture of

the successive cancellation polar decoder and product decoder, are well struc-

tured and ordered. Therefore, they are rather easy to implement even if the

decoder is massive, like fiber optical decoders. These two advantages make polar-

PRS concatenated decoder a candidate pair for using in fiber optical commu-

nications. Their energy efficiency and communication performance combination

is good enough to be in the same league with the current state-of-the-art fiber

optical decoders.

As a future work, clock line could be improved. It is possible to shot down the

parts of the decoder when corresponding syndrome values of that part is equal

to zero. However, meddling with the clock line is a meticulous work and requires

expertise and time. Considering the expected power gain of such improvement

is not big, we preferred not to commit such time to it. Using BCH decoder

in a product structure instead of RS decoder is another possibility that should

be considered and examined. Using BCH decoder loses the advantage of the

correlation between the output bits of polar decoder; however, the simplicity of

BCH decoder compared to RS decoder might be advantageous.
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