
ESSAYS ON BARGAINING THEORY

A Ph.D. Dissertation

by
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ABSTRACT

ESSAYS ON BARGAINING THEORY

Özcan Tok, Elif

Ph.D., Department of Economics

Supervisor: Assist. Prof. Dr. Emin Karagözoğlu

May 2018

Bargaining refers to a situation where two or more agents try to decide over

how to divide a surplus generated by the economic transactions among these

agents. There are two major approaches to bargaining problems: cooperative

and non-cooperative approach. The former one focuses on the axioms that a

bargaining outcome should satisfy and it is initiated by Nash (1950). The latter

one attempts to specify the bargaining procedure and it is pioneered by Stahl

(1972) and Rubinstein (1982). This dissertation consists of five essays. The first

three essays employ the non-cooperative bargaining approach; the remaining ones

employ the cooperative bargaining approach.

In the first essay, we study an infinite horizon bargaining game on a network,

where the network is endogenously formed. Two specifications of the cost struc-

ture regarding the link formation is investigated: zero cost and non-zero cost.

The equilibrium of the game is obtained for both specifications. Lastly, we focus
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on efficiency issue and characterize the efficient networks. In the second essay, an

infinite horizon bargaining game between buyers and sellers on a two-sided supply

chain network is analyzed where the valuations of the buyers are heterogeneous.

We prove that the valuations of the buyers and the network structure have an im-

pact on the equilibrium outcome. In the third essay, we investigate the emergence

of reference points in a two-player, infinite horizon, alternating offers bargaining

game. The preferences of players preferences exhibit reference-dependence, and

their current offers have the potential to influence future reference points of each

other. However, this influence is limited in that it expires in a finite number of

periods. We describe a subgame perfect equilibrium that involves an immediate

agreement. We study the influence of expiration length and reference points on

equilibrium strategies and outcomes. In the fourth essay, we study the salience of

the reference points in determining the anchors and aspirations in a bargaining

problem by introducing two parameters which capture these effects. In the co-

operative bargaining literature, the disagreement point or the reference point is

employed as an anchor while the ideal (or utopia) point or the tempered aspira-

tions point as an aspiration. In this essay, a bargaining problem with a reference

point is studied incorporating these two parameters and hence a family of bar-

gaining solutions is obtained. Consequently, several characterizations for each

individual member of this family is proposed. In the fifth essay, we introduce the

iterated egalitarian compromise solution for two-person bargaining problems. It is

defined by using two well-known solutions to bargaining problems, the egalitarian

solution and the equal-loss solution, in an iterative fashion. While neither of these

two solutions satisfy midpoint domination –an appealing normative property– we
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show that the iterated egalitarian compromise solution does so. To sum up, this

dissertation contributes to the diversified fields and practices of bargaining theory.

Keywords: Alternating Offers, Cooperative Bargaining Theory, Networks, Non-

cooperative Bargaining Theory, Reference Dependent Preferences.
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ÖZET

PAZARLIK TEORİSİ ÜZERİNE MAKALELER

Özcan Tok, Elif

Doktora, İktisat Bölümü

Tez Danışmanı: Dr. Öğr. Üyesi Emin Karagözoğlu

Mayıs 2018

Pazarlık, iki veya daha fazla aktörün, kendi aralarındaki ekonomik işlemler sonucu

ortaya çıkan değerin nasıl paylaşılacağına ilişkin süreci ifade eder. Pazarlık prob-

lemlerinde iki ana yaklaşım mevcuttur: işbirlikçi ve işbirliksiz yaklaşım. Nash

(1950) tarafından önerilen işbirlikçi yaklaşım, bir pazarlık sonucunun sağlaması

gereken aksiyomlara odaklanmıştır. Stahl (1972) ve Rubinstein (1982) ’nin

öncülük ettiği ikinci yaklaşım ise pazarlık sürecini tanımlamaya çalışmaktadır. Bu

tez beş makaleden oluşmaktadır. İlk üç makale işbirliksiz pazarlık yaklaşımını,

diğerleri ise işbirlikçi pazarlık yaklaşımını kullanmaktadır. İlk makalede içsel

olarak oluşturulan ağ üzerinde sonsuz süreli bir pazarlık oyunu çalışılmıştır.

Bağlantı kurmaya ilişkin maliyet yapısının iki çeşidi incelenmiştir: sıfır maliyet ve

sıfırdan farklı maliyet. Oyunun dengesi her iki tanımlama için de elde edilmiştir.

Ayrıca, etkinlik konusuna odaklanılmış ve etkin ağlar karakterize edilmiştir.

İkinci makalede, iki taraflı bir tedarik zinciri üzerinde alıcıların değerlemelerinin

heterojen olduğu durumlarda alıcı ve satıcılar arasındaki sonsuz süreli pazarlık
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oyunu analiz edilmiştir. Alıcıların değerlemelerinin ve ağ yapısının denge sonucu

üzerinde etkili olduğu gösterilmiştir. Üçüncü makalede, iki oyunculu, sonsuz

süreli, sıralı teklifli pazarlık oyununda referans noktalarının ortaya çıkışı ince-

lenmiştir. Oyuncuların tercihleri referansa bağımlılık göstermektedir ve mev-

cut teklifleri birbirlerinin gelecekteki referans noktalarını etkileme potansiye-

line sahip olmaktadır. Ancak, bu etki sonlu sayıda bir dönem içerisinde sona

erdiği için sınırlıdır. Gecikmesiz anlaşmayı içeren bir alt-oyun mükemmel den-

gesi tanımlanmış; sona erme süresinin ve referans noktalarının denge stratejileri

ve sonuçları üzerindeki etkisi incelenmiştir. Dördüncü makalede, bir pazarlık

problemindeki çapa ve istekleri belirlemede referans noktalarının gücü; bu etk-

ileri yakalayan iki parametrenin tanıtılmasıyla incelenmiştir. İşbirlikçi pazarlık

yazınında, çapa olarak anlaşmazlık noktası ya da referans noktası; istek noktası

olarak ise ideal nokta (ütopya noktası) kullanılmaktadır. Bu makalede, bu iki

parametre dahil edilerek referans noktasına dayalı pazarlık problemi çalışılmış ve

böylece pazarlık çözümlerinin bir ailesi elde edilmiştir. Sonuç olarak, bu ailenin

her bir üyesi için çeşitli karakterizasyonlar önerilmiştir. Beşinci makalede, iki

kişilik pazarlık problemleri için yinelenen eşitlikçi uzlaşma çözümü tanıtılmıştır.

Bu çözüm, eşitlikçi ve eşit kayıplı pazarlık çözümlerini tekrarlı bir şekilde kulla-

narak tanımlanmıştır. Bahsi geçen iki çözüm cazip bir normatif özellik olan orta

nokta baskınlığını sağlamazken, yinelenen eşitlikçi uzlaşma çözümü bu özelliği

sağlamaktadır. Özetle, bu tez oyun teorisinin çeşitli alanlarına ve uygulamalarına

katkı sağlamaktadır.

Anahtar Kelimeler: Ağ, İşbirlikli Pazarlık Teorisi, İşbirliksiz Pazarlık Teorisi,

Referans Bağımlı Tercihler, Sıralı Teklifler.
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Yılmaz, Büşra Kul and Seval Öztürk for their close friendship; for the nice travels

and activities we do together. They are always there and make my graduate life

enjoyable. I thank Yavuz Arasıl for his suggestions on using Microsoft Word

instead of Latex which was never approved by me. I thank Melike Aşkın and
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CHAPTER 1

INTRODUCTION

In broad terms, bargaining refers to the process involving two or more parties

where (i) a mutually beneficial agreement is possible, (ii) there is a common

interest in reaching an agreement but conflict of interests over the terms and

conditions of agreement, and (iii) agreement requires mutual approval. Many

economic, social and political interactions can be described as bargaining situ-

ations. Price determination in a market, wage negotiations in labor markets,

business relations, international agreements, shopping are some examples of bar-

gaining in a daily life. Hence, better understanding the bargaining process has

become a major concern for researchers from several fields and policy makers.

Bargaining situations are commonly described as games and the analysis is based

on game-theoretic approach. Traditionally, bargaining theory attempts to address

the followings: the outcome of the bargaining game (agreement or disagreement,

division of the surplus), the factors affecting the bargaining outcome, the sources

of bargaining power, the strategies each player should play, the ways to improve a

player’s surplus from the bargaining and so on. To achieve these aims, in the lit-
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erature, there are two main approaches to bargaining problems: cooperative and

non-cooperative approach. The first one, cooperative bargaining, deals with iden-

tifying the appealing properties that a bargaining solution should satisfy. This

strand of literature starts with the seminal works Nash (1950) and Nash (1953).

He develops a 2-person bargaining problem and introduces certain axioms deter-

mining the solution uniquely. Second approach, non-cooperative bargaining, deals

with explicit specification of the bargaining games. It considers the bargaining

procedure that is ignored by the cooperative approach. Non-cooperative bar-

gaining theory is pioneered by Nash (1953), Stahl (1972) and Rubinstein (1982).

The path breaking paper of this literature, Rubinstein (1982), develops an infi-

nite horizon bargaining game with sequential offers, called as alternating offers

bargaining game, and shows the uniqueness of the subgame perfect equilibrium.

Besides the differences between these two approaches, there essentially exists a

close relationship. Binmore (1987) explores the convergence of Rubinstein’s so-

lution to Nash’ solution as discount factor goes to 1.

This thesis consists of five essays centering on bargaining theory and contributes

to both the cooperative and the non-cooperative approaches. In the first essay,

we study an infinite horizon bargaining game over a network à la Manea (2011).

In our game, the network is not exogenously given. In the first-stage, the network

is formed where the link formation is probably costly. Given the network formed

in this stage, our second stage game coincides with the one in Manea (2011).

We study two alternative cost structures for the first-stage: forming links has

(i) zero cost and (ii) non-zero cost. We characterize the subgame perfect Nash

equilibrium of this game for each specification. In the equilibria of our game,
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the bargaining power that is due to an advantageous network position in Manea

(2011) disappears since all players have equal opportunities to form links. We

also define an appropriate efficiency notion and characterize the set of efficient

networks.

The second essay of this thesis also builds upon Manea (2011) with a focus on

supply chains. We analyze an infinite horizon bargaining game between buyers

and sellers over stationary two-sided supply chain networks. We do not impose

any further restrictions on the network structure. We allow both buyers and

sellers to make offers. Furthermore, valuations of buyers are heterogeneous. We

show that the equilibrium payoffs in the bargaining game we study depend on

buyers’ valuations and all players’ network positions. As such, these two factors

are sources of bargaining power.

In the third essay, we analyze an infinite horizon alternating offers bargaining

game with reference-dependent preferences. Reference points are initially

exogenous but they are adjusted through the bargaining process according to

the received offers. Hence, past offers have the potential to affect the current

reference points. However, it is assumed that the influence expires in finitely

many periods. Further, each player perceives the offer above his reference point

as a gain and the offer below his reference point as a loss, i.e., players are both

gain-seeking and loss-averse. The equilibria of the game with limited influence

and the game with unlimited influence are compared. This comparison reveals

that the equilibrium offers are identical while the equilibrium strategies are

different.
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The fourth essay of this thesis investigates the salience (or the power) of the

reference points in determining the anchors and aspirations which are assumed

to be two major factors affecting the negotiated settlements in most cooperative

bargaining models. The papers in the literature employ the disagreement point

or the reference point as an anchor point and employ the ideal (or utopia) point

or the tempered aspirations point as an aspiration point. Nevertheless, there is no

clear explanation about the choice of a particular salient point over an alternative.

In this study, two parameters are introduced into bargaining problems with a ref-

erence point. The first parameter represents the influence (or the salience) of the

reference point in determining the anchor, while the second parameter represents

its influence in shaping agents’ aspirations. Utilizing these parameters, a unifying

framework for the study of bargaining problems with a reference point have been

provided. The two-parameter family of bargaining solutions we obtain encom-

passes Kalai-Smorodinsky (Kalai and Smorodinsky, 1975), Gupta-Livne (Gupta

and Livne, 1988), tempered aspirations (Balakrishnan, Gómez, and Vohra, 2011),

and local Kalai-Smorodinsky (Gupta and Livne, 1989) solutions as special cases.

We offer multiple characterizations for the individual members of this family.

In the fifth essay, we develop a new solution concept for two-person bargaining

problems: iterated egalitarian compromise solution. This new solution concept is

defined by using two well-known solutions concepts, egalitarian solution proposed

by Kalai (1977) and equal loss solution proposed by Chun (1988), in an iterative

fashion. The egalitarian and the equal loss solutions fail to satisfy midpoint
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domination which requires that the payoff of each player should be at least the

average of his disagreement and his ideal point outcomes. We first show that

iterated egalitarian compromise solution is well-defined. Afterwards, we prove

that iterated egalitarian compromise solution satisfies midpoint domination that

is violated by the egalitarian and equal loss solutions.
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CHAPTER 2

BARGAINING ON ENDOGENOUSLY

FORMED NETWORKS

Bilateral relationships taking place in networks is ubiquitous. Buyer-seller rela-

tionships, friendships in school or social media, interactions in job markets, sci-

entific collaborations, information exchange, supply-chains, international trade

agreements are just some examples. Theoretical and empirical research in eco-

nomics on networks in the last three decades consistently argue/show that the

network structure in general and the location of an agent in the network in partic-

ular can significantly influence the nature of the strategic interaction and corre-

sponding (equilibrium) outcomes ( see Calvó-Armengol (2003), Corominas-Bosch

(2004), Polanski (2007), Jackson (2008), Manea (2011), Abreu and Manea (2012)

and Polanski and Vega-Redondo (2013)). For instance, forming and maintain-

ing a large number of social ties likely increase a person’s chances of finding a

job. Similarly, an intermediary likely benefits from being well-connected both on

the seller-end and the buyer-end of the market. Foreseeing the importance of a

key network location, agents strategically form (or avoid) links. In this study,
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we analyze a bilateral bargaining game à la Manea (2011) over an endogenously

formed network. The bargaining game is an extension of the model developed in

Rubinstein and Wolinsky (1985) which adopts a variation of Rubinstein (1982)

with two population and random matching process.

Manea (2011) considers a model in which players are connected via an exogenously

given network. Each pair of players in a link of the network is able to produce

one-unit pie. On this network, an infinite horizon bargaining game is played.

In particular, at each period, a link is chosen with some probability and one of

the two players (in the chosen link) is randomly selected as the proposer. The

proposer makes a take-it-or-leave-it offer to concerning the division of the unit pie.

His opponent responds the offer by accepting or rejecting. If the responder accepts

the offer, then the players in the pair leave the game with agreed shares; and in the

next period they are replaced by their exact clones.1 If the responder rejects the

offer, then the players in the pair do not earn any payoffs in this period but they

remain in the game. At each period, the same random selection and bargaining

procedures are repeated. All player have the same discount factor. Manea (2011)

shows that advantageous network positions are translated into bargaining power.

More precisely, a player’s bargaining power does not depend only on the number of

links he has but also his neighbours’ positions in the network. Assume that player

i has the largest number of links in the network, however all of his neighbours have

a monopoly power on their neighbours other than i. Hence, in such a network

player i could not get a larger payoff than his neighbours have. This model

1This is an important property of the model. The replacement of the agreed pair makes the
model stationary, which makes the analysis much more tractable. This modelling assumption
is followed by Gale (1987), Manea (2011), Polanski and Lazarova (2015) and Nguyen (2012).
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provides very valuable insights about the influence of network position on one’s

bargaining outcomes. Given that an advantageous network position is crucial for

getting more of the pie in the bargaining, a natural question is: What could we

expect in an extended game where agents first strategically decide on which links

to form and then the bargaining game is played on the network that emerges? In

this essay, we tackle with this question.

We construct a two-stage game. In the first stage, the network is formed, whereas

in the second stage, a bargaining game is played on the previously formed network.

For the first stage, we employ the noncooperative network formation game of Bala

and Goyal (2000).2 More precisely, each player i announces his strategy vector,

which contains the list of players with whom he wants to form a link. Link

formation is bilateral (and in one model specification, costly). Therefore, for any

two players, i and j, for a link to be formed between them, both i and j must list

each other. The equilibrium concept we adopt for the network formation game

is pairwise Nash equilibrium. Once the network is formed, an infinite horizon

bargaining game (very similar to the one in Manea (2011)) is played. A significant

difference between the bargaining game in our model from that of Manea (2011)

is in the payoffs, which is mainly due to the presence of link formation costs.

The cost of each particular link is shared by all players (in all periods of the

bargaining game) who occupy that link. Thus, at each period, each player incurs

a fraction of the total link cost for each link he has, as long as he remains in

the game. So, linking costs are not sunk. Some examples of this setting are the

2Kranton and Minehart (2001), Corominas-Bosch (2004), Polanski and Winter (2010) and
Condorelli and Galeotti (2012)are other important papers in this literature. For the compre-
hensive survey of the network formation literature, see Myerson (1991) and Jackson (2005).
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business relationships which require certain communication technologies and/or

infrastructure to carry on a business and to continue collaboration. Similarly,

being a member of a chamber commerce or international organizations such as

OECD, WTO or NATO in order to establish relations with other member firms or

countries. The equilibrium concept we adopt for the bargaining game is subgame

perfect Nash equilibrium. We analyze two different specifications of the cost

structure: zero-cost and non-zero cost. For each cost structure, we first find the

limit equilibrium payoffs (when the discount factor goes to 1) for all possible

networks. This makes it possible to obtain a mapping from the set of possible

networks to payoffs. Then, using to these mappings, we obtain the equilibrium

outcome of the network formation game.

In case of zero cost, the limit equilibrium payoffs of the bargaining game is the

same as those in Manea (2011). He constructs a network decomposition algo-

rithm in order to describe the payoffs in the limit equilibrium. The algorithm

picks an oligopoly subnetwork at each step where such subnetwork involves a set

of players in which no pair of players have a link and the set of their neighbours.

In the equilibrium, the pie is divided among the players in a pair proportional

to the shortage ratio within an oligopoly subnetwork. The shortage ratio refers

to the relative bargaining power of the players in the link-independent set. Note

that the sole source of bargaining power is the position in the network. In the

setting with zero cost, the equilibrium outcome of the network formation game

is all equitable networks -the networks where the expected equilibrium payoff of

each agent is equal to the half of the pie. In case of non-zero cost, the continu-

ation payoffs of players are affected by linking costs since at each period players
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incur a fraction of these costs. This construction yields two factors that influence

one’s bargaining power: the position in the network and the linking costs. We

modify Manea’s network decomposition algorithm of in order to capture the ef-

fects of costs. This algorithm picks a unique oligopoly subnetwork at each step.

Within an oligopoly subnetwork, payoffs are determined according to not only

the shortage ratio but also the advantage/disadvantage provided by the linking

costs. The equilibrium set of the network formation game with non-zero link

formation costs is all equitable networks. That is, in equilibrium, one unit pie is

divided equally in expectation in all pairs of players. In both zero and non-zero

costs specifications, we have the same characterization result for the equilibrium

network.

An important consequence of letting the network to be endogenously formed is

that the differences in limit equilibrium payoffs between players (in two sides of the

oligopoly subnetworks) disappear. Intuitively, if players have equal opportunities

to choose their bargaining partners, strategic link formation incentives of the

players eliminate the differences in the limit equilibrium payoffs among players.

Finally, we study efficiency and check whether the equilibrium networks in our

game are efficient or not. In our model, efficiency boils down to maximizing the

aggregate utility taking into account link formation costs across all players in the

society. We obtain the following characterization result concerning efficient net-

works: a network is efficient if and only if it is a disjoint union of cycles with odd

number of vertices and subgraphs with even number of vertices. Consequently,

the endogenously formed networks in our equilibria can be covered by such a
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union; hence they are efficient.

The rest of the essay is organized as follows. The next section defines the bench-

mark model and reports the results of endogenous link formation with zero costs

and non-zero costs. Section 2 focuses on the efficiency of equilibrium networks.

Section 3 concludes.

2.1 Model and Results

The set of players is N = {1, 2, . . . , n}. For each pair of players (i, j) ∈ N × N ,

we use shorthand ij. A network G is the subset of links {ij|i 6= j, i, j ∈ N}. If

ij ∈ G, i and j are connected. Denote the set of all possible undirected networks

as Ω.

2.1.1 Manea (2011)

Since our model shares a lot with Manea (2011), we first introduce the model

developed by him. Building upon this benchmark model, we incorporate en-

dogenous network structure with zero and non-zero linking costs. Manea (2011)

constructs the following infinite horizon bargaining game over an exogenously

given network G ∈ Ω. Let (pij)ij∈G be the probability distribution over the links

in G, which defines the matching probabilities of players. A link ij ∈ G means

that i and j are able to produce one unit pie and they bargain over how to divide

the pie. At each period t = 0, 1, . . ., a link ij ∈ G is chosen with probability pij

and one of two players in the chosen link is randomly selected as the proposer.
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Say player i is selected. Player i makes an offer to j concerning the division of the

unit pie, and player j responds to the offer by accepting or rejecting. If player j

accepts the offer, i and j leave the game with their respective agreed shares. In

period t+ 1, two new players take i and j’s positions. Here, assume that for each

player i, there are infinitely many players of type i, i.e., i = {i1, i2, . . . , iτ , . . .},

where a player’s type represents his position in the network. If j rejects the offer,

i and j remain in the game. In period t + 1, the same bargaining procedure

is repeated. Link selection probabilities is independent across periods. Players

discount the future payoffs and all players have the same discount rate, δ ∈ (0, 1).

The bargaining game with discount rate δ is denoted by Γδ. Finally, players have

perfect information.

Subgame perfect Nash equilibrium is employed as a solution concept. The equi-

librium payoff vector of the game Γδ is denoted by (v∗δi )i∈N . The equilibrium

agreement network is the subnetwork of G which only involves the links such

that agreeing provides the players at the nodes more payoff than proceeding to

the next period does. Formally, the equilibrium agreement network of Γδ, G∗δ,

is defined as the subnetwork of G that only consists of the links ij satisfying

δ(v∗δi + v∗δj ) ≤ 1. The limit equilibrium network, denoted by G∗, is the network

that G∗δ converges to as δ goes to 1 and the limit equilibrium payoff vector, v∗,

is the payoff vector that v∗δ converges to as δ goes to 1.

Manea (2011) also constructs a network decomposition algorithm by which the

equilibrium payoffs are easily calculated. Some additional notation is needed in

order to introduce the algorithm. For every network G and a subset of players
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M , LG(M) denotes the set of players who have a link in G (hereafter G-link)

with the players in M i.e., LG(M) = {j|ij ∈ G, i ∈ M}. A set of players is

G-independent if there does not exist any G-link between any of two players in

the set. A set of players is mutually estranged if it is G∗-independent. The set of

nonempty G-independent sets is denoted as I(G).

Network Decomposition Algorithm, A(G): For a given network G ∈ Ω,

the algorithm generates the sequence (rs,Ms, Ls, Ns, Gs)s∈N as follows where s

denotes the step of the algorithm:

Let N1 = N and G1 = G.

For s ≥ 1:

If Ns = ∅, then STOP.

Otherwise, let

rs = min
M⊂Ns,M∈I(G)

|LGs(M)|
|M |

.

If rs ≥ 1, then STOP.

Else, set Ms as the union of all minimizers M . Let Ls = LGs(Ms).

Denote Ns+1 = Ns \ (Ms ∪Ns) and Gs+1 be the induced subnetwork of G

by the players in Ns+1.

Denote by s̄ the step at which the algorithm STOPs.

The algorithm decomposes a given network. At each step, it identifies the mu-
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tually G-independent sets that achieve the lowest shortage ratio. (The ratio

|LG(M)|/|M | is called as shortage ratio.) As long as the shortage ratio is less

than 1, the algorithm picks the union of these minimizers and the partner set

of this union. Call the subnetwork which is induced by the players in the union

of these minimizers and its partner set as an oligopoly subnetwork. Then, the

picked players and their links are removed from the network. In the next step, the

algorithm is repeated with the network induced by the remaining players. The

decomposition algorithm stops when all players are removed from the network or

there does not exist any oligopoly subnetwork.

The outcome of generated by the algorithm A(G) determines the payoffs in the

limit equilibrium which are given by the following theorem. One of the main

results is that any discount factor δ induces the same payoffs in the equilibrium.

Theorem 1 (Manea (2011)). (Limit Eq. Payoffs) Let (rs,Ms, Ls, Ns, Gs)
s̄
s=1

be the sequence defined by the algorithm A(G) where s̄ is the step at which the

algorithm terminates and let G∗ be the equilibrium network. The limit equilibrium

payoffs for Γδ as δ → 1 are given by

∀s < s̄, ∀i ∈Ms, v
∗
i =

|Ls|
|Ls|+ |Ms|

,

∀s < s̄, ∀j ∈ Ls, v∗j = 1− |Ls|
|Ls|+ |Ms|

,

∀k ∈ Ns̄, v
∗
k =

1

2
.

Within the oligopoly subnetworks, the unit pie is shared in line with the shortage
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ratio rs between two sides of the subnetwork in the limit equilibrium. Players at

the same side have identical payoffs. However, the payoffs are differentiated across

two sides of an oligopoly subnetwork. Players in the short side obtain more share

from the pie than those at the long side obtain. It is noteworthy to emphasize

that the limit equilibrium payoffs show that bargaining power is determined not

only by the number of links the player has but also by the position of the player

in the network.

2.1.2 Endogenous Link Formation

In Manea (2011), the network structure is influential in determining the equilib-

rium payoffs of players. Inspiring by this result, the following question naturally

arises: what would change in the equilibrium payoffs in an extended game where

the network structure is endogenous? The idea of endogenous link formation is

motivated by the simple observation that in real life players decide their con-

nections individually to maximize their benefits. Accordingly, we develop a two

stage model of bargaining over an endogenously formed network. The first stage

is devoted to the network formation game. Following Bala and Goyal (2000), we

use a simultaneous move game for link formation. We analyze two specifications

of the model: zero linking costs and non-zero linking costs. In the second stage,

players play an infinite horizon bargaining game concerning the division of a unit

pie on the network formed in the first stage.

Network Formation Game: Each player type i ∈ N announces his strategy

gi = {gi1, gi2, . . . , gii−1, gii+1, . . . , gin} ∈ {0, 1}n−1. The interpretation of gij = 1 is
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that player i wishes to form a link with j and the interpretation of gij = 0 is that

player i does not wish to form a link with j. We only consider pure strategies.

We assume that a player cannot form a link with himself. Let Gi be the set of

strategies of player i. Link formation is bilateral. In other words, forming a link

requires a mutual consent of two players. In one specification of the model, link

formation is also costly, in the sense that it needs some time and effort. Players

in both nodes of a link incur the linking cost. Denote the total cost that player i

incurs for each link he has by TCi. Linking costs are independent across players.

Define a correspondence φ : (G1,G2, . . . ,Gn) −→ Ω which maps the strategies of

players to a network such that φ(g) = G.

We have n positions in the network and each position is reserved to each type of

i ∈ N . Hence, we define a sequence i0, i1, . . . , iτ , . . . of players of type i, for each

i ∈ N in order to have stationarity of the game. The network is formed by the

first generation before the bargaining stage. Players play the following infinite

horizon bargaining game on the network previously formed.

Bargaining Game: Let G be the network formed in the first stage (the outcome

of the network formation game). If ij ∈ G, then i and j are able to produce a

unit pie and they can bargain over how to divide the pie. The infinite horizon

bargaining game is adopted from Manea (2011). Differently, among the links in

the network G, a link ij is selected with equal probability, i.e., pij = 1/total

number of links in G. Further, in the model with non-zero costs, the total cost

of link formation is shared by all players who occupy this link over the periods of

bargaining game. Formally, at each period, each player i ∈ N incurs a cost ci for
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each link he has. So, at each period he incurs a total cost lGi ci where lGi denotes

the number of links that player i has in the network G. Hence, TCi =
∑∞

t=0 δ
tci

which is mathematically equivalent to that for all i ∈ N ,

ci = (1− δ)TCi.

Note that for any player i ∈ N , TCi ≥ 0 and player i’s total linking cost is less

than or equal to the size of the pie, i.e., lGi TCi ≤ 1. The strategy of player i

in the bargaining game is denoted by σiτ which consists of offers of player i and

responds to the offers he received. For each i ∈ N , if the share of i induced by

an offer at some period t of the bargaining game is equal to vi and if the offer is

accepted, then the payoff of i at that period in the network G is defined as

ui(G) = vi − lGi ci.

We will denote the equilibrium share vector of the game Γδ as (v∗δi )i∈N . Then,

the equilibrium payoff vector of the game Γδ is

u∗δi (G) = v∗δi − lGi ci

Also, define the equilibrium agreement network of the game Γδ, G∗δ, as subnet-

work of G which only involves the links ij satisfying δ(v∗δi + v∗δj ) ≤ 1. G∗ is the

limit equilibrium agreement network, u∗ is the limit equilibrium payoff vector as

δ goes to 1.
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The network formation game that we employ is simple and easily tractable. For

this game, we employ pairwise Nash equilibrium concept, a refinement of Nash

equilibrium.3

Definition 1. A strategy gPNE ∈ G is a pairwise Nash equilibrium of the network

formation game if for every player i ∈ N , u∗i (φ(gPNE)) ≥ u∗i (φ(gi, g
PNE
−i )) for every

gi ∈ Gi and there does not exist any pair of players (i, j) such that

u∗i (φ(gPNE) + ij) ≥ u∗i (φ(gPNE)) and

u∗j(φ(gPNE) + ij) > u∗j(φ(gPNE)).

A network GPNE is a pairwise Nash network if there exists a pairwise Nash

equilibrium gPNE such that φ(gPNE) = GPNE.

Nash equilibrium concept is a weaker notion than pairwise Nash equilibrium,

since it only accounts for individual deviations. For instance, the empty network

is always a Nash network. However, link formation requires mutual consent in our

model. Hence, we also want to consider the bilateral moves by using pairwise Nash

equilibrium concept that is immune both to single link deletions and bilateral link

creations.

3See Calvó-Armengol (2004), Bloch and Jackson (2006) and Calvó-Armengol and İlkılıç
(2009) for other studies that use this equilibrium concept.
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Endogenous Link Formation with Zero Cost

We first analyze the specification of the model where link formation is cost-

less. Assume that for each i ∈ N , ci = 0. So, the bargaining game reduces

to Manea (2011)’s bargaining game with equal matching probabilities. Using

his limit equilibrium payoff results, we find the pairwise Nash equilibrium of the

network formation game.

Next theorem provides a characterization of networks that are endogenously

formed. When we allow players to form their links, they form a network in

which an oligopoly subnetwork does not exist. The bargaining game on such a

network ends up with an equal division of the pie (1/2) among the players of each

pair in the limit equilibrium. Formally, the outcome of the network formation

game is an equitable network, which is defined as the network where each player

obtains identical payoff in the limit equilibrium.

Theorem 1. A strategy gPNE is a pairwise Nash equilibrium of the network

formation game if and only if for all i ∈ N , u∗i (φ(gPNE)) = 1/2. (The induced

network GPNE by the strategy profile gPNE is equitable.)

Proof of Theorem 1. Suppose that gPNE is a pairwise Nash equilibrium of the

network formation game. Assume that there exists a player i ∈ N such that

u∗i (φ(gPNE)) 6= 1/2. Then, u∗i (φ(gPNE)) < 1/2 or u∗i (φ(gPNE)) > 1/2.

Case 1. u∗i (φ(gPNE)) < 1/2.

In this case, for some step s < s̄ of the algorithm A(G), i belongs to Ms

and |Ls|/|Ms| < 1. Hence, there exists a player j ∈ Ms such that LGs({i}) ∩
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LGs({j}) 6= ∅. If we add the link ij to the network, we will have

u∗i (φ(gPNE) + ij) =
1

2
> u∗i (φ(gPNE)) and

u∗j(φ(gPNE) + ij) =
1

2
> u∗j(φ(gPNE)).

So, gPNE is not a pairwise Nash equilibrium of the network formation game,

which contradicts with our supposition.

Case 2. u∗i (φ(gPNE)) > 1/2.

In this case, for some step s < s̄ of the algorithm A(G), i belongs to Ls. Then,

there exists a player j ∈ Ms such that u∗j(φ(gPNE)) < 1/2. So, following similar

arguments to Case 1 for player j leads to a contradiction with our supposition.

Hence, for all i ∈ N , u∗i (φ(gPNE)) = 1/2.

Now, for the other part of the theorem, suppose that for all i ∈ N , u∗i (φ(g)) = 1/2.

Hence, for all mutually estranged sets M , |LG(M)|/|M | ≥ 1. Assume that g is

not a pairwise Nash equilibrium.

Adding a link to the network does not change the shortage ratio rs for all s which

is minimized in the decomposition algorithm. Hence, there does not exist any

pair of players (i, j) such that

u∗i (φ(g) + ij) ≥ u∗i (φ(g)) and

u∗j(φ(g) + ij) > u∗j(φ(g)).
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Therefore, g violates the first condition of the pairwise Nash equilibrium defi-

nition. Hence, there exists a player i and a strategy of him g′i ∈ Gi such that

u∗i (φ(g′i, g−i)) > u∗i (φ(g)). Let φ(g′i, g−i) = G′ and φ(g) = G. So, in G′, there

exists a mutually estranged set M with LG
′
(M) = L such that |L|/|M | < 1 and

i ∈ L. Since any change in the strategy of player i does not affect the links of the

players in M with other players, we get |L| = |LG′(M)| ≥ |LG(M)|, which con-

tradicts with the fact that for all mutually estranged sets M , |LG(M)|/|M | ≥ 1.

It follows that g is a pairwise Nash equilibrium of the network formation game.

Endogenous Link Formation with Non-Zero Cost

In this section, we assume that there exists at least one player whose linking

cost is different than zero. We start by analyzing the second stage of the game:

bargaining stage. Hence, let G be the network formed in the first stage: network

formation game. Firstly, we show that in every subgame, the expected payoff of

each existing player in the network at that period is uniquely determined.

Theorem 2. For all δ ∈ (0, 1), there exists a share vector (v∗δi )i∈N such that in

every subgame perfect equilibrium of Γδ, the expected share of existing player iτ

of type i is uniquely given by v∗δi for all i ∈ N , τ ≥ 0. For every δ ∈ (0, 1), in

any equilibrium of Γδ, in any subgame where the link iτjτ ′ is selected and iτ is

the proposer, for each i ∈ N the followings statements hold with probability one:

(1) if δ((v∗δi − lGi ci) + (v∗δj − lGj cj)) < 1, then iτ offers δ(v∗δj − lGj cj)) and jτ ′
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accepts.

(2) if δ((v∗δi − lGi ci) + (v∗δj − lGj cj)) > 1, then iτ makes an offer that is rejected

by jτ ′.

Before moving on to the proof of Theorem 2, we need the following lemma.

Lemma 1. For all ω1, ω2, ω3, ω4 ∈ R,

|max{ω1, ω2} −max{ω3, ω4}| ≤ max{|ω1 − ω3|, |ω2 − ω4|}.

Proof of Theorem 2. For each i ∈ N , let vδi and v̄δi be the infimum and supremum

of the expected shares of iτ in any subgame for all τ ≥ 0 in every subgame perfect

equilibrium of Γδ. For each player i ∈ N , li denotes the number of links that i

has and l denotes the number of total links in G.

Consider a subgame perfect equilibrium. Suppose that the link ij is chosen and

i is selected as the proposer. No player of type j will accept an offer smaller than

δ(vδj − ljcj), so i can get a share of at most 1− (vδj − ljcj). Moreover, any player

of type i accepts any offer larger than δ(v̄δi − lici), since when he rejects the offer,

he gets at most δ(v̄δi − lici). So, no player offers him more than δ(v̄δi − lici) in the

equilibrium.

Now, suppose that i is not a member of chosen link, i’s continuation share from

the pie is at most δ(v̄δi − lici). So, for each τ ≥ 0, the following is hold:
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vδiτ ≤ (1− li
2l

)δ(v̄δi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(vδj − ljcj), δ(v̄δi − lici)}. (2.1)

Since the inequality (2.1) holds for all players of type i, it also holds for v̄δi .

Therefore,

v̄δi ≤ (1− li
2l

)δ(v̄δi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(vδj − ljcj), δ(v̄δi − lici)}. (2.2)

Consider that i deviates from his equilibrium strategy by offering δ(v̄δj − ljcj) + ε

(ε > 0) to any player of type j and offering zero to other players. Player j will

accept the offer in any subgame perfect equilibrium. Also, player i rejects all

offers that he will receive. So, for each τ ≥ 0 and for all deviations (ε > 0), above

cases are captured by the following inequality:

vδiτ ≥ (1− li
2l

)δ(vδi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(v̄δj − ljcj)− ε, δ(vδi − lici)}

When the deviation from equilibrium strategy converges to zero (ε→ 0),
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vδiτ ≥ (1− li
2l

)δ(vδi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(v̄δj − ljcj), δ(vδi − lici)}. (2.3)

Since the inequality (2.3) holds for all players of type i, it also holds for vδi .

Therefore,

vδi ≥ (1− li
2l

)δ(vδi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(v̄δj − ljcj), δ(vδi − lici)}.

In order to show the equality of infimum and supremum of the expected shares

for each player, we look at the difference between them. Let D = max
k∈N

v̄δk − vδk.

Take any i ∈ arg max
k∈N

v̄δk − vδk.

D = v̄δi − vδi

≤ (1− li
2l

)δ(v̄δi − vδi ) +
1

2l

∑
{j|ij∈G}

[max{1− δ(vδj − ljcj), δ(v̄δi − lici)}

−max{1− δ(v̄δj − ljcj), δ(vδi − lici)}]

≤ (1− li
2l

)δD +
1

2l

∑
{j|ij∈G}

max{|δv̄δj − δvδj |, |δv̄δi − δvδi |}

= (1− li
2l

)δD +
1

2l

∑
{j|ij∈G}

δmax{v̄δj − vδj , v̄δi − vδi}

= (1− li
2l

)δD +
1

2l
δDli

= δD
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Hence, D ≤ δD. Since D ≥ 0 and δ ∈ (0, 1), we have D = 0.

For each player, the difference between the infimum and supremum of the ex-

pected shares is zero. Hence, for all k ∈ N , v̄δk = vδk. Then, for all i ∈ N , we can

write the following equality

v̄δi = (1− li
2l

)δ(v̄δi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(v̄δj − ljcj), δ(v̄δi − lici)}, (2.4)

which means that v̄δi = vδi = v∗δi .

To prove the uniqueness of the solution to equation (2.4), we need to define a

function f δ : [0, 1]n ←→ [0, 1]n such that for all i ∈ N ,

f δi (v) = (1− li
2l

)δ(vi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(vj − ljcj), δvi}

We argue that the function f δ has a fixed point by using the contraction mapping

theorem. It is enough to prove the following lemma to obtain the uniqueness.

Lemma 2. f δ is a contraction mapping with respect to sup norm on Rn.

Proof of Lemma 2. The proof is relegated to the Appendix.

This concludes the proof of Theorem 2.
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It is important to note that the expected share of any player i ∈ N is given by

vδi = (1− li
l
)δ(vδi −lici)+

li
2l
δ(vδi −lici)+

1

2l

∑
{j|ij∈G}

max{1−δ(vδj−ljcj), δ(vδi −lici)}

The probability that any link of i is not selected is equal to (1 − li/l) and his

expected share is vδi in the next period. First part of the equation covers this

case. Second part of the equation covers the case where a link of i is selected but

i is not the proposer. The other player makes an offer δ(vδi − lici) or any offer

which is rejected by i and so his continuation payoff is also equal to δ(vδi − lici).

In the third part, a link of i is selected (say ij) and i is the proposer. i makes an

offer δ(vδj − ljcj) or i makes an offer which will be rejected by player j.

Expected share of any player i ∈ N is equivalent to

vδi = (1− li
2l

)δ(vδi − lici) +
1

2l

∑
{j|ij∈G}

max{1− δ(vδj − ljcj), δ(vδi − lici)}.

In any equilibrium, for each δ satisfying δ((v∗δi − lici) + (v∗δj − ljcj)) 6= 1 for

all ij ∈ G, whether the bargaining ends up with agreement or disagreement is

captured in Theorem 2. Next lemma completes this analysis by examining the

discount factors δ satisfying δ((v∗δi − lici) + (v∗δj − ljcj)) 6= 1 and shows that the

set of such discount factors is finite.

Lemma 3. The inequality δ((v∗δi − lici) + (v∗δj − ljcj)) 6= 1, ∀ij ∈ G holds for all
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but a finite set of δ.

Proof of Lemma 3. The proof is relegated to the Appendix.

The following result identifies the bound for δ to obtain both the existence of

a limit equilibrium network G∗ and the existence of limit equilibrium shares as

players become more patient.

Theorem 3. There exists a bound δ and a subnetwork G∗ of G such that for all

values of δ > δ, G∗δ is equal to G∗. Moreover, the equilibrium share vector at δ

converges to v∗ as δ goes to 1.

Proof of Theorem 3. The proof follows from Lemma 3 and the proof of Theorem

2* in Manea (2011), which is stated below.

Theorem 2* (Manea (2011)): (i) There exists δ ∈ (0, 1) and a subnetwork

G∗ of G such that the equilibrium agreement network G∗δ of Γδ equals G∗ for all

δ > δ. (ii) The equilibrium payoff vector v∗δ of Γδ converges to a payoff vector

v∗ ∈ [0, 1]n as δ tend to 1.

By Theorem 2, we know that one of the determinants of the equilibrium shares is

the positions of the players in the network. Hence, investigating the structure of

the network that is formed will provide cues about the limit equilibrium payoffs

of the players. Next theorem identifies the bounds on the limit equilibrium shares

of players who get the highest share and the lowest share in a mutually estranged

set of a network.
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Theorem 4. For all mutually estranged set M with LG(M) = L, the following

inequalities hold:

min
i∈M

v∗i ≤
|L|

|L|+ |M |
+

∑
j∈L

lGj TCj

|L|+ |M |
−

∑
i∈M

lGi TCi

|L|+ |M |

max
j∈L

v∗j ≥
|M |

|L|+ |M |
+

∑
i∈M

lGi TCi

|L|+ |M |
−

∑
j∈L

lGj TCj

|L|+ |M |
.

For the proof of the theorem, we need the following lemma which identifies the

division of the pie between players of a pair in the limit equilibrium. In a network

G, the produced pie by a link is not wasted. The sum of the limit equilibrium

shares of players in the nodes of a link from the pie is equal to 1. In particular,

the limit equilibrium network G∗ only includes the agreement links.

Lemma 4. If ij ∈ G, then v∗i + v∗j ≥ 1 and if ij ∈ G∗, then v∗i + v∗j = 1.

Proof of Lemma 4. The proof is relegated to the Appendix.

Proof of Theorem 4. For all δ and for any player i, we can write the equilibrium

share as follows

v∗δi = − δ

1− δ
lGi ci +

1

1− δ
1

2lG

∑
{j|ij∈G}

max{1− δ(v∗δj − lGj cj)− δ(v∗δi − lGi ci), 0}.

Now, take any mutually estranged set M with LG(M) = L and take δ > δ. For
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all i, define the number of links that he has as li = lGi . For all players i in the

mutually estranged set M ,

v∗δi = − δ

1− δ
lici +

1

1− δ
1

2l

∑
{j|ij∈G}

max{1− δ(v∗δj − ljcj)− δ(v∗δi − lici), 0}. (2.5)

If the link ij is not a G∗−link, the players i and j could not reach an agreement

on the division of the pie. Hence, in the second part of the equation (6), max{1−

δ(v∗δj − ljcj)− δ(v∗δi − lici), 0} = 0.

Since the players in M has G∗−links only with the players in L, we rewrite the

equation (2.5) as follows:

v∗δi =
1

1− δ
1

2l

∑
{j|ij∈G,j∈L}

max{1−δ(v∗δj − ljcj)−δ(v∗δi − lici), 0}−
δ

1− δ
lici. (2.6)

For each j ∈ L,

v∗δj =
1

1− δ
1

2l

∑
{k|kj∈G}

max{1− δ(v∗δk − lkck)− δ(v∗δj − ljcj), 0} −
δ

1− δ
ljcj.

Applying similar arguments that are used in equation (2.6), we have
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v∗δj ≥
1

1− δ
1

2l

∑
{i∈M |ij∈G}

max{1−δ(v∗δi − lici)−δ(v∗δj − ljcj), 0}−
δ

1− δ
ljcj. (2.7)

By taking the summation of (2.6) over all i ∈ M and taking the summation of

(2.7) over each j ∈ L, we get

∑
i∈M

v∗δi =
1

1− δ
1

2l

∑
{ij∈G|i∈M,j∈L}

max{1−δ(v∗δj − ljcj)−δ(v∗δi − lici), 0}−
∑
i∈M

δ

1− δ
lici. (2.8)

and

∑
j∈L

v∗δj ≥
1

1− δ
1

2l

∑
{ij∈G|i∈M,j∈L}

max{1− δ(v∗δj − ljcj)− δ(v∗δi − lici), 0}−
∑
j∈L

δ

1− δ
ljcj (2.9)

The first part of the summations is the same in both (2.8) and (2.9). Then, we

obtain the following simple inequality

∑
j∈L

(v∗δj +
δ

1− δ
ljcj) ≥

∑
i∈M

(v∗δi +
δ

1− δ
lici). (2.10)

Since the total linking cost is shared by all players over periods, for each player

i, the incurred cost of each link he has is equal to (1 − δ)TCi. Substituting the
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equality ci = (1− δ)TCi in (2.10), we have

∑
j∈L

(v∗δj + δljTCj) ≥
∑
i∈M

(v∗δi + δliTCi).

When players become more patient, as δ → 1,

∑
j∈L

(v∗j + ljTCj) ≥
∑
i∈M

(v∗i + liTCi). (2.11)

By using the trivial observations that for all k ∈ L, max
j∈L

v∗j ≥ v∗k and for all l ∈M ,

min
i∈M

v∗i ≤ v∗l , we rewrite the inequality (2.11) as

|L|max
j∈L

v∗j +
∑
j∈L

ljTCj ≥ |M |min
i∈M

v∗i +
∑
i∈M

liTCi.

Take any player i whose limit equilibrium payoff is equal to the minimum limit

equilibrium payoff in M , i.e., i ∈ {k ∈ M |v∗k = min
i∈M

v∗i }. Also, take any player ĵ

who has a G∗-link with i, i.e., ĵ ∈ LG∗(i). So,

min
i∈M

v∗i = vi = 1− vĵ ≥ 1−max
j∈L

v∗j . (2.12)

(the second equality follows from Lemma 4)

Take any player j̄ whose limit equilibrium payoff is equal to the maximum limit

equilibrium payoff in L, i.e., j̄ ∈ {k ∈ L|v∗k = max
j∈L

v∗j}. Meanwhile, take any

player î who has a G∗-link with j̄, i.e., î ∈ LG∗(j̄). So,
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max
j∈L

v∗j = vj̄ = 1− vî ≤ 1−min
i∈M

v∗i . (2.13)

(the second equality follows from Lemma 4)

The inequalities (2.12) and (2.13) imply that min
i∈M

v∗i = 1 − max
j∈L

v∗j . Then, by

using this equality

|L|max
j∈L

v∗j +
∑
j∈L

lGj TCj ≥ |M |min
i∈M

v∗i +
∑
i∈M

lGi TCi ≥ |M |(1−max
j∈L

v∗j ) +
∑
i∈M

lGi TCi.

Utilizing above inequality, the followings

min
i∈M

v∗i ≤
|L|

|L|+ |M |
+

∑
j∈L

lGj TCj

|L|+ |M |
−

∑
i∈M

lGi TCi

|L|+ |M |

max
j∈L

v∗j ≥
|M |

|L|+ |M |
+

∑
i∈M

lGi TCi

|L|+ |M |
−

∑
j∈L

lGj TCj

|L|+ |M |

conclude the proof.

In the bargaining game, there are two determinants of bargaining outcome: the

bargaining power provided by the network structure and the linking costs of the

players. The first determinant depends on the position of a player in the network,

number of links he has and also the position of his neighbours. Both the network

position and linking costs affect the continuation payoff of a player. Theorem 4

32



that identifies the bounds on limit equilibrium shares of players provides a clue

about the impact of both determinants on the limit equilibrium of the game.

The former one is captured by the first part of the summation in the bound,

|L|/(|L|+ |M |). The latter one is captured by the term in the remaining part of

the summation. In the oligopoly subnetworks, the players in the set L (short side)

have a higher bargaining power compared to the players in M (long side) due to

network structure. The impact of linking costs on the bargaining outcome should

not make all the players in M better than the players in L. There should exist at

least one player in M who is still be less advantageous than the players in L. The

advantage/disadvantage obtained from the linking costs should not dominate the

advantage/disadvantage obtained from the network structure. This condition is

captured by the following assumption.

Assumption 1. For all subsets of players M and M ′ in a network G such that

|LG(M)|/|M | < |LG(M ′)|/|M ′| the following holds:

∑
j∈LG(M)

lGj TCj

|LG(M)|+ |M |
−

∑
i∈M

lGi TCi

|LG(M)|+ |M |
<

∑
j∈LG(M ′)

lGj TCj

|LG(M ′)|+ |M ′|
−

∑
i∈M ′

lGi TCi

|LG(M ′)|+ |M ′|
.

The oligopoly subnetworks that have same shortage ratio are identical in the

zero-cost framework. However, in the framework with heterogeneous costs, these

subnetworks are differentiated. Hence, we modify the network decomposition

algorithm of Manea (2011) by incorporating the cost of link formation.

Network Decomposition Algorithm with Costly Links, AC(G): For a
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given network G ∈ Ω, the algorithm generates the sequence (rs,Ms, Ls, Ns, Gs)s

as follows:

Let N1 = N and G1 = G.

For s ≥ 1:

If Ns = ∅, then STOP.

If not, let

rs = min
M⊂Ns,M∈I(G)

|LGs(M)|
|M |

. (2.14)

If rs < 1, then define the family

Ns =
{
M ⊆ Ns|rs =

|LGs(M)|
|M |

}

If |Ns| > 1, then define the component set of the network Gs.

Cs = {G′ ⊆ Gs|∃M ∈ Ns s.t. M ∈ G′ and G′ is a component of Gs}

Ms = {M ⊆ Ns|∃G′ ∈ Cs s.t. M is the largest mutualy estranged set in G′}

Otherwise,

if rs = 1 and |M | = |LGs(M)| = 1, then

Ms =
{
M ⊆ Ns|rs = 1 and |M | = 1

}
.
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Else, STOP.

Let Ms be union of all mutually estranged sets M in Ms that minimizes

∑
j∈LGs (M)

lGj TCj

|LGs(M)|+ |M |
−

∑
i∈M

lGi TCi

|LGs(M)|+ |M |
. (2.15)

Denote Ls = LGs(Ms). Let Ns+1 = Ns\(Ms∪Ls) and Gs+1 be the subnetwork

of G induced by the players in Ns+1. Denote by s̄ the step at which the algorithm

ends.

Initially, take the formed network in the network formation game. At each step,

the algorithm chooses the sets that minimize the shortage ratio rs. In case of

multiple minimizer sets, it considers the components of the network. Note that a

component of a network is defined as the maximal connected subnetwork of the

network. Since the players incur a cost for each own link, having a common neigh-

bour will also affect the payoffs. So, in each component, it chooses the maximal

set among the minimizer sets. If the number of these maximal sets is more than

one, in other words if we have more than one component involving a minimizer

set in the active network at step s, compare the advantage or disadvantage pro-

vided by linking costs. This is followed by taking the largest set that minimizes

this advantage/disadvantage. Remove the players and links that belong to this

chosen component from the network. The algorithm terminates when there are

no mutually estranged sets of players that make the shortage ratio less than one.

Lemma 5. The network decomposition algorithm with costly links, AC(G), gen-

erates a unique sequence (rs,Ms, Ls, Ns, Gs)s, for all s = 1, 2, . . . , s̄.
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Proof of Lemma 5. The proof is relegated to the Appendix.

Next lemma gives the monotonicity properties of shortage ratio.

Lemma 6. Let the sequence (rs,Ms, Ls, Ns, Gs)s=1,2,...,s̄ be defined by the algo-

rithm AC(G). For any s′ < s (< s̄),

|Ls′|
|Ls′ |+ |Ms′ |

≤ |Ls|
|Ls|+ |Ms|

.

Proof of Lemma 6. The proof is relegated to the Appendix.

The outcome of the decomposition algorithm with costly links, AC(G), provides

the limit equilibrium payoffs which are given by the following theorem.

Theorem 5. Suppose that in the network formation game, the network G is

formed. Let the algorithm AC(G) yields the outcome (rs,Ms, Ls, Ns, Gs)s=1,2,...,s̄.

Then the limit equilibrium payoffs as δ → 1 are given by

∀s < s̄, ∀i ∈Ms, u
∗
i (G) = v∗i =

|Ls|
|Ls|+ |Ms|

+

∑
j∈Ls

lGj TCj

|Ls|+ |Ms|
−

∑
i∈Ms

lGi TCi

|Ls|+ |Ms|
,

∀s < s̄, ∀j ∈ Ls, u∗j(G) = v∗j =
|Ms|

|Ls|+ |Ms|
+

∑
i∈Ms

lGi TCi

|Ls|+ |Ms|
−

∑
j∈Ls

lGj TCj

|Ls|+ |Ms|
,

∀k ∈ Ns̄, u
∗
k(G) = v∗k =

1

2
.

Proof of Theorem 5. The proof of the theorem proceeds by induction on s. Sup-

pose that the claim is hold for all s′ < s. Now, prove it for s.
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Case 1. s < s̄

Let Ms and Ls be the sets that are generated from the algorithm AC(G) at step

s. Define the minimum limit equilibrium share as xs = min
i∈Ns

v∗i . For notational

convenience, let for all i, li = lGi . Also, define

M s = {k ∈Ms|v∗k = xs} and Ls = LGs(M s).

M s is the set of players who have the minimum limit equilibrium share in Ns

and Ls is the partner set of M s in the network Gs.

Claim 1. xs ≤
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|

For a contradiction, suppose that

xs >
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|
.

First, we identify the set of players who have G∗-links with players in Ms. Take

any j ∈ Ls′ where s′ ∈ {1, 2, . . . , s− 1}. By induction hypothesis,

v∗j =
|Ms′|

|Ls′|+ |Ms′|
+

∑
i∈Ms′

liTCi

|Ls′|+ |Ms′|
−

∑
j∈Ls′

ljTCj

|Ls′ |+ |Ms′ |

Then, we add up the limit equilibrium payoff of a player in Ms and j to determine

whether they have an agreement link. For all players i ∈Ms,
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v∗i + v∗j ≥ xs +
|Ms′|

|Ls′ |+ |Ms′ |
+

∑
i∈Ms′

liTCi

|Ls′|+ |Ms′|
−

∑
j∈Ls′

ljTCj

|Ls′ |+ |Ms′ |

>
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|

|Ms′|
|Ls′ |+ |Ms′ |

+

∑
i∈Ms′

liTCi

|Ls′ |+ |Ms′ |
−

∑
j∈Ls′

ljTCj

|Ls′|+ |Ms′|
.

Second inequality follows from our supposition. Since |Ls′ |/(|Ls′ | + |Ms′ |) ≤

|Ls|/(|Ls|+ |Ms|) by Lemma 6, we have

v∗i + v∗j > 1 +

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|

+

∑
i∈Ms′

liTCi

|Ls′ |+ |Ms′ |
−

∑
j∈Ls′

ljTCj

|Ls′|+ |Ms′|
.

Utilizing Assumption 1, we get v∗i (G) + v∗j (G) > 1. So, i does not have a G∗-link

with the player j, which means that no player i ∈ Ms has G∗-links to players

j ∈ L1 ∪ L2 ∪ . . . ∪ Ls−1. Also, by construction of the decomposition algorithm,

Ms is a mutually estranged set implying that Ms is a G∗-independent set. Then,

we have LG
∗
(Ms) ⊆ Ls. Theorem 4 implies that

min
i∈Ms

v∗i ≤
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|
.

Utilizing the definition of xs,
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xs ≤
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|
,

which contradicts with our supposition.

Claim 2. xs ≥
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|

Assumption 1 implies that

|Ls|
|Ls|+ |Ms|

+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|
<

|Ms|
|Ls|+ |Ms|

+

∑
i∈Ms

liTCi

|Ls|+ |Ms|
−

∑
j∈Ls

ljTCj

|Ls|+ |Ms|

Hence, xs < 1/2. By Lemma 1 and Claim 1 (that we proved above), for all

j ∈ Ls, v∗j ≥ 1− xs > 1/2. Thus, Ls is a G∗-independent set.

Now, take any j ∈ Ls. Since for all players k ∈ Ns \ M s, v
∗
k(G) + v∗j (G) >

xs + 1− xs = 1, there exists no G∗-link from j to players in Ns \M s.

By the construction of the algorithm, there exist no G-link between j and a player

in Ms′ where s′ ∈ {1, 2, . . . , s − 1}. Further, by Assumption 1 and induction

hypothesis, v∗k ≥ 1/2 for all k ∈ Ls′ where s′ ∈ {1, 2, . . . , s − 1}, implying that

v∗k +v∗j > 1. Hence, there exists no G∗-link from j to players in L1∪L2∪ . . . Ls−1.

Therefore, j has G∗-links only with players in M s, i.e., LG
∗
(M s) ⊆ Ls. Utilizing

Theorem 4,
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xs = max
i∈LG∗ (Ls)

v∗i ≥
|Ls|

|M s|+ |Ls|
+

∑
j∈Ls

ljTCj

|M s|+ |Ls|
−

∑
i∈Ms

liTCi

|M s|+ |Ls|
.

Since |Ls|/|Ms| < |Ls|/|M s|, we have the following

xs ≥
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|
.

Claim 1 and Claim 2 imply that

xs =
|Ls|

|Ls|+ |Ms|
+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|
.

Claim 3.
Ls
Ms

=
Ls
M s

Since Ls is a mutually estranged set with LGs(Ls) = M s, utilizing Theorem 4 we

obtain

xs = max
i∈LG∗ (Ls)

v∗i ≥
|Ls|

|M s|+ |Ls|
+

∑
j∈Ls

ljTCj

|M s|+ |Ls|
−

∑
i∈Ms

liTCi

|M s|+ |Ls|
.

From the construction of the decomposition algorithm which minimizes the short-

age ratio, we have |Ls|/|Ms| ≤ |Ls|/|M s|. By Assumption 1, it follows that
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∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ms

liTCi

|Ls|+ |Ms|
≤

∑
j∈Ls

ljTCj

|M s|+ |Ls|
−

∑
i∈Ms

liTCi

|M s|+ |Ls|
.

These two inequalities imply that

|Ls|
|Ls|+ |M s|

≤ |Ls|
|Ls|+ |Ms|

which is equivalent to |Ls|/|M s| ≤ |Ls|/|Ms|. This concludes the proof of Claim 3.

Claim 4. M s = Ms

It is clear that M s ⊆Ms. We want to show that M s ⊇Ms. If |Ls|/|Ms| = 1 and

|Ms| = 1, M s = Ms trivially holds. Now, consider the case that |Ls|/|Ms| < 1.

Suppose for contradiction that M s 6= Ms. Then, there exists a player i ∈Ms\M s.

Note that i has no G-links with players in Ns \Ls and players in M1 ∪M2 ∪ . . .∪

Ms−1. Also, by Lemma 4, i has no G∗-links to players in L1∪L2∪ . . .∪Ls−1∪Ls.

Hence, i has G∗-links only with players in Ls \Ls. By Theorem 4, it follows that

min
i∈Ms\Ms

v∗i ≤
|Ls \ Ls|

|Ms \M s|+ |Ls \ Ls|
+

∑
j∈Ls\Ls

ljTCj

|Ms \M s|+ |Ls \ Ls|
−

∑
i∈Ms\Ms

liTCi

|Ms \M s|+ |Ls \ Ls|

≤ |Ls|
|M s|+ |Ls|

+

∑
j∈Ls

ljTCj

|M s|+ |Ls|
−

∑
i∈Ms

liTCi

|M s|+ |Ls|
,

which contradicts with v∗i > xs for all i ∈Ms \M s.
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Hence, Ms = M s and Ls = Ls. Claim 1 - Claim 4 concludes the proof for any

step of the algorithm s < s̄.

Case 2. s = s̄

The network decomposition algorithm with costly links terminates at s̄ when

min
M⊆Ns̄,M∈I(G)

|LGs̄(M)|/|M | > 1 or min
M⊆Ns̄,M∈I(G)

|LGs̄(M)|/|M | = 1 with |Ms̄| 6= 1.

Claim 5. v∗k(G) = 1/2 for all k ∈ Ns̄

Define the minimum limit equilibrium share as xs̄ = min
i∈Ns̄

v∗i and the set of players

whose limit equilibrium shares are equal to this minimum value, M s̄ = {k ∈

Ns̄|v∗k = xs̄}.

First, we prove that xs̄ ≥ 1/2. Suppose for a contradiction that xs̄ < 1/2. By

using similar arguments to Claim 2, we can show that any player in Ls̄ has only

G∗-links to players in M s̄ and Ls̄ is G∗-independent. Utilizing Theorem 4,

xs̄ = max
i∈LG∗ (Ls̄)

v∗i ≥
|Ls̄|

|M s̄|+ |Ls̄|
+

∑
j∈Ls̄

ljTCj

|Ls̄|+ |M s̄|
−

∑
i∈Ls̄

liTCi

|Ls̄|+ |M s̄|

Since xs̄ < 1/2 from the supposition, we have

|Ls̄|
|M s̄|+ |Ls̄|

+

∑
j∈Ls̄

ljTCj

|Ls̄|+ |M s̄|
−

∑
i∈Ls̄

liTCi

|Ls̄|+ |M s̄|
<

1

2
,

which implies that |Ls̄|/|M s̄| < 1, a contradiction with
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min
M⊆Ns̄,M∈I(G)

|LGs̄(M)|/|M | ≥ 1.

Therefore, for all k ∈ Ns̄,

v∗k ≥
1

2
. (2.16)

Now, we prove that for all k ∈ Ns̄, v
∗
k ≤

1

2
. Take any k ∈ Ns̄. Since v∗k ≥

1

2
, the

construction of the decomposition algorithm implies that player k has no G-links

to players in M1 ∪M2 ∪ . . . ∪Ms̄−1 and Lemma 4 implies that player k has no

G∗-links to players in L1 ∪L2 ∪ . . .∪Ls̄−1. Hence, there may exist G∗-links from

player k only to players in Ns̄, yielding that v∗k ≤ 1/2. Hence, for all k ∈ Ns̄,

v∗k ≤
1

2
. (2.17)

By (2.16) and (2.17), for all k ∈ Ns̄, v
∗
k =

1

2
.

By Theorem 5, we obtain the limit equilibrium payoffs of the bargaining game

over a given network G. The example below is a simple but a comprehensive

example to understand the process of the algorithm and how the outcome of the

algorithm determines the limit equilibrium payoffs.

Example 1. Consider the network G in Figure 2.1 with the set of players N =

{1, 2, . . . , 10} and the total cost vector TC = (1/10, 0, 1/5, 1/10, 1/10, 0, 0, 1/25,

43



·
1 2

3

3
4

4

5

5
6

6
7

7
8

8
9

9
10

10

Figure 2.1: Network G

1/10, 1/10). First, we decompose the network by running the decomposition algo-

rithm AC(G).

s=1: N1 = N and G1 = G

r1 = min
M∈N1,M∈I(G)

|LG1(M)|
|M |

=
2

3
< 1

The shortage ratio r is minimized by the sets in the family

N1 = {{5, 6, 7}}.

Then,

M1 = {{5, 6, 7}}.

Since there is only one set in M1, no need to check the benefit provided by costs.

The mutually estranged set which is chosen in step 1 is M1 = {5, 6, 7}. So,

L1 = {1, 2}. The red subnetwork is decomposed from the initial network.

s=2: Consider the network G2 which is induced by the players N2 =

{3, 4, 8, 9, 10}.

r2 = min
M∈N2,M∈I(G)

|LG2(M)|
|M |

= 1
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Also, we have |M | = 1. Then,

M2 = {{3}, {8}}.

Since there are more than one set in M2, we need to check the costs. Choose the

set which minimizes

∑
j∈L

ljTCj

|L|+ |M |
−

∑
i∈M

liTCi

|L|+ |M |

Since
TC3 − TC8

2
>
TC8 − TC3

2
, we have M2 = {8}.

The blue subnetwork is decomposed from the network G2.

s=3: Consider the network G3 which is induced by the players N3 = {4, 9, 10}.

r3 = min
M∈N3,M∈I(G)

|LG3(M)|
|M |

= 2 > 1.

Then, the algorithm STOPs in this step. So, s̄ = 3. The set of remaining players

is N3 = {4, 9, 10} and the induced network by this set is the green one.

The decomposition of the network G is completed. According to the outcome of

the algorithm, the payoffs are determined as follows:

∀s = {1, 2}, ∀i ∈Ms, u
∗
i (G) =

|Ls|
|Ls|+ |Ms|

+

∑
j∈Ls

lGj TCj

|Ls|+ |Ms|
−

∑
i∈Ms

lGi TCi

|Ls|+ |Ms|

∀s = {1, 2}, ∀j ∈ Ls, u∗j(G) =
|Ms|

|Ls|+ |Ms|
+

∑
i∈Ms

lGi TCi

|Ls|+ |Ms|
−

∑
j∈Ls

lGj TCj

|Ls|+ |Ms|

∀k ∈ N3, u∗k(G) =
1

2
.
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• M1 = {5, 6, 7} and L1 = {1, 2}

u∗5(G) = u∗6(G) = u∗7(G) =
2

5
+

2TC1 + 3TC2 − TC5 − 2TC6 − TC7

5

u∗1(G) = u∗2(G) =
3

5
+
TC5 + 2TC6 + TC7 − 2TC1 − 3TC2

5

• M2 = {8} and L2 = {3}

u∗8(G) =
1

2
+
TC3 − 2TC8

2

u∗3(G) =
1

2
+

2TC8 − TC3

2

• N3 = {4, 9, 10}

u∗4(G) = u∗9(G) = u∗10(G) =
1

2

Note that the equilibrium agreement network G∗ is the network that consists of

all the links of G but the link between 2 and 8.

Now, we examine the first stage of the game: network formation game. During

this stage, players take into consideration their future limit equilibrium payoffs

at the bargaining game. We analyze the strategic decisions of the players and the

network structure induced by the bargaining outcome.

Theorem 6. gPNE is a pairwise Nash equilibrium of network formation game if

and only if for all i ∈ N , u∗i (φ(gPNE)) = 1/2. (The induced network GPNE by

the strategy profile gPNE is equitable.)

46



Proof of Theorem 6. Suppose that gPNE is a pairwise Nash equilibrium of the

network formation game. Assume that there exists a player i ∈ N such that

u∗i (φ(gPNE)) 6= 1/2. Then, u∗i (φ(gPNE)) < 1/2 or u∗i (φ(gPNE)) > 1/2.

Case 1. u∗i (φ(gPNE)) < 1/2.

In this case, for some step s < s̄ of the algorithm AC(G), i belongs to Ms

and |Ls|/|Ms| < 1. Hence, there exists a player j ∈ Ms such that LGs({i}) ∩

LGs({j}) 6= ∅. If we add the link ij to the network, we will have

u∗i (φ(gPNE) + ij) =
1

2
> u∗i (φ(gPNE)) and

u∗j(φ(gPNE) + ij) =
1

2
> u∗j(φ(gPNE)).

So, gPNE is not a pairwise Nash equilibrium of the network formation game,

which contradicts with our supposition.

Case 2. u∗i (φ(gPNE)) > 1/2.

In this case, for some step s < s̄ of the algorithm AC(G), i belongs to Ls. Then,

there exists a player j ∈Ms such that u∗j(φ(gPNE)) < 1/2. So, similar arguments

to Case 1 follows for player j.

Hence, for all i ∈ N , u∗i (φ(gPNE)) = 1/2.

For the other part of the theorem, suppose that u∗i (φ(g)) = 1/2. Hence, for all

mutually estranged sets M , |LG(M)|/|M | > 1 or |LG(M)|/|M | = 1 with |M | 6= 1.
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Assume that g is not a pairwise Nash equilibrium.

Adding a link to the network does not change the shortage ratio rs for all s which

is minimized in the decomposition algorithm. Hence, there does not exist any

pair of players (i, j) such that

u∗i (φ(g) + ij) ≥ u∗i (φ(g)) and

u∗j(φ(g) + ij) > u∗j(φ(g)).

Therefore, g violates the first condition of a pairwise Nash equilibrium. Hence,

there exists a player i and a strategy of him g′i ∈ Gi such that u∗i (φ(g′i, g−i)) >

u∗i (φ(g)). Let φ(g′i, g−i) = G′ and φ(g) = G. So, in G′, there exists a mutually

estranged set M with LG
′
(M) = L such that |L|/|M | < 1 and i ∈ L or |L|/|M | =

1 with |M | = 1 and i ∈ L. Since any change in the strategy of player i does

not affect the links of players in M with other players, we get |L| = |LG′(M)| ≥

|LG(M)|, which contradicts with the fact that for all mutually estranged sets M ,

|LG(M)|/|M | > 1 or |LG(M)|/|M | = 1 with |M | 6= 1.

It follows that g is a pairwise Nash equilibrium of the network formation game.

In this subsection, we prove that with zero linking costs in the network formation

stage, the bargaining game reduces the same game in Manea (2011). Hence, the

limit equilibrium payoffs are determined in his paper. In this model, the sole

determinant of the equilibrium payoffs is the network structure. For the game

with non-zero linking cost structure, we obtained the limit equilibirum payoffs
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for each possible network by constructing a network decomposition algorithm.

The algorithm picks the oligopoly subnetworks considering costly links. Here,

there are two factors that affecting the limit equilibirium payoffs, the newtork

structure and the linking costs. We also investigate the pairwise Nash equili-

birum of the network formation game. When players are allowed to strategically

form their own links, the differences in limit equilibrium payoffs across players

(which exist in Manea (2011)) disappear in both cost specifications. In the equi-

librium, two players in the nodes of a link get the same payoff, impyling that

the network formed is an equitable network. Network endogeneity leads to equal

payoffs between players. Intuitively, having equal opportunities wipes out the

heterogeneities in the bargaining outcome.

2.2 Efficiency of Equilibrium Networks

In this section, we are interested in the well-being of the society induced by the

networks formed in equilibrium. We, first, define the efficiency notion we employ.

The most commonly used welfare measure is defined as the sum of the payoffs of

all the players. Formally, let W : Ω −→ R be defined as

W (G) =
∑
i∈N

u∗i (G)

for all G ∈ Ω. Efficiency is basically maximizing the aggregate utility across all

players in the society. This definition is referred as strong efficiency in Jackson

and Wolinsky (1996).

Definition 2. A network G is efficient if W (G) ≥ W (G′) for all G′ ∈ Ω.
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A network G is efficient if it maximizes
∑
i∈N

u∗i (G). For the characterization of

the efficient networks, we need the following definitions. A cycle is a path from a

vertex back to itself with no repeated edges and no repeated vertices except the

first and the last vertex. An odd cycle is a cycle with odd number of vertices. A

matching is a graph with even number of vertices. The characterization of the

efficient networks from the perspective of the society is provided by the following

theorem.

Theorem 7. A network G is efficient if and only if it is a disjoint union of odd

cycles and matchings.

Proof of Theorem 7. Take any efficient network G ∈ Ω. Suppose that it is not

covered by any disjoint union of odd cycles and matchings. Then, by the decom-

position algorithm at some step s < s̄ there exists a mutually estranged set Ms

such that |LGs(Ms)|/|Ms| < 1. Consider a network G′ in which the subnetwork

induced by the players Ls ∪Ms is a complete network.
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W (G) =
∑
i∈N

u∗i (G) =
∑

i∈N\(Ls∪Ms)

u∗i (G) +
∑

i∈Ls∪Ms

u∗i (G)

=
( ∑
i∈N\(Ls∪Ms)

u∗i (G)
)

+ |Ls|+ (|Ms| − |Ls|)
[ |Ls|
|Ls|+ |Ms|

+

∑
j∈Ls

ljTCj

|Ls|+ |Ms|
−

∑
i∈Ls

liTCi

|Ls|+ |Ms|

]
≤
( ∑
i∈N\(Ls∪Ms)

u∗i (G)
)

+ |Ls|+ (|Ms| − |Ls|)
1

2

=
( ∑
i∈N\(Ls∪Ms)

u∗i (G)
)

+ |Ms|+
|Ls|

2

<
( ∑
i∈N\(Ls∪Ms)

u∗i (G)
)

+ |Ms|+
|Ms|

2

= W (G′).

This contradicts with the efficiency of G. Hence, G is a disjoint union of odd

cycles and matchings.

Now, for the other part of the proof suppose that the network G is a disjoint

union of odd cycles and matchings. The social welfare provided by the network

G is

W (G) =


n

2
, if n is even

n

2
+

1

2
, if n is odd.

When we maximize the social welfare over the set of networks Ω, we obtain the

the maximum attainable social welfare as
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max
G̃∈Ω

W (G̃) =


n

2
, if n is even

n

2
+

1

2
, if n is odd.

Hence, we have max
G̃∈Ω

W (G̃) = W (G), which concludes the proof.

The corollary below examines whether the endogenously formed network is effi-

cient or not.

Corollary 1. Any equilibrium network of the network formation game is effi-

cient.

Proof of Corollary 1. The proof is relegated to the Appendix.

2.3 Conclusion

We analyze a bargaining model over a network where the network describes the

feasible bargaining partners. This study builds upon Manea (2011) by endoge-

nizing the network structure. We construct a two stage game: network formation

stage and bargaining stage. In the network formation stage, we allow players

to form links where the link formation is bilateral (and could be costly). Next,

on the formed network, an infinite horizon bargaining game over how to divide

one-unit pie between the players in a pair is played. We investigate two spec-

ifications of the cost structure: zero costs and non-zero costs. Firstly, in the
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model with zero costs, the bargaining game is same as Manea (2011) develops.

The network structure is the only determinant of the bargaining outcome. In

the limit equilibrium, one-unit pie is divided between the players in a pair in

proportion to the relative bargaining power of players provided by their positions

in the network. In equilibrium of the network formation game, each player gets

half of the pie, i.e., an equitable network is formed. Secondly, we assume that

there exists a player whose linking cost is different than zero and the costs are

heterogeneous across players. With this specification, the bargaining power im-

plied by the network structure and the linking costs are the two factors affecting

the bargaining outcome. Hence, the limit equilibrium payoffs are determined ac-

cording to both the network structure and the relative advantage/disadvantage

provided by linking costs. In the equilibrium of network formation game, the pie

is divided equally in all pairs of players (equitable network). Therefore, in both

specifications of the cost structure, if the network is endogenously determined

by players, the differences among the payoffs of players disappear in equilibrium.

Further, with non-zero costs, link formation incentives of the players neutral-

ize the relative advantage/disadvantage induced by cost heterogeneities across

players. Briefly, in equilibrium, having equal opportunities sweep away the dif-

ferences in the bargaining outcome. Finally, we focus on the efficiency issue. We

obtain the characterization of the efficient networks. In addition, we prove that

endogenously formed network is efficient.
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CHAPTER 3

BARGAINING ON SUPPLY CHAIN

NETWORKS WITH HETEROGENEOUS

VALUATIONS

Bargaining between buyers and sellers plays a key role in determining the terms

of trade in supply chains. Hence, bargaining is a well-studied topic in the supply

chain literature. We identified three limitations which are mostly common in the

literature. First, most of the existing supply chain literature adopt the Stackel-

berg modelling approach in which only one of the agents always makes an offer

and the other one can just accept or reject the offer (i.e, one party is gifted with

a significant bargaining power). Second, many papers restrict attention to the

supply chain networks with one buyer-one seller (Plambeck and Taylor (2005),

Gurnani and Shi (2006) and Feng et al. (2014)), one buyer-multiple sellers (Na-

garajan and Bassok (2008)), one seller-multiple buyers (Bernstein and Federgruen

(2005)) and two-sellers and two-buyers (Feng and Lu (2013)). Finally, size of the

pie subject to bargaining is the same for all bargaining pairs. As a result of these

limitations, the effects of bargaining power, network structure and the pie size on
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equilibrium outcomes could not be investigated in full generality.1 In this study,

we develop a theoretical model of supply chain network where (i) both the sellers

and buyers can make an offer in the bargaining, (ii) any number of buyers and

sellers is possible, (iii) the size of the pie is allowed to be heterogeneous across

links and (iv) the network structure and the size heterogeneity of the pie across

links have the potential to affect bargaining outcomes.

Our work is inspired by recent developments in network theory which establish

a relationship between the network structure and market/bargaining outcomes.

In this setting, the network identifies the trading relationships between the sell-

ers and the buyers. That is, a buyer and a seller can only engage in trade if

there is a relationship or a ”link” connecting the two players. In other words,

the network structure imposes a restriction on bargaining possibilities. Hence,

it is theoretically shown by a large number studies that the network structure

has a significant impact on the market outcome (see Calvó-Armengol (2003),

Corominas-Bosch (2004), Polanski (2007), Jackson (2008), Manea (2011), Abreu

and Manea (2012) and Polanski and Vega-Redondo (2013)). Building on Manea

(2011), we study an infinite horizon bargaining game over a two-sided supply

chain network with heterogeneous buyers.2

In our model, we have sellers producing a homogeneous good and buyers demand-

ing the good. The production cost of the good is same across all sellers. The

buyers, on the other hand, value the good differently. Intuitively, they may have

1However, in reality, the bargaining power is more evenly distributed in supply chains (see
Iyer and Villas-Boas (2003) and Draganska et al. (2010)), there are multiple sellers and buyers,
and the size of the pie subject to bargaining is different (e.g, due to heterogeneous valuations.)

2Manea (2011) explores the influence of the network structure on the bargaining outcome
with homogeneous agents. He shows that the bargaining power of a player does not depend only
on the number of his links and his position in the network but also his neighbours’ positions.
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different tastes, preferences, habits or business characteristics. The sellers and

buyers are connected via an exogenously given two-sided supply chain network.

Each pair of players connected by a link generates a surplus equal to the difference

between valuation of the buyer for the good and the production cost of the seller.

On the network, players play the following infinite horizon bargaining game.3 At

each period, a link is selected with some positive probability and one of two play-

ers is randomly selected as a proposer. The proposer makes a take-it-or-leave-it

offer concerning the division of the surplus generated by the chosen link. If the

offer is accepted, the players in the pair leave the game with the agreed shares.

In the next period they are replaced by their identical clones.4 If the offer is

rejected, the players in the pair remain in the game. At each period, the same

bargaining procedure is repeated. All players have perfect information and have

the same discount factor. The subgame perfect Nash equilibrium is employed as

a solution concept.

The richness of our model allows us to study the impact of bargaining power

provided by the network structure and the valuations of the buyers on the mar-

ket outcome which is not captured properly by the supply chain literature due

to mentioned limitations. In order to investigate these effects on the outcome,

we need to identify each player’s position in the network and the links in which

the trade is feasible. For this purpose, we modify the network decomposition

algorithm constructed by Manea (2011) considering the valuation heterogeneity

among buyers. This algorithm decomposes a given network into disjoint sub-

3Rubinstein (1982) and Rubinstein and Wolinsky (1985) are pioneering papers of the bar-
gaining literature.

4The replacement of the players in the agreement pair with their clones makes the model
stationary. This modelling assumption is followed by Gale (1987), Manea (2011), Polanski and
Lazarova (2015) and Nguyen (2012).
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networks. We find the limit equilibrium payoffs in the subnetworks determined

by the network decomposition algorithm and prove the uniqueness of the equi-

librium. The results show that in equilibrium, the network structure and the

valuations of the buyers have an impact on the division of the surplus generated

by a pair. Intuitively, the buyers with high valuation and the players who have

more links or who have neighbours with less links have a higher bargaining power;

and so obtain a larger share from the surplus.

The decomposition algorithm we construct and the algorithm of Manea (2011)

yield different outcomes for the same network. For instance, we have a network

with two sellers and three buyers as depicted in Figure 3.1. In part a, suppose that

the buyers are homogeneous and their valuations are 1. So, the surplus generated

by each link is same and equal to 1. On the other hand, in part b, the valuations

of b1, b2 and b3 to the good are 0.7, 0.8 and 0.3, respectively. The decomposition

outcome for a is {{b1, b2, b3}, {s1, s2}} and for b is {{b1, b2}, {s1}}, {{b3}, {s2}},

which are not equal to each other. As seen from 3.1, a player’s position in the

network is not the sole source of bargaining power but the valuation heterogeneity

among the buyers matters.

·

s1
·

s2

·

b1

·

b2

·

b3

(a) Homogeneous Valuations

·

s1
·

s2

·

b1[0.5]
·

b2[0.5]
·

b3[0.8]

(b) Heterogeneous Valuations

Figure 3.1: Two Sided Supply Chain Network G

57



The paper that comes closest to ours is Nakkaş and Xu (2014). These authors also

study bargaining in a supply chain where (i) the bargaining occur in an alternating

order, (ii) there are multiple buyers and sellers and (iii) the pie size does not have

to be same across the links. That said there are important differences between

our model and theirs. The key differences are the bargaining game and payoffs in

the equilibrium. More precisely, in a subnetwork having more sellers than buyers,

the equilibrium of Nakkaş and Xu (2014) assigns a seller zero from the surplus

and assigns a buyer all the surplus while in the equilibrium of our model, the

seller gets a share at least the surplus per player in the subnetwork.

The rest of the essay is organized as follows. Section 1 describes the model and in-

troduces the notation. Section 2 reports the results on the network decomposition

outcome and the equilibrium payoffs. Section 3 concludes the study.

3.1 Model

We consider a group of sellers and buyers interconnected by a two-sided supply

chain network G. Each seller produces one-unit homogeneous good and each

buyer demands the goods. The links in the network represent trading possibilities.

S = {s1, s2, . . . , sn} is the set of sellers and B = {b1, b2, . . . , bm} is the set of

buyers. Assume that the number of sellers is less than the number of buyers, i.e.,

n ≤ m. There doesn’t exist any link between any two players within the same

group. Denote the utilities of players s ∈ S and b ∈ B be us and ub, respectively.

Let the buyer b’s valuation of the good be vb and let the production cost of all

sellers be c. For simplicity, assume that c = 0. Each link in the network generates
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a surplus equal to the difference of the valuation of the buyer and the production

cost of the seller. An infinite horizon bargaining game is played on the supply

chain network over the division of this surplus.

We construct the following infinite horizon bargaining game on the network G:

At each period t = 0, 1, . . ., a link (s, b) ∈ G is selected with some probability psb

and one of the players among s and b is randomly selected with equal probability

as a proposer, say s. Player s makes an offer to b concerning a division of the

surplus generated by the link (s, b) and player b responds to the offer by accepting

or rejecting. If the responder b accepts the offer, s and b leave the game with the

agreed shares. In period t + 1, two new players replace the same positions. If b

rejects the offer, s and b remain in the game. In period t+ 1, the same procedure

is repeated. The replacement assumption provides the stationarity of the model.

Link selection is independent across periods. All players have a common discount

rate δ ∈ (0, 1). Suppose that all players have perfect information. In this model,

we assume that for each player i ∈ S ∪B, there is a continuum of players of type

i, i.e., i = {i1, i2, . . . , iτ , . . .}.

In this game, we employ subgame perfect Nash equilibrium as a solution concept.

The equilibrium payoff vector of the game is denoted by (u∗δi )i∈S∪B. Define the

equilibrium agreement network as the subnetwork of G which only involves the

links where the agreement gives the players at the nodes of these links more

payoff than proceeding to the next period does. More precisely, the equilibrium

agreement network at δ, G∗δ, is the subnetwork of G that only consists of the

links (s, b) satisfying δ(u∗δs + u∗δb ) ≤ the surplus produced by the link (s, b). The
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limit equilibrium network, denoted by G∗, is the network that G∗δ converges to

as δ goes to 1 and the limit equilibrium payoff vector, u∗, is the payoff vector that

u∗δ converges to as δ goes to 1.

3.2 Results

We analyze the equilibrium of the bargaining game over the network G. The

surplus generated by a link (s, b) is equal to vb − c. Note that c = 0. Hence,

the surplus is equal to vb. Suppose that in the bargaining game the link (s, b) is

selected. The seller s and the buyer b bargain over how to divide the surplus vb.

As an initial step, we show that in every subgame, the expected payoff of each

existing player in the network at that period is uniquely determined.

Theorem 8. For all δ ∈ (0, 1), there exists a payoff vector (u∗δi )i∈S∪B such that

in every subgame perfect equilibrium of the bargaining game on G, the expected

payoff of existing player iτ of type i is uniquely given by u∗δi for all i ∈ S ∪ B,

τ ≥ 0. For every δ ∈ (0, 1), in any equilibrium, in any subgame where the link

(sτ , bτ ′) is selected and sτ is the proposer, the followings are hold with probability

one:

(1) if δ(u∗δs + u∗δb ) < vb, then sτ offers δu∗δb and bτ ′ accepts.

(2) if δ(u∗δs + u∗δb ) > vb, then sτ makes an offer that is rejected by bτ ′

for each s ∈ S and b ∈ B.

Before moving on to the proof of Theorem 8, we need the following lemma.
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Lemma 7. For all ω1, ω2, ω3, ω4 ∈ R,

|max{ω1, ω2} −max{ω3, ω4}| ≤ max{|ω1 − ω3|, |ω2 − ω4|}.

Proof of Lemma 7. The proof is obvious hence omitted.

Proof of Theorem 8. Let uδi and ūδi be the infimum and supremum of the expected

payoffs of iτ in any subgame for all τ ≥ 0 and for each i ∈ S∪B, in every subgame

perfect equilibrium of the game.

Consider a subgame perfect Nash equilibrium of the game. Assume that the link

(s, b) is selected and without loss of generality among the players s and b, s is

selected as a proposer. Any player of type b does not accept an offer smaller than

δuδb, implying that s can get a payoff of at most vb − δuδb. Further, any player

of type s accepts any offer greater than δūδs, since in case of rejection, he gets at

most δūδs. Hence, no player offers him more than δūδs in the equilibrium. Now,

suppose that any link of s is not selected. In this case, the expected continuation

payoff of the player s is at most δūδs. So, for each player τ ≥ 0 of type s, the

following is satisfied:

uδsτ ≤

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δūδs +

∑
{b|(s,b)∈G}

psb
2

max{vb − δuδb, δūδs}. (3.1)

Since the inequality (3.1) holds for all players of type s, it also holds for ūδs.
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Thus,

ūδs ≤

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δūδs +

∑
{b|(s,b)∈G}

psb
2

max{vb − δuδb, δūδs}. (3.2)

Consider that player s makes the offer δūδb + ε (ε > 0) to any player of type b such

that δuδs + δūδb + ε ≤ vb deviating from his equilibrium strategy and offers zero to

other players and also rejecting all offers that he receives. Player b accepts the

offer in any subgame perfect equilibrium. Hence, for each τ ≥ 0 and for all ε > 0,

we have the following inequality:

uδsτ ≥

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δuδs +

∑
{b|(s,b)∈G}

psb
2

max{vb − δūδb − ε, δuδs}.

As the deviation converges to zero (ε→ 0),

uδsτ ≥

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δuδs +

∑
{b|(s,b)∈G}

psb
2

max{vb − δūδb, δuδs}. (3.3)

Since the inequality (3.3) holds for all players of type s, it also holds for uδs.

Therefore,
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uδs ≥

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δuδs +

∑
{b|(s,b)∈G}

psb
2

max{vb − δūδb, δuδs}.

We take the difference between the infimum and the supremum of the expected

payoffs for each seller in S in order to prove the equality of these two. Let

D = max
i∈S

ūδi − uδi . Take any s ∈ arg max
i∈S

ūδi − uδi .

D = ūδs − uδs

≤

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δ(ūδs − uδs) +

∑
{b|(s,b)∈G}

psb
2

[max{vb − δuδb, δūδs}

−max{vb − δūδb, δuδs}]

≤

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δD +

∑
{b|(s,b)∈G}

psb
2

max{|δūδb − δuδb|, |δūδs − δuδs|}

=

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δD +

∑
{b|(s,b)∈G}

psb
2
δmax{ūδb − uδb, ūδs − uδs}

=

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δD +

∑
{b|(s,b)∈G}

psb
2
δD

= δD

Hence, D ≤ δD. Since D ≥ 0 and δ ∈ (0, 1), we get D = 0. Hence, for all s ∈ S,

ūδs = uδs. Therefore, for all s ∈ S, we obtain the following equality

ūδs =

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δūδs +

∑
{b|(s,b)∈G}

psb
2

max{vb − δūδb, δūδs},

which means that ūδs = uδs = u∗δs . The case is similar for any buyer b ∈ B. The
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statement ūδb = uδb = u∗δb for all buyers b ∈ B can be proven similarly.

In order to show the uniqueness, define a function f δ : [0, 1]n ←→ [0, 1]n such

that for all s ∈ S and b ∈ B,

f δs (u) =

(
1−

∑
{b|sb∈G}

psb
2

)
δus +

∑
{b|sb∈G}

psb
2

max{vb − δub, δus}

f δb (u) =

(
1−

∑
{s|sb∈G}

psb
2

)
δub +

∑
{s|sb∈G}

psb
2

max{vb − δus, δub}

We show that the function f δ has a fixed point by utilizing the contraction map-

ping theorem. It is enough to prove the following lemma to conclude the proof

of the uniqueness.

Lemma 8. f δ is a contraction mapping with respect to sup norm on Rn.

Proof of Lemma 8. See the Appendix.

This concludes the proof of Theorem 8.

The expected payoffs of any players s ∈ S and b ∈ B are given by
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uδs =

(
1−

∑
{b|sb∈G}

psb
2

)
δuδs +

∑
{b|sb∈G}

psb
2

max{vb − δuδb, δuδs}

uδb =

(
1−

∑
{s|sb∈G}

psb
2

)
δuδb +

∑
{s|sb∈G2}

psb
2

max{vb − δuδs, δuδb}

When we look into the equation for any seller s, the first part of the equation cov-

ers the cases where any link of s is not selected with probability (1−
∑

b|sb∈G
psb/2),

leading to the expected payoff of us in the next period or a link of s is selected

but s is not the proposer. In the latter case, the other player makes an offer δus

or any offer which is rejected by s and so his expected continuation payoff is also

equal to δus. In the remaining part, a link of s is selected (say (s, b)) and s is the

proposer and he makes an offer δub or makes an offer which will be rejected by

the buyer b.

The following result indicates the existence of a limit equilibrium network G∗ and

the existence of limit equilibrium payoffs as δ converges to 1.

Theorem 9. There exists a bound δ and a subnetwork G∗ of G such that for all

values of δ > δ, G∗δ is equal to G∗. Moreover, the equilibrium payoff vector at δ

converges to u∗ as δ goes to 1.

In any equilibrium, for all δ values such that δ(u∗δs + u∗δb ) 6= vb for all (s, b) ∈ G,

the solution to bargaining game is determined in Theorem 8. Next lemma extends

this finding by demonstrating that the set of such discount factors is finite.

Lemma 9. The statement for all (s, b) ∈ G, δ(u∗δs + u∗δb ) 6= vb holds for all but a
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finite set of δ.

Proof of Lemma 9. See the Appendix.

Proof of Theorem 9. The proof follows from Lemma 9 and the proof of Theorem

2* in Manea (2011), which is stated below.

Theorem 2* (Manea (2011)): (i) There exists δ ∈ (0, 1) and a subnetwork

G∗ of G such that the equilibrium agreement network G∗δ equals G∗ for all δ > δ.

(ii) The equilibrium payoff vector u∗δ converges to a payoff vector u∗ ∈ [0, 1]n as

δ tend to 1.

In this model, there are two sources of bargaining power: the network structure

and the valuation of the good for the buyers. The former depends on the number

of links that a player has, his position on the network and also the positions of his

bargaining partners. Hence, analyzing the network structure provide cues about

the limit equilibrium payoffs of the players. We need some additional notation

for this analysis. For every network G and a subset of players M ⊆ S ∪ B,

LG(M) denotes the set of players who have a link in G with the players in M

i.e., LG(M) = {k|(k, l) ∈ G, l ∈ M}. A set of players is G-independent if there

exists no G-link between any of two players in the set. Next theorem identifies

the bounds on the limit equilibrium payoffs of players who get the highest share

and the lowest share in a subnetwork.

Theorem 10. For all set of buyers M with LG
∗
(M) = L, the following inequali-

ties hold:
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max
s∈L

u∗s ≥

∑
b∈M

vb

|L|+ |M |

min
b∈M

u∗b ≤

∑
b∈M

vb

|L|+ |M |
.

Similarly, for all set of sellers M with LG
∗
(M) = L, the following inequalities

hold:

max
b∈L

u∗b ≥

∑
b∈L

vb

|L|+ |M |

min
s∈M

u∗s ≤

∑
b∈L

vb

|L|+ |M |
.

Before moving to the proof of the theorem, we need the following lemma that

investigates the division of the surplus between players in the nodes of a link in

the limit equilibrium. The sum of the limit equilibrium payoffs of players in a pair

is equal to the surplus generated by the link, implying that the generated surplus

by the link is not wasted. Further, the limit equilibrium network G∗ involves only

the agreement links.

Lemma 10. If (s, b) ∈ G, then u∗s +u∗b ≥ vb and if (s, b) ∈ G∗, then u∗s +u∗b = vb.

Proof of Lemma 10. See the Appendix.

Proof of Theorem 10. For all δ and for any players s ∈ S and b ∈ B, the equilib-
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rium payoffs are as follows

u∗δs =
1

1− δ
∑

{b|(s,b)∈G}

psb
2

max{vb − δu∗δb − δu∗δs , 0}

u∗δb =
1

1− δ
∑

{s|(s,b)∈G}

psb
2

max{vb − δu∗δs − δu∗δb , 0}.
(3.4)

Without loss of generality, take any set of buyer M and let LG
∗
(M) = L. Utilizing

Theorem 9, fix δ > δ for the convergence. If a seller s and a buyer b are not

connected in G∗, they could not reach an agreement on the division of the surplus.

Thus, in the equations system (3.4), max{vb − δu∗δs − δu∗δb , 0} = 0.

Since the buyers in M may have G∗−links only with the sellers in L, the buyer

b’s expected payoff equation in (3.4) can be written as follows:

u∗δb =
1

1− δ
∑

{s|(s,b)∈G,s∈L}

psb
2

max{vb − δu∗δs − δu∗δb , 0}. (3.5)

For all sellers s ∈ L, applying similar arguments that are used in equation (3.5),

we obtain

u∗δs ≥
1

1− δ
∑

{b|(s,b)∈G,b∈M}

psb
2

max{vb − δu∗δs − δu∗δb , 0}. (3.6)

By taking the summation of (3.5) over all b ∈ M and taking the summation of

(3.6) over all s ∈ L, we have
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∑
b∈M

u∗δb =
1

1− δ
∑

{(s,b)∈G|b∈M,s∈L}

psb
2

max{vb − δu∗δs − δu∗δb , 0} (3.7)

and

∑
s∈L

u∗δs ≥
1

1− δ
∑

{(s,b)∈G|b∈M,i∈L}

psb
2

max{vb − δu∗δs − δu∗δb , 0}. (3.8)

The right hand sides of the summations are the same in both (3.7) and (3.8).

Then, we have the following inequality

∑
s∈L

u∗δs ≥
∑
b∈M

u∗δb .

When players become more patient, as δ → 1,

∑
s∈L

u∗s ≥
∑
b∈M

u∗b .

By using the following facts that for all k ∈ L, max
s∈L

u∗s ≥ u∗k and for all l ∈ M ,

min
b∈M

u∗b ≤ u∗l , we obtain

|L|max
s∈L

u∗s ≥ |M |min
b∈M

u∗b .

Utilizing Lemma 10, for all b ∈ M , there exists s ∈ L such that u∗b = vb − u∗s.

Hence, for all b ∈M , u∗b ≥ vb −maxs∈L u
∗
s. Therefore we have
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∑
b∈M

u∗b =
∑

{(s,b)|b∈M,s∈LG∗ (b)}

(vb − u∗s)

≥
∑

{(s,b)|b∈M,s∈LG∗ (b)}

(vb −max
s∈L

u∗s)

=
∑
b∈M

vb − |M |max
s∈L

u∗s,

which is equivalent to

max
s∈L

u∗s ≥

∑
b∈M

vb

|L|+ |M |
.

Similarly, utilizing Lemma 10 for the summation of the sellers’ payoffs in L, we

obtain

∑
s∈L

u∗s ≤
∑
b∈M

vb − |L|min
b∈M

u∗b ,

which is equivalent to

min
b∈M

u∗b ≤

∑
b∈M

vb

|L|+ |M |
.

Since the bargaining power depends on the player’s position in the network, we

need to identify where each player is located in the network. Regarding this aim,
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we modify the network decomposition algorithm of Manea (2011). We use the

outcome generated by this algorithm to identify the limit equilibrium payoffs of

the players.

Network Decomposition Algorithm, A(G): For a given network G ∈ Ω,

the algorithm generates the sequence (rt,M t, Lt, N t, Gt)t as follows:

Let N0 = B ∪ S and G0 = G.

For t ≥ 0:

If N t = ∅, then STOP.

If not,

rt = max
M⊂Nt∩B

∑
b∈M

vb

|LGt(M)|+ |M |
.

Set M t be union of all maximizer sets M . Denote Lt = LG
t
(M t).

If N t = M t ∪ Lt, then STOP.

Otherwise, let N t+1 = N t \ (M t ∪ Lt) and Gt+1 be the subnetwork of

G induced by the players in N t+1. Denote the step at which the algorithm ends

by t̄.

The algorithm initially takes the given network. At each step, it identifies the

sets that maximizes the surplus per player in the subnetwork, rt. It picks the

union of these maximizer sets and the partner set of this union and they are
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removed from the network. If the algorithm picks all the players in the current

network, it ends. Otherwise, in the next step, the same procedure is applied

to the subnetwork induced by the remaining players. Intuitively, the algorithm

decompose a given network into oligopoly subnetworks. The limit equilibrium

payoffs can be described utilizing the outcome of the decomposition algorithm,

A and they are given by the following theorem.

Theorem 11. Let the algorithm A(G) yields the outcome

(rt,M t, Lt, N t, Gt)t=0,1,...,t̄. Then the limit equilibrium payoffs as δ → 1 are

given by

∀t ≤ t̄, ∀s ∈ Lt, u∗s =

∑
b∈Mt

vb

|Lt|+ |M t|

∀t ≤ t̄, ∀b ∈M t, u∗b = vb −

∑
b∈Mt

vb

|Lt|+ |M t|

Proof of Theorem 11. The proof of the theorem proceeds by induction on t. Sup-

pose that the claim is hold for all t′ < t. Now, we prove it for t.

Let M t and Lt be the sets that the algorithm A(G) generates at step t. Define

the maximum limit equilibrium payoff as x̄t = max
k∈Nt∩S

u∗k. Further, define the sets

L̄t = {s ∈ N t|u∗s = x̄t} and M̄ t = {b ∈ LGt(L̄t)|u∗b = vb − x̄t}.

L̄t is the set of seller who have the maximum limit equilibrium payoffs in N t and

M̄ t is the set of buyers who have G∗-links with the players in L̄t.
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Claim 1. x̄t ≥

∑
k∈Mt

vk

|Lt|+ |M t|

For a contradiction, suppose that

x̄t <

∑
k∈Mt

vk

|Lt|+ |M t|
.

First of all, we explore the set of players with whom the players in M t have

G∗-links. Take any player s ∈ Lt
′

where t′ ∈ {1, 2, . . . , t − 1}. By induction

hypothesis,

u∗s =

∑
k∈Mt′

vk

|Lt′ |+ |M t′ |

Summing up the limit equilibrium payoffs of s and any buyer b ∈M t, we have

u∗s + u∗b ≥

∑
k∈Mt′

vk

|Lt′ |+ |M t′ |
+ vb − x̄t

>

∑
k∈Mt

vk

|Lt|+ |M t|
+ vb − x̄t

> x̄t + vb − x̄t = vb.

Second inequality follows from the construction of the decomposition algorithm

and the third one from our supposition. So, no player b ∈ M t has a G∗-link

with players s ∈ L1 ∪ L2 ∪ . . . ∪ Lt−1. Since G is a two-sided network, M t is a

G∗-independent set. Hence, LG
∗
(M t) ⊆ Lt. Utilizing Theorem 10, we get
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max
s∈Lt

u∗s ≥

∑
k∈Mt

vk

|Lt|+ |M t|
.

By the definition of x̄t,

x̄t ≥

∑
k∈Mt

vk

|Lt|+ |M t|
,

which contradicts with our supposition.

Claim 2. x̄t ≤

∑
k∈Mt

vk

|Lt|+ |M t|
and for all b ∈ M̄t, u

∗
b = vb − x̄t

Take any seller s ∈ L̄t. For all buyers b ∈ B \ M̄ t, u∗b + u∗s > x̄t + vb − x̄t = vk.

Hence, there exists no G∗-links between s and any buyer b ∈ B \ M̄ t. Since we

deal with two-sided supply chain networks, it is clear that L̄t is a G∗ independent

set. The network decomposition algorithm implies that there exists no G-link

between s and any buyer b ∈ M t′ , where t′ ∈ {1, 2, . . . , t − 1}. Therefore, s has

G∗-links only with buyers in M̄ t, i.e., LG
∗
(L̄t) = M̄ t. By Theorem 10,

x̄t = min
s∈L̄t

u∗s ≤

∑
k∈LG∗ (L̄t)

vk

|LG∗(L̄t)|+ |L̄t|
.

Since M t maximizes the surplus per player in the subnetwork, we have the fol-

lowing

∑
k∈LG∗ (L̄t)

vk

|LG∗(L̄t)|+ |L̄t|
≤

∑
k∈Mt

vk

|Lt|+ |M t|
,
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implying that

x̄t ≤

∑
b∈Mt

vk

|Lt|+ |M t|
.

This concludes the proof of our claim. By Claim 1 and Claim 2, we get for all

s ∈ L̄t,

x̄t = u∗s =

∑
k∈Mt

vk

|Lt|+ |M t|

and for all b ∈ M̄ t, u∗b = vb − x̄t.

Claim 3. M̄ t = M t

Since the network decomposition algorithm picks the union of all maximizer sets

M , if M̄ t is the maximizer, then M̄ t ⊆ M t. Hence, L̄t = LG
t
(M̄ t) ⊆ LG

t
(M t) =

Lt.

For the other side of the equation, suppose for contradiction M t * M̄ t. Then,

there exits a player b ∈M t\M̄ t. Note that b has noG∗-links with players inN t\Lt.

Moreover, by Lemma 10, b has no G-links with players in L1∪L2∪ . . .∪Lt−1∪ L̄t.

Hence, the buyer b has G∗-links only with players in Lt \ L̄t. Utilizing Theorem

10, we have

max
s∈LG∗ (Mt\M̄t)

u∗s ≥

∑
k∈Mt\M̄t

vk

|M t \ M̄ t|+ |Lt \ L̄t|
=

∑
k∈Mt

vk −
∑
k∈M̄t

vk

|M t|+ |Lt| − (|M̄ t|+ |L̄t|)
.
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Note that
∑
k∈Mt

vk/(|Lt|+ |M t|) =
∑
k∈M̄t

vk/(|L̄t|+ |M̄ t|). Then, we obtain

max
s∈LG∗ (Mt\M̄t)

u∗s ≥ x̄t,

which contradicts with u∗s < x̄t for all sellers s 6∈ L̄t.

Hence, M t = M̄ t and Lt = L̄t. Claim 1 - Claim 3 conclude the proof for any step

of the algorithm t ≤ t̄.

By Theorem 11, we obtain the limit equilibrium payoffs of the bargaining game

over a given network G. We prove that in the limit equilibrium of the game, the

payoffs of the players are determined according to the network structure and the

valuations of the buyers for the good.

3.3 Conclusion

In this essay, we examine a bargaining game over a two-sided supply chain network

where the sellers producing a homogeneous good and buyers with potentially dif-

ferent valuations for the good bargain over the corresponding surplus. Our model

improves upon the existing supply chain literature in multiple dimensions. Con-

sequently, we can investigate the impact of bargaining power due to the network

structure and the valuation heterogeneity on the equilibrium market/bargaining

outcome. In the current study, the bargaining game is similar to the one devel-
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oped in Manea (2011). However, in our model, the size of the surplus divided

between the players of a pair is not the same for all links which leads to strikingly

different equilibrium predictions than that of Manea (2011). More precisely, we

show that higher valuation for the good is also a source of bargaining power which

can not be captured by Manea (2011).
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CHAPTER 4

BARGAINING, REFERENCE POINTS, AND

LIMITED INFLUENCE

A plethora of experimental studies in the last two decades almost unequivocally

documented the influence of reference points on bargaining behavior and out-

comes.1 One well-known critique of the theories that utilize exogenously given

reference points is that almost any sort of behavior can be explained with an

appropriate choice of a reference point. This led many researchers to develop

theoretical models where the reference point is endogenously derived (preferably

from the observables) and/or elicit agents’ reference points with experimental

methods to check whether the elicited reference points, which were otherwise

unobservable, can explain the observed behavior.2

1Ashenfelter and Bloom (1984), Blount et al. (1996),Kristensen and Gärling (2000),
Bohnet and Zeckhauser (2004), Gächter and Riedl (2005, 2006) , Gimpel (2007), Bolton and
Karagözoğlu (2016), Bartling and Schmidt (2015), Herweg and Schmidt (2015), Fehr et al.
(2015), and Karagözoğlu and Riedl (2015) are only some of these studies, all of which reported
that reference points —in the form of reservation prices, informal agreements, existing con-
tracts, historical contractual conditions, expired contracts (fairness) norms— have a significant
impact on the the negotiated agreement and on the whole bargaining process

2The reader is referred to Benartzi and Thaler (1995), Shalev (2000), Compte and Jehiel
(2007), Falk and Knell (2004), Köszegi and Rabin (2006, 2007, 2009), Gimpel (2007), Li (2007),
Vartiainen (2007), Abeler et al. (2011), Baucells et al. (2011), Giorgi and Post (2011), Hyndman
(2011), Driesen et al. (2012), Sarver (2012), and Roels and Su (2014) among others.
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This essay models the emergence of reference points and investigate their influ-

ence on bargaining behavior and outcomes in a two-player, infinite horizon, al-

ternating offers bargaining game (Stahl, 1972; Rubinstein, 1982), where players’

preferences exhibit reference dependence. We allow past offers in an alternating

offers bargaining game to influence players’ reference points in later periods (see

Shalev, 2002; Driesen et al., 2012 for earlier examples). Players in our model are

both gain-seeking and loss-averse. Accordingly, player i (i = 1, 2) weights payoffs

above his reference point with γi and payoffs below his reference point with λi,

where we assume λi ≥ γi. A novel element we introduce is limited influence: an

offer made to player i in the current period has the potential to influence his ref-

erence points for the next mi periods in which he responds to player j’s offers. In

particular, player i’s reference point at period t > 1 according to which he evalu-

ates player j’s current offer, is assumed to be the highest (or the most generous)

offer he received in the last mi periods (in which he received offers). Therefore,

in contrast with Driesen et al. (2012), which assumed that player i’s reference

point at any given period t > 1 is the highest offer he received until t, we model

those bargaining situations where past offers can have only a limited influence on

the current reference points. In other words, the influence of past offers expire

in finitely many periods in our baseline model. Our model is inspired by the

availability heuristic or retrievability bias in decisionmaking (see Kahneman and

Tversky, 1974) and the order effect (or the recency effect) in belief updating and

intertemporal decisionmaking (see Hogarth and Einhorn, 1992). There is a strong

empirical evidence for these heuristics and biases (see Bartos, 1964; DeBondt and

Thaler, 1990; Hogarth and Einhorn, 1992; Grether, 1992; Holt and Smith, 2009;
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Malmendier and Nagel, 2016 among many others).

We show that for any exogenously given initial reference point there exists a sub-

game perfect equilibrium of the game, which induces an immediate agreement.

A closer look at this equilibrium reveals that despite the immediate agreement

result, expiration lengths influence equilibrium behavior. More precisely, the in-

fluence of expiration lengths (i.e., m1 and m2) are concealed in reference points

since m1 and m2 determine the corresponding sets of past offers from which the

current reference points emerge, and rational players incorporate the information

from the continuation game to their actions in the first-period.

We compare the equilibria of the game with limited influence and the game with

unlimited influence (i.e., m1 = m2 = ∞). Our comparison shows that equilib-

rium outcomes are identical (due to the immediate agreement result) whereas

equilibrium strategies are different.

The organization of the essay is as follows: Section 1 introduces the model. Sec-

tion 2 and its subsections present results from the model with limited influence

and the model with unlimited influence, compare the results from the two models,

and provide a comparison with Driesen et al. (2012), as well. Finally, Section 3

concludes.

4.1 The Model

We consider an infinite horizon bargaining model in which two players, player 1

and 2, bargain over the division of a pie of a unit size, following an alternating-
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offers bargaining protocol. More precisely, at odd periods t = 1, 3, 5, . . ., player 1

makes an offer z = (z1, z2), where z1 + z2 = 1 and player 2 decides whether

to accept (a) or reject (r) the offer. Similarly, at even periods t = 2, 4, 6, . . .,

player 2 makes an offer and player 1 decides whether to accept (a) or reject it

(r). If an offer z = (z1, z2) is accepted, the game ends with players receiving their

corresponding agreed shares. At any period t, if an offer is rejected, then with

probability δ ∈ (0, 1) the game continues to period t + 1 and with probability

1−δ (i.e, the break-down probability) the game ends. If and when the game ends

as a result of a break-down, players do not receive any share from the pie (i.e.,

the shares of both players are equal to 0). The set of all possible (efficient) offers

is denoted by

Z = {(z1, z2) ∈ R2
+|z1 + z2 = 1}.

For each player i ∈ {1, 2} a strategy σi = (σti)
∞
t=1 is a sequence of functions where

σti maps any history up to period t to an offer or a response (i.e., a or r) depending

on whose turn it is to make an offer at period t.

We use a framework similar to the ones developed in Shalev (2002) and Driesen

et al. (2012) to study the influence of past actions on current decisions through

their influence on players’ reference points. In particular, player i’s current refer-

ence point according to which he evaluates player j’s current offer is determined

by player j’s past offers (and the exogenously given initial reference point). How-

ever, in contrast with Driesen et al. (2012), the reference point of player i in our

model is not necessarily the highest offer he received up to the period he has to

take an action; instead it is the highest offer he received in the last mi periods (in
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which he received offers), where mi is finite. In other words, the influence of past

offers on players’ reference points expires in finite periods (after a certain number

of periods, a past offer gets simply too old to constitute a reference point). For

any i ∈ {1, 2} and t ∈ N, we will use rti to denote the reference point of player i

at period t. Thus, after a sequence of offers (zs)t−1
s=1 the reference point of the

agents at period t are (with the convention z0 = (z0
1 , z

0
2) = (0, 0)):

� If t is odd

rt1 = max {zs1|s ∈ {t− 1, t− 3, · · · , t− (2m1 − 3), t− (2m1 − 1)} ∩ Z+}

rt2 = rt−1
2

� If t is even

rt1 = rt−1
1

rt2 = max {zs2|s ∈ {t− 1, t− 3, · · · , t− (2m2 − 3), t− (2m2 − 1)} ∩ Z+}

Suppose that at period t+ 1, it is player i’s turn to make an offer and he offers z.

If player j rejects the offer, his reference point in period t+2 will be the maximum

of the offers that were made in periods t− (2mj−3), t− (2mj−5), . . . , t−3, t−1

and the last offer zj, since the influence of offer at the period t−(2mj−1) expires.

The following definitions will provide us some convenience in the following dis-
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cussions. For odd periods t, let

r̄t1 = max {zs1|s ∈ {t− 1, t− 3, · · · , t− (2m1 − 3)} ∩ Z+} ,

and for even periods t,

r̄t2 = {zs2|s ∈ {t− 1, t− 3, · · · , t− (2m2 − 3)} ∩ Z+} ,

Thus r̄ti is the maximum of the last mi − 1 offers (or t offers if mi − 1 > t) that

the agent has received).

Hence, in the case of a rejection, the reference point of player i in the next period,

after he received an offer z, will be max{r̄ti , zi}. We assume that player i evaluates

the offer he receives at period t, zti , according to his current reference point, rti .

We employ the functional form in Köszegi and Rabin (2006) to incorporate

reference-dependent preferences. More precisely, offers below the reference point

are regarded as losses, whereas the offers above the reference point are regarded

as gains. Accordingly, at period t, the utility of player i from the realization of

zt is given as follows (assuming that the current reference point is rti):

uti(z, r
t) =


zti + γi(z

t
i − rti) if zti ≥ rti

zti + λi(z
t
i − rti) if zti < rti

,

where λi ≥ γi ≥ 0. The first term, zti , is the intrinsic consumption utility, which

can be considered as the benefit player i obtains from consuming his share of the

pie. The second term (i.e., λi(z
t
i − rti) or γi(z

t
i − rti)) represents gain-loss utility.
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λi is the loss-aversion coefficient, whereas γi is the gain-seekingness coefficient.

By taking λi ≥ γi we are assuming that players are more sensitive to losses than

to gains, capturing the main idea in Kahneman and Tversky (1979, 1991) . Note

that the functional forms used in Shalev (2002) and Driesen et al. (2012) are

special cases (i.e., γi = 0) of the functional form that we employ. We denote the

game described above by Γ.

4.2 Results

In this section, first we focus on the model with a limited influence (i.e., finite

expiration lengths). Later, we analyze a variation of our baseline model, with an

unlimited influence (i.e., infinite expiration lengths).

4.2.1 Limited Influence

Throughout this study, equilibrium means subgame perfect equilibrium. Accord-

ingly, in equilibrium, an offer should make the responder indifferent between the

current offer and his expected utility from his own offer in the next period.3 Now,

consider an odd period t in which player 1 makes the offer x ∈ Z. Suppose that, if

player 2 rejects the offer x in period t, then he will propose y ∈ Z in period t+ 1.

3In the bargaining game Γ, (i) the pie is desirable, (ii) disagreement is the worst outcome,
(iii) uti(x, r) > ut+1

i (x, r) for each t, x and r and (iv) ui is continuous. Moreover, the game
is stationary in the sense that player i’s preference between his share from the division x at
period t and his share from the division y at period t+1 is independent of t when t is the period
that player i’s turn to make an offer. Note that the reference point of player i at period t + 1
is equal to his reference point at period t, i.e., rt+1

i = rti . These properties of Γ allow us to use
the expected payoff at period t + 1 as the continuation payoff of the game (see Osborne and
Rubinstein, 1990 pp. 73)
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Let r2 = rt2 and r̄2 = r̄t2. Note that in the case of a rejection, the reference

point of player 2 in period t + 1 will be rt+1
2 = max{r̄2, x2}. For player 2 to be

indifferent between accepting the offer x made in period t and rejecting this offer

and making the offer y in the next period, which is assumed to be accepted by

player 1, we need

ut2(x, rt) = δut+1
2 (y, rt+1) + (1− δ)ut+1

2 (0, rt+1). (4.1)

The left-hand side of the equality is the utility that player 2 gets if he accepts

x, whereas the right-hand side is his (expected) continuation utility (i.e., with

probability δ the game continues to the next period and player 2 offers y which

is assumed to be accepted by player 1 or with probability 1 − δ the game ends

and player 2 gets zero). Similarly, consider an even period t in which player 2

makes the offer y ∈ Z. Suppose that, if player 1 rejects this offer, then he will

propose x ∈ Z in period t+ 1. Let r1 = rt1 and r̄1 = r̄t1. Note that in the case of a

rejection, the reference point of player 1 in period t+1 will be rt+1
1 = max{r̄1, y1}.

For player 1 to be indifferent between accepting the offer y made in period t and

rejecting this offer and making the offer x in the next period, which is assumed

to be accepted by player 2, we need

ut1(y, rt) = δut+1
1 (x, rt+1) + (1− δ)ut+1

1 (0, rt+1). (4.2)

In the rest of the study, we assume that a player does not make an offer that gives

him a share less than the offer that he previously rejected, i.e., we assume x1 > y1.4

4See Fershtman and Seidmann (1993) for a similar modeling assumption. Note that our
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Under this assumption, depending on the reference points, equation (4.2) yields

one of the following cases:

1. r1 > r̄1 > y1

a. x1 ≥ r̄1 : (1 + γ1)δx1 = (1 + λ1)y1 − λ1r1 + (1− δ)λ1r̄1 + δγ1r̄1

b. x1 < r̄1 : (1 + λ1)δx1 = (1 + λ1)y1 − λ1r1 + λ1r̄1

2. r1 > y1 > r̄1 : (1 + γ1)δx1 = (1 + λ1 + δγ1 + (1− δ)λ1)y1 − λ1r1.

3. y1 > r1 > r̄1 : (1 + γ1)δx1 = (1 + γ1 + δγ1 + (1− δ)λ1)y1 − γ1r1.

Similarly, for equation (4.1), we have:

I. r2 > r̄2 > x2

a. y2 ≥ r̄2 : (1 + γ2)δy2 = (1 + λ2)x2 − λ2r2 + (1− δ)λ2r̄2 + δγ2r̄2

b. y2 < r̄2 : (1 + λ2)δy2 = (1 + λ2)x2 − λ2r2 + λ2r̄2

II. r2 > x2 > r̄2 : (1 + γ2)δy2 = (1 + λ2 + δγ2 + (1− δ)λ2)x2 − λ2r2.

III. x2 > r2 > r̄2 : (1 + γ2)δy2 = (1 + γ2 + δγ2 + (1− δ)λ2)x2 − γ2r2.

Considering the cases above together, we obtain 16 possible regions for the ref-

erence point (r1, r2) ∈ [0, 1]2. We will denote these mutually exclusive regions by

R1.a−I.a, R1−I.b, . . . , R3−II , R3−III . Let xω and yω be the offers associated with the

corresponding region Rω, where ω ∈ {1.a−I.a, 1.a−I.b, 1.a−II, . . . , 3−III} for

player 1 and player 2, respectively. The following theorem describes a subgame

perfect equilibrium of the game.

assumption is weaker than their endogenous commitment assumption.
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Theorem 12. Take any period t ≥ 1. Let the reference point be (rt1, r
t
2) ∈ Rω

and xω, yω be the offers associated with the corresponding region Rω, where ω ∈

{1.a− I.a, 1.a− I.b, 1.a− II, . . . , 3− III}. For player 1, let σ∗1 be such that if t

is odd, player 1 makes the offer xω and if t is even, player 1 accepts the offer z

if and only if z1 ≥ yω1 . For player 2, define the strategy σ∗2 in a similar way. The

strategy profile σ∗ = (σ∗1, σ
∗
2) is a subgame perfect equilibrium of the bargaining

game Γ.

This subgame perfect equilibrium induces an immediate agreement. At any

period t, the equilibrium strategy of player i associated with the region Rω,

which directly depends on the reference points of both players, for any ω ∈

{1.a− I.a, 1.a− I.b, 1.a− II, . . . , 3− III}, implying indirect dependence on ex-

piration lengths, mi and mj.

Before moving to the proof, we first recall the Corollary of Theorem in Hendon

et al. (1996), which we will employ in our proof: One-deviation principle holds

in infinite horizon extensive-form games, which are continuous at infinity.

Definition 3. (Continuity at infinity) A game is continuous at infinity if for any

player i and for any ε > 0, there exists a period t̄ such that if two strategy profiles

σ and σ′ satisfy for all s ≤ t̄, σs = σ′s, then |Ui(σ)− Ui(σ′)| < ε, where Ui(σ) is

the sum of the discounted utilities accrued at each period in strategy profile σ.

Lemma 11. The bargaining game Γ is continuous at infinity.

For the proof of this lemma, see the Appendix.

Proof of Theorem 12. The proof is relegated to the Appendix.
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Equilibrium Outcome: Theorem 12 states that players follow the strategy

profile (σ∗1, σ
∗
2) in the equilibrium described:a player makes the offer xω or yω

based on the relevant region Rω for the reference point, and the agreement is

reached immediately. This implies that at t = 1, player 1 makes the offer xω,

where (r1
1, r

1
2) ∈ Rω; and player 2 accepts the offer. For instance, if the initial

reference point satisfies (r1
1, r

1
2) ∈ R3,III , then the equilibrium outcome of the

bargaining game x = (x1, x2) is given by

x1 =
η1(η2 − γ2r

1
2)− δ(1 + γ2)(η1 − γ1r

1
1)

η1η2 − δ2(1 + γ1)(1 + γ2)

x2 =
η1γ2r

1
2 + δ(1 + γ2)(η1 − γ1r

1
1)− δ2(1 + γ1)(1 + γ2)

η1η2 − δ2(1 + γ1)(1 + γ2)

where ηi = (1 + γi + δγi + (1− δ)λi).

The division of the pie in the equilibrium depends directly on initial reference

points in this case. It implicitly depends on expiration lengths, since they are

decisive in the evolution of the reference points. Equilibrium outcomes are given

in the Appendix for all regions Rω, where ω ∈ {1.a−I.a, 1.a−I.b, 1.a−II, . . . , 3−

III}.

4.2.2 No Expiration (Unlimited Influence)

In this section, we remove the bounds on the number of periods an offer can

influence future reference points. Hence, in any period t > 1, the reference points

at period t are defined on the basis of the most generous offers players received
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up to t,

rt1 = max{zs1|s = 0, 2, 4, 6, . . . ≤ t}

rt2 = max{zs2|s = 0, 1, 3, 5, . . . ≤ t}

where zs is the offer made at period s and z0
1 = z0

2 = 0.

Suppose that at period t it is player i’s turn to make an offer; and he offers x.

If player j rejects the offer x, his reference point period t + 1 will be rt+1
j =

max{rj, xj}.

Considering equation (4.2) for the bargaining game with no expiration, we have

the following three cases:

1. r1 > x1 > y1 : δx1 = y1.

2. x1 ≥ r1 > y1 : (1 + γ1)δx1 = (1 + λ1)y1 + δγ1r1 − δλ1r1.

3. x1 > y1 ≥ r1 : (1 + γ1)δx1 = (1 + γ1 + δγ1 + (1− δ)λ1)y1 − γ1r1.

Similarly, for equation (4.1), we have:

I. r2 > x2 > y2 : δy2 = x2.

II. x2 ≥ r2 > y2 : (1 + γ2)δy2 = (1 + λ2)x2 + δγ2r2 − δλ2r2.

III. x2 > y2 ≥ r2 : (1 + γ2)y2 = (1 + γ2 + δγ2 + (1− δ)λ2)y2 − γ2r2.

It is again clear that x1 > y1. Let xω and yω be the associated offers with the

regions Rω where ω ∈ {1 − I, 1 − II, . . . , 3 − III} for player 1 and player 2,
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respectively. The following theorem describes a subgame perfect equilibrium of

the corresponding game.

Theorem 13. Take any period t ≥ 1. Let (rt1, r
t
2) ∈ Rω where ω ∈

{1− I, 1− II, . . .

, 3−III}. For player 1, let σ∗1 be such that if t is odd, player 1 makes the offer xω

and if t is even, player 1 accepts the offer z if and only if z1 ≥ yω1 . For player 2,

define the strategy σ∗2 in a similar way. The strategy profile σ∗ = (σ∗1, σ
∗
2) is a

subgame perfect equilibrium of the bargaining game Γ.

This game, too, has a subgame perfect equilibrium that induces an immediate

acceptance. At any period t ≥ 1, the equilibrium strategy of player i associated

with the region Rω directly depends on reference points of both players for any

ω ∈ {1 − I, 1 − II, . . . , 3 − III}, namely the highest offer he received and the

highest offer he made to player j.

Proof of Theorem 13. The proof of Theorem 13 is similar to the that of Theorem

12 and it is relegated to the Appendix.

Equilibrium outcome: Suppose that the initial reference point satisfies

(r1
1, r

1
2) ∈ R3−III . Subgame perfect equilibrium outcome of the bargaining game

with unlimited influence has the same formulation as that of limited influence.

x1 =
η1(η2 − γ2r

1
2)− δ(1 + γ2)(η1 − γ1r

1
1)

η1η2 − δ2(1 + γ1)(1 + γ2)

x2 =
η1γ2r

1
2 + δ(1 + γ2)(η1 − γ1r

1
1)− δ2(1 + γ1)(1 + γ2)

η1η2 − δ2(1 + γ1)(1 + γ2)
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where ηi = (1 + γi + δγi + (1− δ)λi).

The equilibrium outcomes (in different regions) of the bargaining game with un-

limited influence are the same with the equilibrium outcomes of the bargaining

game with limited influence. This result possibly stems from the equilibrium

immediate agreement in combination with the backward focus of the reference

point. However, there are still some differences: the strategies are different for

two variations of the model since these models differ in the evolution of reference

points. Suppose the game is at period t > mi. At this period, in the bargaining

game with unlimited influence, the first offer player i received has still an influ-

ence on his reference point (and so on his actions) while in the bargaining game

with limited influence the impact of the first offer on his reference point expires.

A comparison with Driesen et al. (2012) is, naturally, in place. First of all, nat-

urally, Driesen et al. (2012) does not model expiration length. In our bargaining

game with an unlimited influence, reference points evolve as in Driesen et al.

(2012), i.e. they are the maxima of the rejected offers. However, reference points

that appear in equilibrium strategies are different. Another point that we differ

from Driesen et al. (2012) is the players’ evaluation of the offers above the refer-

ence point. As we mentioned above, the utility function they employ is a special

case of ours; for each player i, γi = 0. For low values of reference points, the

equilibrium offers in Driesen et al. (2012) are not affected by them since the gain

relevant to the reference point does not have any impact on the utility. However,

in our model the offers in the equilibrium depend on the reference points, even

for low values of those. Finally, Driesen et al. (2012) restrict their attention to
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the case where the initial reference point is (0, 0), whereas we do not impose such

a restriction. Arguably, as a consequence of these differences, they can prove the

uniqueness of equilibrium, whereas we cannot.

4.3 Concluding Remarks

We studied an infinite horizon, alternating offers bargaining game with endoge-

nous reference points. In our model, (i) players have reference-dependent pref-

erences, (ii) the initial reference point is exogenously given, (iii) but once the

bargaining starts the current reference point of player i depends on the most re-

cent mi offers player j made. To the best of our knowledge, this is the first study

that incorporates behavioral phenomena such as the recency effect/retrieveability

bias into bargaining model with endogenous reference points. We showed that

(i) there exists a subgame perfect equilibrium with an immediate agreement, (ii)

expiration lengths influence players’ strategies, (iii) but not their payoffs in this

equilibrium. Whether there exists other subgame perfect equilibria or not is far

from trivial and left as an open question. Future work on the topic may also

study similar bargaining games where players’ expiration lengths are not known

with certainty or incorporate other types of cognitive biases related to recall.
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CHAPTER 5

BETWEEN ANCHORS AND ASPIRATIONS:

A NEW FAMILY OF BARGAINING

SOLUTIONS

What provides a bargaining advantage? Nash (1950) proposed that what an agent

would get in the case of a disagreement may constitute a source of bargaining

power. On the other hand, Gupta and Livne (1988) argued that reference points

in the form of existing or expired contracts, precedents, negotiation text, or norms

may also provide bargaining power.1 Most cooperative bargaining models employ

the disagreement point (e.g., Nash (1950); Kalai and Smorodinsky (1975); Kalai

(1977); Chun and Thomson (1992); Balakrishnan et al. (2011)) or the reference

point (e.g., Brito et al. (1977); Gupta and Livne (1988)) as an anchor that influ-

ences the negotiated agreements. An important difference between the bargaining

advantages provided by these two sources is worth mentioning here: the former

can be exercised unilaterally (i.e., an agent would not need the opponent’s per-

1A plethora of experimental studies provided evidence supporting these arguments. Among
others, the reader is referred to Gächter and Riedl (2005, 2006), Bolton and Karagözoğlu (2016),
Herweg and Schmidt (2013), Irlenbusch et al. (2017), Anbarcı and Feltovich (2013, 2018), and
Bartling and Schmidt (2015).
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mission to disagree) whereas the latter needs to be —at least tacitly— mutually

acknowledged (i.e., a reference point can be employed only if both parties find

it sufficiently salient or reasonable). In that sense, the power provided by the

disagreement point can be labeled as hard power, whereas the power provided

by the reference point can be labeled as soft power (see Bolton and Karagözoğlu

(2016)). At first look, it appears that hard power should dominate soft power,

when push comes to shove. But what if there is a well-established norm that im-

plies a salient reference point? In other words, could it be that the effectiveness

of hard power depends on the salience of the source of soft power?

The way disagreement and reference points are incorporated into most coopera-

tive bargaining models implies that in addition to their direct influence mentioned

above, they may also have an indirect influence on the negotiated agreement

through their influence on agents’ aspirations. Aspirations can be interpreted as

agents’ expectations on the best case scenario in negotiations. In other words,

they provide answers to the question, “What is the most favorable outcome I can

get out of this negotiation?”. Kalai and Smorodinsky (1975) is among the first to

argue that aspirations can influence agreements.2 In that study, agents’ aspira-

tions are directly derived from the disagreement point (and the utility possibility

frontier). In accordance with that, the ideal point which is introduced by Kalai

and Smorodinsky (1975) is defined as the the maximum attainable utility level by

the players in an individually rational agreement. The Kalai-Smorodinsky solu-

tion employs the disagreement point (as an anchor point) and the ideal point (as

an aspiration point) in proposing a settlement. On the other hand, the solution

2Some other studies that have similar arguments are Raiffa (1953) and Rosenthal (1976).
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concept introduced by Gupta and Livne (1988) employs the reference point (as

an anchor point) and the ideal point (as an aspiration point). Their model de-

scribes a bargaining situation where the salience of the reference point “increases

the likelihood that no party exercises its threat to break off” (see Gupta and

Livne, 1988, p. 1304). Recently, Balakrishnan et al. (2011) introduced a new

salient point into bargaining problems: the tempered aspirations point. Such as-

pirations are derived from the reference point instead of the disagreement point;

and their solution —called the tempered aspirations solution— employs the dis-

agreement point (as an anchor point) and the tempered aspirations point (as

an aspiration point). Their model describes a bargaining situation where “the

salience of the reference point mutes or tempers the negotiators’ aspirations” (see

Balakrishnan et al., 2011, p. 144).3

One can argue that anchor points describe what would happen in the worst

case scenario, whereas aspiration points describe what would happen in the best

case scenario; and that there are multiple candidates for both types of salient

points which may lead to entirely different descriptions. What is common to all

three solution concepts mentioned above is that each proposes a settlement as

a feasible compromise between the worst case and the best case scenarios. A

natural question is: In modeling a simple bargaining situation, why/when should

the reference point be preferred over the disagreement point as an anchor point

(as in the Kalai-Smorodinsky solution or the tempered aspirations solution), or

vice versa (as in the Gupta-Livne solution)? Similarly, why/when should the ideal

3The Kalai-Smorodinsky solution proposes the maximum point of the bargaining set on
the line segment connecting the ideal point and the disagreement point. The Gupta-Livne
(tempered aspirations) solution proposes the maximum point of the bargaining set on the
line segment connecting the ideal point (tempered aspirations point) and the reference point
(disagreement point).
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point be preferred over the tempered aspirations point as an aspiration point (as

in the Kalai-Smorodinsky solution or the Gupta-Livne solution), or vice versa (as

in the tempered aspirations solution)? As Balakrishnan et al. (2011) correctly

pointed out “... the context of the bargain will affect the manner in which the

reference point influences the negotiated outcome”.

To put it more concretely, consider the following scenarios on wage bargaining:

Imagine first that the only piece of information bargaining parties have is the

payoffs they would receive if they cannot reach an agreement (Info 1). Now

consider a variation where another piece of information is also available, which

is the average wage level in the same industry last year (Info 2). In the presence

of this new information, it is hard to believe that Info 1 will be as influential as

before on the bargaining agreement. Finally, consider yet another variation where

instead of Info 2, parties know the average wage level in a different industry five

years ago (Info 2′). It is highly likely that Info 2′ will be less influential on the

bargaining agreement in the latter variation than Info 2 is in the former variation.

Generally speaking, contextual factors (e.g., similarity, temporality, connectivity)

likely influence the salience of the reference point and hence its impact on the

negotiated outcome (see Ashenfelter and Bloom (1984), Bazerman (1985), among

others).

The influence of contextual factors on negotiations (and, in general, economic

behavior) is a well-studied topic. In a seminal paper, Sebenius (1992) discussed

the need to incorporate such factors into negotiation analysis. Crusius et al.

(2012) argued, by referring to some well-known experimental findings, that the
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context has an important influence on behavioral mechanisms and the effects

of economic parameters. Among studies investigating the effect of anchors on

behavior, Kahneman (1992) and Wegener et al. (2001) distinguished between

extreme anchors and moderate anchors, and they further reported that moderate

anchors are more effective in influencing behavior. Along similar lines, it is argued

by Yockey and Kruml (2009) and reported by Holm and Runnemark (2014) that

the salience of the reference point is influenced by various contextual factors.

In this study, we argue that the salience of the reference point and its influence on

agents’ aspirations, respectively, provide new insights on the questions we posed

above. Accordingly, we incorporate these two factors into bargaining problems

with a reference point. In particular, we introduce two parameters, α ∈ [0, 1]

and β ∈ [0, 1], which capture the influence of the reference point on the anchor

(i.e., its salience) and its influence on agents’ aspirations, respectively. Higher

values of α refer to higher influence on the anchor (i.e., greater salience) whereas

higher values of β refer to higher influence on agents’ aspirations. This gives us a

unifying framework for the study of bargaining problems with a reference point.

The two parameters we introduce into bargaining problems with a reference point

also allow us to obtain a (two-parameter) family of bargaining solutions. This

family encompasses some of the well-known solution concepts as special (corner)

cases. For instance, when α = 0 and β = 0 (i.e., the reference point has no in-

fluence on the anchor point or the aspiration point), this solution coincides with

the Kalai-Smorodinsky solution. When α = 1 and β = 0 (i.e., the reference point

completely determines the anchor but has no influence on the aspiration point),
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this solution coincides with the Gupta-Livne solution. When α = 0 and β = 1

(i.e., the reference point has no influence on the anchor but completely deter-

mines the aspiration point), this solution coincides with the tempered aspirations

solution. Finally, when α = 1 and β = 1 (i.e., the reference point completely de-

termines both the anchor point and the aspiration point), this solution coincides

with what Gupta and Livne (1989) called the local Kalai-Smorodinsky solution.

Naturally, in between these four corner cases, there are infinitely many interme-

diate solution concepts that propose settlements by offering feasible compromises

between the worst case and the best case scenarios described by anchors and

aspirations, respectively.

An alternative interpretation for α and β can be obtained by resorting to a com-

monly used argument for bargaining solution concepts in the literature (see Luce

and Raiffa (1957); Kıbrıs (2010)). Some scholars argue that bargaining solutions

can be understood as the representations of arbitrators’ distributive preferences.

Under this interpretation, α and β can be considered as the arbitrator’s opin-

ion/belief about how effective the reference point (or the disagreement point)

should be in reaching a settlement in a given situation. If, on the other hand, one

resorts to the argument in Balakrishnan et al. (2011) regarding the context of the

bargain, then α and β can be thought as summary descriptors of the context.

Next, we present characterization results in bilateral bargaining problems. We

first offer multiple characterizations for each (α, β)-solution in our family. In each

of these characterizations, the standard axioms weak Pareto optimality, symme-

try, and invariance under positive affine transformations are utilized. For the
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other axioms, we first note that to be able to offer a characterization for each

(α, β)-solution, one requires an axiom family rather than a single axiom since

one would need each member of an axiom family to match a certain member

of the solution family. For a given (a, b) ∈ [0, 1]2, in addition to the three

standard axioms, each characterization has a (type of) monotonicity axiom: in-

dividual (a, b)-monotonicity, restricted (a, b)-monotonicity, or b-restricted (a, b)-

monotonicity. When combined with the standard axioms, either of individual

(a, b)-monotonicity and restricted (a, b)-monotonicity is strong enough to charac-

terize the corresponding solution. On the other hand, the standard axioms and

b-restricted (a, b)-monotonicity are not sufficient to characterize the corresponding

solution; hence, an accompanying axiom is required to obtain the characterization

result. Along these lines, limited sensitivity to changes in the (α, β)-salient point

and reduction under trivial (α, β)-salient points are separately used in two differ-

ent characterizations. It is worth noting here that the existing characterizations

in Kalai and Smorodinsky (1975), Gupta and Livne (1988), and Balakrishnan

et al. (2011) can be obtained as special cases. Furthermore, utilizing a simi-

lar argument, we are able to provide three alternative characterizations for the

Kalai-Smorodinsky solution, two for the Gupta-Livne solution, and three for the

tempered aspirations solution.

The roadmap for the essay is as follows: Section 1 introduces the bargaining

problem with a reference point and the (α, β)-family of bargaining solutions.

Section 2 presents the inventory of axioms used in the characterization results

that follow. Section 3 presents characterizations of the individual members of

the (α, β)-family. Finally, Section 4 concludes with some limitations and possible
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future research.

5.1 The Model

An n-person bargaining problem with a reference point is a triple (S, d, r) where

S denotes the set of feasible outcomes, d is the disagreement point, and r is the

reference point. We assume that (i) S ⊂ Rn is a non-empty, closed, convex, and

comprehensive set; (ii) ∃p ∈ Rn++, ∃q ∈ R such that ∀x ∈ S :
∑

i pixi ≤ q;

(iii) d, r ∈ S; (iv) ∃x ∈ S with x > d; and (v) r ≥ d.4 Let a(S, x) denote the

aspiration vector such that for every i ∈ {1, . . . , n} and every x ∈ S: ai(S, x) ≡

max{t ∈ R | (t, x−i) ∈ S}. Accordingly, a(S, d) is the ideal (or utopia) point (see

Kalai and Smorodinsky, 1975) and a(S, r) is the tempered aspirations point (see

Balakrishnan et al., 2011).

Let Σn be the class of all bargaining problems with a reference point. A solu-

tion concept for such problems is a function F : Σn → Rn that associates each

(S, d, r) ∈ Σn with a unique point of S. Below, we present the definitions of some

solution concepts we will use in the remainder of this study.

4The convexity assumption means that agents could agree to take a coin toss between two
outcomes and that each agent’s payoff from the coin toss is the average of his/her payoffs from
these outcomes. Closedness of S means that the set of physical agreements is closed and that
agents’ payoff functions are continuous. Comprehensiveness property stipulates that utility is
freely disposable. The assumption d ∈ S means that agents are able to agree to disagree, the
assumption r ∈ S means that the reference point is feasible, and the assumption r ≥ d means
that the reference point is individually rational. By assuming that there exists x ∈ S with
x > d, we rule out degenerate problems where no agreement can make all agents better-off
than the disagreement outcome. Finally, the condition in (ii) implies the boundedness of S
from above, which means that the maximum payoff an agent can achieve out of an agreement
is finite.
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Definition 4. (Kalai-Smorodinsky Solution) For every (S, d, r) ∈ Σn,

KS(S, d, r) = λ∗a(S, d) + (1− λ∗)d

where λ∗ = max{λ ∈ [0, 1] | λa(S, d) + (1− λ)d ∈ S}.5

The Kalai-Smorodinsky solution proposes the maximum point of the bargaining

set on the line segment connecting the ideal point, a(S, d), and the disagreement

point, d.

Definition 5. (Gupta-Livne Solution) For every (S, d, r) ∈ Σn,

GL(S, d, r) = λ∗a(S, d) + (1− λ∗)r

where λ∗ = max{λ ∈ [0, 1] | λa(S, d) + (1− λ)r ∈ S}.

The Gupta-Livne solution proposes the maximum point of the bargaining set on

the line segment connecting the ideal point, a(S, d), and the reference point, r.

Definition 6. (Tempered Aspirations Solution) For every (S, d, r) ∈ Σn,

TA(S, d, r) = λ∗a(S, r) + (1− λ∗)d

where λ∗ = max{λ ∈ [0, 1] | λa(S, r) + (1− λ)d ∈ S}.

The tempered aspirations solution proposes the maximum point of the bargaining

5Note that the Kalai-Smorodinsky solution does not depend on the reference point and is
usually defined on (S, d). Nevertheless, it is mathematically not problematic to define it on
(S, d, r).
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set on the line segment connecting the tempered aspirations point, a(S, r), and

the disagreement point, d.

As we discussed above, we introduce α ∈ [0, 1] which can be interpreted as the

power of the reference point in determining the anchor (or simply the salience of

the reference point); and β ∈ [0, 1] which can be interpreted as the influence of

the reference point in shaping agents’ aspirations/expectations. Accordingly, the

(α, β)-solution is defined as follows.

Definition 7. For a given (α, β) ∈ [0, 1]2 and for every (S, d, r) ∈ Σn,

Fα,β(S, d, r) = λ∗a(S, βr + (1− β)d) + (1− λ∗)(αr + (1− α)d)

where λ∗ = max{λ ∈ [0, 1] | λa(S, βr + (1− β)d) + (1− λ)(αr + (1− α)d) ∈ S}.

For every α, β ∈ [0, 1], the (α, β)-solution proposes the maximum point of the

bargaining set on the line segment connecting a(S, βr+(1−β)d) and αr+(1−α)d

(see Figure 5.1). The collection of all such solutions (for which 0 ≤ α, β ≤ 1)

constitutes the (α, β)-family of bargaining solutions.

As depicted in Figure 5.2, when (α, β) = (0, 0), the (α, β)-solution coincides with

the Kalai-Smorodinsky solution (Kalai and Smorodinsky, 1975); when (α, β) =

(0, 1), it coincides with the tempered aspirations solution (Balakrishnan et al.,

2011); when (α, β) = (1, 0), it coincides with the Gupta-Livne solution (Gupta

and Livne, 1988); and when (α, β) = (1, 1), it coincides with the local Kalai-

Smorodinsky solution (Gupta and Livne, 1989). Between these corner cases, the

(α, β)-solution family encompasses all other solution concepts of similar sort.
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·r

·
d

αr + (1− α)d

βr + (1− β)d

a(S, βr + (1− β)d)

Fα,β(·)

Figure 5.1: The (α, β)-solution

Note that our model allows α and β to be equal, but simply does not only consider

this very special case. To the extent that anchors and aspirations are salient

points of different nature, this is a natural modelling assumption. Accordingly,

we offer a richer description of the bargaining context than the one that restricts

attention to cases where α and β are equal. Also, it is worthwhile mentioning

that the solution concepts such as Gupta-Livne and the tempered aspirations

already implicitly assume that the influences of the reference point on the anchor

and aspiration points may be different.

5.2 Inventory of Axioms

In the following, we present the definitions of the axioms we employ in our charac-

terizations. Since characterization results concern bilateral bargaining problems,

these definitions are also given for bilateral bargaining problems.
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·r

d

a(S, d)

KS(·)

(a) Kalai-Smorodinsky Solution

·r

d

a(S, d)

GL(·)

(b) Gupta-Livne Solution

r

·
d

a(S, r)

TA(·)

(c) Tempered Aspirations Solu-
tion

r

·
d

a(S, r)

LKS(·)

(d) Local Kalai-Smorodinsky So-
lution

Figure 5.2: Four Bargaining Solutions as Members of the (α, β)-Family

First, we define for every S ⊂ R2, the set of weakly Pareto optimal outcomes

as WPO(S) = {x ∈ S | @y ∈ S \ {x} : y � x} and the set of Pareto optimal

outcomes as PO(S) = {x ∈ S | @y ∈ S \ {x} : y ≥ x}. The following standard

axioms require the solution to be (weakly) Pareto optimal.

Axiom 1. For every (S, d, r) ∈ Σ2, F (S, d, r) ∈ WPO(S).

Axiom 2. (Pareto Optimality)(PO) For every (S, d, r) ∈ Σ2, F (S, d, r) ∈

PO(S).

Let T : R2 → R2 be defined by T (x1, x2) = (x2, x1). The following is a primitive

fairness axiom, standard in the literature on bargaining problems.

Axiom 3. (Symmetry)(SYM) For every (S, d, r) ∈ Σ2, F (T (S), T (d), T (r)) =

T (F (S, d, r)).

A bargaining problem (S, d, r) ∈ Σ2 is symmetric if T (S) = S , T (d) = d, and
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T (r) = r. For such a problem, if a bargaining solution F : Σ2 → R2 satisfies

SYM, then F1(S, d, r) = F2(S, d, r).

We say that A = (A1, A2) : R2 → R2 is a positive affine transformation if for each

i ∈ {1, 2}, the map Ai(x1, x2) is of the form cixi + di for some positive constant

ci and some constant di. Then the following axiom requires the solution to be

invariant under positive affine transformations of a given problem.

Axiom 4. (Invariance Under Positive Affine Transformations)(IPAT)

For every (S, d, r) ∈ Σ2, F (A(S), A(d), A(r)) = A(F (S, d, r)).

In Section 3, we provide characterization results for the individual members of

the (α, β)-family. In this regard, we must have axiom families rather than single

axioms (e.g., Axioms 5-9). This way only one member of the (α, β)-family satisfies

only one member of a particular axiom family.

Assume that there is an arbitrator who wants to resolve a conflict in a given bar-

gaining problem with a reference point utilizing a cooperative bargaining solution.

Given the context of the bargain, the arbitrator has an opinion/belief about the

(effective) anchor point and the (effective) aspiration point: ar + (1 − a)d and

a(S, br + (1 − b)d), respectively. It is natural to expect that such an arbitrator

would care about axioms using these (effective) salient points rather than ax-

ioms using disagreement point and/or reference point. Note that Axioms 5-9 are

generalizations of the corresponding monotonicity, sensitivity, and relevance ax-

ioms in earlier work (see Kalai and Smorodinsky, 1975; Gupta and Livne, 1988;

Balakrishnan et al., 2011). Naturally, they have identical interpretations and

normative appeal with those axioms in earlier work. For example, Kalai and
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Smorodinsky (1975) used the disagreement point in their axiom of individual

monotonicity, whereas Gupta and Livne (1988) used the reference point in their

axioms of r-restricted S-monotonicity and irrelevance of trivial reference points.

In the current work, similar axioms are defined using the (effective) salient points.

The following is a simple monotonicity axiom which is analogous to individual

monotonicity introduced in Kalai and Smorodinsky (1975).

Axiom 5. (Individual (a, b)-Monotonicity)(IND. (a, b)-MON) Take any

(S, d, r), (S ′, d′, r′) ∈ Σ2 such that for some j ∈ {1, 2}: aj(S, br + (1 − b)d) =

aj(S
′, br′ + (1 − b)d′) and for i 6= j: ai(S, x) ≤ ai(S

′, x) for every x ∈ S. If

ar + (1− a)d = ar′ + (1− a)d′, then Fi(S, d, r) ≤ Fi(S
′, d′, r′).

The following axiom stipulates that if the bargaining set expands in such a way

that there is no change in any salient point, then no agent will be worse off.

Axiom 6. (b-Restricted (a, b)-Monotonicity)(b-REST. (a, b)-MON) Take

any (S, d, r), (S ′, d′, r′) ∈ Σ2 such that S ⊂ S ′, ar + (1 − a)d = ar′ + (1 − a)d′,

and br + (1− b)d = br′ + (1− b)d′. If a(S, br + (1− b)d) = a(S ′, br′ + (1− b)d′),

then F (S, d, r) ≤ F (S ′, d′, r′).

The following axiom indicates that given (a, b) ∈ [0, 1]2, if the corresponding point

from which aspirations are derived is trivial (i.e., ineffective), then the situation

can be represented by a reduced problem in which the reference point and the

disagreement point coincide.

Axiom 7. (Reduction under Trivial (a, b)-Salient Points)(RED. T(a, b)-

SP) For every (S, d, r) ∈ Σ2, if a(S, ar + (1 − a)d) = a(S, br + (1 − b)d), then
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F (S, d, r) = F (S, ar + (1− a)d, ar + (1− a)d).

Note that Axioms 6 and 7 are analogous to r-restricted S-monotonicity and

irrelevance of trivial reference points introduced in Balakrishnan et al. (2011).

The following axiom requires that if the bargaining problem changes in such a

way that the point from which aspirations are derived is the only change, then the

solution will not be affected. It is analogous to the limited sensitivity to changes

in the conflict point axiom introduced in Gupta and Livne (1988).

Axiom 8. (Limited Sensitivity to Changes in the (a, b)-Salient

Point)(LSC (a, b)-SP) For every (S, d, r), (S ′, d′, r′) ∈ Σ2, if S = S ′, ar +

(1 − a)d = ar′ + (1 − a)d′, and a(S, br + (1 − b)d) = a(S ′, br′ + (1 − b)d′), then

F (S, d, r) = F (S ′, d′, r′).

The following is another monotonicity axiom which is weaker than Axiom 5 and

stronger than Axiom 6.

Axiom 9. (Restricted (a, b)-Monotonicity)(REST. (a, b)-MON) For every

(S, d, r), (S ′, d′, r′) ∈ Σ2, if S ⊂ S ′, ar + (1− a)d = ar′ + (1− a)d′, and a(S, br +

(1− b)d) = a(S ′, br′ + (1− b)d′), then F (S, d, r) ≤ F (S ′, d′, r′).

5.3 Characterization Results

In this section, we provide multiple characterizations of the individual members

of the (α, β)-family in bilateral bargaining problems. Three of these are closely

related to the original characterizations of three of the special cases mentioned in
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Section 1 (see Kalai and Smorodinsky, 1975; Gupta and Livne, 1988; Balakrishnan

et al., 2011 for these characterizations). Furthermore, stemming from two of

these characterizations, we obtain two independent characterizations of the whole

family.

Lemma 12. For a given (a, b) ∈ [0, 1]2, any bargaining solution F : Σ2 → R2

that satisfies IND. (a, b)-MON also satisfies REST. (a, b)-MON.

Proof. Take any (S, d, r), (S ′, d′, r′) ∈ Σ2 such that S ⊂ S ′, ar + (1 − a)d =

ar′+(1−a)d′, and a(S, br+(1− b)d) = a(S ′, br′+(1− b)d′). Then the conditions

of IND. (a, b)-MON are satisfied for both agents. It follows for every i ∈ {1, 2}

that Fi(S, d, r) ≤ Fi(S
′, d′, r′). Hence F (S, d, r) ≤ F (S ′, d′, r′).

Lemma 13. For a given (a, b) ∈ [0, 1]2, any bargaining solution F : Σ2 → R2

that satisfies REST. (a, b)-MON also satisfies b-REST. (a, b)-MON.

Proof. Take any (S, d, r), (S ′, d′, r′) ∈ Σ2 such that S ⊂ S ′, ar + (1 − a)d =

ar′+(1−a)d′, br+(1−b)d = br′+(1−b)d′, and a(S, br+(1−b)d) = a(S ′, br′+(1−

b)d′). Then the conditions of REST. (a, b)-MON are satisfied. Hence F (S, d, r) ≤

F (S ′, d′, r′).

Lemma 14. For a given (a, b) ∈ [0, 1]2, any bargaining solution F : Σ2 → R2

that satisfies REST. (a, b)-MON also satisfies LSC (a, b)-SP.

Proof. Take any (S, d, r), (S ′, d′, r′) ∈ Σ2 such that S = S ′, ar + (1 − a)d =

ar′+(1−a)d′, and a(S, br+(1−b)d) = a(S, br′+(1−b)d′). Then, by REST. (a, b)-

MON, it turns out that F (S, d, r) ≤ F (S ′, d′, r′). And considering that S ′ = S,

we also have F (S ′, d′, r′) ≤ F (S, d, r). Hence F (S, d, r) = F (S ′, d′, r′).
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Lemma 15. For a given (a, b) ∈ [0, 1]2, any bargaining solution F : Σ2 → R2

that satisfies LSC (a, b)-SP also satisfies RED. T(a, b)-SP.

Proof. Take any (S, d, r) ∈ Σ2 such that a(S, ar+(1−a)d) = a(S, br+(1−b)d). Set

(S ′, d′, r′) = (S, ar+(1−a)d, ar+(1−a)d). Note that ar+(1−a)d = ar′+(1−a)d′

and a(S, br+(1−b)d) = a(S, br′+(1−b)d′). By LSC (a, b)-SP, we have F (S, d, r) =

F (S ′, d′, r′). Hence F (S, d, r) = F (S, ar + (1− a)d, ar + (1− a)d).

Theorem 14 below presents multiple characterizations of individual members of

the (α, β)-family.

Theorem 14. For a given (a, b) ∈ [0, 1]2, a bargaining solution F : Σ2 → R2 is

the (a, b)-solution if and only if F satisfies

(i) WPO, SYM, IPAT, and IND. (a, b)-MON;

(ii) WPO, SYM, IPAT, and REST. (a, b)-MON;

(iii) WPO, SYM, IPAT, b-REST. (a, b)-MON, and LSC (a, b)-SP.

Moreover, if a ≤ b, then F : Σ2 → R2 is the (a, b)-solution if and only if F

satisfies

(iv) WPO, SYM, IPAT, b-REST. (a, b)-MON, and RED. T(a, b)-SP.

Proof of Theorem 14. Fix any (a, b) ∈ [0, 1]2. It will be enough to prove the

“if” part of (i) and the “only if” parts of (iii) and (iv) for b < a and a ≤ b,

respectively. The remaining parts follow by Lemmas 12-15.
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The proofs that the (a, b)-solution satisfies WPO, SYM, IPAT, and IND. (a, b)-

MON are simple and relegated to the Appendix. As a matter of fact, it is shown

in the Appendix that the (a, b)-solution satisfies PO in bilateral bargaining prob-

lems.

Conversely, we first focus on the “only if” part of (iii). Assume that b < a and

take any solution F : Σ2 → R2 satisfying all of the axioms in (iii). Take any

(S, d, r) ∈ Σ2. By IPAT, there is no generality lost by assuming that

ar + (1− a)d = (0, 0) and a(S, br + (1− b)d) = (1, 1).

Notice that F a,b
1 (S, d, r) = F a,b

2 (S, d, r). Without loss of generality, assume that r

is below the 45-degree line. Consider the horizontal lines passing through r, d, and

br+(1−b)d; and take their intersections with the 45-degree line. Respectively, let

these intersections be called r̃, d̃, and b̃. Notice that ar̃+ (1−a)d̃ = ar+ (1−a)d

and br̃ + (1− b)d̃ = b̃. Then let S ′′ be the convex and comprehensive hull of the

points (1, b̃2), (b̃1, 1), and F a,b(S, d, r). By WPO and SYM, we have

F (S ′′, d̃, r̃) = F a,b(S, d, r).

Also define S ′ = {x ∈ S | x ≤ (1, 1)}. Since F a,b(S, d, r) ∈ PO(S ′), S ′′ ⊂ S ′ ⊂ S,

and a(S ′′, b̃) = a(S ′, b̃), we utilize b-REST. (a, b)-MON to conclude that

F (S ′′, d̃, r̃) = F (S ′, d̃, r̃) = F a,b(S, d, r).

By construction, we also have a(S ′, br + (1 − b)d) = a(S ′, b̃). Then, by LSC
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(a, b)-SP,

F (S ′, d, r) = F (S ′, d̃, r̃) = F a,b(S, d, r).

And by b-REST. (a, b)-MON, we conclude that F (S, d, r) = F a,b(S, d, r).

Finally, assume that a ≤ b and take any solution F : Σ2 → R2 satisfying all of

the axioms in (iv). Take any (S, d, r) ∈ Σ2. By IPAT, there is no generality lost

by assuming that

ar + (1− a)d = (0, 0) and a(S, br + (1− b)d) = (1, 1).

Notice that F a,b
1 (S, d, r) = F a,b

2 (S, d, r). Without loss of generality, assume that r

is below the 45-degree line. Consider the horizontal lines passing through r, d, and

br+(1−b)d; and take their intersections with the 45-degree line. Respectively, let

these intersections be called r̄, d̄, and b̄. Notice that ar+ (1−a)d = ar̄+ (1−a)d̄

and br̄ + (1− b)d̄ = b̄. Then let S ′′ be the convex and comprehensive hull of the

points (1, b̄2), (b̄1, 1), and F a,b(S, d, r). By WPO and SYM, we have

F (S ′′, d̄, r̄) = F a,b(S, d, r).

Also define S ′ = {x ∈ S | x ≤ (1, 1)}. Since F a,b(S, d, r) ∈ PO(S ′), S ′′ ⊂ S ′ ⊂ S,

and a(S ′′, b̄) = a(S ′, d̄), we utilize b-REST. (a, b)-MON to conclude that

F (S ′′, d̄, r̄) = F (S ′, d̄, r̄) = F a,b(S, d, r).

By construction, we also have a(S ′, br+(1−b)d) = a(S ′, ar+(1−a)d) = a(S ′, b̄).
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Then, by RED. T(a, b)-SP,

F (S ′, d, r) = F (S ′, ar + (1− a)d, ar + (1− a)d) = F (S ′, d̄, r̄) = F a,b(S, d, r).

And by b-REST. (a, b)-MON, we conclude that F (S, d, r) = F a,b(S, d, r).

By Lemmas 12 - 15, we see that the characterizations in Theorem 14 are given in

an ascending order of tightness. Therefore, if one compares our characterizations

using tightness as a measure, one prefers (iii) to (ii) and (ii) to (i); and also

(iv) to all others if a ≤ b. Yet, we think that each characterization has a value

since they allow us to describe and identify the members of the (α, β)-family with

different characteristics.

We mentioned that the (α, β)-family encompasses some well-known solutions as

special cases. Naturally, this is reflected in the characterizations presented in

Theorem 14. In particular, part (i) of Theorem 14 encompasses the original char-

acterization of the Kalai-Smorodinsky solution (i.e., if IND. (0, 0)-MON is con-

sidered). In a similar fashion, part (iii) encompasses the original characterization

of the Gupta-Livne solution6 and part (iv) matches the original characterization

of the tempered aspirations solution. On the other hand, to the best of our

knowledge, part (ii) of Theorem 14 is completely new.

When (a, b) = (0, 0), parts (ii), (iii), and (iv) of Theorem 14 become alternative

characterizations for the Kalai-Smorodinsky solution; when (a, b) = (1, 0), parts

(i) and (ii) become alternative characterizations for the Gupta-Livne solution;

6As a matter of fact, there is a minor difference between these characterizations since the
one by Gupta and Livne (1988) additionally employs the axiom of relevant domain.
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and when (a, b) = (0, 1), parts (i), (ii), and (iii) become alternative characteri-

zations for the tempered aspirations solution.

Finally, Figure 5.3 below summarizes the relations between the axioms used in

our characterizations and how they characterize the (a, b)-solution.7

1 2 3

4

5

6

1: WPO, SYM, and IPAT
2: IND. (a, b)-MON
3: REST. (a, b)-MON
4: b-REST. (a, b)-MON
5: LSC (a, b)-SP
6: RED. T(a, b)-SP

Figure 5.3: The Summary of the Characterization Results

5.4 Conclusion

We introduce two parameters that measure the influences of soft vs hard power on

anchor and aspiration formation in bargaining problems with a reference point.

These parameters can be thought as descriptors of the specific bargaining con-

7Assume that the numbers in the sets denote the name of the sets. The figure utilizes the
facts that (i) 2 ⊂ 3 by Lemma 12; (ii) 3 ⊂ 4 by Lemma 13; and (iii) 3 ⊂ 5 ⊂ 6 by Lemmas 14
- 15.
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text which carry information about how influential the reference point (or the

disagreement point) is in shaping the (effective) anchor point and the (effective)

aspiration point. Alternatively, they can be interpreted as parameters that de-

scribe the opinion of an arbitrator about how effectively the reference point should

be utilized in reaching a settlement. As a result, we obtain a family of bargaining

solutions and present characterizations of individual members of this family in

bilateral bargaining problems.

A natural question that may arise at this stage is: What are some caveats in

our approach? We would like to note that the solution family we introduce does

not cover all possible solutions that employ anchor and aspiration points. For

instance, Chun and Thomson (1992) used a claims point, which is similar to an

aspiration point, and proposed a solution that lies at the intersection of the utility

possibility frontier and the line connecting the claims point and the disagreement

point. Thus, it behaves similarly to the members of the (α, β)-family. However,

this solution does not belong to our family since the claims point is exogenously

given and not derived by using a salient point and the utility possibility fron-

tier. Moreover, we follow the assumptions used by Gupta and Livne (1988) in

introducing the reference point into the bargaining problem. In particular, the

reference point in our model Pareto dominates the disagreement point and lies

in the interior of the utility possibility set. Although these restrictions may be

satisfied in many instances, there possibly are real-life situations where one or

both may fail to be satisfied. We do not address these situations in this study.

Future work may experimentally test the validity of our theory by manipulating
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the salience of the reference point in simple bargaining games. Both vignettes

and incentivized bargaining experiments can be used for this purpose. From a

theoretical perspective, axiomatic (see Border and Segal (1997) or strategic (see

Van Damme (1986)) selection of the members of the (α, β)-family may be of

interest. Moreover, our framework can be used to arrive at alternative charac-

terizations of the aforementioned well-known members of the family by deriving

new axiom families from earlier studies (see Livne 1989; Rachmilevitch 2011,

2014, among others). Finally, our model may be used as a natural unifying

framework for studying endogenous emergence of reference points in bargaining

problems (see Herrero, 1997; Shalev, 2002; Driesen et al., 2011; Bozbay et al.,

2012; Birkeland and Tungodden, 2014; Karagözoğlu and Keskin, 2014).
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CHAPTER 6

ITERATED EGALITARIAN COMPROMISE

SOLUTION TO BARGAINING PROBLEMS

AND MIDPOINT DOMINATION

In a seminal paper, Nash (1950) introduced the axiomatic treatment of bargaining

problems. Over the last six decades, the axiomatic approach has attracted a

considerable attention from researchers studying bargaining (see Kıbrıs, 2010 for

an overview). The axiomatic literature on bargaining has been productive in

coming up with solution concepts with appealing normative properties. Two

prominent solutions of interest for the current study are the egalitarian solution

(E, for short) due to Kalai (1977) and the equal loss solution (EL, for short)

due to Chun (1988). As their names suggest, both solutions apply an egalitarian

notion of justice in proposing outcomes to bargaining problems. More precisely,

for each bargaining problem, E proposes the maximum utility profile that gives

each agent an equal gain over his disagreement outcome, whereas EL proposes

This work is published in Operations Research Letters, Volume 46, Issue 3, May 2018,
Pages 282-285, as a joint work with Emin Karagözoğlu.
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the maximum utility profile that gives each agent an equal loss over his ideal

outcome.1

These two solutions share a common weakness: both solutions fail to satisfy a

basic normative requirement that a solution should assign each agent at least

half of his ideal point outcome (i.e., the best possible outcome for the agent

among the outcomes that are individually rational for both) in all bargaining

problems. It can be rephrased as, for any problem, an outcome proposed by a

solution should be Pareto superior to the randomized dictatorship outcome. This

requirement was introduced by Sobel (1981) and known as midpoint domination

(MD, for short). As Rachmilevitch (2017) points out, midpoint domination has

both fairness and efficiency connotations. On one hand, it requires both agents

to receive at least half of their ideal point outcomes (fairness) and on the other, it

requires the proposed outcome to be Pareto superior to the midpoint (efficiency).

Hence, it is an appealing normative property.

In this essay, we, first, introduce a new solution concept for two-person bargaining

problems: iterated egalitarian compromise solution (IEC, for short). For a prob-

lem where E and EL propose the same outcome, the outcome proposed by IEC

coincides with theirs. For a problem where E and EL propose different outcomes,

IEC proposes a compromise in an iterative fashion, by using the proposed out-

comes of E and EL at each iteration step. Hence, the name, iterated egalitarian

compromise. Second, we show that IEC is well-defined, i.e. for any problem in

the domain of two-person bargaining problems we consider, it proposes a unique

1As these descriptions may suggest, E and EL are duals of each other. For a recent study
of this relationship in this journal, see Karagözoğlu and Rachmilevitch (2017).
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outcome, defined as the limit of a iterative process. Finally, we show that it

satisfies midpoint domination despite the fact that neither of the solutions it is

based on does so.

A recent attempt in a similar direction is Rachmilevitch (2017). He proposes and

characterizes a midpoint-robust (i.e., satisfying midpoint domination) version of

the egalitarian solution.

The essay is organized as follows: in Section 1, we introduce the bargaining prob-

lem, define the solutions of interest, and the midpoint domination property. In

Section 2, we prove that IEC is well-defined and it satisfies midpoint domination.

Section 3 concludes with final remarks.

6.1 The Model

A simple two-person bargaining problem is denoted by S ⊂ R2. It satisfies the

following properties: it is (i) non-empty, (ii) closed, and bounded from above, (iii)

convex, (iv) comprehensive, (v) S∩R2
++ 6= ∅, and (vi) it contains the disagreement

outcome, 0 ≡ (0, 0). The axiomatic properties of the solutions we will use allow

us to normalize the disagreement outcome to (0, 0). Since we will do that in what

follows, we denote the problem by S instead of (S, d) for short. Intuitively, S

represents all the utility vectors that can be achieved by the agents. The non-

emptiness is to make the problem non-trivial. The closedness of S means that the

set of physical agreements is closed and that the payoff functions of agents are

continuous. The boundedness from above means that the maximum utility an
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agent can achieve out of an agreement is finite. The convexity assumption means

that agents could agree to take a coin-toss between two outcomes and that the

payoff of each agent from the coin toss is the average of his/her payoffs from these

outcomes. Comprehensiveness stipulates that utility is freely disposable down to

the disagreement utilities. S ∩ R2
++ 6= ∅ rules out degenerate problems where

no agreement can make all agents better off than the disagreement outcome.

Finally, 0 ∈ S means that the agents can agree to disagree. We denote the set of

all such problems by Σ. For every S ⊂ R2, its weak (strong) Pareto optimal set

is defined as WPO(S) ≡ {y ∈ S | x > y implies x /∈ S}(PO(S) ≡ {y ∈ S | x 	

y implies x /∈ S}). Here, we will focus on a subdomain of Σ, denoted by Σ̂, whose

weak and strong Pareto frontiers coincide (i.e., the bargaining frontier does not

have any horizontal or vertical segments). The importance of this assumption will

be explained later in the proof of Proposition 1. Finally, a bargaining solution F

is a function, which assigns to any bargaining problem S, a unique point in it.

The egalitarian solution (Kalai, 1977) equalizes agents’ gains over their disagree-

ment outcomes. Accordingly, it assigns to each S the point, E(S) with iden-

tical (x, y)–coordinates and E(S) is the maximum possible. This corresponds

to selecting the intersection point of the Pareto frontier and the 45–degree line

drawn from the disagreement point (in our case, the origin). The equal loss

solution (Chun, 1988) equalizes agents’ losses from their ideal point outcomes.

Formally, ideal point, introduced by Kalai and Smorodinsky (1975), is defined as

ai(S) ≡ max{si : s ∈ S}, where ai(s) denotes agent i’s ideal point outcome. Ac-

cordingly, the equal loss solution assigns to each S, the point EL(S) = a(S)−(l, l),

where l is the minimum possible. This corresponds to selecting the point at the
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intersection of the Pareto frontier and the 45-degree line drawn from the ideal

point. Note that for all S ⊂ Σ, if a1(S) > a2(S), then EL1(S) > E1(S) and

E2(S) > EL2(S), and vice-a-versa.

A solution F satisfies midpoint domination, if it proposes an outcome F (S) ≥

mp(S) ≡ 1
2
a(S), for all S. Figure 1 shows an example, where both E and EL

violate MD. Note that the bargaining problem in the example is in Σ̂.

O

1

2
a2(S)

a2(S)

1

2
a1(S)

a1(S)

1

2
a(S)

a(S)

E(S)

EL(S)

Figure 6.1: E and EL violate MD

The iterated egalitarian compromise solution (or IEC, for short) assigns to

each S ∈ Σ̂, the point x, if E(S) = EL(S) = x and assigns the point

y ≡ ∩t∈NPO(St), where S0 ≡ S and the bargaining problem in iteration

step t, St, for t ≥ 1 is derived by applying E and EL to St−1 in a way

that, the origin (i.e., the disagreement point) of St denoted by o(St), is

o(St) = (min{E1(St−1), EL1(St−1)},min{E2(St−1),

EL2(St−1)}) and consequently a(St) = (max{E1(St−1), EL1(St−1)},max{E2(St−1),

EL2(St−1)}).

IEC could be interpreted as a conflict resolution mechanism, which resolves the

conflict between E and EL in a step-by-step fashion, by using the minimal out-

120



comes in each iteration as starting points and the maximal outcomes as ideals for

the bargaining problem in the next step. Figure 2 shows how IEC operates in a

problem where E and EL propose different outcomes.

O(S0)

a2(S0)

a1(S0)

a(S0)

E(S0)

EL(S0)o(S1)

a(S1)

E(S1)

EL(S1)

a(S2)

o(S2)

Figure 6.2: Iterated Egalitarian Compromise Solution

6.2 The Result

First, we prove that IEC is well-defined, i.e. for all S ∈ Σ̂ the iterative process

embedded in IEC converges to a single point.

Proposition 1. For all S ∈ Σ̂, IEC is well-defined.

Proof of Proposition 1. First, consider a symmetric bargaining problem, S ≡ S0.

In this case, IEC proposes a single outcome, since E(S0) = EL(S0). Now,

consider an asymmetric problem, S ≡ S0 ∈ Σ̂. Without loss of generality, suppose

that a1(S0) > a2(S0). For notational convenience, let a1(St) − o1(St) = αt and

a2(St)− o2(St) = βt. Since both E and EL operate via upward-sloping 45-degree

lines, for each iteration step t, we get αt+1 + βt+1 = |αt− βt|. The sequences (αt)

and (βt) are decreasing and bounded below (αt ≥ 0, βt ≥ 0). Thus, there exist
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some ᾱ and β̄ such that limt→∞ αt = ᾱ ≥ 0 and limt→∞ βt = β̄ ≥ 0. As t → ∞,

we have ᾱ + β̄ = |ᾱ − β̄|, which requires at least one of ᾱ and β̄ to be equal to

zero. Suppose without loss of generality that ᾱ = 0. Since bargaining frontier has

no horizontal or vertical segments, β̄ = 0 as well, which implies that our iteration

algorithm converges to a single point (i.e., IEC is single valued).

Remark 1. For some iteration step t′, the relative positions of E and EL on

the frontier may change, i.e. a2(St′) > a1(St′). Nevertheless, by the definitions

of disagreement point and ideal point, and the way our iteration mechanism

operates, αt′ ≥ 0, βt′ ≥ 0 and these sequences continue to decrease.

Remark 2. The domain restriction we made (i.e., bargaining frontier has no hori-

zontal/vertical segments) is necessary for the argument in last step of the proof to

be valid. If the Pareto frontier had horizontal/vertical segments, iterative process

may converge to a set that has more than one element.

The following corollary shows the relationship between IEC(St) and mp(St) in

the limit as t→∞, and it will be utilized in the proof of Proposition 2.

Corollary 2. For all S ∈ Σ̂, limt→∞IEC(St) ≥ limt→∞mp(St)

Proof of Corollary 2. The proof of Proposition 1 clearly implies that any bar-

gaining problem converges to a symmetric bargaining problem in the limit of the

iterative process and the IEC solution dominates the midpoint in a symmetric

bargaining problem. Hence, the result follows.

Now, we are ready to state our main result.

122



Proposition 2. For all S ∈ Σ̂, IEC satisfies MD.

Proof of Proposition 2. We will prove this statement in two steps. To do that, we

partition Σ̂ into two subsets: (i) problems with linear bargaining frontiers (Σ̂lin),

(ii) problems with non-linear bargaining frontiers (Σ̂nlin). Below, we will show

that IEC satisfies MD in both subsets.

Claim 1: For all S ∈ Σ̂lin, IEC satisfies MD.

Proof: If S ≡ S0 is symmetric, i.e., a1(S0) = a2(S0), then trivially IEC(S0) =

E(S0) = EL(S0) = x, where x = mp(S0). Suppose now that S ≡ S0 is

asymmetric, i.e., a1(S0) 6= a2(S0). Furthermore, without loss of generality,

assume that a1(S0) > a2(S0). Then, E(S0) 6= EL(S0). The linearity of the

Pareto frontier implies that the segments of the frontier cut by E and EL (from

two ends) in each iteration step are of equal length. Formally, for all t > 0,

o1(St) − o1(St−1) = a1(St−1) − a1(St) and o2(St) − o2(St−1) = a2(St−1) − a2(St).

Therefore, mp(S0) = mp(St), for all t > 0. Proposition 1 implies that

IEC(S) = mp(S). Hence, the result follows.

Claim 2: For all S ∈ Σ̂nlin, IEC satisfies MD.

Proof: If S ≡ S0 is symmetric, i.e., a1(S0) = a2(S0), then trivially IEC(S0) =

E(S0) = EL(S0) = x, where x ≥ mp(S0). Suppose now that S ≡ S0 is asym-

metric, i.e., a1(S0) 6= a2(S0). Furthermore, without loss of generality, assume

that a1(S0) > a2(S0). Then, E(S0) 6= EL(S0). The convexity of S0 and the non-

linearity of the bargaining frontier imply that o1(St)−o1(St−1) ≥ a1(St−1)−a1(St)

and o2(St) − o2(St−1) ≥ a2(St−1) − a2(St) for all t ≥ 1 and these inequali-
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ties are strictly hold for some t. But this implies that mp(St) � mp(St−1)

for all t > 0 (i.e., each iteration step moves the midpoint in the north-east

direction). So, limt→∞mp(St) � mp(S0). From Corollary 1, we know that

y ≡ limt→∞ IEC(St) ≥ limt→∞mp(St). Therefore, IEC(S) � mp(S). The

same result is valid for the case of a1(S0) < a2(S0), as well. Hence, the result

follows.

a2(S0)

a1(S0)

E(S0)

EL(S0)

o1(S1)

mp(S0)

mp(S1)

a1(S1)o1(S0)
o2(S0)

a2(S1)

o2(S1)

o1(S1)− o1(S0) a1(S0)− a1(S1)

o2(S1)− o2(S0)

a2(S0)− a2(S1)

Figure 6.3: Changes in the midpoints (Nonlinear, asymmetric case)

Kalai-Smorodinsky solution (KS for short) also satisfies MD, and like E and EL,

it utilizes an egalitarian justice norm (KS equalizes the ratios of maximal gains

across players). As such it can be thought as another alternative, but it rules out

inter-personal utility comparisons whereas IEC, like E and EL, is built on the

premise that such comparisons are possible. A direct implication of Proposition

2 on the relationship between IEC and KS is given in the following corollary.

Corollary 3. For all S ∈ Σ̂lin, IEC(S) = KS(S).

Proof of Corollary 3. The proof directly follows from the following facts: in a

bargaining problem S ∈ Σ̂lin, (i) midpoint is on the PO(S), and thus the only
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way for a solution to satisfy MD is to propose the midpoint, (ii) KS proposes the

midpoint, and (iii) IEC satisfies MD in Σ̂lin (from Claim 1 in Proposition 2).

Note that this statement is not necessarily true for S ∈ Σ̂nlin (see Figure 4).

Furthermore, it is neither valid for E nor for EL, even in Σ̂lin.

It is worth mentioning here that E and EL are duals of each other. Recogniz-

ing this fact, one can draw another similarity between IEC and KS. Recently,

Karagözoğlu and Rachmilevitch (2017), in a paper where they provided three

new characterizations of KS, showed that the outcome proposed by KS always

lies (i.e., sandwiched) in between the outcomes proposed by two other solutions

with egalitarian objectives: the equal area solution (EA for short) and the dual

of the equal area solution (DEA for short). Along similar lines, the outcome pro-

posed by IEC, by construction, always lies in between the outcomes proposed by

E and EL, again, two egalitarian solutions that are duals of each other. Reader

is referred to Anbarcıand Bigelow (1994) for EA, Karagözoğlu and Rachmilevitch

(2017) for DEA, and Lemma 2 in Karagözoğlu and Rachmilevitch (2017) for the

above-mentioned “sandwich” result.

O

1

2
a2(S)

a2(S)

1

2
a1(S)

a1(S)

mp(S)

a(S)

KS

IEC

Figure 6.4: The Relation Between KS and IEC
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6.3 Conclusion

We introduced a new solution concept, IEC, for two-person bargaining problems,

which is based on two well-known egalitarian solution concepts, E and EL. IEC

mimics a conflict resolution mechanism and satisfies an appealing normative prop-

erty, midpoint domination, which is violated by both E and EL. Thus, IEC is a

reasonable alternative, especially if one wants to (i) utilize an egalitarian justice

norm in problems where E and EL disagree and (ii) operate in a domain that

allows inter-personal utility comparisons.

Our results lead to some new questions. Below, we describe three of them.

(1) In addition to MD, IEC satisfies Pareto optimality, symmetry, and scale

invariance Nash (1950), by definition. Furthermore, the proof of Claim 2 in

Proposition 2 implies that it satisfies restricted monotonicity Roth (1979), as well.

It would be of interest, from a normative perspective, to study which axiomatic

properties would characterize IEC.

(2) As we argued in Section 2, there are certain similarities between IEC and KS,

in that both are sandwiched between two egalitarian solutions, which are duals of

each other: IEC is sandwiched by E and EL, whereas KS is sandwiched by EA

and DEA. Further investigation of the relationships between these six solutions

with egalitarian objectives would be of interest.

(3) Finally, the iterative process IEC utilizes resembles the step-by-step nature

of negotiations. Thus, whether a strategic foundation for IEC can be provided

is an interesting question, in the spirit of the Nash program Nash (1953).
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APPENDICES

A Proofs of Chapter 2

Proof of Lemma 2. By the definition of contraction mapping, we need to show

that

∀v, w ∈ [0, 1]n : ‖f δ(v)− f δ(w)‖ ≤ δ‖v − w‖,

which means for all i ∈ N , |f δi (v)− f δi (w)| ≤ δ‖v − w‖.

|f δi (v)− f δi (w)|

= |(1− li
2l

)δ(vi − wi) +
1

2l

∑
{j|ij∈G}

(max{1− δ(vj − ljcj), δvi} −max{1− δ(wj−

ljcj), δwi})|

≤ (1− li
2l

)δ|vi − wi|+
1

2l

∑
{j|ij∈G}

max{|1− δvj − (1− δwj)|, |δvi − δwi|}

= (1− li
2l

)δ|vi − wi|+
1

2l

∑
{j|ij∈G}

δmax{|vj − wj|, |vi − wi|}

≤ (1− li
2l

)δ‖v − w‖+
1

2l

∑
{j|ij∈G}

δ‖v − w‖

= δ‖v − w‖

135



Therefore, the function f δ is a contraction mapping, implying that it has a fixed

point.

Proof of Lemma 3. ij ∈ G∗δ means that ij ∈ G and max{1− δ(v∗δj − ljcj), δv∗δi −

lici} = 1 − δ(v∗δj − ljcj). Since v∗δi is a fixed point of f δ, v∗δ solves the linear

equation system

vi = (1− li
2l

)δ(vi − lici) +
1

2l

∑
{j|ij∈G}

(1− δvj), ∀i = 1, . . . , n.

Take any subnetwork H of G and for all δ ∈ (0, 1), consider the above n x n linear

equation system for H

vi = (1− lHi
2lH

)δ(vi − lici) +
1

2lH

∑
{j|ij∈H}

(1− δ(vj − ljcj)). (1)

Define the function hδ,H : Rn → Rn such that for each i ∈ N

hδ,Hi (v) = (1− lHi
2lH

)δ(vi − lici) +
1

2lH

∑
{j|ij∈H}

(1− δ(vj − ljcj)).

The function hδ,H is a contraction mapping. Each equation in the linear system

(1) is a linear function of δ. Then, for each i ∈ N , vδ,Hi is uniquely given by the

necessary Cramer’s rule.

vδ,Hi =
PH
i (δ)

QH
i (δ)

(2)

Since the linear system (1) is non-singular, the denominator of (2), QH
i (δ), is

different than zero for all δ ∈ (0, 1) and for all non-empty subnetworks H of G.

Let M̄ be the set of δ for which there exists i, j,H with δ((vδ,Hi − lici) + (vδ,Hj −
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ljcj)) = 1. Take any i, j,H. The equation δ((vδ,Hi − lici) + (vδ,Hj − ljcj)) = 1 is

equivalent to

1 + δ(lici + ljcj) = δ
(PH

i (δ)

QH
i (δ)

+
PH
j (δ)

QH
j (δ)

)
.

If the equation above has infinitely many solutions, it holds also for δ = 1/3.

1 +
1

3
(lici + ljcj) =

1

3
(v

1/3,H
i + v

1/3,H
j ).

After some algebraic operations, we have

(v
1/3,H
i + v

1/3,H
j ) = 3 + (lici + ljcj),

which is a contradiction with v1/3,H ∈ [0, 1]n. Hence, the statement δ((v∗δi −lici)+

(v∗δj − ljcj)) = 1 holds for a finite set of solutions δ.

It follows that for all (i, j,H), the inequality δ((vδ,Hi − lici) + (vδ,Hj − ljcj)) 6= 1

holds for all but a finite number of solutions δ.

Proof of Lemma 4. Take any link ij ∈ G. If ij ∈ G\G∗, then for all δ > δ,

δ((v∗δi − lGi ci) + (v∗δj − lGj cj)) > 1.

Since for all i ∈ N , ci ≥ 0, the following holds

δ(v∗δi + v∗δj ) > 1. (3)

If ij ∈ G∗, then for all δ > δ,
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v∗δi =
(

1− lGi
2lG

)
δ(v∗δi − lGi ci) +

1

2lG

∑
{k|ik∈G∗}

(1− δ(v∗δk − lGk ck)).

Since for all k 6= j with ik ∈ G∗, 1− δ(v∗δk − lGk ck) ≥ δ(v∗δi − lGi ci), we have

v∗δi ≥
(

1− 1

2lG

)
δ(v∗δi − lGi ci) +

1

2lG
(1− δ(v∗δj − lGj cj)). (4)

As δ → 1, from (3), we have v∗i + v∗j > 1 for all ij ∈ G\G∗. And by (3) and (4),

for all ij ∈ G∗ v∗i + v∗j = 1. (Note that lim
δ→1

ci = lim
δ→1

(1− δ)TCi = 0.)

Proof of Lemma 5. Suppose that the algorithm is at some step s ∈ {1, 2, . . . , s̄}.

Let rs < 1. It is possible to have multiple sets that minimize the shortage ratio rs,

Ns is the family of such sets. If there are more than one set in Ns, the algorithm

picks the largest set for each component of Gs. Hence, we have a unique minimizer

set for each component. Then, among such maximal minimizer sets in the compo-

nents, the algorithm chooses the one that minimizes the advantage/disadvantage

provided by costs (2.15).

Now, let rs = 1 and the cardinality of the minimizer sets be 1. Then, in case of

multiplicity of these sets, the algorithm picks the set that minimizes (16).

Finally, if there exists more than one set that minimizes (2.15), the algorithm

unifies them. So, we end up with a unique set Ms. This concludes the proof.

Proof of Lemma 6. By the definition of algorithm, the shortage ratio is increas-

ing,
|Ls′ |
|Ms′|

≤ |Ls|
|Ms|

. It follows that that

|Ls′|
|Ls′ |+ |Ms′ |

≤ |Ls|
|Ls|+ |Ms|

.
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Proof of Corollary 1. Let G be the outcome of the network formation game.

From Theorem 6, we know that G is equitable, i.e. for all i ∈ N , u∗i (G) = 1/2.

The social welfare provided by the network G is

W (G) =


n

2
, if n is even

n

2
+

1

2
, if n is odd,

which is equal to the maximum attainable social welfare.
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B Proofs of Chapter 3

Proof of Lemma 8. By the definition of contraction mapping, we need to prove

that

∀u,w ∈ [0, 1]n : ‖f δ(u)− f δ(w)‖ ≤ δ‖u− w‖,

which means for all k ∈ S ∪B, |f δk (u)− f δk (w)| ≤ δ‖u− w‖.

Without loss of generality, we prove the above inequality for all s ∈ S. This

inequality can be easily shown for any buyer b ∈ B.

‖f δs (u)− f δs (w)|

=

∣∣∣∣∣
(

1−
∑

{b|(s,b)∈G}

psb
2

)
δ(us − ws) +

∑
{b|(s,b)∈G}

psb
2

(max{vb − δub, δus}

−max{vb − δwb, δws})

∣∣∣∣∣
≤

∣∣∣∣∣
(

1−
∑

{b|(s,b)∈G}

psb
2

)
δ(us − ws)|+

∑
{b|(s,b)∈G}

psb
2
δ(max{|ub − wb|, |us − ws|})

∣∣∣∣∣
≤

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δ‖u− w‖+

∑
{b|(s,b)∈G}

psb
2
δ‖u− w‖

= δ‖u− w‖,

implying that the function f δ is a contraction mapping. Hence, the function has

a fixed point.

Proof of Lemma 9. (s, b) ∈ G∗δ means that that s and b are connected and

max{vb − δu∗δs , δu
∗δ
b } = vb − δu∗δs . Since u∗δ is a fixed point of f δ, u∗δ is the

solution of the following linear equation system
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us =

(
1−

∑
{b|(s,b)∈G∗δ}

psb
2

)
δus +

∑
{b|(s,b)∈G∗δ}

psb
2

(vb − δub), ∀s ∈ S

ub =

(
1−

∑
{s|(s,b)∈G∗δ}

psb
2

)
δub +

∑
{s|(s,b)∈G∗δ}

psb
2

(vb − δus), ∀b ∈ B.

Take any nonempty subnetwork H of G and define a mapping hδ,H : Rn → Rn

such that for each s ∈ S and b ∈ B,

hδ,Hs (u) =

(
1−

∑
{b|(s,b)∈H}

psb
2

)
δus +

∑
{b|(s,b)∈H}

psb
2

(vb − δub), ∀s ∈ S

hδ,Hb (u) =

(
1−

∑
{s|(s,b)∈H}

psb
2

)
δub +

∑
{s|(s,b)∈H}

psb
2

(vb − δus), ∀b ∈ B.
(5)

hδ,H is a contraction mapping. All equations in the linear system (5) are a linear

functions of δ, implying that for each k ∈ S ∪ B, uδ,Hk is uniquely given by the

Cramer’s rule.

uδ,Hk =
PH
k (δ)

QH
k (δ)

(6)

Since the linear system (6) is non-singular, QH
k (δ) 6= 0 for all δ ∈ (0, 1) and for

all non-empty subnetworks H of G.

Denote the set of δ satisfying δ(uδ,Hs + uδ,Hb ) = vb for at least one triple (s, b,H)

by M̄. Take any s, b,H. δ(uδ,Hs + uδ,Hb ) = vb is equivalent to

vb = δ
(PH

s (δ)

QH
s (δ)

+
PH
b (δ)

QH
b (δ)

)
.

Since the equation above is valid for all δ ∈ (0, 1), it holds also for δ = 1/3.
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Rewriting the equation for this specific δ value, we have

3vb = u1/3,H
s + u

1/3,H
b ,

which contradicts with for all k ∈ S ∪ B, u
1/3,H
k ≤ vb. It follows that for all

(s, b,H) the statement δ(u
1/3,H
s + u

1/3,H
b ) = vb holds for a finite set of solutions δ,

that concludes the proof.

Proof of Lemma 10. Take any link (s, b) ∈ G. (s, b) ∈ G\G∗ implies that for all

δ > δ,

δ(u∗δs + u∗δb ) > vb. (7)

If the link (s, b) is involved in the limit equilibrium network G∗, then for all δ > δ,

u∗δs =

(
1−

∑
{b|(s,b)∈G}

psb
2

)
δu∗δs +

∑
{b|(s,b)∈G}

psb
2

(vb − δu∗δb )

u∗δb =

(
1−

∑
{s|(s,b)∈G}

psb
2

)
δu∗δb +

∑
{s|(s,b)∈G}

psb
2

(vb − δu∗δs ).

Since for all k 6= s ∈ S with (k, b) ∈ G∗, vb − δu∗δk ≥ δu∗δb and for all l 6= b ∈ B

with (s, l) ∈ G∗, vl − δu∗δl ≥ δu∗δs we have

u∗δs ≥

(
1− psb

2

)
δu∗δs +

psb
2

(vb − δu∗δb )

u∗δb ≥

(
1− psb

2

)
δu∗δb +

psb
2

(vb − δu∗δs ).

(8)
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As δ → 1, by (7), we have u∗s + u∗b ≥ vb for all (s, b) ∈ G\G∗. And from (7) and

(8), for all (s, b) ∈ G∗, u∗s + u∗b = vb.
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C Proofs of Chapter 4

Definitions of the Regions and the Corresponding Equilibrium Strate-

gies

We define the regions Rω and find the corresponding equilibrium strategies or

proposals , xω = (xω1 , x
ω
2 ), where ω ∈ {1.a − I.a, 1.a − I.b, . . . , 3 − III}, in the

model with limited influence. Note that xω2 = 1−xω1 for each ω.Suppose that the

game is at period t. Let (rt1, r
t
2) = (r1, r2) and (r̄t1, r̄

t
2) = (r̄1, r̄2).

Region 1.a-I.a

R1.a−I.a =
{

(r1, r2)
∣∣∣(1 + λ2)λ1r1 + δ(1 + γ1)(ζ2r̄2 − λ2r2 + 1 + λ2 − δ(1 + γ2))

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + γ2) + (1 + λ2)ζ1
<

r̄1 <
(1 + λ1)(ζ2r̄2 − λ2r2 + 1 + λ2) + δ(1 + γ2)λ1r1 − δ(1 + γ2)(1 + λ1)

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + γ2) + δ(1 + γ2)ζ1

and
δ(1 + γ1)(ζ1r̄1 − λ1r1 + 1 + λ1 − δ(1 + γ2))− (1 + λ1)λ2r2

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + γ2)− (1 + λ1)ζ2
<

r̄2 <
(1 + λ2)(ζ1r̄1 − λ1r1 + 1 + λ1 − δ(1 + γ1)) + δ(1 + γ1)λ2r2

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + γ2) + δ(1 + γ1)ζ2

}
,

where ζi = δγi + (1− δ)λi for all i = 1, 2. The equilibrium strategies are

x1.a−I.a
1 =

(1 + λ1)(ζ2r̄2 − λ2r2 + 1 + λ2)− δ(1 + γ1)(ζ1r̄1 − λ1r1 + 1 + λ1)

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + γ2)

y1.a−I.a
1 =

δ(1 + γ1)(ζ2r̄2 − λ2r2 + 1 + λ2)− (1 + λ2)(ζ1r̄1 − λ1r1)− δ2(1 + γ2)

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + γ2)
.

Region 1.a-I.b

R1.a−I.b =
{

(r1, r2)
∣∣∣(1 + λ2)λ1r1 + δ(1 + γ1)(λ2r̄2 − λ2r2 + (1− δ)(1 + λ2))

(1 + λ1)(1 + λ2)− (1 + λ2)(δ2(1 + γ1)− ζ1)
<
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r̄1 <
(1 + λ1)(λ2r̄2 − λ2r2 + (1− δ)(1 + λ2)) + δ(1 + λ2)λ1r1

(1 + λ1)(1 + λ2)− δ(1 + λ2)(δ(1 + γ1)− ζ1)

and r̄2 >
(1 + λ2)(ζ1r̄1 − λ1r1 + 1 + λ1) + δ(1 + γ1)(λ2r2 − (1 + λ2))

(1 + λ1)(1 + λ2)− δ(1 + γ1)(δ(1 + λ2)− λ2)

}
,

where ζi = δγi + (1− δ)λi for all i = 1, 2. The equilibrium strategies are

x1.a−I.b
1 =

(1 + λ1)(λ2r̄2 − λ2r2 + (1− δ)(1 + λ2))− δ(1 + λ2)(ζ1r̄1 − λ1r1)

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + λ2)

y1.a−I.b
1 =

δ(1 + γ1)(λ2r̄2 − λ2r2 + (1− δ)(1 + λ2))− (1 + λ2)(ζ1r̄1 − λ1r1)

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + λ2)
.

Region 1.a-II

R1.a−II =
{

(r1, r2)
∣∣∣κ2λ1r1 + δ(1 + γ1)(λ2 − λ2r2 + (1− δ)(1 + λ2))

κ1κ2 − δ2(1 + γ1)(1 + γ2)
<

r̄1 <
δ(1 + γ2)λ1r1 + (1 + λ1)(λ2 − λ2r2 + (1− δ)(1 + λ2))

(1 + λ1)κ2 − δ2(1 + γ1)(1 + γ2) + δ(1 + γ2)ζ1

and r2 >
δ(1 + γ2)(ζ1r̄1 − λ1r1) + δ(1 + λ1)(1 + γ2)− δ2(1 + γ1)(1 + γ2)

(1 + λ1)(κ2 − λ2)− δ2(1 + γ1)(1 + γ2)
> r̄2

}
,

where ζi = δγi + (1− δ)λi and κi = 1 + λi + δγi + (1− δ)λi for all i = 1, 2. The

equilibrium strategies are

x1.a−II
1 =

(1 + λ1)(λ2 − λ2r2 + (1− δ)(1 + λ2))− δ(1 + γ2)(ζ1r̄1 − λ1r1)

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + λ2)

y1.a−II
1 =

δ(1 + γ1)(λ2 − λ2r2 + (1− δ)(1 + λ2))− κ2(ζ1r̄1 − λ1r1)

(1 + λ1)(1 + λ2)− δ2(1 + γ1)(1 + λ2)
.

Region 1.a-III

R1.a−III =
{

(r1, r2)
∣∣∣η2λ1r1 + δ(1 + γ1)(γ2 − γ2r2 + (1− δ)(1 + λ2))

κ1η2 − δ2(1 + γ1)(1 + γ2)
<

r̄1 <
δ(1 + γ2)λ1r1 + (1 + λ1)(γ2 − γ2r2 + (1− δ)(1 + λ2))

(1 + λ1)η2 − δ2(1 + γ1)(1 + γ2) + δ(1 + γ2)ζ1
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and r2 <
δ(1 + γ2)(ζ1r̄1 − λ1r1) + δ(1 + λ1)(1 + γ2)− δ2(1 + γ1)(1 + γ2)

(1 + λ1)(κ2 − γ2)− δ2(1 + γ1)(1 + γ2)

}
,

where ζi = δγi+(1−δ)λi, κi = 1+λi+δγi+(1−δ)λi and ηi = 1+γi+δγi+(1−δ)λi

for all i = 1, 2. The equilibrium strategies are

x1.a−III
1 =

(1 + λ1)(γ2 − γ2r2 + (1− δ)(1 + λ2))− δ(1 + γ2)(ζ1r̄1 − λ1r1)

(1 + λ1)η2 − δ2(1 + γ1)(1 + γ2)

y1.a−III
1 =

δ(1 + γ1)(γ2 − γ2r2 + (1− δ)(1 + λ2))− η2(ζ1r̄1 − λ1r1)

(1 + λ1)η2 − δ2(1 + γ1)(1 + γ2)
.

Region 1.b-I.b

R1.b−I.b =
{

(r1, r2)
∣∣∣r̄1 >

δ(1 + λ2)(λ1r1 − (1 + λ1))− (1 + λ1)(λ2r2 − λ2r̄2 − (1 + λ2))

(1− δ2)(1 + λ1)(1 + λ2) + δ(1 + λ2)λ1

and r̄2 >
δ(1 + λ1)(λ2r2 − (1 + λ2))− (1 + λ2)(λ1r1 − λ1r̄1 − (1 + λ1))

(1− δ2)(1 + λ1)(1 + λ2) + δ(1 + λ1)λ2

}
,

The equilibrium strategies are

x1.b−I.b
1 =

δ(1 + λ2)(λ1r1 − λ1r̄1 − (1 + λ1))− (1 + λ1)(λ2r2 − λ2r̄2 − (1 + λ2))

(1− δ2)(1 + λ1)(1 + λ2)

y1.b−I.b
1 =

(1 + λ2)(λ1r1 − λ1r̄1)− δ(1 + λ1)(λ2r2 − λ2r̄2 − (1− δ)(1 + λ2))

(1− δ2)(1 + λ1)(1 + λ2)
.

Region 1.b-II

R1.b−II =
{

(r1, r2)
∣∣∣r̄1 >

δ(1 + γ2)λ1r1 + (1 + λ1)(λ2 − λ2r2 + (1− δ)(1 + λ2))

(1 + λ1)κ2 − δ2(1 + λ1)(1 + γ2) + δ(1 + γ2)λ1
,

r2 >
δ(1− δ)(1 + λ1)(1 + δγ2)− δ2(1 + λ1)(1 + γ2)− δ(1 + γ2)(λ1r1 − λ1r̄1)

(1 + λ1)κ2 − δ2(1 + λ1)(1 + γ2) + δ(1 + λ1)λ2
> r̄2

}
,

where κi = 1 +λi + δγi + (1− δ)λi for all i = 1, 2. The equilibrium strategies are
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x1.b−II
1 =

δ(1 + γ2)(λ1r1 − λ1r̄1) + (1 + λ1)(λ2 − λ2r2 + (1− δ)(1 + λ2))

(1 + λ1)κ2 − δ2(1 + λ1)(1 + γ2)

y1.b−II
1 =

κ2(λ1r1 − λ1r̄1) + δ(1 + λ1)(λ2 − λ2r2 − (1− δ)(1 + λ2))

(1 + λ1)κ2 − δ2(1 + λ1)(1 + γ2)
.

Region 1.b-III

R1.b−III =
{

(r1, r2)
∣∣∣r̄1 >

δ(1 + γ2)λ1r1 + (1 + λ1)(γ2 − γ2r2 + (1− δ)(1 + λ2))

(1 + λ1)η2 − δ2(1 + λ1)(1 + γ2) + δ(1 + γ2)λ1

and r2 <
(1 + λ1)(1 + δγ2)− δ2(1 + λ1)(1 + γ2)− δ(1 + γ2)(λ1r1 − λ1r̄1)

(1 + λ1)η2 − δ2(1 + λ1)(1 + γ2)− (1 + λ1)γ2

}
,

where ηi = 1 + γi + δγi + (1− δ)λi for all i = 1, 2. The equilibrium strategies are

x1.b−III
1 =

δ(1 + γ2)(λ1r1 − λ1r̄1) + (1 + λ1)(γ2 − γ2r2 + (1− δ)(1 + λ2))

(1 + λ1)η2 − δ2(1 + λ1)(1 + γ2)

y1.b−III
1 =

η2(λ1r1 − λ1r̄1) + δ(1 + λ1)(γ2 − γ2r2 + (1− δ)(1 + λ2))

(1 + λ1)η2 − δ2(1 + λ1)(1 + γ2)
.

Region 2-II

R2−II =
{

(r1, r2)
∣∣∣r1 >

δ(1 + γ1)κ2 − δ(1 + γ1)(δ(1 + γ2) + λ2r2)

(κ1 − λ1)κ2 − δ2(1 + γ1)(1 + γ2)
> r̄1

and r2 >
δ(1 + γ2)(κ1 − λ1r1)− δ2(1 + γ1)(1 + γ2)

κ1(κ2 − λ2)− δ2(1 + γ1)(1 + γ2)
> r̄2

}
,

where κi = 1 +λi + δγi + (1− δ)λi for all i = 1, 2. The equilibrium strategies are

x2−II
1 =

κ1(κ2 − λ2r2)− δ(1 + γ2)(κ1 − λ1r1)

κ1κ2 − δ2(1 + γ1)(1 + γ2)

y2−II
1 =

κ2(δ(1 + γ1) + λ1r1)− δ(1 + γ1)(δ(1 + γ2) + λ2r2)

κ1κ2 − δ2(1 + γ1)(1 + γ2)
.
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Region 2-III

R2−III =
{

(r1, r2)
∣∣∣r1 >

δ(1 + γ1)η2 − δ(1 + γ1)(δ(1 + γ2) + γ2r2)

(κ1 − λ1)η2 − δ2(1 + γ1)(1 + γ2)
> r̄1

and r2 <
δ(1 + γ2)(κ1 − λ1r1)− δ2(1 + γ1)(1 + γ2)

κ1(η2 − γ2)− δ2(1 + γ1)(1 + γ2)

}
,

where κi = 1 +λi + δγi + (1− δ)λi and ηi = 1 +γi + δγi + (1− δ)λi for all i = 1, 2.

The equilibrium strategies are

x2−III
1 =

κ1(η2 − γ2r2)− δ(1 + γ2)(κ1 − λ1r1)

κ1η2 − δ2(1 + γ1)(1 + γ2)

y2−III
1 =

η2(δ(1 + γ1) + λ1r1)− δ(1 + γ1)(δ(1 + γ2) + γ2r2)

κ1η2 − δ2(1 + γ1)(1 + γ2)
.

Region 3-III

R3−III =
{

(r1, r2)
∣∣∣r1 <

δ(1 + γ1)η2 − δ(1 + γ1)(δ(1 + γ2) + γ2r2)

(η1 − γ1)η2 − δ2(1 + γ1)(1 + γ2)

and r2 <
δ(1 + γ2)(η1 − γ1r1)− δ2(1 + γ1)(1 + γ2)

η1(η2 − γ2)− δ2(1 + γ1)(1 + γ2)

}
,

where ηi = 1 + γi + δγi + (1− δ)λi for all i = 1, 2. The equilibrium strategies are

x3−III
1 =

η1(η2 − γ2r2)− δ(1 + γ2)(η1 − γ1r1)

η1η2 − δ2(1 + γ1)(1 + γ2)

y3−III
1 =

η2(δ(1 + γ1) + γ1r1)− δ(1 + γ1)(δ(1 + γ2) + γ2r2)

η1η2 − δ2(1 + γ1)(1 + γ2)
.

We do not describe the regions {R1.b−I.a, R2,I.a, R2,I.b, R3,I.a, R3,I.b, R3,II}

since they are the symmetric versions of the regions

{R1.a−I.b, R1.a,II , R1.b,II , R1.a,III , R1.b,III , R2,III}, respectively. Hence, the

corresponding equilibrium strategies can be found similarly. For the model

with unlimited influence, the regions can be defined and the corresponding

equilibrium strategies can be easily evaluated by assuming (r1, r2) = (r̄1, r̄2).
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Proofs

Proof of Lemma 11. Let ε > 0 and let σ,σ′ be strategy profiles satisfying σs = σ′s

for all s ≤ t̄ where t̄ > max
i=1,2

logδ

(
ε

1+γi+λi

)
. Let σ̄ be the strategy profile that

maximizes Ui satisfying (σ̄s)t̄s=1 = (σs)t̄s=1. Hence, in σ̄ player i gets the entire

pie in period t̄+ 1.

Ūi = max
σ̄ s.t. (σ̄s)t̄s=1=(σs)t̄s=1

Ui(σ̄) = δt̄(1 + γi(1− rt̄+1
i )) + (1− δ)

t̄∑
s=1

δs−1usi (0)

Assume σ be the strategy profile that minimizes Ui satisfying (σs)t̄s=1 = (σs)t̄s=1,

that is the strategy profile leading to perpetual disagreement.

U i = min
σ s.t. (σs)t̄s=1=(σs)t̄s=1

Ui(σ) = (1− δ)
∞∑
s=1

δs−1usi (0)

Note that the largest payoff difference between any two strategy profiles implying

same actions in the first t̄ periods is Ūi − U i. Utilizing this observation,

|Ui(σ)− Ui(σ′)| ≤ Ūi − U i

= δt̄(1 + γi(1− rt̄+1
i )) + (1− δ)

t̄∑
s=1

δs−1usi (0)

− (1− δ)
t̄∑

s=1

δs−1usi (0)− (1− δ)
∞∑

s=t̄+1

δs−1usi (0)

= δt̄(1 + γi(1− rt̄+1
i ))− (1− δ)

∞∑
s=t̄+1

δs−1(−λirsi )

≤ δt̄(1 + γi) + (1− δ)
∞∑

s=t̄+1

δs−1λi

= δt̄(1 + γi) + (1− δ)δt̄λi
1

1− δ

= δt̄(1 + γi + λi) < ε.

Hence, the game is continuous at infinity.

149



Proof of Theorem 12. We prove that σ∗ is a subgame perfect equilibrium. Utiliz-

ing Lemma 11, it suffices to check that no player can make a profitable deviation

from his strategy σ∗i in one single period, given that his opponent plays σ∗j .

Suppose that the game is at period t. Let (rt1, r
t
2) = (r1, r2) ∈ Rω, where ω ∈

{1.a− I.a, 1.a− I.b, . . . , 3− III}. (r̄t1, r̄
t
2) is denoted by (r̄1, r̄2).

The current period t may be either odd or even. First, we investigate the case

where t is odd. Hence, player 1 makes an offer z ∈ Z.

Case 1.a. ω ∈ {1.a− I, 1.a− II, 1.a− III} : r1 > r̄1 > yω1 and xω1 ≥ r̄1.

1.a.1 We first analyze the case where xω1 ≥ r1. We have three possible sub-cases:

(i) z1 = xω1 , (ii) z1 < xω1 , and (iii) z1 > xω1 .

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1) = (1 + γ1)xω1 − γ1r1.

(ii) If z1 < xω1 , then player 2 accepts the offer by following σ∗2 since z2 > xω2 .

So, player 1 gets

ut1(z, rt) ≤ z1 + γ1(z1 − r1) = (1 + γ1)xω1 − γ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility
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is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[yω1 + λ1(yω1 − r1)]− (1− δ)λ1r1

= (1 + λ1)δyω1 − δλ1r1 − (1− δ)λ1r1

< yω1 − λ1 (yω1 − r1)︸ ︷︷ ︸
< 0

< yω1 − γ1(yω1 − r1)

< xω1 − γ1(xω1 − r1) = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

1.a.2 Now, we analyze xω1 < r1 case. Similarly, we look into three possible sub-

cases: (i) z1 = xω1 , (ii) z1 < xω1 , and (iii) z1 > xω1 .

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1) = (1 + λ1)xω1 − λ1r1.

(ii) If z1 < xω1 , then player 2 accepts the offer by following σ∗2 since z2 > xω2 .

So, player 1 gets

ut1(z, rt) = z1 + λ1(z1 − r1) < (1 + λ1)xω1 − λ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility
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is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + λ1(yω1 − r1)]− (1− δ)λ1r1

= (1 + λ1)δyω1 − δλ1r1 − (1− δ)λ1r1

< (1 + λ1)yω1 − λ1r1

< (1 + λ1)xω1 − λ1r1 = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

Case 1.b. ω ∈ {1.b− I, 1.b− II, 1.b− III} : r1 > r̄1 > yω1 and xω1 < r̄1.

In this case, we also have three possible values for the share player 1 gets from z:

(i) z1 = xω1 , (ii) z1 < xω1 , and (iii) z1 > xω1 .

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1) = (1 + λ1)xω1 − λ1r1.

(ii) If z1 < xω1 , then player 2 accepts the offer by following σ∗2 since z2 > xω2 .

So, player 1 gets

ut1(z, rt) = z1 + λ1(z1 − r1) < (1 + λ1)xω1 − λ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility
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is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + λ1(yω1 − r1)]− (1− δ)λ1r1

= (1 + λ1)δyω1 − δλ1r1 − (1− δ)λ1r1

< (1 + λ1)yω1 − λ1r1

< (1 + λ1)xω1 − λ1r1 = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

Case 2. ω ∈ {2− I, 2− II, 2− III} : r1 > yω1 > r̄1

In this region of r1, we have different results for different sortings of xω1 and r1 at

t. We analyze these cases separately.

2.1. We first investigate the case where xω1 ≥ r1. Again, we have three distinct

sub-cases for z1.

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1) = (1 + γ1)xω1 − γ1r1.

(ii) If z1 < xω1 , then player 2 accepts the offer by following σ∗2 since z2 > xω2 .

So, player 1 gets

ut1(z, rt) ≤ z1 + γ1(z1 − r1) = (1 + γ1)xω1 − γ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer. With probability δ the game

continues to the next period and player 2 offers yω and with probability
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1− δ, the game ends. So, player 1’s expected continuation utility is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + λ1 (yω1 − r1)︸ ︷︷ ︸]− (1− δ)λ1r1

< 0

< δ[yω1 + γ1(yω1 − r1)]− (1− δ)γ1r1

< (1 + γ1)yω1 − γ1r1

< xω1 − γ1(xω1 − r1) = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

2.2. Now, we analyze the second case, xω1 < r1.

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1) = (1 + λ1)xω1 − λ1r1.

(ii) If z1 < xω1 , then player 2 player 2 accepts the offer by following σ∗2 since

z2 > xω2 . So, player 1 gets

ut1(z, rt) = z1 + λ1(z1 − r1) < (1 + λ1)xω1 − λ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility
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is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + λ1(yω1 − r1)]− (1− δ)λ1r1

= (1 + λ1)δyω1 − δλ1r1 − (1− δ)λ1r1

< (1 + λ1)yω1 − λ1r1

< (1 + λ1)xω1 − λ1r1 = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

Case 3. ω ∈ {3− I, 3− II, 3− III} : yω1 > r1 > r̄1

In this region, the reference point of player 1 is less than his share in equilibrium.

We have three possible values for the share he can obtain from the offer z.

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1) = (1 + γ1)xω1 − γ1r1.

(ii) If z1 < xω1 , then player 2 accepts the offer by following σ∗2 since z2 > xω2 .

So, player 1 gets

ut1(z, rt) ≤ z1 + γ1(z1 − r1) < (1 + γ1)xω1 − γ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility
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is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + γ1(yω1 − r1)]− (1− δ)λ1r1

< δ[yω1 + γ1(yω1 − r1)]− (1− δ)γ1r1

= (1 + γ1)δyω1 − γ1r1

< (1 + γ1)δxω1 − γ1r1 = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

Second, we analyze the case where t is even (i.e., player 2’s turn to make an offer).

Hence, player 2 makes an offer z ∈ Z. If player 1 accepts the offer, he gets

ut1(z, rt) =


zi + γi(zi − ri) if zi ≥ ri

zi + λi(zi − ri) if zi < ri

On the other hand, if player 1 rejects the offer, his reference point will be

max{r̄1, z1}. With probability δ, the game continues to the next period and

player 2 offers yω and with probability 1 − δ, the game ends. Hence, player 1’s

expected continuation utility in the case of rejection is

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1).

Case 1.a. ω ∈ {1.a− I, 1.a− II, 1.a− III}: r1 > r̄1 > yω1 and xω1 ≥ r̄1

In this case, recall that the following equality holds in equilibrium:

(1 + γ1)δxω1 = (1 + λ1)yω1 − λ1r1 + (1− δ)λ1r̄1 + δγ1r̄1.

We analyze the optimal decisions of player 1 in two sub-cases: (1) z1 ≥ yω1 and
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(2) z1 < yω1 .

1.a.1 First, suppose that z1 ≥ yω1 . Further, there are two more possibilities: (i)

z1 ≥ r1 or (ii) z1 < r1.

(i) Suppose that z1 ≥ r1. If player 1 accepts the offer, he gets his share z1 plus

the relative gain from the reference point. Since the offer is greater than

his reference point, he perceives the difference between the two as a gain

and this gain is scaled by γ1. Accepting yields

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1).

If player 1 rejects the offer, his reference point will be max{r̄1, z1}. With prob-

ability δ, the game continues to the next period and player 2 offers yω and with

probability 1− δ, the game ends. So, rejection gives player 1

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

≤ δ[xω1 + γ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + γ1)δxω1 − δγ1z1 − (1− δ)λ1z1

= (1 + λ1)yω1 − λ1r1 + (1− δ)λ1r̄1 + δγ1r̄1 − δγ1z1 − (1− δ)λ1z1

≤ (1 + λ1)yω1 − λ1r1 + (1− δ)λ1z1 + δγ1z1 − δγ1z1 − (1− δ)λ1z1

≤ (1 + λ1)z1 − λ1r1

= z1 + λ1(z1 − r1)

≤ z1 + γ1(z1 − r1) = u∗1.

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

(ii) Now, suppose that z1 < r1. In the case of acceptance, player 1 gets his

share from the offer z1. However, since the offer is less than his reference
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point, player 1 perceives this offer as a loss relative to the reference point.

The difference between z1 and r1 negatively affects his utility and this effect

is scaled by λ1. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).

If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

≤ δ[xω1 + γ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + γ1)δxω1 − δγ1 max{r̄1, z1} − (1− δ)λ1 max{r̄1, z1}

= (1 + λ1)yω1 − λ1r1 + (1− δ)λ1r̄1 + δγ1r̄1 − δγ1 max{r̄1, z1}

− (1− δ)λ1 max{r̄1, z1}

≤ (1 + λ1)yω1 − λ1r1 + (1− δ)λ1r̄1 + δγ1r̄1 − δγ1r̄1 − (1− δ)λ1r̄1

= z1 + λ1(z1 − r1) = u∗1.

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

1.a.2 Second, suppose that z1 < yω1 . Note that the offer is smaller than his

reference point. In the case of acceptance, he gets his share from the offer

z1. However, since the offer is less than his reference point, player 1 perceives

this offer as a loss relative to the reference point. The difference between z1

and r1 negatively affects his utility and this effect is scaled by λ1. Accepting

the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).
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If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + γ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + γ1)δxω1 − δγ1r̄1 − (1− δ)λ1r̄1

= (1 + λ1)yω1 − λ1r1 + (1− δ)λ1r̄1 + δγ1r̄1 − δγ1r̄1 − (1− δ)λ1r̄1

> z1 + λ1(z1 − r1) = u∗1.

In this case, rejecting gives player 1 a higher utility than accepting does. Thus,

if z1 < yω1 , then rejecting is optimal.

To summarize, accepting the offer z1 is optimal if and only if z1 ≥ yω1 .

Case 1.b. ω ∈ {1.b− I, 1.b− II, 1.b− III}: r1 > r̄1 > yω1 and xω1 < r̄1.

In this case, recall that the following equality holds in equilibrium:

(1 + λ1)δxω1 = (1 + λ1)δyω1 − λ1r1 + λ1r̄1.

We analyze the optimal decisions of player 1 in two sub-cases: (1) z1 ≥ yω1 and

(2) z1 < yω1 .

1.b.1 First, suppose that z1 ≥ yω1 . Further, there are two more possibilities: (i)

z1 ≥ r1 or (ii) z1 < r1.

(i) Let z1 ≥ r1. If player 1 accepts the offer, he gets his share z1 plus the

relative gain from the reference point. Since the offer is greater than his

reference point, he perceives the difference between the two as a gain and

this gain is scaled by γ1. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1).
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If player 1 rejects the offer, his reference point will be max{r̄1, z1}. With prob-

ability δ, the game continues to the next period and player 2 offers yω and with

probability 1− δ, the game ends. So, rejection gives player 1

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + λ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + λ1)δxω1 − δλ1z1 − (1− δ)λ1z1

= (1 + λ1)δyω1 − λ1r1 + λ1r̄1 − λ1z1

≤ (1 + λ1)δyω1 − λ1r1 + λ1z1 − λ1z1

= yω1 + λ1(yω1 − r1)

≤ yω1 + γ1(yω1 − r1)

≤ z1 + γ1(z1 − r1) = u∗1.

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

(ii) Now, let z1 < r1. In the case of acceptance, player 1 gets his share from the

offer z1. However, since the offer is less than his reference point, player 1

perceives this offer as a loss relative to the reference point. The difference

between z1 and r1 negatively affects his utility and this effect is scaled by

λ1. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).
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If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + λ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + λ1)δxω1 − δλ1 max{r̄1, z1} − (1− δ)λ1 max{r̄1, z1}

= (1 + λ1)δyω1 − λ1r1 + λ1r̄1 − λ1 max{r̄1, z1}

≤ (1 + λ1)δyω1 − λ1r1 + λ1r̄1 − λ1r̄1

≤ z1 + λ1(z1 − r1) = u∗1.

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

1.b.2 Second, suppose that z1 < yω1 . Note that the offer is smaller than his

reference point. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).

If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + λ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + λ1)δxω1 − λ1r̄1

= (1 + λ1)δyω1 − λ1r1 + λ1r̄1 − λ1r̄1

> z1 + λ1(z1 − r1) = u∗1.

In this case, rejecting gives player 1 a higher utility than accepting does. If

z1 < yω1 , then rejecting is optimal.

To summarize, accepting the offer z1 is optimal if and only if z1 ≥ yω1 .
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Case 2. ω ∈ {2− I, 2− II, 2− III}: r1 > yω1 > r̄1

In this case, recall that the following equality holds in equilibrium:

(1 + γ1)δxω1 = (1 + λ1 + δγ1 + (1− δ)λ1)yω1 − λ1r1.

We analyze the optimal decisions of player 1 in two sub-cases: (1) z1 ≥ yω1 and

(2) z1 < yω1 .

2.1. Suppose that z1 ≥ yω1 . Accepting the offer yields

u∗1 = ut1(z, rt) =


zi + γi(zi − ri) if zi ≥ ri

zi + λi(zi − ri) if zi < ri

If player 1 rejects the offer, his reference point will be max{r̄1, z1}. With prob-

ability δ, the game continues to the next period and player 2 offers yω and with

probability 1− δ, the game ends. So, rejection gives player 1

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

≤ δ[xω1 + γ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + γ1)δxω1 − δγ1z1 − (1− δ)λ1z1

= (1 + λ1 + δγ1 + (1− δ)λ1)yω1 − λ1r1 − δγ1z1 − (1− δ)λ1z1

≤ (1 + λ1)yω1 + δγ1y
ω
1 + (1− δ)λ1y

ω
1 − λ1r1 − δγ1y

ω
1 − (1− δ)λ1y

ω
1

≤ yω1 + λ1(yω1 − r1) ≤ u∗1.

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

2.2. Now, suppose that z1 < yω1 . In the case of acceptance, he gets his share

from the offer z1. However, since the offer is less than his reference point,
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player 1 perceives this offer as a loss relative to the reference point. The

difference between z1 and r1 negatively affects his utility and this effect is

scaled by λ1. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).

If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + γ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + γ1)δxω1 − δγ1 max{r̄1, z1} − (1− δ)λ1 max{r̄1, z1}

= (1 + λ1 + δγ1 + (1− δ)λ1)yω1 − λ1r1 − δγ1 max{r̄1, z1}

− (1− δ)λ1 max{r̄1, z1}

> (1 + λ1)yω1 + (δγ1 + (1− δ)λ1) max{r̄1, z1} − λ1r1

− (δγ1 + (1− δ)λ1) max{r̄1, z1}

= z1 + λ1(z1 − r1) = u∗1.

In this case, rejecting gives player 1 a higher utility than accepting does. If

z1 < yω1 , then rejecting is optimal.

To summarize, accepting the offer z1 is optimal if and only if z1 ≥ yω1 .

Case 3. ω ∈ {3− I, 3− II, 3− III}: yω1 > r1 > r̄1

In this case, recall that the following equality holds in equilibrium:

(1 + γ1)δxω1 = (1 + γ1 + δγ1 + (1− δ)λ1)yω1 − γ1r1.

We analyze the optimal decisions of player 1 in two sub-cases: (1) z1 ≥ yω1 and

(2) z1 < yω1 .
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3.1. Suppose that z1 ≥ yω1 . If player 1 accepts the offer, he gets his share z1 plus

the relative gain from the reference point. Since the offer is greater than

his reference point, he perceives the difference between two as a gain and

this gain is scaled by γ1. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1).

If player 1 rejects the offer, his reference point will be max{r̄1, z1}. With prob-

ability δ, the game continues to the next period and player 2 offers yω and with

probability 1− δ, the game ends. So, rejection gives player 1

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

≤ δ[xω1 + γ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + γ1)δxω1 − δγ1z1 − (1− δ)λ1z1

= (1 + γ1 + δγ1 + (1− δ)λ1)yω1 − γ1r1 − δγ1z1 − (1− δ)λ1z1

≤ (1 + γ1)yω1 + (δγ1 + (1− δ)λ1)z1 − γ1r1 − (δγ1 + (1− δ)λ1)z1

≤ z1 + γ1(z1 − r1) = u∗1.

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

3.2. Now, suppose that z1 < yω1 .Accepting the offer yields

ut1(z, rt) =


zi + γi(zi − ri) if zi ≥ ri

zi + λi(zi − ri) if zi < ri
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If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + γ1(xω1 −max{r̄1, z1})]− (1− δ)λ1 max{r̄1, z1}

= (1 + γ1)δxω1 − δγ1 max{r̄1, z1} − (1− δ)λ1 max{r̄1, z1}

= (1 + γ1 + δγ1 + (1− δ)λ1)yω1 − γ1r1 − δγ1 max{r̄1, z1}

− (1− δ)λ1 max{r̄1, z1}

> (1 + γ1)z1 + (δγ1 + (1− δ)λ1) max{r̄1, z1} − γ1r1

− (δγ1 + (1− δ)λ1) max{r̄1, z1}

= (1 + γ1)z1 − γ1r1 ≥ u∗1.

In this case, rejecting gives player 1 a higher utility than accepting does. If

z1 < yω1 , then rejecting is optimal.

To summarize, accepting the offer z1 is optimal if and only if z1 ≥ yω1 .

Considering all cases, we have the following result: it is optimal to accept the offer

z if z1 ≥ yω1 and to reject it otherwise, which means following σ∗1 is optimal.

Proof of Theorem 13. We prove that σ∗ is a subgame perfect equilibrium. Uti-

lizing Lemma 11, it is enough to check that no player can make a profitable

deviation from his strategy σ∗i in one single period, given that his opponent plays

σ∗j . Suppose that the game is at period t. Let (rt1, r
t
2) = (r1, r2) ∈ Rω where

ω ∈ {1− I, 1− II, . . . , 3− III}.

The current period t may be either odd or even. First, we investigate the case

where t is odd. Hence, player 1 makes an offer z ∈ Z.

Case 1. ω ∈ {1− I, 1− II, 1− III} : r1 > xω1 > yω1
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In this case, the reference point of player 1 is greater than his share in the asso-

ciated offer with the region Rω. We have three possible sub-cases: (i) z1 = xω1 ,

(ii) z1 < xω1 , and (iii) z1 > xω1 .

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1) = (1 + λ1)xω1 − λ1r1.

(ii) If z1 < xω1 , then player 2 accepts the offer by following strategy σ∗2 since

z2 > xω2 . So, player 1 gets

ut1(z, rt) = z1 + λ1(z1 − r1) = (1 + λ1)z1λ1r1 < (1 + λ1)xω1 − λ1r1) = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility

is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + λ1(yω1 − r1)]− (1− δ)λ1r1

= (1 + λ1)δyω1 − δλ1r1 − (1− δ)λ1r1

= (1 + λ1)δyω1 − λ1r1

< (1 + λ1)δxω1 − λ1r1 = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

Case 2. ω ∈ {2− I, 2− II, 2− III} : xω1 ≥ r1 > yω1

In this case, the reference point of player 1 belongs to the region which is bounded

by his and his opponent’s share from the associated offer with the region Rω.
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Again, we have three distinct sub-cases: (i) z1 = xω1 , (ii) z1 < xω1 , and (iii)

z1 > xω1 .

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1) = (1 + γ1)xω1 − γ1r1.

(ii) If z1 < xω1 , then player 2 player 2 accepts the offer by following σ∗2 since

z2 > xω2 .

If r1 > z1, then player 1 gets

ut1(z, rt) = z1 + λ1(z1 − r1) ≤ z1 + γ1(z1 − r1)

= (1 + γ1)z1 − γ1r1 < (1 + γ1)xω1 − γ1r1 = u∗1.

If r1 ≤ z1, then player 1 gets

ut1(z, rt) = z1 + γ1(z1 − r1) < (1 + γ1)xω1 − γ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility

is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + λ1(yω1 − r1)]− (1− δ)λ1r1

< δ[yω1 + γ1(yω1 − r1)]− (1− δ)γ1r1

= (1 + γ1)δyω1 − γ1r1

< (1 + γ1)δxω1 − γ1r1 = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum
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utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

Case 3. ω ∈ {3− I, 3− II, 3− III} : xω1 > yω1 ≥ r1

In this case, the reference point of the first player is less than both his share offer

and his opponent’s share from the associated offer with the region Rω. We have

three possible values for his share obtained from the offer z.

(i) If z1 = xω1 , then player 2 accepts the offer by following σ∗2. So, player 1 gets

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1) = (1 + γ1)xω1 − γ1r1.

(ii) If z1 < xω1 , then player 2 player 2 accepts the offer by following σ∗2 since

z2 > xω2 .

If r1 > z1, then player 1 gets

ut1(z, rt) = z1 + λ1(z1 − r1) ≤ z1 + γ1(z1 − r1)

= (1 + γ1)z1 − γ1r1 < (1 + γ1)xω1 − γ1r1 = u∗1.

If r1 ≤ z1, then player 1 gets

ut1(z, rt) = z1 + γ1(z1 − r1) < (1 + γ1)xω1 − γ1r1 = u∗1.

(iii) If z1 > xω1 , then player 2 rejects the offer since z2 < xω2 . With probability

δ the game continues to the next period and player 2 offers yω and with

probability 1−δ, the game ends. So, player 1’s expected continuation utility
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is

ut+1
1 (yω, rt+1) + (1− δ)ut+1

1 (0, rt+1) = δ[yω1 + γ1(yω1 − r1)]− (1− δ)λ1r1

< δ[yω1 + γ1(yω1 − r1)]− (1− δ)γ1r1

= (1 + γ1)δyω1 − γ1r1

< (1 + γ1)δxω1 − γ1r1 = u∗1.

To summarize, making the offer z satisfying z1 = xω1 gives player 1 the maximum

utility given that player 2 follows σ∗2. Thus, σ∗1 is optimal.

Now, we analyze the case where t is even (i.e., player 2’s turn to make an offer).

Hence, player 2 make an offer z ∈ Z. If player 1 accepts the offer, then he gets

ut1(z, rt) =


zi + γi(zi − ri) if zi ≥ ri

zi + λi(zi − ri) if zi < ri

On the other hand, if player 1 rejects the offer, his reference point will be

max{r1, z1}. With probability δ, the game continues to the next period and

player 2 offers yω and with probability 1 − δ, the game ends. Hence, player 1’s

expected continuation utility in the case of rejection is

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1).

Case 1. ω ∈ {1− I, 1− II, 1− III} : r1 > xω1 > yω1

In this case, recall that the following equality holds in equilibrium:

δxω1 = yω1 .

169



We analyze the optimal decisions of player 1 in two sub-cases: (1) z1 ≥ r1 and

(2) z1 < r1.

1.1. First, suppose that z1 ≥ r1. If player 1 accepts the offer, he gets his share

z1 plus the relative gain from the reference point. Since the offer is greater

than his reference point, he perceives the difference between two as a gain

and this gain is scaled by γ1. Accepting yields

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1).

If player 1 rejects the offer, his reference point will be max{r1, z1}. With prob-

ability δ, the game continues to the next period and player 2 offers yω and with

probability 1− δ, the game ends. So, rejection gives player 1

ut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + λ1(xω1 −max{r1, z1})]− (1− δ)λ1 max{r1, z1}

< δ[xω1 + γ1(xω1 − z1)]− (1− δ)γ1z1

= (1 + γ1)δxω1 − γ1z1

< (1 + γ1)yω1 − γ1r1

< (1 + γ1)z1 − γ1r1 = u∗1

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

1.2 Second, suppose that z1 < r1. In the case of acceptance, player 1 gets his

share from the offer z1. However, since the offer is less than his reference

point, player 1 perceives this offer as a loss relative to the reference point.

The difference between z1 and r1 negatively affects his utility and this effect
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is scaled by λ1. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).

If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + λ1(xω1 −max{r1, z1})]− (1− δ)λ1 max{r1, z1}

= δ[xω1 + λ1(xω1 − r1)]− (1− δ)λ1r1

= (1 + λ1)δxω1 − λ1r1

= (1 + λ1)yω1 − λ1r1.

Hence, δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1) ≥ u∗1 if and only if z1 ≥ yω1 .

In this case, accepting the offer satisfying z1 ≥ yω1 and rejecting it otherwise is

optimal.

Case 2. ω ∈ {2− I, 2− II, 2− III} : xω1 ≥ r1 > yω1

In this case, recall that the following equality holds in equilibrium:

(1 + γ1)δxω1 = (1 + λ1)yω1 + δγ1r1 − δλ1r1.

We analyze the optimal decisions of player 1 in two sub-cases: (1) z1 ≥ r1 and

(2) z1 < r1.

2.1. Suppose that z1 ≥ r1. If player 1 accepts the offer, he gets his share z1 plus

the relative gain from the reference point. Since the offer is greater than

his reference point, he perceives the difference between the two as a gain
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and this gain is scaled by γ1. Accepting yields

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1).

If player 1 rejects the offer, his reference point will be max{r1, z1}. With prob-

ability δ, the game continues to the next period and player 2 offers yω and with

probability 1− δ, the game ends. So, rejection gives player 1

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + λ1(xω1 −max{r1, z1})]− (1− δ)λ1 max{r1, z1}

< δ[xω1 + λ1(xω1 − z1)]− (1− δ)λ1z1

< δ[xω1 + γ1(xω1 − z1)]− (1− δ)γ1z1

= (1 + γ1)δxω1 − γ1z1

= (1 + λ1)yω1 + δγ1r1 − δλ1r1 − γ1z1

< (1 + γ1)z1 − γ1r1 = u∗1.

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

Now, suppose that z1 < r1. In the case of acceptance, player 1 gets his share

from the offer z1. However, since the offer is less than his reference point, player 1

perceives this offer as a loss relative to the reference point. The difference between

z1 and r1 negatively affects his utility and this effect is scaled by λ1. Accepting

the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).
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If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + γ1(xω1 −max{r1, z1})]− (1− δ)λ1 max{r1, z1}

= (1 + γ1)δxω1 − δγ1 max{r1, z1} − (1− δ)λ1 max{r1, z1}

= (1 + λ1)yω1 + δγ1r1 − δλ1r1 − δγ1 max{r1, z1}

− (1− δ)λ1 max{r1, z1}

= (1 + λ1)yω1 + δγ1r1 − δλ1r1 − δγ1r1 − (1− δ)λ1r1

= (1 + λ1)δyω1 − λ1r1.

Thus, δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1) ≥ u∗1 if and only if z1 ≥ yω1 .

In this case, accepting the offer satisfying z1 ≥ yω1 and rejecting it otherwise is

optimal.

Case 3. ω ∈ {3− I, 3− II, 3− III} : xω1 > yω1 ≥ r1

Recall that the following equality holds in equilibrium:

(1 + γ1)δxω1 = (1 + γ1 + δγ1 + (1− δ)λ1)yω1 − γ1r1.

Again, we analyze the optimal decisions of player 1 in two distinct sub-cases: (1)

z1 ≥ r1 and (2) z1 < r1.

3.1. Suppose that z1 ≥ r1. If player 1 accepts the offer, he gets his share z1 plus

the relative gain from the reference point. Since the offer is greater than

his reference point, he perceives the difference between two as a gain and

this gain is scaled by γ1. Accepting yields

u∗1 = ut1(z, rt) = z1 + γ1(z1 − r1).
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If player 1 rejects the offer, his reference point will be max{r1, z1}. With prob-

ability δ, the game continues to the next period and player 2 offers yω and with

probability 1− δ, the game ends. So, rejection gives player 1

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δut+1
1 (xω)− (1− δ)λ1 max{r1, z1}

≤ δ[xω1 + γ1(xω1 −max{r1, z1})]− (1− δ)λ1 max{r1, z1}

= (1 + γ1)δxω1 − δγ1z1 − (1− δ)λ1z1

= (1 + γ1)yω1 + δγ1y
ω
1 + (1− δ)λ1y

ω
1 − γ1r1 − δγ1z1 − (1− δ)λ1z1

< (1 + γ1)yω1 + δγ1z1 + (1− δ)λ1z1 − γ1r1 − δγ1z1 − (1− δ)λ1z1

= (1 + γ1)yω1 − γ1r1

In this case, acceptance gives player 1 a higher utility than rejection does. If

z1 ≥ yω1 , accepting the offer z1 is optimal.

3.2. Now, suppose that z1 < r1. In the case of acceptance, player 1 gets his

share from the offer z1. However, since the offer is less than his reference

point, player 1 perceives this offer as a loss relative to the reference point.

The difference between z1 and r1 negatively affects his utility and this effect

is scaled by λ1. Accepting the offer yields

u∗1 = ut1(z, rt) = z1 + λ1(z1 − r1).
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If player 1 rejects the offer, he gets

δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1)

= δ[xω1 + γ1(xω1 −max{r1, z1})]− (1− δ)λ1 max{r1, z1}

= (1 + γ1)δxω1 − δγ1 max{r1, z1} − (1− δ)λ1 max{r1, z1}

= (1 + γ1)yω1 + δγ1y
ω
1 + (1− δ)λ1y

ω
1 − γ1r1 − δγ1 max{r1, z1}

− (1− δ)λ1 max{r1, z1}

> (1 + γ1)yω1 + δγ1z1 + (1− δ)λ1z1 − γ1r1 − δγ1z1 − (1− δ)λ1z1

= (1 + γ1)δyω1 − γ1r1 > (1 + γ1)δz1 − γ1r1 = u∗1.

Thus, δut+1
1 (xω, rt+1) + (1− δ)ut+1

1 (0, rt+1) ≥ u∗1 if and only if z1 ≥ yω1 .

In this case, accepting the offer satisfying z1 ≥ yω1 and rejecting it otherwise is

optimal.

Considering all cases, we have the following result: it is optimal to accept the

offer z if z1 ≥ yω1 and to reject it otherwise, which implies that following σ∗1 is

optimal.
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D Proofs of Chapter 5

Proof of Theorem 14. Here we prove that for a given (a, b) ∈ [0, 1]2, the (a, b)-

solution satisfies WPO (also PO), SYM, IPAT, and IND. (a, b)-MON.

Take any (S, d, r) ∈ Σ2. For WPO, it is enough to recall that the bargaining set

S is convex, closed, and bounded from above. As a matter of fact, since n = 2,

PO is satisfied as well.

For SYM, note that the symmetric transformation T : R2 → R2 maps the straight

line passing through ar+ (1− a)d and a(S, br+ (1− b)d) into the straight line L

passing through T (ar + (1− a)d) and T (a(S, br + (1− b)d)). Since there cannot

be a point in L ∩ T (S) which is greater than T (F a,b(S, d, r)), it must be that

F a,b(T (S), T (d), T (r)) = T (F a,b(S, d, r)).

For IPAT, note that an affine transformation A : R2 → R2 (i) preserves the

partial ordering of R2; (ii) maps straight lines into straight lines; (iii) maps

ar + (1 − a)d into aA(r) + (1 − a)A(d); and (iv) maps a(S, br + (1 − b)d) into

a(A(S), A(br+(1−b)d)). These and the definition of F a,b jointly imply the result.

For IND. (a, b)-MON, without loss of generality, consider i = 1 and j = 2. Take

any (S, d, r), (S ′, d′, r′) ∈ Σ2 such that ar + (1 − a)d = ar′ + (1 − a)d′ and

a2(S, br + (1 − b)d) = a2(S ′, br′ + (1 − b)d′). Assume that for every x ∈ S:

a1(S, x) ≤ a1(S ′, x). For notational convenience, we let

ā = ar + (1− a)d,

b̄ = br + (1− b)d, and

b̃ = br′ + (1− b)d′.

Let L be the straight line passing through ā and a(S, b̄). By definition of the

176



(a, b)-solution, we have

F a,b(S, d, r) = max{λā+ (1− λ)a(S, b̄) ∈ S | λ ∈ [0, 1]}.

That is, F a,b(S, d, r) is the maximal element of L∩ S. Let L′ be the straight line

passing through ā and a(S ′, b̃). Consider L′ ∩ S, and set

x̄ = max{λā+ (1− λ)a(S ′, b̃) ∈ S | λ ∈ [0, 1]}.

Moreover, since a1(S, b̄) ≤ a1(S ′, b̃) and a2(S, b̄) = a2(S ′, b̃), we have

F a,b
1 (S, d, r) ≤ x̄1.

By definition, F a,b(S ′, d′, r′) is the maximal element of L′ ∩ S ′. That is,

F a,b(S ′, d′, r′) = max{λā+ (1− λ)a(S ′, b̃) ∈ S ′ | λ ∈ [0, 1]}.

By convexity and comprehensiveness, the fact that a1(S, x̄) ≤ a1(S ′, x̄) implies

x̄ ∈ S ′. It follows that the maximal element of L′ ∩ S ′ is not less than x̄; i.e.,

x̄ ≤ F a,b(S ′, d′, r′). Therefore, F a,b
1 (S, d, r) ≤ F a,b

1 (S ′, d′, r′).
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