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ABSTRACT

DECENTRALIZED BLOCKING ZEROS IN THE CONTROL OF LARGE
SCALE SYSTEMS

' KONUR A. UNYELIOGLU
Ph. D. in Electrical and Electronics Engincering
Supervisor: Assoc.Prof.Dr. A. Biilent Ozgiler
July 1992

lu this thesis, a nmnber of synthesis problems for linear. tine-imvariant, finite-dunensional
systems are addressed. It is shown that the new concept of deernlralized blocking zeros is as fun-
damental to controller synthesis problenis for large scale systerus as the concept of decentralized
fixed modes.

The main problews considered are (i) decentralized stabilization problem, (i) decentralized
strong stabilization problem, and (iii) decentralized concurrent stabilization problem.

The deceniralized stabilization [ﬁl‘uljlf“lll' is a fairly well-unds=rstood controller synthesis prob-
lem fer which many synthesis methods exist. Here, we give a new synthesis procedure via a
proper stable fractional approach and focus our attention on the generic solvability and char-
aclerization of all solulions.

The decentralized strong stabilization problemn is the problem of stabilizing a system using
stable local controllers. In this problem, the set of decentralized blocking zeros play an essential
role and it turns out that the problem has a solution in case the poles and the real nonnegative
decentralized blocking zeros have parity interlacing property. In the more general problem of
decentralized stabilization problern with minimuin number of unstable controller poles, it is
shown that this minirum number is deterimined by the nuinber of odd distributions of plant
poles among the real nonnegative decentralized blocking zeros.

The decentralized concurrent stabilization problem is a special type of simultancous stabi-
lization problem using a decentralized controller, This problemn is of interest, since many large
scale synthesis problems turn out to be its special cases. A complete solution to decentral-
ized concurrent stabilization probler is obtained, where again the decentralized hlocking zeros
play a central role. Three probleins that have received wide attention ju the literature of large
scale systems: stabilization of composile systems using locally stablizing subsystem controllers,
stabilization of composile systams vo the stabilizalion of mam diwgonal transfer malrices, and
reliable decentralized stabilizalion problem are solved by a specializul.ioﬁ of our main result on
decentralized concurrent stabilization problem.

Keywords: Control system synthesis, linear systems, inultivariable control systems, de-

centralized stability, large scale systems, poles and zeros.



OZET

GENIS CAPLI SISTEMLERIN DENETIMINDE AYRISIK TOPTAN
SIFIRLAR

KONUR A. UNYELIOGLU
Elektrik ve Elektronik Miilendisligi'nde Doktora
Tez Damgmani: Do¢.Dr. A. Biilent (.'-)zgf.i]er
Temmuz 1992

Bu tez dogrusal, zamanla degisieyen, sonlu boayuttaki genig-q¢aph sistemlerle ilgili cesitli
problemlerin ¢oztimlerini igerniektedir. Tezin denstiin kuranima temel katkisi ayrisik toplan
stftrlar olarak isimlendirilen yeni bir sistem sifirlar kiimesinin tammlanmasidir. Bu yeni sifir
kavramnmu genig-caph sistemnlerdeki tasarun problemlerinde ayristk degismez ozdegerler kadar
terel bir rol istlendigi gosterilmektedir,

Inceleneu ana problemler sunlardir: (1) aynsik kararllastirma problemi, (ii) aynisik gigli
kararhlagtiria problemi ve (iii) aymsik birlikte kararhlagtinma problemi.

Ayrigik kararlilagtirma problemi literatiirde iyi incel=nmis bir denetleyici tasarumi problemi
olup ¢Gzitruii bilinmektedir. Bu tezde, kararh uygun oranlar yaklasim ile yeni bir tasanm
yonterni énerilmekte ve bitiin cézimlerin tanumlanmasr ve ¢ozimlerin yapisal ozellikleri konu-
larima agirhk verilmektedir.

Ayregik guchi kararldagtirma problemi bir sistemi kararh verel denetleyicilerle kararhlagtir-
ma problemidir. Bu problemin ¢dziimnii, eger ve ancak gergel kararsiz aynigik toptan sifirlar ile
kutuplar arasinda bir girigiin ozelligi saglandify zamman vardir. En az sayida kararsiz katuba
sahip kararlastirier aynigik denetleyicilerin tasariminda da sisten kararsiz kutuplarimin, ayristk
toptan sifirlar arasindaki tek sayih dagilimlarmm belirleyici oldugu gosterilniektedir.

Aynigtk birlikte kararblastirma problemi dzel bir aym anda kararlilastirma problemi olup
gesith genig ¢aph tasarm problenileri bu problemnin ézel bir hali olarak tannmlanabilmektedir.
Bu tezde, ayripk birlikte kararhlagtirma problemni aynsik gughi kararlilagtinnna problemine
déntigtiritlerek ¢ozilmektedir. Bu problemin gozlimiinde ayngk toptan sifirlar yine temel bir
rol listlenmektedir. Literaturde genig ilgi gérmiis olan arabagl sistemlerle ilgili tig temel tasarun
problemi, averak birlikte karathlagtirma problemine daniistiiriilerek ¢ozitlmektedir,

Anahtar kelimeler: Denetin sistenn tasarim. dogrusal sistemnler, cokdegiskenli sistemler,

ayrigtk kararhlik, genig gaplt sistemler, kutuplar ve sifirlar.
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Chapter 1

INTRODUCTION

This thesis is concerned with the Decentralized Stabilization Problem (DSP), De-
centralized Strong Stabilization Problem (DSSP) and Decentralized Concurrent
Stabilization Problem (DCSP) of linear time-invariant finite dimensional systems
and the applications of the concept of decentralized blocking zeros in the solu-
Lions of DSSP and DCSP. In this chapter we will give brief definitious of these
problems and discuss their motivation. Mare precise definitions of the problems

are given iu the subsequent chapters.

Let Z be a plant with input-output channels (vector inputs and vector

outputs). Consider the decentralized feedback configuration below.

Y1

a4

N

Figure 1.1. Decentralized feedback configuration.
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Decentralized Stabilization Problem (DSP). Determine &V feedback com-
pensators Zg, ..., Z.y, such :hat the pair (Z,diag{Z,.... Zen}) is internally
stable.

Decentralized Strong Stabilization Problem (DSSP). Solve DSP using

a stable decentralized controller, i.e.. determine N stable feedback com pensators

Ze1y ey Zepy such that the pair - Z,diug{Z.. ..., Zen}) is internally stable.

Decentralized Concurrent Stabilization Problem. In addition to the
N-channel plant Z, we are a0 given plants Ty, ..., Ty where the size of T;
is compatible with the size of Zi;. the ith main diagonal subblock of Z, ¢ =
L,...; N. Determine N feedback compensators Zeq, ..., Zeny such that the pairs

(Z,diag{Z, ..., Zen'}) and (T;. Zei)o T =1.....N are all internally stable.

In many feedback control vroblems. the controller is required to process a
constrained feedback information due to some practical reasons which make the
centralized (full-feedbackj control inefficient or unpossible. With this motivation,
many researchers have paid atrention to investigate the solvability conditions of
DSP during the last two decades (9], (450 [52], (32]). A basic decentralized

control example is given helow.

Example (1.1)-Steam Generator., [64] In a steam generator. there are
two basic elements: combustor and hoiler. Water in the boiler is hea ted by the
combustor and turns into stear:. Iy our simplified inodel of steam generator, the
controlled variables in the plant are the steam pressure in the boiler, water level in
the boiler, and the superheated steam temperature. The couirol variables are the
[uel flow into the combustor, water flow into the boiler and the flow of pulverized
cooling water into superheated steamn. Al though each controlled variable depends
on each of the control variables. the <team generator is preflerably controlled by
three local controllers each of which observes only one controlled variable and

controls only one control variable, as summarized in the following table.
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Controlled Variables (lontrol Variables
yi ¢ steam pressure in the boiler uy : fuel Zow into combustor
y2 :  water level in the boiler uy ¢ water flow into boiler
y3 : superheated steam temperature | uz: flow of pulverized water into steam

Controller ¢ observes y; and controlz u;. 1 = 1.2,3.

Table 1.1. Local control variables of a steam gererator.

In this example, a main reason for controliing t’ie plant using a decentralized
cornpensaloris due to the fact that the contre! varizble u, has a considerably faster
eflect on the controlled variable y; compared o otr.er coutro! variables. Moreover,
the depeudence of y; on the controller variabizs els= than u; is significantly weaker
than its dependence on u;.

As cau be inferred from the use of a constrair=d feedback scheme, DSP has
more restrictive solvability conditions in comparizon with the full-feedback sta-
bilization problem. It has been shown [70] :hat DSP is solvable if and only if
the open loop plant has no unstable decentraiized qxed modes with respect to the
specified decentralized feedback constraint. The fixed modes of a plant are those
open loop eigenvalues which remain unchanged in the closed loop for all possible
constant decentralized compensators. In [10] the solvability of DSP has been
shown to be equivalent to the completeness of certain svstem matrices belonging
to complementary subsystems in case the open loow plant satisfies a connectivity
condition called strong connectedness. The constrizetion method of decentralized
compensators proposed in [10] is obtained by making the closed loop system sta-
bilizable and detectable from a single channel applying decentralized constant
feedback around the other channels. A direct proof of the equivalence of the
completeness condition of [10] and the abserce of decentralized fixed modes as
defined by [70] has been given in [2]. [t has later been shown by the fractional
representation approach to DSP ([36], [68], 22], 737], [33]. [36]) that the strong
connectedness assumption can also be removed by applving dynamic compensa-

tion to each of the channels instead of constant compensation.

Although the precise conditions for the solution of DSP is well-known, there
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are still some open problems concerning the synthesis of decentralized stabilizing
controllers. Such problems arise especially when the decentralized controller is
svnthesised for a large-scale system comprising various subsystems where the local
coutrollers are required to satisfy additional properties in addition to the stabi-
lization of the composite (interconnected) system. In this context the following

three problems are investigated in the subsequent chapters.

(p1) Stabilizalion of composite systems using locally stabilizing subsystein con-
trollers. Consider a collection of linear time-invariant finite dimensional svstems
described by

\0

iy = A+ B+ u; .
l _ , 1€ {l...,N}
yi = O '

where A;, By and C; are real consiant matrices of appropriate dimensions corre-
sponding to states, inputs and onrputs, respectively. Assume that these systems
are interconnected according to the rule u; = Z_;'V=1 Ao e {l,..., N} for some
constant matrices A;;, ¢.7 € {1..... .\:}. The resulting composite system is defined
by . The objective is to determine local controllers Y, i€ {l,..., N} such that
the pairs (X;, X4), ¢ € {1, ..., N} are stable when the interconnections do not ex-
ist. It is also desived that when the intercounections exist the composite system X
becomes stabilized by the decentralized controller composedof ¥y, 7€ {l...., V}.
snch an approach to the stabilization problem of composite systems is a natural
one becanse most of the composite systems are constructed by interconnecting
the independently controlled subsystems [63], [49]. Although there is an exten-
sive literature conceruing the stabilization of interconnected systemis via such a
special subsystem feedback, so far a necessary and sufficient solvability condition

=

has not yet been obtained (see the references in Chapter 5). An example for

sroblem (pl) is given below.
l 1 S5

Example (1.2)-Interconnected steam generators. We cousider two
steam generators (7y, Gy which supply steamn to two independent steam pipelines.
Due to operating conditions and consumer demands it is sometimes desired to
mterconnect the pipelines via an auxiliary network. Let controllers Cy, C, con-

trol (7y, (fy, respectively, when the interconnection does not exist. It is required
. ) ) -
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that when the pipelines are Interconnected the same controllers still achieve the

prescribed control objectives in the resulting new systemn.

(p2) Stabilization of &dnzposite systems via the stabilization of diagonal trans-
fer snatriccs. Another approach to the stabilization problemn of composite systems
via decentralized controllers is based on the extension of Nyvquist and Inverse
Nyquist Array methods to multi-input/multi-output systems. The starting point
of this approach is to assume that the interactions between the subsystems are
sufficiently “weak” in some sense so that a set of local controllers which sepa-
rately stabilize the main diagonal transfer matrices (in case the interconnections
are neglected) also guarantees that the closed-loop svstem remains stable when
the interconnections exist. Althonugh several systematic procedures are available
in the literatnre which provide sufficient conditions for the solution of this prob-
lem, a necessary and sufficient solvability condition is vet not available [78], [34],
[74]. We note that (pl) and (p2) are different problems, because in (p1) the main
dragonal transfer matrices in the transfer matrix of the interconnected system X

are, in general. different than the transfer matrices of subsystems E;, 72 = 1,..., V.

(p3) Reliable Decentralized Stabilization Problem. An important design ob-
jective for large-scale systems is to ensure reliable performance with respect to
the changes in system parameters. These variations can be modelled in several
ways. In this thesis we consider the discrete variations of parameters which arise
from the uterconnection breakdowns or on-off type of variations ol opeu loop
system elements. The reliable decentralized stabilization problem is defined as
synthesising a decentralized controller which shows a satisfactory performance
(stabilization) for the nominal system aund for all svstems around the nominal
system resulting {from a prespecified set of discrete variations in the system pa-
rameters. We remind that in Example (1.2) above a built-in reliability is ensured
in the sense that when the interconnection between the pipelines is removed ac-
cidentally the two resulting independent systems (G, Cy). (Gy, Cy) still achieve

the desired control objectives.

We note that DCSP is a special decentralized simultaneous stabilization prob-

lem and all the above problems (pl)-(p3) can be formulated in the DCSP frame-
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work.: For problem (pl) this fact has already been indicated in [52]. In case of
a restricted class of interconnecred systems it has recently been shown that the
(centralized) strong stabilization problem plays a primary role in the solution of
(p1) [32]. The relation between problem (p2) and DSSP has been shown in [35],
[57]. A formulation of problem (p3) in terms of DSSP is given in [8]. [57]. Rela-
tions between problem (p3) and DSSP are also addressed in [65]. We note that
DCSP and DSSP are closely related problems in that DCSP is solvable if and
only if D55P is solvable for a subsidiary plant (Chapter 5). This is an extension
of the results obtained for th(:: «::f:‘ntralized versions of these problems. We refer
to [43]. {66], [21] and to the references therein for the (centralized) strong and

simultancous stabilization problems.
The coutributions of this thesis are the [ollowing.

I A new ser of zeros for multivariable systems. the set of decentralized blocking
zeros 1s introduced.  Decentralized blocking zeros are common blocking zeros
of varions complementary transfer matrices and the transfer matrices of main
diagonal subplants. Miscellaneous interpretations for decentralized blocking zeros

are given in terms of system zeros and transmission zeros.

2. We determine the least unstable degree of decentralized stabilizing con-
trollers and give a synthesis procedure for the construction of a least unstable
decentralized stabilizing controller. As a pzu‘f.icula.r case, we obtain the solution
of D55P. It is shown that the least unstable degree of decentralized stabilizing
controllers is determined by a parity interlacing property among the real unstable
poles and real unstable decentralized blocking zeros of the plant. This result is
the analoguc of the one obtained for centralized feedback systems [66. Theorem.
5.3.1] Several sufficient conditions on the plant zeros which ensure the solvability
of DSSP are given. It is also shown that if a strongly connected plant adinits a
solution 1o DSP then the nustable poles of the compensator can be distributed

among the local coutrollers nearly arbitrarily.

3. A solution procedure for DCSP is proposed by transforming it to DSSP

in a subsidiary plant. Although the subsidiary plant is not unique. an explicit
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expression for the set of decentralized blocking zeros of the subsidiary plant is
given in terms of the system zeros of original plants diug{Th,...,In} and Z. It is
shown that DSSP is generically solvable. It turns ont that in a special case which
generically holds, a solution to DCSP exists if and only if DSSP is solvable for

the difference plant diag{T,....Tv} — Z.

The above problems (pl), (p2) and (p3) are solved in a unified framework by
transforming them into DCSP. Various suflicient conditions in terms of system
zeros arc given which ensure the solvability of these problems. It is also shown

that cach of {pl), (p2;. (p3) is generically solvable.

The organization of the thesis is as follows. The unext chapter is devoted
to technical preliminaries where we first introduce the notation and terminol-
ogy. Then. several algebraic properties of the rings of proper, stable proper and
stable rational functions are briefly reviewed. Characterization of all stabilizing
controllers and the graph topology for linear time-invariant finite-dimensional sys-
tems are also considered. In Chapter 3 we study the solution of DSP in a stable
proper fractional set-up. A new synthesis procedure for decentralized stabilizing
controllers and a characterization of all admissible local controllers associated
with a fixed channel are given. Genericity properties of decentralized stabiliz-
ing controllers are also investigated. The results in Chapter 3 lay the technical
background for the subsequent chapters as DSP is a basic part of every other
problem considered. Chapter 4 cousiders decentralized blocking zeros, the syn-
thesis of least unstable decentralized stabilizing controllers, and the solution of
DSSP. Chapter 5 is coucerned with DCSE. The solutions of problems (pl), (p2),
(p3) are also given iu Chapter 5 in sections 5.2, 5.3. 5.4 respectively. Chapter 6
includes some concliding remarks and and a discussion of related problems for
future investigation.

The results of Chapters 3 and 4 ave partially based on [56] and [38], [60],
respectively. Section 4 of Chapter 5 considers a generalization of the results in

160], [57).
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Chapter 2

NOTATION AND MATHEMATICAL
PRELIMINARIES

This chapter includes the uotation of the thesis. We also review some mathemat-
ical facts used in the following chapters. For a more detailed exposition of the

related algebraic and topological concepts the reader is referred to [66].

By C and R, we denote the fields of complex and real numbers, respectively.
We let Ce be the set of complex uumbers including infinity where the subscript
‘e 1s an abbreviation for “extended’. The symbol Cy. denotes the closed right
half plane including infiuity and R4 denotes the set of real positive numbers
wchding infinity. More precisely. Rie = RN Cy.. The set of proper rational
functions with real coefficients is denoted Ly P. The sets of stable proper rational
functions and stable rational functions (with real coeflicients) are denoted by S
and Py, respectively. Note that, - ¢ P b'elongs to S if and only if its denominator
polynomial is stable, i.e.. has no Cp zeros. The set P, is precisely the set of
rational functions whose denominator polynomials are stable. By definition, S C
P;. Also, P is a subset of thiwe field of fractions of S. We indicate by M(A) the set
of matrices with entries over the set A, By R we denote the set of polynomials
with real coefticients. The sets S. Py and R are rings. They are also principal
ideal domains. We remind that in a principal ideal domain a greatest common

divisor of a given finite number of elements always exists.

For a strictly positive integer N, N denotes the ordered set {1,2,..., N}. A

9
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set {%1,%2,....4,} is called a proper subset of N if N— {11,172, ..., 7} 1s nonempty
where ‘~’ denotes the standard set-diference operation. In case {t1. 0201}
15 a proper subset of N 'we use the following convention: N — {i1,%5.....7,} =
{Zu41,Ept2s - 2v}. We denote by Cy the set of all proper subsets of N. [f a. b are

real numbers min(a, b) denotes the minimum of «, b.
The symbols 4 := B, B =: 4 denote the statement ‘A is defined by B'.

If ¢ € C then ¢ denotes the complex conjugate of ¢. For a € C, |« denotes
the magnitude of «. If A € M(S) we denote by ||A]} the Hy norm =f 4, ie.,
HA[| = sup,e., 7(A(2)) where #{ . ) is the largest singular value of its argument.
If A € M(C) then {[A]] denotes the spectral matrix norm over C. For a square
maftrix A, del(A) denotes the determinant of A. For a matrix B. B’ deuotes the
transpose of B. By diag{A,.... Ax} we denote the block diagonal matrix having
the matrices A;. ¢ € N in its main diagonal blocks. The matrix I, is the identity
matrix with size p. The matrix 0, ., is the zero matrix with p rows and » columns.
In case p = 7, we use 0, to denote O,x,. Usually the dimension is clear from the
context, so the subscripts are dropped.

Let A= [A;]. {,) € N be & matrix where A;; denotes the 45 th subimatrix of
A Letry = {i1.....4}, = {/1.....Jr} be two subsets of N. The matrix Ay, 18

defined as follows.

A Aii.’l oo A'l]T
Al‘; r, = .

A'. Sl '4 iy

For any matrix A over C, P or Py, rankA denotes the rank of the matrix over
the associated field of fractions.

Let 5 be a set with topology 7. We say that a property holds for almost all
elements of .5 if the set of elements of 5 for which that property holds is open

and dense in 5 with respect to 7.
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2.1 Algebraic Properties

Let T be a principal ideal domain. The matrices A;, / € N over T with the same
number of rows are said to be left coprime, if the matrix [4; A, ... An] has a right
inverse over T. In case A;, 1 € N are left coprime we say that (A;, 4, ..., Ax)
is left coprime. Dually, the matrices By, i € N over T with the same number
ol columns are said to be right coprime, it the matrix (B] B .. By] has a left
inverse over T. In case B;, i € N are right coprime we say that (B1. By, ..., By)
15 right coprime.

A square matrix {7 over T is called wnimodular if s invertible over T. A
square matrix 4 € M(T) is called a greatest common left factor of matrices
Ai, ¢ € N, where 4,. i € N have the same number of rows if (A ... AN] =
AlA, ... Ax] aud A;. i € N are left coprime. The abbreviation gelf stands for
“greatest common left factor”. Dually, a square matrix B € M(T) is called a
greatest common right factor of matrices B;, 7 € N. where B,. i € N have the
same vumber of columns if [B] ... B\ = B'[B] ... B\.]"and B.. i € N are right
coprume. |

Let A € T**" where [ = rank A < man(p,r). There exist unimodular inatrices

U and V over T of appropriate sizes such that

a0 0
0 oy 0
UAV = i
0 0 .. o
i Op—tx Op—ixr—t j

where a; belongs to T. and o divides oy, Vi. This canonical form for pxXr
matrices under unimodular transformiations is called the Smith canonical formor

simply the Siwith form. The lactors o's are called the invariant factors of A.

Let F be the field of fractions of T and let Z € FFPX" where ! = rank Z <

man(p, 7). There exist unimodular matrices {/ and V over T of appropriate sizes
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<

such that i

[ &
— 0 0
th
€2
° 1y 0
0 re—. )
o o .. =
Ly
! Op—1xi Oumtrei |

where &;, ¥; beoong to T, (z;.1%) are coprime. and z; divides €ix1. Lygr divides
i Vi, This cazonical form for p x » matrices in F is called the Smith-McMillan
form.

Let Z € F:*". There exist D; € T P, N, ¢ T?x" [). € T"*". N, € TPxr,
Q@ € T"9, P e TP, Re T for some ¢ such that

Z=D'"Ny=AN,D' = PQ7'R. (2.2)

the pairs (D;..\), (Q, R) are left coprime and + D, N7), (Q. P) are right coprime.
The fractious i (2.2) are called left coprime, right coprime and bicoprime frac-

tional represenzations of Z, respectively.

Let Z @ P77, The notation Z =0 means that every entry of Z is identically
zero (i.e.. the z-ro element of the ring P). Note that if Z is nonzero. or equiv-
alently, Z # 0 then Z(:) = 0 only for a finite number of elements = of C. A
complex mumber 2o 18 & blocking zero of Z if Z(z) = 0 [16], [17). If Z is stable,
then the unstable blocking zeros are the unstable zeros of the smalle <t invariant
Jactor (sif ) of 7 over S. Let 8 and S, be two finite collections of mimbers in Ry,
in which some 1 ambers may oceur more than once. If Sy and Sy are disjoint then
we say that the ordered pair (S1,S;) has parity interlacing property if there are
an even nuinber of elements from & betweeu each pair of elements from S,. The
terminology is worrowed [rom [77] in which S; and S, are. respectively, the poles

(with multiplicity) and the blocking zeros of a transfer matrix. Note that, if S
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is the set of Ry, zeros with multiplicity of « € S, then a(z) takes the same sign
at all clements z € &, if and only if (S1.8:) has the parity interlacing property.

Let Z € PPX" be given such that
Z=PQ7 'R = P,Q;' R, 12.3)

where () € P, Ry € Px P, < pyxn, @, € PP R, ¢ PRXT P, ¢
Prx% We say that the representations tPL QL Ry), (P, Qo Ry) are Fuhrmann

cquivalent over P, if for some matrices 4, By, Ay, B, over P, of appropriate

A0 O R ] @ R [ A B
Bi If| =P 0| =P 0 0 7

dimensions

and ((1, Az) is right coprime, (Q-. 4, is jeft coprime [18], [19]. Let a state space
realization of 7 be given by (C', 4. B) where A, B and C are the state. input and
output matrices, respectively. Noting that Z = C(z] — A)™!B, we use the iriple

(C. 4, B) to denote the representation (C'. =] — A, B).

Lemma (2.1). Let K = [I;,;. h';; € Prixn, t,J € N be.given. Suppose

ws a stabilizable and detectable state-space realization of K such that K;y = Chi=]—

~

A)TUB;, 1,7 € N. Also let
2
R=1 |0 ke Ry ]

be a bicoprime fraction over S where Ky = FiQ™'R;, 1,5 € N. Then, for any

proper subset {uy,...,1,} of N the two systems

:Yi,..,_, Isiu+1
(s LAle B Do [ala &)
Cin Piy
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are Fuhrmann equivalent over P,

Proof. First note that the two representations

¢y P
(| & [ ALB By QR R
o Py
are Fuhrmann equivalent over P, [27]. Fix any proper subset {t1,...,7,} of N. Let

B/ = [B,’x B,'“]. R} = [f?,'l ]‘;’,;“], (7.] = [(,e"i/l“'_
B, .= (B... ..B.), k= (72

There exist matrices Ky. Ky, Ly, Ly, M. M, over Py such that

TS él{;\']/r [f;J ‘= [/_’;l/p“ P/V]/
B O (O CLY By = (P LY.

T4l T

iy 00 Z]—-.-i /}1 /3’.[ (:) R/ RJ K, A, Al
Ly 7T 0 ~Cr 0 0 |=|<A 0 0 0o I 0
L. 0 [ -C; 0 0 P, 0 0 0o 0 I

where (Q,]\'l) is left and (z/ — /1,1\'2) are right coprime pairs over P,. This

Ky ol =1-A B | | @ R|[hK M
L, I ¢, 0| | =P o 0 I

which completes the proof.0

implies

Lemma (2.2). Let (f"l.Q], Ry) and (P2, Qs R,) be two Fuhrmann equivalent

representations over Py, Then,

0, R o S ) .
rank [ _'1;1 0] J (2) + size(Q)a) = rank [ _(’);2 ];2 J (2) + size(@Q)), Vz € Cy.

Proof. The proof easily follows from the definition of Fuhrmann equivalence.O

Let Z = C(z1 = A)7'B, where (', 1, B) is a stale-space representation of
Z. We say that = is an invariant zero of system (C, A, B)if it is a zero of some

invariant factor of the systemn matrix

zI- A B
-/ 0
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over R. Similatly, let Z = P,Q7' R, be some fractional representation of Z over
S. We say that z is an invariant zero of system (P, 0y, [{{) if it is a zero of some
invariant factor of the syvstem matrix

Q1 R

-0
over S. Let the representations of Z in (2.3) be Fuhrmanu equivalent and satisfy
that 1, f%, Py are matrices over S and () = 2/ — 4, Ry = B. P, = C.
Any (4 invariant zero of ((7, 4. B) is also an invariant zevo of (P, Q. Ry), and
conversely. More precisely, it follows from Lemma (2.2) that = € Cy is a zero of

the {th invariant factor of

[z1-A B
-C 0
if and only if it is a zero of the ([ + size(A) — seze((Jy))th invariant factor of
Q, R
-P 0

Let Z € PP*". Consider the Smith-MecMillan form of Z over S as given by
(2.1). A complex mumber z € C,. which is a zero ol any of z;. i = 1,....[, where
[ :=rank Z is called a transmission zero of Z. For a detailed study of invariant
zeros and transmission zeros we reler to [44]

As a final result of this section we consider an interpolation result concerning
the ring S.

Lemma (2.3) Let some distinet real numbers vy, ... r, and distinet complex
numbers ¢y, ...,¢ be given such that ¢; # ¢ty 1, = Lol Also lel some rcal
numbers ty, ..., 1, and compler numbers ky. ...k be given. There erists x € S
such that x(r)) =t c=1,.,p, wle) =k, c=1,...,L

Proof. Although the proof is based on standard interpolation theory, it is
repeated here for convenience. Define
ri, ¢t=1,..,p
=9 ¢, t=p+1l..,p+l
e, r=p+l+1,.,p+21
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and
Loot=1...,p
Sy = 'l" 1=P+1,---,P+l
ki t=p4+l+1,.,p+ 2L
We let
| 24+p " 20+p ’
o2 = e & (a0 ] (= s a- )
~ =1 J=1,7#¢

It can be verified that 2 € S and satisfies the desired requirerzents.0

2.2 Graph Topology

Let some left and right coprime fractional vepresentations of = plant Z, € PP*

over S be given as follows:
Zy="D{'N, = N.DL.

There exists a positive real number p(D;. N;) such that for azv pair of matrices

(D.N) over S where
W[ Di=D Ne=N ]Il < p(Di. )

1t holds that D is nonsingular and (D, N) is left coprime. Let a sasic neighborhood

around Zy be defined as

B(Zo.e)={Z=D"'"NeP™[||[ Di-D N -N1|l<¢)

where 0 < = < p(Di, M). Then. the collection of basic neighbcrhoods B(Zy,¢) as
Zo varies on PP*" and & varies between 0 and p(Dy, Ny) is a Lase for a topology
on PP*" where a set is open if and only if it is a collection of hasic neighborhoods

of the above type [66]). This topology is called graph topology*.

Using dual arguments one can define the graph topology sing the right co-

prime representation Z = N, D! as well. We refer the reader o [66] for details.

""This definition of graph topology is slightly different than the one sta:=d in V as we restrict

the definition to proper rational matrices.
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. \
Ue ) (7 7 Y
—Ye
Ue Uee
A >

Figure 2.1. The closed loop system.

2.3 Characterization of Stabilizing Controllers

Referring to figure 2.1. let y = Zu and y. = Z.u, be the transler matrix represen-
tations of a plant and compensator 1.'(35]><3cl,i\'el}', where Z € PP*" and Z. = P77,
These are interconnected by the laws: © = u, — Ye: Ue = Uge + y. We say that the
closed loop system is well defined if (I 4+ ZZ.) has an inverse over P, denoted by

!

(I +ZZ:)~%. In this case [y’ y') = G’ «’) where
Y _./c e ce)

oo | 22214+ 22)2 ~ZZ(1+72.)" (.4
' 2.+ 22.)"'2 Z(1+ 220" | o

It is said that (Z, Z;) is (internally) stable if the closed loop system is well defined
and G € M(S). The following statements are equivalent by definition: (Z. Z.) is

slable, Z. stabilizes Z. Z. is a stabilizing compensator for Z.

f Z = PQ'Ris a bicoprimne fractional representation of Z over S then (Z, Z.

Q@ RP.
-p Qc

i3 unimodular over S where Z, = P.Q7! is a right copriine fractional representa-

1s a stable pair if and only if

tion of Z,. over S. In particular, if Z. is a stable matrix; Le., if Z, € 8P then
(Z, Z¢) is stable if and only if () + RZ. P is unimodular over S.

Let
le = Dl_lj\/'( = 1\!,. Dr_l (2—))
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be some left and right coprime fractional representations of a plant transfer matrix

Z11 € PP*" over S. Then. there exist matrices 73, S, S,, T; over S such that

7 S .=N,
/1. R} D, Y, — (2,6)
N DN T

It follows frow the standard Youla-Bongiorno-Jabr-Kuéera [76], {29] parametriza-

tion that a transfer matrix Z, £ P™? iy a stabilizing compensator for Z;; if and
ounly if

Zo =1(8 +D.X)T, - N.X)™!

=il = XN)(S + XDy

(2.7)

for some X € S vrovided (T. — N, X') and (T, = X \}) are biproper. This result
is now utibized to define a topology over Z.(Zy;), the set of all proper rational
Ista.bilizing compensators of Zyy. Let P(X) := 5.4+ D, X aud Qo(X) := 1, = \,.\.
If Zo € ZC(Z“), tnen for some Xy, Zo = l{‘(,(.\"o)Q;,](.f\’o). Let a real number
£ > 0 be sufficiently small to ensure that Q.(X) is nonsingular for all X satisfviug
[|X — Xo]| < . (See [66. Sec. 7.2].) We define a basic neighborhood around

ZCO = 1.)’~"-(‘X0)C2:1('X.0) e ZC(Z]I) as
{P(X)Q7N X) € PP |LX = Xof| < e},

Then, using arguments similar 1o those in Scction 7.2 of [66], it is straightforward
to show thal the coilection of the basic neighborhoods is a hase for a topology on
Z.(Zn). A similar topology can he defined using the left coprime fractional rep-
resentation of the compensator. More precisely, let B (X) := S+ XDy, Q.(X) :=
Ti — XN, A basic neighborhood around 7. = Q7Y Xo) Ro(Xo) for some X, is
defined as
QNN R X) € PPN — Xo] < £},

where = > 0 is sufficient]ly small fo ensure that Q.(X) is nonsingnlar for all .\’
satisfying ||X — Xoi| < 2. Then, the collection of basic neighborlioods in the
above form coustitutes a base for a topology on Z.(Z,;). Note that a property

holds for almost all Z,(Z;;) with respect to one of the topologies if and only if it

holds for almost all Z,(Z;;) with respect to the other topology.



Chapter 3

DECENTRALIZED STABILIZATION
PROBLEM

This chapter considers the decentralized stabilization problem of linear -ime-
invariant, finite-dimensional systems. The main results of the chapter can be
summarized as follows. Theorem (3.1) solves DSP for 2-channel plants whose
proof is adapted from [37]. Theorem (3.2) states a soivability condition for DSP
of N-chaunel plants. In fact, that solvability condition is not different than the
ones stated in [22], [10], [2]. The main contribution of Theorem (3.2) is the
new synthesis procedure for decentralized stabilizing coutrollers proposed in its
constructive prool. As a result of this procedure, the set of all admissible iocal
compensators that can be applied to a specified channel. as an element of some
decentralized stabilizing compensator is characterized in I of Theovem (3.3). The
characterization is obtained in terms of only two parameters, independent of the
number of channels. This yields the characterization of all decentralized stabiliz-
ing compensators of a plant. The conditions under which the class of admissible
local compensators is generic have bheen determined in 1 of Theorem (3.3). These
are purely structural conditions and correspond to certain connectivity relations
among the subsystems. It has further been shown in Il of Theorem (3.3) that.
m case these conditions fail {o hold, the set of admissible local ¢compensators
is precisely the set of internally stabilizing compensators of the corresponding

channel. The proof of Theorem (3.2) also vields that the internally stabilizing

19
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compensators of a channel is generically admissible for that chaunel, independent
of structural conditions. In Theorem (3.4) the problem of making a multi-channel
system stabilizable and detectable from a single channel applying decentralized
feedback around the other channels has been shown to be generically solvable
for a given set of dynamic local compensators if and only if the plant is strongly

connected and 1s free of unstable decentralized fixed modes.

3.1 Problem Definitions and Preliminaries

A rigorous definition of decentralized stabilization problen is given as follows.

Decentralized Stabilization Problem (DSP). Lel Z = [Z;;]. Zi; € PP¥™,
i,j = L....,.V be the transfer matriz of a given plant where p = i, pi, v =
S v Determine local compensators £,y = PV Z v € PTNAIN such that

i=1"!

the pair of plants (Z, Z.) is stable where Z. = diag{Za,.... Zcn}.

Let the plant have the following bicoprime fractional representation over S

Z1 ZAN e
= Q—][R1 ... Ry] (3.1)
AN ZNN Py

where 5 € SP*, R, € 87" and Q € S9%+.

The plant (3.1) is said to be strongly connected if Zn_pp # 0 for-all v € Cy
[10]. Strong connectedness is a structural property playing an important role
in the characterization of decentralized stabilizing controllers (Theorem (3.3)).
Very briefly, if a plant 1s not strongly counected it can be put into a lower trian-
gular form with a symmetric row and column permutation (for details see [10]).
The notion of strong connectedness is also important in case of time-varving con-
trollers. It is known that both in continuous and discrete time sysiems. strongly
connected plants always admit solution to DSP if the decentralized controller is
chosen as time varying [4], [28], [61].

From section 2 of the previous chapter it follows that DSP is solvable if and
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only if there exists P, Q. such that Z := P;Q5' is proper and

I Q RPa Ry Fen -
-P, Q). 0
T:= I J"l ) (3.2)
=Py 0 QeN

is unimodular, in which case diag{Z., ..., Z.xn} solves DSP.

A closely related problem to DSP is the siugle channel canonicity (more pre-
cisely, stabilizability and detectability) problem which s defined as follows.

Single Channel Canonicity Problem (SCCP). Given the N-channel
plant (3.1), determine N — | compensalors Z.. ..., Zen such that the closed loop
system that rvesults by the application of feedback w; = —Zyy;. @ = 2,..., N is
stabilizable from uy and detectable al yy, i.e. the fractional representation of the

closed loop transfer matriz Py 0...0] Y1 [R} 0 ... 0], where

(2 Rz '3472 RN PcN ]
T - "‘P_) (J'(:'Z . g (33)
L - P_\' () C)CIV J

ts bicoprime. By definition. it SCCP is solved by some Zg, 1 = 2,..., N then
DSP can be solved by applving a stabilizing compensator to the first channel.
Conversely, if DSP is solved by diag{Z., ..., Z:x} then SCCP can be solved by
Zeiy i =2,..., N. In other words. DSP is solvable if and only if SCCP is solvable.
This conclusion has been first stated in [37, Theorem 3.2] for 2-channel plants.
A similar result is also stated in :10] for strongly connected plants, where Z.,

oy Zen are restricted to he constant compensators.

In the solution of DSP, the notion of “completeness” of system matrices plays

a key role. The [ollowing is the definition of completeness over the ring S [37].

= [ Qu 1t J , (3.4)

Consider

-P W
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where P € SP*9, R e S7*7 1" € §P*". Q,; € S7*7 and biproper. We say that
IT is complete (modulo stable modes) if the Smith canonical form of Il over S
contains at least g = stze((Jy;) unit invariant factors.

To clarify the terminology in the subsequent sections we note that the fol-
lowing two statements are alternatively used: IT is complete, (P, Qun, R, W) is
complete. Also, in case I is complete and W = 0 we equivalently say that
(P. Q1. R) is complete. The following lemma is concerned with the properties of
completeness (see also [37]1.

Lemma (3.1). The mat>ir [T in (3.4) is complete if and only if rank 11(z) = ¢
for al = € Cy. |

Lemma (3.2) is used in the proof of Lemma (3.1..!

Lemma (3.2). Let [) = S?*7, 4 € SPX9 and B = SP*", where D is biproper.

Assume that

D 0
A B

rank (z) 2 q.

Jor all = € Cyp. Then, there crists X € 877 such that (D, A + BX) is right
COPLINTE. .

Proof. We start with « facr. whose simple proof is omitted.

Let A€ €™ B e and rank([4 B)) 21, withb> L. Then, there cxists
X € C% such thal rank(A + BX) > [.

Let D= {z € Cy| detiDiz)y = 0}. Suppose that D is composed of some

distinet complex numbers =0 ... z, such that
r. =R t=1,...p
si=q ¢ 2C L a=p4+logp+l
o =C t=p4+l4+ 1., p+ 21

where ¢; # ¢}, i, =1, ... land t = p+ 2l

TAlthough there is a more straightiforward proof of Lemuma (3.1) using the Smith form of I,

we employ Lemma (3.2) as it vields a useful construction in the proof of Theorem (3.1).
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Fix any z; € D where i € {I,...,p+(}. Assume that rankD(z;) = ¢ — [; for
some integer ;. M:ltiplying [rom left by a nonsingular matrix ¢’ € C?, D(z;)
becomes o
D, D,
0 0
where D; € C?*~'><7% and D, € C1=%*!i. There also exists a nonsingular matrix
E € €™, such tha: [Dy Dy)E = [D 0]. where D € C?~'*9=% and nounsingular.
Let A = [Ay A, = A(z)E, where 4, € CP*9=li and A, € CPXh. By the
hypothesis rank[4: Biz;)] > ;. From the above fact there exists X e ¢t such
that vank(A, + F N =L Letting N, := [X .i’]E“’, where X € Crxe=b s
arbitrary, rank[D" =) t A(z) 4+ B(2:) X)) = q. Repeating this process for all =;
where ¢ € {1.....p -1} we obtain X; € C™7, 4 € {l....,p+ [} so that rank[D’(=;)
(A(zi) + B(z) X)) =q. i€ {l,.,p+1}.

We will now cizstruct X' € SPX7 such that (A 4+ BX, D) is right coprime.
Construct 21y € S. the (1.1) element of X using Lemuna (2.3) such that xy;(z;)
equals the (1,1) eizment of X;, ¢« € {l...,p+[}. The other elements of ¥
are constructed siizilarly so that X(z) = X;, ¢ € {l...,p+ {}. This shows
that rank[D'(z;) (4 =) + B{z) X)) = ¢. 1 € {l,...,p+{}. Hence, rank[D’(z)
(A(z) + B(z)X)] = q. for all z € Cy. This implies that (A + BX, D) is right

coprime.0

Proof of Lemma (3.1). Necessity part is obvious from the rank conditions.

To show sufficiency let Q'R = Q'R [or a left coprime pair of matrices (Q,R)

over S. Then. thers exists mumimodular

v | N F
L K

such that [ R)W = [I 0]. Multiplying from right by W, 1l becomes

R
| =Pk -PL

for some D € S7% which is nonsingular hecause of the fact that ¢y, is non-

singular. Obviously rank (=) > ¢ for all z € C;. Applying Lemma (3.2) there
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exists X € §8"%7 such that (D, —P(K + LX)) is left coprime. Thus, there exists

a unimodular matrix U/ = [l;;]. 7,7 = 1.2 such that

Un Uh D [,
(./"2] (,i-z-_) —1:)‘\ K+ ]—JX) B 0 .'

where (5, is nonsingular. Then multiplying from left and right respectively, by
[/ and
Vo=

K+LX L+ (K+LX)Up,PL
L+ NX N+ (L+KX)UnPL

both of which are unimodular. I1 becomes

[, 0
'Lo ~UpPL |

which implies by definition that I is complete.O

3.2 Solution of Decentralized Stabilization

Problem

We first state the solution of DSP for 2-channel systems (see also [37]).

Theorem (3..1). Gitven the plant (3.1) with N = 2, DSP (and equivalently
SCCP) is solvable of and only of (P, Q. Ry) and (£, Q, Ry) are complete.

The synthests procedure of Theorem (3.1) consists of solving SCCP through
the application of a compensator at the second channel. As the closed loop system
obtained is stabilizable and detectable. any stabilizing compensator at the first
chanuel solves DSP. The same approach will be followed in the constructive proof
of Theorem (3.2) for N-channel systems. It must he noted thai for strongly
connceled systems, a similar procedure ol solving DSP via obtaining a solution
to SCCP is proposed in [10].

The proof of Theorem (3.1) requires the lemmata (3.3)-(3.5) which are con-

cerned with the several genericity properties of the ring S.
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Lemma (8.3). Let E € S**“ be nonzero. The set of X such that (X, E) is
left coprime is generic in SF**,

Proof. Thisis a snl'aigfltl'(r)l'wal'(:l generalization of Proposition 7.6.15 in [66].0

Lemma (3.4) Lt A € S¥*% and B € S**¢ be such that (A. B) is left coprime.
Assume that E € S™* is nonsingular. The set of X such that (A + BX,E) is
left coprime is generic in Sk,

Proof. Lemma 13.4) is Lemma 2.1 of [37].0

Lemma (3.5). Let A € S*“* und B € S*¥*¢ be such that (A, B) is left
coprime. Assume thal £ € S¥¥4 s nonzero, The set of X such that {A+ BX, E)
is left coprime is generic in STXF.

Proof. We prove the lemma for the case A is nonsingular. The extension
of the proof to the general case is straightforward, since the set of X for which
A+ BX is nonsingular, is geuneric (66, Lemma 5.2.11].

Let U be a unimodular matrix such that UE = [E’ 0)'.where E is full row

rank. There exists a unimodular matrix V such that

VAV = An 0 .
Ayp Ax

Clearly Ay and Ay are nonsingular. Also let UB = [B) Bj) and XV =
[Xi Xu]. Since [A4 B} is left unimodular, for any X1, (A + B1.X1, By) and
(A2, Ay + Bo Xy, B:) are lelt coprime. This shows that if {45 B,] = 0 then
Ags is unimodular. Now define Ay, = A, + Bi Xy, Ay := Ay + ByX,, and
Az = Ay + B2 X

Case 1. [Ay, B. = 0. Inthis case Ay, is unimodular. Also from Lenuna (3.4)
for almost all X, (A, £) is left coprime. Fix one such X,. Let X = (X, Xy)v-1,
where Xy is arbitrary. By unimodnlar operations, it holds that {4 + BX ] is

left unimodular if and only if so is

Ay 0 E
0 Ay 0’
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which is clearly left unimodular. Since X, is almost arbitrary, X, is arbitrary and

X =[X7 Xy]V~!, we have that for almost all X (A + B.X, E) is left coprime.

Case 2. [Ay B»] 75 0. Then, it is easy to verify that Ay + B, X7 # 0 for
almost all X}, So, for almost all X, (i) (A,,, EY is left coprime, and (ii)'/zl-n # 0.
Choose one such X|. There exist matrices £, L, Ay, By, Wy, Uy, Wy, Uy, s, ¥
such that

N - ]31

(A1 By _ J =[I 0] (3.5)

L /‘111

Ay £ Wy W
{ " } [ ! "} =1 (3.6)
RV U, W, v

It can be verified that [A B] is equivalent over S to

I 0 0
0 .’12-_7 732/5[11 - .-’1'2] 1§1 .

which implies that (Ayy, ByAq, .y Bl) is left coprime. This shows that (Ass, (B2
Ay __,:1._,131)_*_‘[[.21 W, By, .;1-31\113) is left coprime. From (3.5) and (3.6), By A~
AnB)) +AnUsWs By = (By— A3, ¥, B) Ay, This implies that (Agy, By —As U1 By,
AgWs) is left coprime.

On the other hand, let X' = [X; Xy]V !, where X} is arbitrary. Unimodular
operatious vield that {A 4+ BY L) is left unimodular if and only if (A, + (B2 -
/12,\11131).\'2./121\[1;.;) 15 left unimodular. Let D := gclf(Az, By — A21W1131).
such that A, = DiA and 13, — Ay, B = DB for a left coprime pair of matrices
(/1,3) Since Ayy is nonsingular, D; and A are nonsingnlar. Let Df'/izllp;; =
ED-" for a right coprime pair of matrices (£, D). Since E is full row rank,
so is Wa. This. and the fact that .f\z, # 0 imply E # 0. Also (A + (B —
Ay, Bl)_X'g,,lizl\I/;,) is left coprime if and only if (A + B’X-z, E) is left coprime.
This is the same type of eguation as the one we started with, except that now the
number of rows of A is reduced at least by one. Applying the same arguments
repeatedly, we either terminate al Case 1, at some step, or terminate at Case 2,
with the number of rows of 4 is 1. Tu this case £ is full row rank and applying

Lemma (3.4) compleles the proof.0



Chapter 3. DECENTRALIZED STABILIZATION PROBLEM 27

Proof of Theorem (3.1).

[Only If] Suppose that the matrix (3.2) is unimodular and let (£, @, f3) not

be complete. Then, from Lemma (3.1), for some z € C,

QO R
ank - z = size .
[_P] 0 J()«/ ize(Q)

This implies

Q  ByPo QO R \[71 0]
rank z) = rank (z) =:q<q.
h [—f’, 0 }( )= ran ({—1-’, 0 Ho }1,2J) J=as

Let for some nonsingular matrix A < CYHP2X0Hr2 we have

Q R.F. Hy 0
L =
—[)1 ¥ Hy 0

where fy; € C"™7, Hy € CP*T and rank [H, H,)' = ¢. Observe that

Q RiPa RePo [ Q  MPa RiPa
rank | =P, Qa 0 (z) =rank | -P 0 Qa | (2)
— Py 0 Qo2 | =P Qe 0

=rank | I{, 0 Q.

where Hy € CP2*7 and Hy € CP2*i=7:=1_ [t holds that

[]1 “
7'(»1'71.].- H, 0 < G+ Py < g+
Hy H,
implying
Q RIP('I [{'ZPC'Z Hl 0 R] 301(3)
rank | =P, Q. 0 (z)=rank | H, 0 Q.(2) <q+p+pr

— ]—’2 O Q(‘.'Z 11'3 fl; 0
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oo
oL

This shows that

Q RiPay R2Py

Q=1 =P Qu 0

-P 0 Qe
is not unimodular. since = € Cy is & zero of det(©). In other words, the com-
pleteness of (P, Q, R:) is necessary for DSP to be solvable. The completeness of
(P, Q, Ry) follows by dual arguments.

[(If] Assume that Py, Q, Ry) aud (P, @, Ry) are complete. Using the pro-

cedure described i the prool of Lemma (3.1) construct unimodular matrices

Us=[Ug]l. V=015 =[] and T = [I;Qj}, i,j = 1,2. such that /5, and Uy

[ Q 1&’;”% Vo | [0, 0 37)

are nonsingular and
i Ly T
[ U -P 0 Vay Vay 0 W |

[V, 1 Q R Uy Uhy | B (7, 0]
| ‘A_n ‘32 —[)1 0 (.721 (.72-2 J B | 0 ‘i} J

for some U € SP2""1 and W € SP1X2,

Step 1. We will construct a compensator Zo = PuQ5' = Q) Rez, for a left
coprime pair of matrices (Q,. Rep) and a vight coprime pair of matrices (Q .. Pe)

such that

- () )
(l) (v) Rz IJL?Z' [{] ’ l (1) 1-% ) [ (J )
Pi= and @, := | —-R.,0 Qg
-P, Qo 0 J ) *

- P 0

are left and right nnimodular, respectively.
Multiplying from left and right respectively. by
Vo =Vl Ro Py + UQe2) Vi

{7 and 0 [ 0 1,
S ,
iy =VallnRa P + UnQe) Vi
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both of which are unimodular, ®; becomes

v 0 0
0 UpQn+UnR;Py W

On the other hand. multiplying from left and right respectively, by

-~

Vi 0 M2
(RaPalhi = QU 1Viy T (RaPlyy = Qo)W
iy 0 T2

and {7, both of which are unimodnlar, ®, becomes

/ 0
0 ~RaPyUs+ Quli,
0 \

One concludes that ®; is left unimodular if and only if ('2Q2 4+ Uz Ry Py, V)
is left coprime, and 9, is right unimodular if and only if (—1?._.-2132(.“/12 +(_2c2(7-22, \ll)
is right coprime.

Let Z.(Z,,) be the set of all stabilizing compensators of Zyy. We will now
show that (a) the class of 7, for which (U22Q.2 = Uyy R2 Py W) is left coprime
and (=Rez Py + Qeallaa, W) is right coprime is open and dense in Z.(Zy;), and
(b) in case W and ¥ are nonzero the class of Ze, for which ({5:Qq + Usy Ry Pry, W)
is left coprime and (=R, /72(712 + (?,_7-3[]-22, \D) is right coprime is open aud dense
i Pr2Xr2 (with vespect to the Graph Topology i66] ).

First, we will prove statement (a). If (17,0 = (7o Ry P W) is left coprime,
under sufliciently small perturbations on Q. and P., that property s still pre-
served, because the set of unimodular matrices over S is open [66]. Similarly,
under sufficiently small 1;;(-:1'L(u'lmticms on Qe and P., the right coprimeness of
(=R PyUn, +Qea Uy, \il) i1s preserved. We thus conclude that the set of controllers
in Z.(Z2) for which (/52Qu + Uy Ry Py, W) is left coprime and (=R Pl
+Q2Un, 0) is right coprime is opeun.
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Ou the other hand,

To mmol|l  °° [ 0 UnRy U

' { Ao o0 [J R [o U UpnRy Un J

0 0 [

is a left unimodular matrix, since the matrix in the middle at the left hand
side is left ummodnlar.  This implies that (Usg, Uy R, W) 1s left coprime. If
W o= 0 then it holds that (Us, Uy Ry) is left coprime. Also UR'Uyp Ry = Za.
(This can be shown as follows. From (3.7) we have Up'Uy, = P,Q~'. Hence
Zm = PyQ 'R, = UZUy R.) We conclude that (UnQea + UnRyPe, W) is
left coprime for all coprime lractions PuQL' € Z.(Zy) as UpQe + Uzt Ry Py
is ummodular. (It is also true that in this case (U92Qer + Usy Ry Pry. P) is left
coprime ouly i PoQI' € Z.(Zy).) We now investigate the case that ¥ # 0
and (0900 0 + Uy 2P, W) is not a left coprime pair. Let some left and right
cb})l‘il]l@ fractions of Zyy over S be given by Zyy = D' N; = N, D! so that (2.6)
holds. In this case Z. € Z(Z,,) if and only if (2.7) lolds. Let Py = S, + D, Xy,

Q. = 1', — N,.X, for some X,,. Define

. —N, J

{ A B ] = [ Uy Un By } [ Sy Dy

Let G = gel f(A, 13). Then, ((7. W) is left coprime. Let G~ = EG™! for a right
coprime pair of matrices (G, 1)) over S. Alsolet A = G/A, B = GB. From Lemma
(3.5) there exists AX with arbitrarily small norm such that (A + B(Xo + AX),
I7) and consequently (A+ BX, + AX), V) are left coprimme pairs. Now letting
Py = S +D( Xy + AX), Qer o= T, — No(Xo +AX) it holds that (UpaQ o2+
lisy RoPoy, W) is left coprime. This shows that the set of Zo = P.,Q5! for which
(L32Qn + Up 12 Py W) is lelt coprime is dense in Z.(Zy2). Similar arguments
vield that the set of Ze = Q73 Rey for which (—l-?.c-zl’z(?’u + Qe _7’22, ‘TI) is right
coprime is dense in Z2.(Zy2). Hence, the class of Zgy = PaQL = Q5 Re for
which (UysQey + Uz RaPeay W) is left coprime and (\I/, ~ Ry Py U + chlnfn) is

right coprime is open and dense in Z,(Z2)%. This proves statement (a). The

*We implicitly use the fact that il a property holds true for almost all elements of Z.(Z22)
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proof of (b) follows the same arguments except that we replace Z.(Z,;) by Pr2xr:
and consider only the cases W # 0 and ¥ = ). Note that, in case ¥ = 0, which
holds if and only if Zy; = 0. (/3,0 + Us; B Pay, U) is left coprime if and only if
PQn' € Z(Zy). Similarly, in case W = 0. which holds if and only if Z;2 = 0),
(= Ry Py, + QU W) is vight coprime if and only if Q3 ' Rey € Zo(Z2).

Now fix one Zoy = PuQI' = QI'R. which ensures that &, and @, are left

and right unimodular, respectively.

Step 2: The right unimodularity of ¢. implies that -

Q@ P
- [)2 IJ o2
-P, g

is right nnimodular. (This cin be shown a: follows. There exist matrices Ly, Ly,

Ly, Ly over S such that L. + L,P = [ and

Q R .
Ll C i op 0] =1
~RaPy Qo

Then it can be verified that

I 0 I 0 [ 0 QO R,P.
o, ., L A e I D R
Lll') v/-"Z U R,_«z !LU L] o (2_;
) .
[. J ]J:l['—j)l U] = ]

implying our claim.)

We now have [/, 0]}:'[[[7’; 0] is a bicourime fraction, where

v o Q 3P
o Py Qa |
[

Lot Q7Y Ry = [Py OJSTHRL 07 be a left coprime [raction, so that for some Qg €
SPXPand Py € ST QiQa + RiPy = [. with Q. is biproper. Then, the

compensator diag{ P Q5. P2Q%'} solves DSP. This completes the proof.0

with respect to the topology imduced by left coprime fractions, theu so- it does with respect to-

the topology induced by right coprirne fractions and vice versa.
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Remark (3.1). The proof of the theorem leads us to the following observa-
tions. Let DSP for Z be solvable. \We see that if Zy; and Z3; are both nonzero
then SCCP is solvable for almost all compensators in Z,(Z2;) and for almost all
compensators in P72 1f at least one of Zip and Zy; is zero then SCCP is
solvable for some Z., if and only if Z.. € Z.(Zy). In case Z1y and Zy are both
nonzero, the set of compensators solviug SCCP is reduced to a left unimodularity
and a right unimodularity velation in terms of two compensator parameters. This
is useful in pinpointing the nongeneric cases for the solution of SCCP. (See also
Theorern (3.3). e

To obtain the solution of V-channe! DSP we use the following lemma which

gives conditions for a closed loop systein matrix to be complete.

Lemma (3.6). Consider the tripl

1
([ r } Gl 5al).

2

Dt’.’\ﬁ?lfﬂ Z“ = 7"1(,_;)1—11-5'1 € P):;-:r’

8l
1
"t

Let (T, Q1. 151 S2)) and ([ Z

" -

J .GQ11,.52) be complete. Then the following
statements hold.

(1) For almost all Z. € Z.(7,,)

e Qu SF || 5 .
Ty 0], 3.8
( 1[_%,@:“0]) (38)

is complete, where P.Q7" is a right coprime fractional representation of Z..
(2) For almost all Ze € P50 the triple in (3.8) is complele if and only if at
v y-la 5 =1 & poay-lo
least one of Zy, := TVQTy Sp. Zn = T.Q7S, and Zyy = TyQ7' Sy is nonzcro,
where Z. = P.Q7" is a vightl coprime frectional represcntation of 7.
The proofl of Lemma (3.0) requires the lemmata (3.7)-(3.9) which consider
some genericity arguments of the ring S.

Lemma (3.7). Let A € S*** and B € S**¢ be such thal the pair (A, B) is
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left coprime. Assume that E € S¥** is nonzero. The set of [X! . (3] such that
(AX) + BX3, E) is left coprime is gencric in SFexk,

Proof. It is enough to prove the Lemma when £ € S¥*'. If B = 0 we can
obtain the solution by using Lemma (3.31. because in this case 4 is unimodular
and the lemma reduces to showing that the set of X for which (X, L) is left
coprime, is open and dense i S¥** Now assume that 53 # 0. Tt can be shown,
by using Lemma (3.3) that the set of X, for which (AXy, B) is lelt coprime is
open and dense in $¥** Fix one such Y. Then, from Lemma (3.4), the set of
Xy for which (AXy + BX,. F) is left coprime. is open and dense in S¥*. So. the
set of [X7 + X3 for which (4X, + BX,. E) is left coprime is open and dense in

Shtexk O
Lemma (3.8). The sel of biproper matrices is dense in S*F<%.

Proof. Let A € S*** 116t he biproper so that A = 4, + A where Ay € RF*K g
the zeroth coefficient matrix in the formal power series expansion A = e Az
of Aand A = A= Ay is strictly proper. Given ¢ > 0 there exists A, € REX¥
with ||A¢|| < ¢ such that A, + A, is nonsingular. Here, we used the fact that the
set, of nonsingular matrices is dense in R¥“*. Theu, B := A, + A is biproper and
1B — Al = l|4clloe = |]4]] < £.0

Lemma (3.9). Lel 4 & S5k and B € S** be such that the pair (A, B) is left
coprime. Assuine that £ € S¥%4 [« yon=cro. Eapress 7€ P*% us 4 = ND-!,
where (N, D) is right coprime. The sel of Z = ND™" Jor which (Al + BN, K)

is left coprime s open and dense in Po**,

Proof. ‘To show that the set of such Z is open let Z = ND-! € Pexk
with (N, D) is right coprime and (4D + BN, E) is left coprime. From Lemma

e D-X .
(3.7), we know thal there exists 6 > 0, such that || v X'l [| << & implies that
\/ y '2

(AX) + BXy, £) is left coprime.
Let (N, D). € Ry — {0} be such that = < (N, D) implies X, is biproper and

(X1, X2) is right coprime [66]. Consider any basic neighborhood of 7 over Pk

4
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defined as

o D-X,
7 r—1 - hY
{A.;A', —l I N, [| <e}, ¢ <u(N,D)
T \7 -1 L 1) - D . . .
Then, the set 7 := {ND~! € Pex¥| || - || < min(s, )} is an open set in
the subset topology of P**, containing N D", It is also true that if NO~! € 7,

then (AD + BN, E)is left coprime. This shows that the set of such Z is open.

To show that the set of such Z is dense in P™*_ consider Z = \' D! € Pexk,
(N, D) is right coprime, and (4D + BN, ) is not lelt coprime. For any § > 0,
there exists a basic neighborhood of N D= over P** defined as

- X

- D
T = {47! B,
(RE T

A

e}, € <min(p(N, D), &)

[vom Lemma (3.7). on the other hand. the above set contains some Xy X7 such

that (AX, + BX,. E) is left coprime. There also exists o > 0 such that for all

_ X _ . _
X1, X, such that | 7:_] | < o, (AX) + BX5. E) is left coprime. We can

N =X

assume that o < &/2. So,

[<a}CT.

~ - )\rl - X]
T = {X, X! )
{ 2% , ” X, - X,

From Lemma (3.8) there exists V| such that Xo X7 € P and {1X, = X4]| can
be made arbitrarily small. Hence, we can assume XoX7he T CT. But then,

D-5

{X, X[ e perty il <
X g i<l

is open in P and contains Ny X7 for whicl (AN + BXy, B) is left coprime.
Since the choice of 7 is possible for arbitrary § > 0, this shows that the set of
such Z is dense in PO**.0

Proof of Lemma (3.6). Iirst note that (3.8) is complete if and only if

. Q1 St S,
T, 0], ; N , 3.9
wal 9 S5
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is complete, where P.Q7! = Q7' &, for some left coprime pair of matrices (Q., R.).

(‘I'bis can be shown as follows.

@11 S5, I 0 G I 0 0 Q1 SiP. S5,
-RTy Q. 0 0O P O|=10 R 0| -T7 Q. 0
-7, 0 0 0 0 0o 0 || -7, 0 o0

implying that the system malrices associated with
| Qu S P [&i [ S\ P, 5]
([T, 0. Jrlwl ] AT irand ([T 01 Q” ! ] 7D
=T Qe |0 | -7 0. || o]
are Fubrmann equivalent over P, The result then follows from Lemma (2.2) and
Lemma (3.1) via applying various rank inequalities.)

Let 7 and V be unimodular martrices such that

N O T !
1{““ JV:[\OJ, (3.10)
Y 0 W

where the matrix on the right hand size is the Smith normal form of the matrix at
the left so that size(A) = size(Qyy). Partition U and V as {7 = [{;], V = [Vy],

1,7 = 1,2. [t holds that

['7 (211 16'2 5'1 ] ‘ 0 _ A O [.—[“.5'1
-7y o0 (_)J o 71 o w 05, |

where the completeness of (/3 (211, 51.5,]) implies that the matrix at the right
hand size has rank vo less than scze(). In this case Lenuna (3.2) implies the
existence of some matrix Xy over S such that (A, X\ W+ (17, + X,01,)5)) is
left coprime. Siuce diag{A, W} is in the Smith canonical forin, every entry of A
divides every entry ol W. Thus, .\1¥ = —AY] for some Y; over S, implying that

(A, (U 4 X, 09)5)) is left coprime. Now,

PN Qnﬁgv I Yo | A0
o 70 =7, 0 Jo 1l o w
. X, . _ I Y
(I = I andV =V b
0 I 0 [

Define
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Then
. C S, A )
0 2’11 2 !
-] -—,/1-2 0 ‘ = 0 \I’
0 7 . . .
-17 0 =Ty =11,

where ¥y and V), have obvious definitions. Using the completeness of ([T7 T2)', Q1.
S2) and Lemma {3.2) we can construct X, such that (A, Tl(f/“ + l~/12,~\"2)) is right

coprime. Iu this case

FOdf@Qu Syl 1o _(A 0
Vol =T, 0 X, 1] {0 v

where Y, satisfies Y5\ = —W.X,. Define

I 0. .
V=1 UVandV =V ro .
Y, I X, 1

Observe that Uy = Uy = Uy 4+ X0y and Viy = Vig 4+ Ve Xo. Hence, (A, U)1.5)

is left coprime and (A, Ty,17;) is right coprime.

It now follows that (3.5) is complete if and only if

A U118 P, 0 v
(0 =tpsip) | o The W) (3.11)
-1 11 Q -1V,

is complete. Similarly (3.9} is complete if and only if

A U S 0
([0 =179 . R o W) (3.12)
BRIV 0. BTV

is complete. There exist matrices G, @y, &4, &, &y, &5 and 01,0,,0,.0,0,,06,,

with @ and ¢ are nonsingular, snch that

O -0, A O’ =/ ‘ (3.13)
Q) 3 O - 711 Vl 1 @3

and
[,8 —&.
MG N i (3.14)
-, b, 0, (0))
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" Unimodular operations yield that (3.11) is complete if and only 1f

(0 =y 8P ! | N V) (3.1
0 O3U115/P. +0Q, 07111,

is complete, and (3.12) is complete if and only if

)

37

)

. ! 0 0
([0 = UnSi0). AR I ) (3.16)
) [)-)'.'-/‘1 "'”(1)3 -+ CJC(D —H,,,T 1’l_’

-4y
15 complete.

Asswme that (2.5) and {2.6) hold lor Z,,. Let

. Sy D,
(4 B] = (057, @][7; _N,.J

4 Soo Ty Vi @
A = : thn®s | (3.18)
B D =N )

From (3.13) and (3.‘1 4). it follows that (A4, B) is left coprime and (A, B) is right,

coprime. Consider the alternative descriptions of P.. Q., R., Q. below

DIRERaI
F. S, D, AL

[Qc R ]=[vi v] [ i J (3.20)

- .'\'_[ D ]

where Xy, Xy, ¥7, ¥5 are matrices over S of suitable dimensions. Then.

and

O4L 11 5NFP +00Q, = AN+ BYX,
BRIV Oy 4+ 0.0 = Y A+ V28,
Let us define
=TV, $Q:=0U,S5. (3.21)
With this new notation, we remind that (3.8) is complete if and ouly if

(=S, + D, Xa), AX, + BX,. O, ¥) (3.22)

(3.17)
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1S compléte, and (3.9) is complete if and only if
(=0 WV A+ LB (VS + YoD)I', o) (3.23)

1s complete. Also notice that (3.8) is complete for almost all Z. € Z(Z),), if and
ouly il for almost all X, (3.22) is complete, with X, = 7. This can be verified
by using the definition of he topology over Z.(Zy) and equation (2.7). As a
chial vesult, (3.9) is complete for almost all Z, € Z(Zy\), if and oniy if for almost
all ¥ (3.23) is complete. with ¥7 = /. On the other hand, (3.8) is complete [or
almost all Z. € P if an only if for abmost all Z € PT™7_ with Z = Xy X1 for
some right coprime pair of matrices 1 Y. X,), (3.22) is complete. Dually, (3.9) is
complete for almost all Z. 2 P if aud only if for almost all Z € PP, with
Z = Y'Y, for some left coprime. pair of matrices (Y1, ¥2), (3.23) is complete.
These results can be verified by using the topology on P™*? and equations (3.19)
and (3.20).

We now proceed by investigating three cases.

Case 1. At least one of I' and ©Q is nonzero. If T is nonzero, since @ is
nonsingular, OI" is nonzero. Then. applying Lemma (3.5) gives us that for almost
all Xy, (A+BX,, OT') is left coprime. This implies that for almost all Z, € ZA(Zn)
(3.22) is complete. Also applying Lemnra (3.9) yields that for almost all Z. € Prxe
(3.22) is complete. If Q is nonzero, ou the other hand, then Q@ is uonzero, because
of the nonsingularity of @. So, applyvine the dual of Lemma (3.5) we observe that
for almost all Y5, (&, A + ))B) is rieht coprime. This iinplies that for almost
all Z. € Z(Zy) (3.23) is complete,

Case 2. I'=10, Q= 0.% # 0. [n this case (3.22) is complete if and only
(0, AXy + BX,,0,W) is complete. Clearly, there exists a matrix & over S of
appropriate size such that AW is nonzero and (0, AX, + BX,, 0, V) is equivalent
to (0, AX) + BX,, NV, ) over S. Repeating Case | yields that for almost all

Z. € ZC(Z“) and for almost all _Z._‘, € P77 (3.22) is complete.

Case 3. I' =0, 0 = 0. W = 0. In this case (3.11) (and, therefore (3.3)) is
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complete if and only if

A (./'1 1 S] [)c )
i (3.24)
_Tlvll (gc

1s unimodular. Consider

. - y C
(';_ Cp)'ll 'S_ 5.1 | ‘ 0 _ /\ 0 (11.?1 (325)
=T, 0 0 0 I 0 W 175
1lon ] [ A 0 ]
Sl e o0 [v= 0 v 3.26
[()/J[_?. [ 320
-1, 0 -hVi, =111,
From (3.23) we have

Ty=0=¥=0 Q=055 =0
LOWS S =0=TV=0,0=0

Irom (3.26) we have

.S'-_g == {) = V= O, F = Tl I”I'Z =)
(70 7] oR S, =020=0,T=0

Observe that W, Q@ and I" are all zero if and only if T2Q7'[S) Sy) and 77 7 W QTS
are both zero. Let (U = [ and VV = [. Partition {7 and V" as | = [(5), V' =
[V]i_;', 4,0 = 1,2 In this case Qpy = U AV, Sy = Ul S, (frox (3.25)) and
Ty =TV W (from (3.26)). This shows that Z;; = TYQ5'S, = T:V 0 A~ UL S,
Since the right hand side of the equation is bicoprime, this implies that (3.24) is
unimodular if and ouly if Z. £ Z.(Z11). The proof of (1) of Lemins (3.6) is thus
completed. To complete the prool of (2) just observe that Z.(Z,, is not dense
in P (see the proof of Theorem (3.3)).0

The constructive proof of the following theorem is one of the maiu contribu-
tions of this chapter.

Theorem (3.2). DSP (and equivalently SCCP) is solvable if and onl}/ if
(PN-r, Q- Ry) is complete for all v € Cy.

Proof.
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[If] The proof of the “If” part is established by induction. Let N = 2. The
statement reduces to 2-chaunel DSP in which case Cxy = {{l},{2}} and the
hypothesis implies (7, Q. 1)) and (P, Q, R,) are complete. So. using Theorem
(3.1) the solution is obtained.

Assime that the theorem is true for N = H > 2. Define £ := H + 1.

[t will be shown that by a suitable choice of Z. = P.Q7Y, for a right coprime
pair of matrices (Q).. F,), the following holds.

. _

( Ry P, R X

1. }[ Pg_y 0 ] . J I'L T, r 18 complete lor all v € Cy.
' -, Qe 0

. Q@ RLP. Ry o .
11. \ 1s left coprime.
-, Q. 0

Q@ RP. L :
111. ’ Lhe , [ Pg 0 ] is right coprime.
_])L C'.).

Then. from 11 and 1ii

-1
S QO RLP. Ry
Z = [ Py 0 ] [ _p, (_'2(. :, [ 0 j’

15 a bicoprime fraction which, viai and the inductive hypothesis implies that DSP
for the plant 7 is solvable for some compensator drag{ Z., ...,'Z,_.H}. This clearly
implies that DSP for Z is solvable by the compensator drag{Z.1, ..., Zer, 2},
completing the proof of “I” part.

To show that i, 1i and iil hold for some compensator Z.. observe that the

p Y Y 3 » ! U

hypothesis of Theorem implies (Pg_p, Q, [ Sy S, J.') and ([ P Py, J @, 5)
are complete for all r € Cy.

Fix any r € Cyy and let Qpy := Q, 1y := P, Ty := Py_p, 51 := Ry, and
Sy = Ry, Applying Lemma (3.6) we have that

Q [{L PC. ‘ Rr
([])H-l' O]) 3) ) )
_[L Q-: 0

is complete for almost all Z. € Z,(Zrr). Let ZF denote the set of these com-

pensators. which is open and deuse in Z.(Z.). Since r is fixed but otherwise
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arbitrary, it holds that Urecy Z¢ 1s open and dense in Z( %) In other words, i
holds for almost all Z. € Z.(ZLL).

Now let Q17 = Q. T1 =P, Ty = 0, 51 := R, and S, := Ry and apply
Lemma (3.6). The facts that (Q, Rp) is coprime and (P, Q, Ryu) is complete give

(0 0],[ Q RLPCJ![RHJ)

us that

-PL Q. 0

is complete for almost all Z. included in Z.(Zry). In other words ii holds for
almost a.li Ze € Z(Z11): Dual arguments vield that iii holds for almost all
Ze € ZAZy1). Since the intersection of open and dense subsets is open and
dense, we conclude that for almost all Z. € Z.(Z;1) properties i, ii and iii hold.
Hence, we can find at least one Z. for which i. i1 and iii hold. This completes
the proof of the “If” part.

[Only If] Let DSP for Z be solvable. Fix r € Cy. Observe that DSP for the

2-channel plant

Zyy ZrN—r J
ZN—r r ZN—r N-r

is solvable. This implies from Theorem (3.1) that (Pn_y, @, Ry) is complete.
Siuce, r is fixed but otherwise arbitrary we obtain the fact that (PNor, @, Ry) is
complete for all r € Cy. This completes the proof.0

Using [2] and Lemma (2.2), it is not ‘difficult to show that z € Cy is a decen-
tralized fixed mode of 7 if and only if

4 Ry
rank ? "1(z)<q
’-PN—r 0

for some r € Cy, in which case the completeness of (Py_y, Q, Ry) is violated.

Assume that the completeness conditions of Theorem (3.2) hold. The design
methodology in the theorem is to apply a compensator to Channel N such that
the closed loop system (with the remaining N — 1 channels) satisfies the following
two conditions:

A. The N — l-channel system is jointly stabilizable and detectable.
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B. All complementary subsystems including Channel 1 of the N — 1-channel
system are complete,

The synthesis procedure continnes mductively, and ends up with the first
channel, from which the closed loop svstem is now stabilizable and detectable.
By applying to the first channel a stabilizing compensator for the closed loop
system, the syuthesis procedure is terminated. This is a hi:crarchically stable
synthesis procedure, since at each stey the local compensater is chosen as an

stabilizing compensator of the respective channel in the closec-loop.

3.3 Characterization Results

We start with a definition. Consider ti:= plant trausfer matrixz Z of the previous
section with a bhicoprime {raction as in (3.1). Let DSP for 7 be solvable and
define L = N — 1.

[t is said that Z. is an admissible locet compensator for Charnel N il there ex-
ist compensators 7., ... Z. 1, such that -he decentralized compensator diag{ Ze, ...
Ze 1,y 2o} stabilizes 2.

In this section the svithesis procedure of Theorem (3.2) will be utilized to
characterize the class of all admissable compensators of a specizsied channel, This
also yields a characterization of all deceitralized stabilizing compensators of the
plant in the following way. For simplicity let N = 2. One can obtain the charac-
terization ol admissible local compensators for Channel 2. (This also yields the
characterization of all compensators sulving SCCP.) After a fixed compensator
is applied around the 2nd chanuel, the class of all stabilizing compensators for
the single channel system can be obtaired by knowu methods 66]. This proce-
dure can he vepeated for all admissible -ompensators of the second channel, and
hence all decentralized stabilizing compensators can be obtained by repeating the
process. Alternative characterizations vl decentralized stabilizing controllers are
available in the literature (see, for example, [22]). On compariug with the one

in [22] our characterization seems to be more convenient for obraining the set of
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all admissible controllers associated with a fixed channel, because, as can be seen
from I of Theorem (3.3), the characterization of admissible local compensators
proposed here is given in'terms of only two parameters (independent of V) which
satisfy certain coprimeness and completeness relations. A characterization of all
admissible controllers using the parametrization in (22]. however, would require
the solution of a multiparameter (depending on N) unimodularity equation.

In IT of Theorem (3.3) we give certain connectivity conditions under which
the elass of admissible local compensators is generic among all compensators. By
the statement 111 of Theorem (3.3) if these conditions fail to Lold then the class
of admissible local compensators is precisely the set of stabilizing compeunsators
of the corresponding channel. We remind that from the proof of Theorem (3.2)
any stabilizing compensator of a chaunel independent of connectivity conditions
is generically an admissible compensator.

A rigorous definition of the set of admissable controllers for channel .\ is given

by ,
Zoy = {Z. € P"PN| There exists {Ze, ..., Zep} € PT1¥M

o X PT=iXPN- s guch that {Za, ..., Zenv-y, Z.} solves DSP},
Thus, Z.v is the set of compensators 7, = P.Q7! such that i, ii and iii in the
proof of Theorem (3.2) are satisfied with # = N — 1. The characterization of
Zen depends heavily on varions quantities defined in the proof of Lemma (3.6).
I ) l ]
Let H := N — 1 and cousider the conditions 1, i and iif in the proof of Theoren
(3.1).
Let Z. = P.Q7' € Z.x where P, (). are parametrized as in (3.19) in terms
of X7 Xy, such that X5\ is proper.
) ] | I
Now fix any r € Cy. Letting Qp, := Q, Ty := Py, Ty := H_p, S = Ry
Sy i= Ry, aud following the arguments in the proofs of Theorem 3.2) and Lemma
g & 1
3.6) 1t 15 seen that there exist Ay, By, given by (3.17), W, siven by (3.10), O.
i) " O .

given by (3.13), and 0y, Ty, given by (3.21) suck that i holds for r if and only if
(= (S X0 4+ D,.X5). A X + Be Xy, 0,1, 0y)

i1s complete.
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In the special case r = H letting Q1 := Q, T} := Px. Ty := 0, Sy := Ry,
S2 = Ry and following Theorem (3.2) and Lemma (3.6) there exist An, By,

On, and I'yg such that ii holds if and only if
(AuXi + By Xz, Ogly)

1= left coprime. Similarly, in the special case r = letting Qy; := Q, Ty := Py,
Ty:= Py, S = Rn. S :=0and following Theorem (3.2) and Lemma (3.6) there

wxist Ag, By, $p, and Oy such that iii holds if and oulv if
(—Qy Py, Ay Xy + ByX3)

is right coprime.

We summarize these results in Theorem (3.3) below where # := N — 1.

Theorem (3.3). Lel DSP for Z-be solvable.

I Z.v consists of Z. = P.Q7" where P., Q. are parametrized as in (3.19) in
terms of Xy, Xy such that P.QZ' is proper and (a), (b) and (¢) below simultanc-
ously hold:

1)
(=50 Xy + DY), A Xy + Br Xy, 0,70,

o> complele for all r € Oy,

(h)
(A1 + By Xy, Ouly)

i~ left coprime,
/l',)
(—qu)o, .:"i-‘).\’] - Bw\’g)

(> right coprime.
IL. Z.n is an open and densc subset of PT%P~ if and only if (a) and (b) below

stmultaneously hold

(¢) Znua = PNQ7'Ru #0 and Zgy = PgQ 'Ry # 0
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(b) For each r € Cy,

Z(NuH)—r.r 75 0 or ZH-—I‘,NUI‘ # 0.

IIL. If onc of (a) or (b) of 1N is violated, then Z.\ = Z(Znn).
For the proofs of statements 1 and 111 in Theorem (3.3) we need the technical
lemma below.

Lemima (3.10) Consider the trople

1)
11, S ‘S"
([TZJ’QI[SI 2])

where (Qui, [S1 S2]) is left and (Qu, [TV TY)) is right coprime pairs. Also let

(77, Q1. S) and (Ty, Qyy, S1) be complete. Consider

v Ql] SI Pcl 52 ')c2
T Qa0 (3.27)
-1 0 Qe

where (Foy, Q) and (P, Q) are coprime.

In case onc of Zy, = TYQ Ry or Zy = TyQr Ry is zero, the matric in
(1.27) ts unimodular if and ()'zzly if (Z”',Plegll) and (Zz-), Pu®s') are stable,
where Zy, =T, Q7 Ry and Zyy = 1O R,.

Lemma (3.10) states that the decentralized compeusator diag{Z.,. Zez } solves
the decentralized stabilization problem for a 2-channel not-strongly-connected

plant with no unstalile decentralized fixed modes if and only if Z., and Z., sta-
bilize Channels | and 2, respectively.
Proof. We assume without loss of generality that Zy, = 0. Let a left coprime

[raction of [T 73]'Q7, be given by Q~'[T! T!)’ where

Q:[ (J. 0 J
Qu Qun
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It holds that the matrix (3.27) is unimodular if and only if so is

CD] 1 ch‘ 0 T] S] Pcl T] 5'2 ch
(221 ch (222(\202 T')SI ])c] T'z \'2 Pc'.?

where T).5, P,y = 0, since Z,5 = 0. Note that 74 = Qi Ty Sy and Z,yy = Q54 T35,,
where both fractions are coprime. Then, the matrix (3.27) is unimodular if and
only if Q11Qn + 1,5, Py and (_22-3(2,,2 + 75,8, P are unimodular, i.e., if and only
{7, Py 3) and (7. PLQDNY are stable.D

Proof of Theorem (3.3). Prool of I follows from the discussion preceeding
the theorem. We will now prove the “If” part of IL Assume that for all r £ Cy,
at least one of Iy, O and ¥, is nonzero. Then, (2) of Lemma (3.6; and the
tact that the nnion of open and dense sets is open and dense, reveal that for
almost all Z. € P™~**~ {1 the proof of Theorem (3.2) holds. Similarly, if 'y
15 nonzero, for almost all Z, € P™*#»~ ii holds, and if {1 is nonzero. for almost
all Z, € P>V iii holds. Ou the other hand, a closer inspection at the proof of
Lemma (3.6) reveals that for some r € Cy, I'y, 0 aud W, are all zero if and only
if

ZH-—r.r =0, Zny = 0, ZH-—r.N =0

or, equivalently

Z(;\’uH)—r.r - O) ,ZH—r,Nur = 0.

Also I'g = 0 if and ouly if Zy g = 0 and y = 0 if and only if Zg n = 0. This
completes the “If” part of the proof.

Now, we will prove IIT and the “Ounly If* part of II. Assume, Z(yuH)-py =0
and Zg_y nur = 0 for some v € Cy. Then, by a suitable permutation at the

mputs and outputs, the transfer matrix structure of Z takes the following form.

H-r N r
H-»r X

0
N 0
X

X X ©
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where the x subblocks are not important for our discussion. In this case applying

Lemma (3.10) repeatedly. first by letting

[ Zin 2 } — l Z(NUH)-r.(NUH) -1 Z(NuH)—r.rJ

J

i

Zyt Ly 7 (NUH 1= Zry

and then lettigg

. L ZH—r.H-—r ZH—I',N
Zi’\".H-l‘ ZN’N

we conclude that Zon = Z(Zvy). In case ZvH = 0 applying Lemma (3.10) by

letting
[le Zu} L [ ZHH ZH,NJ
Zn Zn | | Zve Zvn |
we conclude that Z.v = Z,(Zyv). Dual arguments follow for the case when

Zu.v is zero. This completes the proof of III. Now note that Z(Znn) s not
dense in P'™V*P¥ Ty see this let ZCO € P™7*PN bhe such that the closed loop
characteristic polynomial of (Zyy. Z,,) has unstable zeros other than zero. Then,
for all Z, belonging to a sufficiently small open ball around Zs, the closed loop
characteristic polynomial of (Zyn. Z.) still contains unstable zeros, which mmplies
that Z.(Zxy) is not dense in PN [66, Proposition 7.2.41]. This completes
the proof the “Ouly If* part of I1.0
Example (3.1).

Consider the 3-channel system below:

I 1 (=~1) 1 ]
(:+1)? (=+1)3 (z+1)°
1 Uy
2 = — (2:—5) 1 1 - 7
Y=1 9 = | &= oo, (z=2)(z+ 1) wy | = Zu.
Ys 3
(2:-3) (22~1) (2:-~3) ) J
L (-1 +1)(5=2)  (z410)3(z=20  (z1)(z=1)(z~2

Obtaining a bicoprime representation of Z over S we have y = [P} Py P/Q[Ry

Ity R3]u’ where P = [((::;11))2 0 O]’ P = [ (?—ll—) ﬁ]a Py = [(z-}l-l) (:-41-1) 0],
, , / , /
R [ 1 1 1 } , Ry = [ =1 1 ] :

1= G G G
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] — z=1 =2 -3
and Q) = (11-“.’/{%,,4.1;' §;+1;’.((:+1; }

Let H =2,Cy = {1}, and r = {I}. We now determine Z = PQ

for coprime (P, Q) such that the closed loop system under feedback law uz =

M
H

—Z 3y satisfies

:’ ) 1s complete

- P“: (2 3 L U

L @ RaPo | [ RCRST
1. ( , _ ') is left coprime
—1')3 Q:Z O 0 4

Q  R3Ps R,
- PZ (v) o3 ’ 0

| PO Q RPo| . .
2 ( , i ) is right coprime.
Pz 0 —/)3 QcB

Following Theorem (3.3) and the preceeding statements one can veritv that i

:I ) is complete

([P 0], {

and i1 bold for all Z, € P, whereas 1’ holds il and only if Zy(1) £ 0 and
Qs Pal.=s[l - H':=3 # 0. and i’ holds if and only if Ze3(l) = 0. So,
by combining these results we conclude the following: Zs = PsQz = P. for
coprime (P, Q) such that 4, i, i’ and i’ hold, if and only if Ps(li # 0 and
(@3 Pasle=s[l — 3oy #0.

D (97:-113)

In order to achieve a hierarchically stable design we choose Py = I

24Tz 109 1 ‘ -1 . s
and Q. = —(——%;1—)2 L In this case Ly = PC;,Q,_.;,] 1s a minimal ovder stabilizing

compensator for Zy3. With this choice of Z. it can also be verified that i, ii,

Paud 11’ hold.

Repeating similar argiments for the resulting 2-channel system Z we obtain
Zey = 65, which stabilizes the second channel of Z. We finally get Z,, = PaQi!
where

p_ 05536(652° +390=7 +Y762" + 13072° + 80527 + 577z + 8
o 317(z 4+ 1)° ’
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and

(31725 4 380427 — 42370162° — 25463940z + 7629021382" — 63343834823

Cg)cl - -
~22071935042% + 6921174282 + 1415227969)

37(z +1)3

The resulting decentralized compensator has total order 10. It can be shown
following the approach in [10] that by using constant feedback compensators
around the third and second channels and a 7'th order compensator around the
third chanuel a decentralized compensator of total order 7 could alse be utilized
to solve DSP. This, however, wonld not lead to a hierarchically stable design.
Henee. the hierarchically stable desigu is achieved at the expense of increased
compensator order.A

We now consider the class of compensaiors solving SCCP. Theorem (3.4)
below states that once the solvability conditions are satisfied then the class of
compensaiors solving SCCP is open and dense if and only il the plant is strongly
connected.

Theorem (3.4). Let SCCP be solvable. The set of compensators {Zea, ..., Zen },
where Zy = PuQR', (Pu, Qei) is right coprime ¢ = 2,..., N, such that

(P, 0...0) £ [R)0..0) (3.28)

is bicoprime. where ¥ is given by (8.8), is open and dense in PT2XP2 x . x PTNXPN
(with respeet Lo the product topology induced by PT*P, 4 =1,...,N) if and only
if the plant is strongly connected.

The proof of Theorem (3.4) requires the following lemima which gives necessary

and sufficient conditions for a closed loop transfer matrix to be nonzero.

Lemma (3.11). Consider the triple ([T] T3 Q1. [S1 S2)) where TIQT S\ €

PPx" . Then.

-1

¢ Sy P, S .

[Ty 0] 2,” ' £ 0 (3.29)
"Tl Qc O

for some right coprime (Qc, Pe) such that Z. = P.Q:t € P if and only if

22,{1,2} # Ov and Z{l,Z},‘Z 74 0» (‘3‘30)
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where Z‘Z,{I,'Z} = 1QT[S) S, and Z{]_-)}’-z = [T) T} Q7 Ss.
Moreover, if (3.30) holds then the sct of 7. = P.Q7" for which (3.29) holds
is an open and dense subsct of PT¥.

Proof.

We omit the “Only If” part of the proof as it is straightforward. For the “If”
part let Sy € S Ty € SP*7 and observe that (3.29) holds for some P., Q.
described by (3.19), if

Qu SF S,
rank | =Ty Q. 0 | >q+p+ 1, (3.31)
-T, 0 0

where ¢ := size(Q). Repeating the arguments in the proof of Lemma (3.6) (3.31)

holds if and only if
AX) +BX. or
rank | t ' 2 ‘ >p+1. (3.32)
Q8X +D.Xy) U
Writing (3.32) explicitly we have that (3.32) holds if and only if

0418 © Or Sy D, 0 X) 0
7'(mk([ e ' J T. =N, 0 Xy, 0])2p+1. (3.33)
0 0 W
0 0 I 0 7
The hypothesis iraplies that [ : W] and [I” : ¥}’ are nonzero. This fact and © is
nousingular imply that the first matrix in (3.33) has rank no less than p+ 1.
Write ' := O D = OS,, IV := QD,. The conclusion above and the fact

that the middle matrix in (3.33) is nnimodular, mply

A B C
rank _ ¢ >p+ L. (3.34)
D LW

Let {7 be a unimodular matrix such that

T ; ; :
(;11 ({12 | ¢ _ ¢ (3.35)
(./21 U‘ZZ \l/ U
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tn Un || A B
Un Un || D E

T4 B
D E
for some matrices A, B. D, . It follows from (3.34) and (3.35) that the rank
of 1D : E]is no less than p + 1 — ¢ where ¢ 1= size(C') > 1. Observe that (3.31)

Liolds if and only if

o2 X
rank[D : F1 [ \f] } 2p+1l—ec (3.36)
Xy

Now it s not diffiendt to show by straight forward manipulations that the set of

Xy Ay for which (3.36) and thus {3.31) holds is generic in

v

{X1 € 8 and nonsingular, X, € S™P| Xy X[ e PP},

This completes the proof.0

Proof of Theorem (3.4).

Only If] Assume that for some r € Cy, IN-yy =0. Ifr = H with H :=
N~ 1. orr={N} then Theorem (3.3) states that 2,y is only an open and dense

subeet of Z.(Zyn). Otherwise Lemma (3.11) reveals that

-1
@ RnP, Ry

Pg_y 0 ' = 0.
i ][—P\- QCJ [oJ

lor sume r” € Cy. (This can be shown as follows. If r # H and r # {N} then two
cases ave possible; either r € Cy or r = N UT'. for some 1’ € Cy.) Repeating this
mdowetively untill ¥V = 1.1t 1s ol)sél‘\'e(l that at some step ZN,H =0 or ZH,N =0,
where " denotes the closed loop trausfer matrix. In this case Z.n 1s an open and
dense subset of ZC(ZNN). because of Theorem {3.3). On the other hand, it can be
shovn that Z.(Zyw) is not dense in P'¥XP¥ | (See the proof of Theorem (3.3).)
T'hix completes the prool of the necessity part.

[If] If the hypothesis is true, (a) and (b) in IT of Theorem (3.3) hold. Hence,

N 1> open and dense in P™V*PX . Also applying Lemma (3.11) it is seen that

H (\IJ

J

Z-rr # 0 for all r € Cy, for almost all compensators applied to the N’th
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N
(4

channel. This gives us that Z~H_l.,,. # 0 for all r € Cy, for almost all Z. €
ZeN. Repeating these arguments inductively untill vV = I, at ecacl step the
set. Z.v holds to be generic in PTXpv | [t g easy to see using the definitions
that {Z.2,..., Z:n| Zei is open and dense € Prixpi j = 2 .., N} is generic in the

product topology of Prexrz 5 x PTvXpy - This completes the proof.0

Remark (3.2). For those plants which are not strongly connected we can
use Lemma (3.10) to classify the class of compensators solving SCCP. In this
case the plant can be decomposed into its strongly connected components, where
vhe class ol compensators solving DSP can be considered for each of the subsys-
tems mdependently. Also note that the “If” part of Theorem (3.4) 1s implicit in

Theorem | of [10].e



Chapter 4

DECENTRALIZED STRONG STABILIZATION
PROBLEM

In this chapter we first introduce the notion of decentralized blocking zeros. Then,
the following questions are addressed: Let Z be a given N-chaunel plant. (a)
Does there exist a stable decentralized stabilizing controller for the plant Z7
(b) If a stable decentralized stabilizing controller for Z does not exist what is
the minimum number of unstable poles. counted with multiplicites, that any
decentralized stabilizing controller for Z must have? (c¢) Can these unstable
poles be arbitrarily distributed among the local controllers?

‘The problem posed by (a) is the “Decentralized Strong Stabilization Problem”
(DSSP) where the objective is to stabilize a plant using a stable decentralized
controller. DSSP turns out to be the core problemn of “Decentralized Concurrent
Stabilization Problem” which is defined and solved in Chapter 5 of this thesis.
Problem (b) is a generalization of DSSP. A complete solution to problem (b)
vields a solution to DSSP and in the cases where DSSP has no solution it gives a
lower bound for the minimuwn number of poles that any decentralized stabilizing
controller must have. Problem (¢) is coucerned with the distribution of controller
complexity in decentralized controllers [3].

In case of centralized controllers the analogue problems of (a) and (b) above
have already been solved [77], [67], [66]. The solutions of these problems are given

in terms of a parity interlacing property [77] among the real unstable poles and

53
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real unstable blocking zeros of the plant. An H, approach to DSSP has been
made in [62] where a suflicient solvability condition is given. For a class of 2 x 2
plants the solution of DSSP has been investigated in [30]. In this thesis we show
that solutions to problems (a) and (b) exist if and only if some parity interlacing
properties are satisfiea. These properties, however, are now to be satisfied among
the real unstable poles and real unstable decentralized blocking zeros. The de-
centralized blocking z-ros of a plant are the union of those zeros at which the
transfer matrix is upper block triangular for any symmetric permutations of block
rows and block columizs. The notion of decentralized blocking zeros 1s an impor-
tant concept which plavs a crneial role in the solution of a number of synthesis
problems for large-sca.» systems [35]. [59)].

An outline of the chapter and a summary of its main results can be given
as follows. In the nexi section we introduce a preliminary result. Section 4.2
contaius the definitior of decentralized blocking zeros and an investigation of
their properties. Section 4.3 includes the main results of the chapter. Theorem
(4.2) gives a solution o problem (b). It can be regarded as the counterpart of
Theorem 5.3.1 {See Theorem (4.1) in Section 4.1) of [66]. which counsiders the same
problem for centralized controllers. Corollary (4.1) gives a solution to DSSP. The
synthesis procedure of Theorem (4.2) also answers the question (c¢) affirmatively.
We note that, as the reader may expect from its centralized counterpart, the proof
of Theorem (4.2) is quite involved. In Theorem (4.3). it is shown that DSSP is a

generically solvable problem.

4.1 A Preliminary Result

Let W be the set of R..-blocking zeros of Z € PP*"—{0}. Let oy, o3, ..., ¢ denote
the elements of U arranged in ascending order. Let 7; denote the number of poles
of 7 counted with multiplicities in the interval (o7, 0i41). % € {1,2,...,t = 1}. Also

let 5 be the number of odd integers in the set {ny, ..., ne—1}.

The following theorem is based on Theorem 5.3.1 of [66].
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Theorem (4.1). (i). Every stabilizing controller Z. for Z “as at leust 1 poles
in Cy with mudtiplicities. (ii)(a). Given any integer i >y wh:=c n—1 is an even
number, there exists a stabilizing controller Z. for Z which has cxactly n poles in
Cy with multiplicities. (ii)(b). Given any integer n > 5 where n — 0 is an odd
nwmber, there exists a stabilizing controller Z. for Z which hes rxactly n poles in
Cy with multiplicities if and only if oy # 0 or oy # .

Proof. Statement (i) follows directly from [66, Theorewm 5.3.1]. For the proof
of statement (i1) let a left coprime fraction of Z over S he eiven by Z = Q™' R.
Let ¢ € Cy be a nonreal number such that R(c) # 0. We will 7irst prove (ii)(a).

Detine o € S as follows

=0 =

z+1)(3+1

)

o=

where ¢* is the complex conjugate of ¢. Construct Q, € S 7 such that (a)
det(Q.) = a and (b) (QQ., R) is a left coprime pair. Observ- that for any i €
{1,....t=1}, (let(_(;)).(let((?;) has as many zeros as de#i Q) has wih multiplicities in
the terval (o;, i1 ). Then, from [66, Theorem 5.3.1° there ex:-ts Z. with 1 poles
in Cp with multiplicities such that ((QQ.)" R, Z,) is stable. In this case (Z, Z,)
is stable and Z; has n poles in C; with multiplicities where 7 := ZCQC‘]. This
completes the proof of (ii)(a). For the proof of (ii)ibj we firs: prove the only if
statement by contradiction. It will be shown that if 7y = 0 and 7, = >c then n—y
must be an even number. This immediately implies that in case = -9 1s odd oy # 0
or o; # oo must hold. So, assume that oy =0, 0y = x and let 7, Z.) be a stable
pair where Z. has 1 poles in Cy with multiplicities. Let Z, = P.Q7! be a right
coprime fraction of Z. over S. Since QQ. + RP,. is unimodular. det(Q).det(Q,)
takes the same sign at 0 and oo, which is the case onlv if deti)j.det(Q).) has an
even number of Ry zeros in (0, 00) with multiplicities. Conseunently, if 5 is an
even (odd) number then det((Q.) has an even (odd] mmber of zeros in (0, 00)
with multiplicities. Since det(Q.) has an even number of nonreal zeros, n — 7
must be an even number. This completes the proof of the only il part via the
above discussion. For the proof of the if part of (ii)(h) we assume that oy # 0.

If o) = 0 and o; # o the below prool can be applied by replacing ;3 below with
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any positive real number greater o,. Define o € S as follows

t—cz=c (n—n-1)/2
s+ 1 ) 41 ) '

Also let A = 0. Construct Q. € SP* such that (a) det(Q.) = 0((—::_—’;’)2 and
(b) (QQ:, R) is a left coprime pair. Observe that for any ¢ € {I,...,t — 1}
det(Q).det(Q).) has as many zeros as det(()) has with multiplicities in the in-
terval (0, 0041). Then, from [66. Theorem 5.3.1] there exists Z. with 5 poles in
Cy with multiplicities such that ((QQ.)~'R, Z.) is stable. In this case (Z,7;) is
stable and Z: has n poles in Co with multiplicities where Z. = Z.Q7'. ‘This
completes the proof of statement (ii).0

The Strong Stabilization Problem ([77], [66]) is defined as deternining a stable
controller Z;, i.e., a controller having all entries over S, such that (Z. Z.) is stable.
Irom Theorem (-1.1) we conclude that the strong stabilization problem is solvable
if and ouly if there are an even number of poles of Z between cach pair of its
blocking zeros; equivalently, the set of unstable real poles of Z and the set W

satisly the parity interlacing property.

4.2 Decentralized Blocking Zeros

The purpose of this section is to introduce the “decentralized blocking zeros” of
a multi-channe] system and examine how these zeros are influenced by feedback
at one or more channels.

We first state the following three results which concern the identification of
the (centralized) blockiug zeros of Z from the system matrix associated with a
[ractional representation over S.

Let Z € P and let

Z=PQ'R (4.1)

be a fractional representation of Z over S with Q of size g x q.
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Lemma (4.1). For any zo € Ci. for which Z(zy) = 0, one has
R
. rank ¢ (z0) < ¢,
-P 0
where equality is achieved if either (P, Q) is right coprime or (Q, R) islcft coprime
over S.
Lemma (4.2). If (4.1) is a bicoprime fraction over S, then for any z, € Cy.

Q R
rank [ _’P 0 J (z0) = ¢,

if and only if Z(zy) = 0.
Lemma (4.3). For any sy € Cye such thal det(Q)(z0) # 0 and

@ R
rank : 2) = q,
[ P } (20) = ¢

it holds that Z(z) = 0.

Proofs of Lemmata (4.1)-(4.3). Let Q := gclf(Q, R), so that Q = 0,Q,
R = R, for a left coprime pair (Q, R). Also let 9, := ’gcrf(@,]—’) so that
O =0N,, P=PQ,, lora right coprime pair (Q, P). Then, a bicoprime fraction

of Z over S is given by PQ7'R. Also. the matrix equality

0Q 0 I 0 (| Q'R| | Q@ R (4.2)
P nllo z{lo L | |=PoO

holds. Note that if zo is a blocking zero of Z, then Q(zo) is nousingular since
blocking zeros are distinct from poles. Let 2 be a Cy. blocking zero of Z and
note that the rank at zy of the left hand side of the above equality is less than
or equal to ¢. 1f either (P, Q) is right coprime or (@, /) is left coprime then the
rank at g of the right hand side of (4.2) is greater or equal to ¢. The proof of
Lemma (4.1) and the “if” part of Lemma (4.2) follow from these two statements.
If the fraction PQ~' R is bicoprime, theu there exist matrices X, Y. P, @, where

@, is nonsingular such that [) R]® = [/, 0] where

o - [ X =P J
Y Q.
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and is unimodular. If the rank at zy of the left hand side is ¢, then the rank at

zp of the matrix at the right hand side in the below equation

0 R I, 0

¢ =

=y ~-PX PP,

is also ¢ from which we obtain PP,(z) = 0. Since Z = PP.Q;! where the

[,'7)

fraction is coprinme, it holds that Z(z0) = 0 proving the “only if” part of Lemma

(4.2). Finally, if zo in Ci is such that the rank at zy of the right hand side
of (4.2) is ¢ and Q(z0) is nonsingular, then all of (zy), Q(z0), and Q,(zp) are
nonsingular. From this it again follows that Z(zp) = 0. This proves Lemma (4.3).
]

Let Z be the transfer matrix of an N-channel system (N > 1) so that it is in
the partitioned form Z = [Z;;], where Z;; € PP*" i j € N such that ¥, p; = p
and Y, = 7. An element = of C, is called a decentralized blocking zero of Z
if, when evaluated at z, all the entries of plant transfer matrix below the main
diagonal blocks and the entries in the main diagonal blocks become zero (after a
suitable symmetric permutation of the block rows and columns). More precisely,
z is a decentralized blocking zero of Z if for some permutation {i,...,ixy} of N

the following holds:
Zii(z) =0 k=1,..,N l=1,.. k
The set of decentralized blocking zeros of Z is denoted by Sz. It follows that

Sz = {2 € C| There caists a permutation {21, t2,...,i5} of N such that

Ziw 00 0
Zuii Zui 0 0
Liviv  Lisiy  Digia 0 (z) =0}
: : : 0
| Zivis ZLiyia ZiNi_; Zinin |

FFor convenience, in the case N = 1 {the centralized case), we define the decentral-

ized blocking zeros as the centralized blocking zeros. (We note that as in the case
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of centralized blocking zeros, [17], the term “blocking” can be justified through a
blocking-property of these zeros against certain structured inputs.)
An equivalent description for the set Sz can be given as follows. Define
diag | - 7oy : ;
Sz ={:€Cl|Zi(z)=0, i € N}.
Seomp . z € C| There caists a permutation {iy,...,in} of N such that

Z »— -~
z1s a blocking zero of all the complementary transfer matrices

below
]
“iaiy
’ Zhll Zi',‘::
lell -~ ry Ly 1
A Zisis Biyia o Zigin, )
r, ly.
- Al’!\"{l lx_-;x_
Ziyiy |

It easily follows that
~ ~dI o S
bz — bzl g nSZf)nl]). '4.'3)
That is, every decentralized blocking zero is a common blocking zero of all the
main diagonal transfer matrices and various complementary transfer matrices. In
the simplest case of two channels, these alternative descriptions yield the following
expressions for Sy:
Sz = {z€C)Zn(z)=0.7,(2)=0. and Zp(z) =0} U {z € C.|Z22(z) = 0,

(
= {:€C|7Z1(z)=0and Zyn(z) =0} N {z € C.|Za(z) = 0 or Ziz(z+ = 0}.

Note that, any (centralized) blocking zero is clearly a decentralized blocking zero
and in fact Sz can be a mich larger set than the set {z € C.|Z(z) = 0} of blocking
ZETOS.

As stated in [16], [17], the blocking zeros block out the transmission of various
modes in the arbitrary iuputs. A\ similar dynamical interpretation for decentral-
ized blocking zeros can be given as they block the corresponding modes in the
structured inpnts where certain entries are restricted to be zero.

Despite the fact that the €4, centralized blocking zeros are disjoint with the

poles of Z, in general the decentralized blocking zeros and the poles are not

disjomt.
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Example (4.1). Consider the two (scalar) channel transter matrix

Zz[:i—, J
= 3

The poles are {0.1,1} and the only decentralized blocking zero is {0}. The

N e

“common element 0 is actuallv a decentralized fixed mode of Z.
Lemma (4.4). Lel an N-channel lransfer matriz Z = [Zij] be free of Cie
decentralized fired modes. Then, the sct of poles of Z and Sy 0 Cye arc disjoint.
Proof. The proof is based on the following fact.
Fact (4.1). Let N = [N,]. Kjj € PY%*% 4,5 € N, be given. Assume that DSP

Jor K is solvable. Let a bicoprime fraction of K be given by (T{ ... TH]OTYS, ... SN]

such that O € 879 T, € "7 and S; € S*%, { € N. Let = € Cye be such that

F O t] ql]
-1;, 0 0 .
rank (2)<g,Vj€eN (4.4)
-T; 0 0 ]

Jor some permutation {¢y,....ix} of N. Then, O(z) is nonsingular.

Proof. We will prove the statement by assuming that tjy =7, € N. For any
other permutation the below prool can be applied by appropriate modifications
on the indices.

Let a left coprime fraction of K be given by K = 0715 where O = [0,],
()ij €Stxh 4§ jeN, S = [*,,] ‘;,J € St 4,5 € N. We can choose Q as upper
triangular so that Oi;i =0,¢=2,..,N j=1,..,1—I. It lollows that for any

z € Cyp (4.4) holds it and ouly if

C Sy S
’ ) gh YieN  (45)
~diag{l,,...., I} 0

rank

where ¢ := size(0) and S; € S'%% denotes the ith column of $. Unimodular op-

erations yield that (4.5) holds only if $;(z) = 0. Now, let Z, = diag{Za,...,Z.N}
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solve DSP for K. Let a right coprime fraction of Zi be given by Z,; = P,Q7,

Fei € 8%, Qi € S"*4, i € N. Then,

O S5\Pq..SvPn
~1 diag{Q, ..., Qcn}

rank

is a unimodular matrix and is therefore nonsingular when evaluated at any z €
Cieo Let z = zy satisfy (4.3). The fact that .g'l(zo) = 0 implies via the above
discussion that Oyy(z0) is nonsingular. Iy this case, going hack to (4.5) and
applying unimodular operations we conclude that Sialz0) = 0, j = 20 N Tt
then follows that 0y(z0) is nonsingular. Repealing this process it holds that
(),-_,{:0) is also nonsingular, j = 3,...,N. Then, (j(:()) 1s nonsingular.  Since
(l(-;t(’()) and det(0) are associates, O(zy) is also nonsingular. Since z = z, € Cy,

satistying (4.5) is fixed but otherwise arbitrary, the proof follows. A
We now continue the proof of Lemma (4.4).

Letting X' := Z and using Fact (4.1) we conclude that the set of unstable
zeros of det(Q) and Sz Ny, are disjoint. Since every unstable zero of det(Q) is
an unstable pole of Z, this completes the proof of Lemma (4.4).0

Lemma (4.2) above characterizes the C., blocking zeros of Z in terms of the
system matrix associated with a bicoprime fraction of Z. We now give a similar
result for decentralized blocking zeros under the assumption that the V-chaunel

transfer matrix has no unstable decentralized fixed modes.

Lemma (4.5). Let Z = [Z;;] be given in @ bicoprime fractional vepresentation

Z= Q' R Rw ], (.6)

/ ')/\1

where Zij = PQ7'R; fori,j = 1,..N. If 7 = [Z;;] is free of unstable decentral-
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ized fized modes, then

SzNCre = {2 € Cye| There exists a permutation {iy,...,in} of N such that

rank _Pi1+1 0 0 0 (3’) =q, v']' S N}

-F, 0 0 OJ

Proof. Let

T := {2 € Cyc| There cxists a permutation {i1,...yin} of N such that

[ @ R, g, R,
P, 0 0 0
rank { =P, 0 0 01 (z)=gq, ¥j € N}
| -P, 0 0 0 |

If 20 € Sz NC4e, then Lemma (4.1) implies that z, € 7. On the other hand, if
20 € 7 then by Fact (4.1) Q(zo) is nonsingular which, via Lemma (4.3), implies
that zo € Sy NC,.. This shows that 7 = SzNC,..0

Now we will discuss some interpretations for decentralized blocking zeros in
terms of invariant zeros and transmission zeros.

Let a permutation P = {t1,...,in} of N and § € N he fixed. Then, z, €
Cye is called an unstable invariant zero associated with the /’th invariant factor

of system ([P/ .. P! ), Q, [Ri ... R;]) where | < | < rank (7 PLY

Q_I[R,'l Ri,‘] + q. if
—P

1
rank ?

P 0 0 J

N
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Pl Q7VR Ry

# 0. Assume that Sz is a finite set (see page 69). From Lemma (4.5) and

Let Np be a subset of N such that j € Np if and only if [P/, ...

its proof (see Fact (4.1)) one can draw the following conclusion: z € C,. is a
decentralized blocking zero of a plant Z which has no Cy decentralized fized modes
if and only if there exists a permutation P = {i1,...,in} of N such that z is a
common invariant zero associated with the ¢ + 1’st invariant factor of systems
([P,-’l - PLY, @, [Ry o Ry)), 7 € Np.

Referring to Section 2.1, a transmission zero z € C of Z is not a pole of Z then
Z(z) € CP*" and rank Z(z) < rank Z. Conversely, il z € Cy. 15 such that z 1s
not a pole of Z and rank Z(z) < rank Z then = is a transmissiou zero of Z. Now
let Z be full rank and be free of C,. decentralized fixed modes. If z € Sz NCye
then z is not a pole of Z (Lemma (4.4)) and rank Z(z) < rank Z. As a result,

we conclude the following.

Let Z be full rank and be free of Cye decentralized fized modes. Then, every

Cy. decentralized blocking zero of Z s also a transmission zero of Z.
Note that if Z is not full rank the above statement does not hold in general.

For example

N
!

24

is free of Cy. decentralized fixed modes but is not full rank. Although Z has no

transmission zeros, every z € C is a decentralized blocking zero.

A different characterization of C,. decentralized blocking zeros can be given
by viewing them as the intersection of the set of blocking zeros of any fixed

but otherwise arbitrary channel and a set of zeros pertaining to the remaining
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channels. Let L := N — | and define

V= {z € Ciel There exists a permutation {#1,72,...ir} of L such that

foreachjeL

Zi)i Ziyi, ZiN
erther : : : (z)=0
Zi i, Zivi, Zi,N
’- Zi,ij Zijl}
or : ' (z) = 0}.

Zigi, Ziyi,
ZNi, Z,-‘\"i_, J

Lemma (4.6). {z € ¥| Zyx(z) =0} = Sz NCy,.

Proof. The proof is based on the following fact.

Fact (4.2). Let G = [Gy], i.7 € N be a matriz over P, Define L= N~ 1,
Then, for any z € Cy. salisfying

Forecach j € L

el ¢ |
v v ( a1 J3
G Gy Gin . . L)
eirther : (z)=0or " "' (2) =0,
- oo G (1
(1], AL LN . .
! ! i G Ginj J
one of the following holds
CGap.Ln(z) =0
CGaa..nulz)=0
Gaa.n..)fz) =0 (+.8)
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])7‘0'l)idt'd Gnn(z) =0, where by definition

C"ijil G' .
Gl iv)(2)=0& : : (z) =0, Vj e N. (4.9)
C"iN'il GiNi,

Proof. We prove the statement by induction. Let N = 2. Then, L =1 and

z satisties (4.7) if and only if
(G Gul(z) =00 [G GY,)(2) = 0.

If z [urther satisfy (f35(z) = 0, then it is easy to see that the statement holds.
This proves the inductive argument for N = 2. Now assume that the fact is true
for L. Let N =1 + 1. Let z satisfy that Gnyn(z) = 0 and (4.7) holds. Observe

that (1), and from the inductive hyvpothesis (ii) below hold.

(1) One of the equalities below holds.

; : G (I’J‘
[CI’L] (-"LI_, (-"LN](_Z) — 0’ [ L1 Ll J (

Gnr ... GnL

(ii) One of the equalities below holds

Gt L-1.0)(2) = 0. G’(x,-z....,L,l.,-l)(;’) =0, .., G’(],L.-z.....l,-])(z) =0,
C'(L,l,'z ..... I,-l)(z.) =0

where (v = [flij], t.) € Liis the submatrix of G obtained by deleting its L-th block
row and column such that (/;; = (.',’;-_/, hi=1,..,L-1, C~"iL =Uin,t=1,...,L—1,

Gy =Gnjyj=1..,L=1.Gu'= Guy, and Gy is defived as in (4.9).

Obscrve the following.
(a)

Cia G

C;’(l,'z,....l,—l,l,)(:) =0 and
(.'l’}\y'l G'N[,

J (2) =0= Guar-1nm(z) =0,
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(;'(1.2 ..... L. L—;)(?’) =0 and [ G Gr, Goa J (z)=0

= Gl Nd-10)(2) = 0
where L in G(].Z,...,L..,.L—l) and N in G~ L-1,L) are at the same position
from the beginning. This completes the proof. A

We now continue the proof of Lemma (4.6).
Let 2 € W and Zxo/(z) = 0. Then. there exists a permutation {7, vt} of L
such that
Forcach j e L
l- Zi)i] Zij:'..
either : : : (z)=0o0r ' ' (z) =0.
Zi, i Ziys,
Zni ZNi,

J
Let (i be defined as (&, = Ziies Gk = Zni, and Gy = Zin. I,k 2 L. Applying
Fact (4.2) we have that one of the equalities in (4.8) holds. This implies that
=€ 8zNCy,. Since = = U is arbitrary we have {z € \I/] Zyn(z) =0} C §zNCy.,.

Conversely, let = € §7 N Cp.. There exists a permutation {¢y,....0x} of N such

that )
; Z¢Ji1 Zi_,i_,
o © o (2)=0, VjeN.
|
l. Zi.\-'il Zi.\'i;

Let ¢ = N for some [ = N. It holds that

v v i
Ziviy Zini,
Zi,N
() =0,Y € {l+1,... N} (4.11)
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and
| Zw, Zni, 1 62) =0, V5 € {1l = 1} (in case I > 1), (4.12)

Define a new set of integers {¢},...,i,} as [ollows.

. g o > :
"»./,‘:{J-*-] . ,]EL

2 . otherwise

Irom (4.10) it is easy Lo see that

Z"I "l Zl'l
) AN
(2)=0, ¥, e L.
St it Ziy
Moreover. from (4.11)
Zi’ N
J
o (e)=0,0< <L
Ji',‘N

, o | Zow Zug
/Lll, "Az’i’ /z'N 2 7
] . -
: (z) =0 or (z) =0
, .
~ . . Zz', N Zi'Li;
A AN L
) . 7
i, Ini, |

This imiplies thal z € . Since z € Sy -~ Cie is arbilrary, one has Sz NCpe C V.
On the other hand, by definition, z € S, N Cye implies Zyy(z) = 0. Hence.
SyNCye CYN{zeC,.| Znn(z) = 0}. This completes the proof.0

We now examine how dynamic feedback at one channel affects the unstable
decentralized blocking zeros. This is done for feedbacks which do not introduce

any unstable decentralized fixed modes in the resulting (N — 1)-channel system.
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Lemma (4.7). Let Zoy = PonQ7 be a coprime [raction over S of a com-

pensator al the N-th channel of (4.6) such that the resulting fraction

]'71 0 -1 .
7(2 ) . . . Q Ry Py R, Ry (4 13)
~ cN) = : : . k.
- I:)"V (v)L‘N 1 O O
P, 0

of the L-channcl system is a bicoprime fraction and (fL>1)7(7Z.n) is free of

unstable decentralized fixed modes. Then.
SZ n C+e. C SZ(Z(\) n C+¢-

where SZ(Z.N) is the set of decentralized blocking zeros of Z(Z.x).

Proof. Note by Lemma (4.5) that

SZ(Z:N) NCie = {2 € Cy.| There caists a permudation {i1,..,ir} of L such

thal
[ Q  RyPy R R |
—Py Qw0 0
rank | —F; 0 0 0 | =q+pn,VyeL}
: . 0
P, 0 0 0 |

) (4.14)
Let z0 € Sz NCy.. By Lemma (4.5), there exists a permutation {i1,72,...iin} of

N such that

[ Q R, Ry

13
rank !

0 0
, (z0) = ¢. Vj € N. (4.15)

—Py, 0 0
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It follows by (4.15) that

rank

[

@ RnPN R

—Pv o Qen 0
“P, 0 0
P. 0 0

R;,

0
0

0

OJ

69

<q¢+pn, VJEN (4.16)

as we are adding pn rows and columns to the matrices i (4.15). Consider the

inequalities in (4.16) for j € N such that i; # N. Deline {¢1, ..., ¢} as lollows.

Let M he such that 7y = N and let

: gl
z’l ={"

(7D

Then by (4.16) we have

rank

[

Q RnPy Ry

—F )'\ (2 cN 0
- P; 0 0
Py 00

of g2 M

otherwise

fz’.,-;_
0
0

0

0 |

, J €L

Sq¢+pn, VJEL (4.17)

as we are deleting certain block rows or columns. By hypothesis, Z(Z.v) is free

ol unstable decentralized fixed modes and each matrix in (4.1 6) contains a system

matrix associated with a complementary subsystem of (4.13) as its submatrix.

By the fact that the plant is free of unstable decentralized fixed modes, the

mequalifies in (4.17) are actually equalities. Therefore, z, € SZ(ZCN) NCye by the

description of the set Ssz.) NCy. given in (4.14). O

Note that Sz is a finite set if and ouly if for everv permutation {i1....,in} of

N the malrix

r Zi|i| 0
Ligiy  Liaiy

Zi.'.lil

ly ;
] [iNh di;\'iz

Zisiy

Zi.v i3

0
0
0
0

-
AiN"N _‘
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is different than zero fover P). It also holds that if Z is strongly connected then
Sz is a finite set. Define
\Il = SZ n 7_\>.+¢.

which is the set of decentralized blocking zeros of Z lying in the extended right
half real line. Let 0. a4, ... ¢ denote the elements of W arranged in the ascending
order. Also let n; denote the number of poles of Z counted with multiplicities
in the interval (o;,0i-1), 2 = {1,2,...,1 = 1}. Define 4 to be the number of odd
integers in the set {. ..., }.

The following lewima is a key result which is used in the constructive part
of Theovewr (4.2) in viwe next section. Briefly. it says that given any nonnegative
integer iy < oone can construct a local controller around any fixed but otherwise
arbitrary channel (the Vil channel below without loss of generality) which has ny
poles in Cp with mnduiplicities, and ensures that DSP for the resulting L = V-1
chanuel plant Z(ZCN) is solvable and satisfies an appropriate interlacing property
between- the set of real unstable poles and the set of real unstable decentralized

blocking zeros. In this lemma we assime the following (see also the next section)

(A1) Z is strongly connected,
(A2) rank Zi, > 2 0or rank Zj; > 2, Yi,5 € N. i # .

Lemma (4.8). L Z = [Z;] be fiee of Cy decentralized fized modes. Lel a
nonnegalive integer uy < be given, There exists Zoyv = PonQn € PTNXFN for
a right coprime pacr of matrices (Qen, Pen) over 8 such that
(a) Z.n has ny Cy poles counted with multiplicitics
(b) The fraction (4.15) of Z(ZCN) is bicoprime
(c) Denoling by Sy 7 .y the sct of decentralized blocking zeros of Z(Zex) and

letting oy, G4, ..., a; denote the clements of
Vi(2) = Syz.0 N Rees (4.18)

arranged in the ascending order and denoting by 7; the number of poles of Z(Zen)
counted with mulliplicities in the interval (5;,5i41), ¢ € {1,2,...,0 =1}, 1t holds

thal j = n — ny where § is the number of odd integers in the sequence i, ...,



Chapter 4. DECENTRALIZED STRONG STABILIZATION PROBLEM 71

Ni-1-
(d) (If L= N—1>1) DSP for Z(Z.x) is solvable, Z(Zen) is strongly connected
and satisfies
ran./&:Z_.,- >2o0r r(mchA.,-; >2VejeLl,i#y

where 7;,'_,,' € PP denotes the i jth submatriz of Z (Zen).

Proof.

The following facts are used in the proof of Lemma (4.8).

Fact (4.3). Let S € SP%7 S, € 8" and Sy € S™" be such that cither
rank Sy 2 2 orvank Sy > 2. Then, there evists an open and densc subset X' of
S** ™ such that, for any fired but otherwise arbitrary X € v

(51 + SN 8)(2) =0

—,
—

[ S8, ] (z) =0 or { ST5% }/(.‘:) =0,
forall z € Cy..

Fact (4.4). Let Ty € PP, 1y € Pr*" aqnd T5 € P™*" be such that either
rank Ty 2 2 or rank T3 > 2. Then, there exists an open and dense subset X' of
S™*™ such that, for any fixed but otherwise arbitrary X € X'

(" + T XT3)(=)=0

_—

(7 ] =00 [0 7] () =0,
for all z € Cy..

Fact (4.5). Lct Z, € R, Z, € R and Zy € R™*" be such that cither
rank Zy 2 2 orrank Zy > 2. Also let Ky € S™™ and Ky € §**% be such that
ICy is biproper. Define K = {z € Cy| det(K,)(z) = 0}. Then, there exists an
open and densc subsct U oof S such thal Jor any ficed but otherwise arbilrary
Xex |

(Zy + Zo( Ky + K X)Z3)(2) =0
——
| 20 2, |(z) =00 (2] Z3)'(z) = 0,
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foral z€Cy. — K.
Proof of Fact (4.3).
First consider the following statement aud its vroof,

Let A € SP%7, B € S and (' € S™ he such that the smallest invariant
factor (sif) of [A B) and the sif of [A' ') are u~ils, and cither rankB > 2 or
rankCl > 2. Then. for almost all X € ™™ [ 44+ BXC) is uni.

We can assume neither 3 nor ' equals zero, becanse otherwise i fA is unit,
and the statement holds trivially. If Xy is such that sif(A + BX,C1 is unit, by
choosing the norm of A small enough, sif(A + Bi Xy + A)C) is still & unit, since
the set of units are open in S. To shiow that the ¢ ass of such X is dense, assume
Xo is such that s7fiA + BXo(") is not a uniz of S. Let I/, and {7, be unimodular

matrices of suitable size, such that

B

/B = Cand Clo= ¢ 0 },
0 :

where B € SP%% and full row rank, and ¢ = S7 7 and full column rank. - By
assumption either rankB > 2 or rankC > 9. We assume rankB > 2. Otherwise
rank > 2 and the dual of the prool below follows. Clearly, rankB > 2 unplies
p > 2. Let b and ¢ be the smallest invariant faciors of B and ¢ respectively.
Define 3, = B/b and O, = (/( There exist nmimodular matrices V; and V, such
that VB, = B, .1, = (', where the first row of B is left wmodular and the

first column of (7 is right unimodular. FPurther define

N Vi 0 « V. 0
A=|"" Tl uAL, .
0 [/ 0 I
. A A
do | Ao ?
=l An An
where A, € S 4,, € SP**=7 A, € S# X7 and Ay, € SPrer Clearly,

slj(/:{ + [3(_X0 + A7) equals the sif of

Partition A as follows:

i B, )
A+m[OJLO+Aﬂc 0],
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for any A € 8"*™  Define A = Ay + beBXoC. Let us assume, without loss of
generality that the first column of A is nonzero, because otherwise there exists
a perturbation A; on Xy with arbitrarily small norm such that the first column
of A in nonzero with Xy is replaced by Xo + A; (This is guaranteed by the fact
that B and the first column of €' are nonzero). Also note that for any = € C.,,

(bc) = 0 and A;; =0 imply

0 Ay

B ~ # 0,
Ay Ap

because of the hvpothesis that sz/[i B] and sz}‘[/i' (i"]' areunits. Let S, Biby, =

moenaq =1, for some oy, i = 1,...,m and A i = 1,..., 0, where b,

Lai=1 "1

b, and
1 = 1,....n denote the first row element.s of B, and ¢;y, t = 1, ..., denote the first
column elements of . Define 0; = S% | Bibyi, j = 1,....p, and 5, = T%, ¢an,
J = 1,7 where b;; denotes the (7,2)'th element of B and ¢;; denotes the (7, 7)'th
e]ement of . Note that. §; =1 and 73 = 1. By the fact that j > 2. v =1
and the first colunn of A4 is nonzero, we can assume that for at least one index
pair (i, ), aij # 0iv;ann. ( We omit the simple proof of the construction of such
fiand aj, i =1....,n, and j = 1,...,7m.) Now let ¥ be a nonempty set of index
pairs so that £ = {(41. /1), (12, J2), -y (G0, Ju)} where v = min(p, ), satisfying
aij # 0ivjan. whenever (1. 7) € X, and a;; = Oivjaqy, whenever (¢, 7) €5, Define
g = goflai, be), =10, ) = 1,7, such that «;; = ¢i;a;; and be = ¢;;4,,.
for coprime pairs ((t,'.,-,q,.,.). Il ayy = 0, let & satisfy (8, ;) ave coprime for all
(7,7) € X 1fayy # 0, lev 8 satisfy (@1 + 6quy, aij — 0iyja1;) ave coprime for all

(z,7) € . The norm of & can be chosen arbitrarily small in both cases. By letting

Bibay ... Bibag

.-b'ﬁ, 6(-'7 ! ﬂﬁ 6(\’171 ,

we have (A + 0eBAC);; = aij + 0bcliy;, 1= 1,...,p, 7 = L, ...,7 Hay =0, the

choice of A yields

gefizi,p =1, 7 (A + beBAC)i;] = gefiijes(aij, be).
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In the case that a;; # 0, the choice of A yields
gefizt,p iz, i [(A + beBAC), ] = gefijyex (i, qu).

(This latter statement can be seen more clearly as follows. Observe that whenever

(i,7) €, gef[(A = BACbe), (A + BACbe),] = aip + beé. So,

gefizi.jpi=1..: (A4 becBAC); ] = gef(ayy + 0cé, gefi hex(A + beBAC);).

iy + 6qry) = 0.2 € Cy imply 8(2) = —ayy1/q1. where §pp 15 nonzera hecanse
of the coprimeness of (@yy, q11). T this case (a;; + bed0iy;) = (a;; — 0vja) # 0.

Hence

gef(ap = bed, gefiijyes(A 4+ BACe),;)
agcitqn, gofines(A + BACOe):;) = gefijes(qn, wij).)

In both cases 7/ f(A -+ BACbe) is coprime with

0 Ay
sif | 0 TR
Ay Ap

Since the norm of N can be made sinaller than any prespecilied positive nuimber

by choosing 8 suitably, the proof of the statement is completed.

Now let a = s f([Sy So)) such that ) = Aa and 5, = Ba for some matrices

A and B over S. Also let, = sif([A" S5} such that A = AB and Sy = C8. It

holds that
S+ 5N =ad(A+ BXC)

for every X. Applying the above statement one has
(-c"l -+ 5’2:\".,’;":5)(-3) = U
=
a(z)=0or#{z)=0
for all z € C4.. This completes the prool.A

Proof of Fact (4.4). Define oy least common multiple of the denominator

polynomials of T;. 1 € 3. Let d; denote the degree of ;. We define S; = Troi /(2 +



Ot

Chapter 4. DECENTRALIZED STRONG STABILIZATION PROBLEM

1)%. 7 € 3, which are matrices on S. From Fact (4.3) there exists an open and

dense subset 1} of 8™ such that for any fixed but otherwise arbitrary X € .\

( (::;)agllla ‘5’] + (z-livl)‘ll 55'2 .\'AS':})(_Z) = 0
= (4.19)
! S ERLE: C'I i S-g ] (;’) =0 or ['—(:r;).af_hdg»s,{ qg]l(:) =),

R (z41)D

for all - € C,.. Now define

Ty = {2 € Cy |13 Ta)(2) =V or (17 13)/(=) = 0},

T, = {Cs, poles of T} U{Cqe poles of Ty} U {Cy.s poles of Ty}

It can be easily shown that the set of X for which the set of Cy.-blockiug zeros of
1)+ T,.XTj is disjoint from 7, — (7,N7y) is open and dense in S**". We call tiis
set Xy and let V.= A N2, which is open and dense in S"*". F'ix an arbitrary
element X of V. For any z € Cpe =T, m(2), a2(z) and as(z) are all nonzero,
and therefore

(2 + l)(ll+1l'_>+113 9. Q3 , Qa

—— )
.oy (24 1)kt

(77 + 12 XT3)(=) =

implies
Qg . (v , 143 YV N LY
g yers 0t eSS =0,
vielding that (1.19), and consequently
(1 T3)(2) = 0 or [T} T3)/() = 0 (+4:20)

hold. On the other hand, if z € 75 is such that (T} + 75X T3)(=) = 0, then the
construction of .\s ensures that z € T, N Ts. i.e. (4.20) holds. This completes the
proof of Fact (1.4).2

Proof of Fact (4.5). Defive 1y = 7y — Z,K 1 Z3, 1y = Z, N, and Ty = Zs.
From Fact (4.4}, there exists an open and dense subset A7 of S™*™ such that for

any fixed but otherwise arbitrary X. € A)

(Ty + T X T3)(z) = 0



76 Chapter 4. DECENTRALIZED STRONG STABILIZATION PROBLEM

==
(13 T2)(2) = 0 or [T] T3)(2) = 0, (4.21)

for all = € Cyp. Define T = {z € Cy. — K| (4.21) holds but (Z;K,7Z3)(z) # 0}.
There also exists an open and dense subset X, € S™*™ such that for any fixed
but otherwise arbitrary X € Xy (Zah2X Zs)(z) # 0, for all = € 7. Let .V := &)
N Ay, which is oper: and dense. Now fix any arbitrary element X of V. Let
20 € Coe — K. M (1) + 15XT5)(20) = 0 then by the choice of X} we have that
equation (4.21) hold~. We claim that (Z,K,23)(z0) = 0. To see this, observe
that if ¢ Z, 0 Z3)(z¢: = 0 then by the choice of Xy we have (Z, K, X Zy)(z0) # 0,
which contradicts the: (17 + 1, XTy)(z) = 0. Therefore (221 Z3)(zy) = 0. This

implies via {(-£21) tha:
2y ZyKo)(za) = 0or (2] Z4) (20) = 0.
Since A(zy) is nousizgular by the definition of K, it holds that
ARAEY =’0 or [Zy Zy)'(20) = 0.

Since zg € C4, — K 15 arbitrary, the proof is completed. A
The proof of Lemina (4.8) is given below.

Assume that some left and right coprime fractions of Zyn over S are given
by Zxx = DNy = N D7 Let Q= gelf(Q, Ru), so that Q = 4Q, Ry =
O Ry, for a left coprime pair of matrices (Q, Rn). Also let Q, := ger f(Q, Px)
so that Q = QN,, Fv = PyQ,, for a right coprime pair of matrices (Q. Py).
Then. a bicoprime [raction of Zxy over S is given by Py~ RBy. Also note that
det(Dy) = dcl(D,) = det{Q). Determine a biproper Qqy € SEVXPN such that
(P1) det(Q.x) has ny Cy zeros with multiplicities none of which is included. in
v u {0}

(P2) the number of sign changes of det(Q).det(Qen) in the sequence oy, o3, ...,
o, is equal to n — ny
(P3) in case Zyy 1s not identically zero (lct((?cg\r) and s¢f(N;) are coprime.

(Such a Q.a can always be constructed easily. The simplest form for Qn is
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given by diag{g1(z). ..., gpn(2)} where ¢i(z)’s are biproper and 1Y ¢:(z) has ny
R, zevos with nn..lltil.)li('.il,i(cs which are distributed among the poles of Zyy and
the elements of W to satisfy the desired requirements.)

We proceed by the following fact.

Gliven any § € Ry —{0} there cxists A € RPV*PN for which ||A]] < 6, Qv+ A
is biproper and (a). (b), (¢) below are satisfied for almost all P, € STNXIN
(a) ((C:)CN + A)Dy, P.) is right coprime, (D, I,) is left coprime
(b) Letting Zov = Po(Qey + A)™' the fraction (4.13) ol Z(Zey) is bicoprime
where Qen and Py are replaced by (:),:,\- + A and /2 vespectively
(c) (If L > 1) DSP for .”/:(ZL..N) 1s solvable, ’/3(2.\_,\-) is strongly connected and

salisfies

/'au.l.:ZT';'.,- >2o0r 7'(/.7).}32.;’(' >2 Vi) Lt #)

Note that the existence of A and the fact that the set of P. satislying (a),
() and (c) is open and dense in S™¥*P~ follows from [66, Proposition 7.6.15] and
[56, Lemma A.2] for part (a), frony [56, Theorem 3.2] for part (b), and from [56,
Theorem 4.1, Lemma 4.2} with appropriate modifications for part (¢). In each
case we utilize the facts that under sufficiently small perturbations on Qv the
properties P1. P2 in the construction of’QL.N still holds.

We now continme the proofl of Lemma (4.8). There exists 6 € Ry — {0} such
that every A € RP»*7V with ||A]] < § satisfies that Qv + A is biproper and the
properties P1, P2, P3 still hold with Q:N replaced by Qc;\' + A. Tor that value of
§ using the fact above construct a matrix A € RPN such that Qon i= QCN +A
is ‘biproper, the properties P1, P2, P3 lLold with Q.y replaced by Qv and for
some open and dense subset X of S™¥*P~ | P € & implies that (a), (b), (¢) of the
(act hold.

We will now construct Py such that Z.v = Py Q oy satisfies (a), (b), (¢), (d)

of Lemna (4.8).
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Let

Q= {z € Ry f(det(§4).det(Q,))(z) # 0},

D = {z € Rye|(det(Dy).det(Q.n))(z) =0},

V:=an{Du¥},

W, = {z € \TJIZ,.VN(::) = 0} and

Wy o= W —
where ¥ = ¥ N R, (sce Lemma (4.6)). Note that s the set of extended real
numbers excluding the tnput-output decoupling zeros of (Py. @, Ra) and D is
the union of the sets of unstable veal poles of Zyn and the unstable real zeros of
det(Qen). Siuce, via P3, det(Q.n) and sif(N)) are coprime. » & W, imnplies that
= € W. From Lemma (4.6) we have W, C W. On the other hand, from Lemma

(4.6) ¥ C W. From Lemma (4.4) ¥ C £ and therefore W, =,

Note that for any z € Wy, Ny(z) is nouzero. Let 91, 92, ..., 7 denote the
elements of W in the ascending order. From the proof of Theorem 2.2 in [57]
given any z € Ry, for which Nj(z) #0 and (det($).det(Q,))(z) # 0, we can find
X € R'~¥*PN guch that (del($).det(82,). det(DiQ .~ + N X ))(z) is nonzero and has
any desirved sign. For each « where v; € ¥, let X; be such that (det(§2;).det(82,).
del(DiQ.n + N X ))(7:) is nonzero and has the same sign with det(QQ.~)(ay)

where a; = oc il W = ), and

(i of the all elements of U, if there exists an element of W
whach are greater than ; which is greater than
Q; =

maximnune of the all elements of ¥, otherwise

which are less than ;

W is nonempty. Constrnet P € S™XPY uging standard interpolation tech-
nigues such t],lil,t,]".{;.\/(")’i) = X; for all v € \i/-z. This ensures that det(€);).det(S2,).
det(DiQen + N /’\; takes nonzero values with appropriate sigos in the sequence
Y1y Y2, -y Y such that the number of sign changes of det().det(2,).det(DiQen +
NiP.n) in this sequence is cqual no n —ny. Since sufficiently small perturbations
on f’UN do not deteriorate the above property, we can assume that f{.,,v € X,

since A’ 1s an open and dense subset of S™*PN - We will now construct A, such
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that letting Py = P.v + A, the compensator Z.y = P.yQ v satisfies that the
set Wy (Z) defined in (4.18) is contained in W. The norm of A, will be chosen
to be sulficiently small so-that P,y € ' (the properties (a), (b), (¢) of Lemma
(4.8) still hold where P. is replaced by P.v) and the number of sign changes of
det(§2)).det(Q,).del( D;Qen+ N1 Fen ) 1n the sequence vy, ¥z, ..., 71 18 equal to p—ny.
Let %1, ..., 47 be the elements of W,,(Z) in the ascending order. Since ¥, (Z) C V.
the number of sign changes of det(€Y).del(§,).det(DiQc.n + le)c!v) in ¥y, ..., 97 1s
less than or equal to n — ny. On the other hand, by Lemma (4.7) ¥ C ¥, (Z).
Therefore the mmber of sign changes of det(€).det(Q,).det(DiQcn + NiPey) in

this sequence 1s no less than np — . Hence, we conclude that the number of sign

changes ol det(§d).det Q). det (DiQ.n+ N Loy ) 1n the sequence 41, ..., 7 1s equal to

n—npy. Then. the fact that Q. v has ny Cy poles with multiplicities implies (a) of

Lemma (4.8). Statements (b) and (d) of Lemma (4.8) are implied by (b) and (¢) of
the fact. Finally, statement (¢) of Lemuma (4.8) is implied by the underlined state-
ment above aud the fact that every unstable zero of det(§).det(2,).det(DiQcn +

N P.n) is an unstable pole of Z(Z.y) with the same multiplicity and vice versa.

The perturbation matrix &, will now be constructed. Define Q3 N, = N,,(};\‘,
for a right coprime pair ol matrices (QCN, /{",.). (Note that if N, = 0 then QL.,\-
is unimodular.) Let T .= }?{.;\=(v)c',\{'([ + Z,v,vf’c,\r(Q:,Q,-)‘l and let 77y = T be a
left. coprime fraction of 1" over S. It holds that Py = DT\ D, — ToN) QN
Since (D,. Poy) is left coprime. (T1 D, — TyN,) D7V is over S, ie., Ty = TyD for
some matrix 7 over S. Let T = .'I"Lg'lf'l'l, for a right coprime pair of matrices
(.'IA'fZ, T ). It tollows that Py = l>(]1 - N(.'/A'-z)‘1 DiQcn. By the left coprimeness of
(ff'] - N,.'/.A'-Z, Z'/.A'}) and by the vight coprimeness of (Q.n Dy, I-T{.N) it easily follows that
DiQ:n = (f['] - N/TA-Z)Y for some unimodular V over S and f’cN = 'j"-z V. Observe
that il N, # 0 for any A € ST~ gatistying |[A]] < 1/[|[VAL], V71— MoA is
unimodular. Let {#,7,....,4.} be a fixed permutation of the elements in L. For
a fixed y € L deline

Z Ziji, Zi;N
Zy=| o ze= | |, Za =T Dl 2N, - ),
Ziviy - ZLigi Zi N

i1y
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Ky =T, and K, = D,Qcn. From Fact (4.5) and the connectivity assumption
(A2), there exists an open and dense subset of S™*P¥ guch that lor any fixed

but otherwise arbitrary A in this set

Z,'),'l Zijij Z:’,N
- : (To + D, Qen AYTT DY Zxiy o Zni ) (2) =0
Ziviy Ziri, | ZiuN
—
i _ L ( Zii, Ziyi
Ziyi, Zii, LN :J ] ’
: (z1=0or ' ° (z)=0.VzeCy, - D.
. _ 7 Dilir Zii,
Zigi, Zigi, £~ ] _ N
B2 ZNi, |

(4.22)
Since the union of open and dense subsets is open and dense, repeating the above
argument we conclude that there exists an open and dense subset of S *P¥
such that for every N in this set the implication (4.22) holds for all j € L.
Repeating for all permmtations of L and taking the union of open and dense
snbsets we can construct an open and dense subset .U of S™V*PN such that for
any A € X the implication in (4.22) holds for all j € L and for all permutations
of L, represented by {iy,....i.}. Now choose A € X with sufficiently small
norm such that (V=1 — \7,_3) is unimodular, and the norm of A, := —TzV
+('f§+D,Q=.NL\.)( fr-tn .'\A",.A)'1 is sufficiently small to ensure that Py := P.n+A.
= f‘z\/ + A, € X and the munber of sign changes of det().det(2,).det(DiQ N +

NPy ) the sequence 9y, 7a. ..., v is equal to n — ny. Then,

[ 7)) 2] ( Zin |
2ZN) = | ol = PnQn U + ZNn P Q) T 2y - Zve)
| 2L ZLL J | ZLN ]
[ Zn Zu ]| [ Zin ]
=] o= (Tt DiQNAYITI D2y . L)
| Z1 ZiL | | Zun ]
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(This can be proved as follows:

DiQon = (T = NTy)V
Ty = DIONVT=NA) + N(Ty + D.Oev )
(Ty + DyONA)V T = N A)™ = (Ty + DG .vA).
(T DiQex + TP NU(Ty + D Qv )
(V-1 = N, A)™Y)
— Py = (Ty+ D:Qun )T DIQon + Ni(Ty + DyQen AYV-Y = N,A)1)
= Poy= T+ D,0.xANVITHUDOQ N+ N Poy)
= Py = (T4 D.QxNT7 DT + Znn Py Q7 Qe
= PaQII + Znn P Q) = (Ty 4+ D Qv )T D,

Ll

implying the equality above.)

Now observe by Lemma (1.4) that Wz (Z) is disjc:nt from the poles of Z(Zuy).
Since the Cy mpul decoupling zevos aud the output decoupling zevos of (4.6)
are included among the C, poles of ' Z(Zen), it follows that ¥, (Z) C €. By
the equation (4.22) and the above discussion, it holds that .\IJL(Z) c ¥. This

completes the prool.0

4.3 Least Number of Unstable Controller Poles

In this section we consider the synthesis of decentralized stabilizing controllers
with minimum number of unstable poles. As a particular case, we obtain the
solution of decentralized strong stabilization problem:. In terms of thie notation of
Section 4.2, a more precise definition of decentralized strong stabilization problem
cau be given as follows.

Decentralized Strong Stabilization Problem (DSSP). Lot Z = [Z;],
Ziiy € PP*N (g€ N b the transfer matriz of a given plant. Determine stable
local conlrollcrs Z,; € 8"*, i € N such that the pair (Z,diag{Z.,...,Z:n}) is

-stable.

We assume throughout this section that

(A1) Z is strongly connected, and (A2) rank Z;; > 2 or rank Zj; > 2, Vi,j €
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N, i#j

hold. The assumption (A1) is introduced since the construction of decentralized
stabilizing compensators’is more straightforward under this assumption. If the
assumption (A1) fails. then Z can be decomposed into its strongly connected
components and DSP can be considered for each strongly connected subsystem
independently ([10]. 22. Chapter 4], Lemma (3.1'0), Theorem (3.3)). For the
problem of synthesizing a least unstable decentralized stabilizing controller and
for DSSP, the case where (A1) fails can be handled similarly (see Remark (4.1)
below). The assumpion (A2) is made because ol technical reasons. It allows
us to carry out various genericity arguments in the syuthesis of local controllers.
[t does exclude some important cases such as a two (scalar) input/output plant.
(However, see Remarx (+.2) below.)

We can now state the main result.

Theorem (4.2). Let Z = [Z;;] be free of Cy. decentralized fixzed modes. (i)
Every decentralized stabilizing controller Ze = diag{Za.....eN}, Zei € PTIXPE
i € N for Z has at least p poles in Cy with multiplicitics. (11) Gliven any nonneg-
ative inlegers ng, © € N where SN n;—1 is @ nonnegative and coen number, there
cxists a decentralized stabilizing controller Z. = diag{Z.,,.... Z.n}, Zsi € PTXP
i € N for Z where Z.. has cxactly n; poles in Cy with mulliplicities. « € N.

Proof. Let a bicoprime [raction of Z over S be given by Z = [/} Py ... Py}

Q™' [Ry Ry ... Ry), \'.'l'u’_re Qe S™ R eSi" and P, & S"*1, 4 € N.
(1) The proof will be given by induction. Let N = 2-and note that
\I/ = {Z < R.}.,_.-l[Z]ll ’4.31]'(-3) =) (l.'II.('l Z-zg(::) = 0} U {3 € 'R+el[le Zlg](.':) = 0,
and Zy(z) = 0},
If = € W satisfies [Z], Z,,)'(z) = 0, then applying Lemma (4.1) with Z :=

21 2y, P =P P and R = Iy we have

Q R
rank | =P, 0 |(2)=g¢q, (4.23)
-P 0 B
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where strict equality holds by the fact that (Q, Py, P,) is right coprime. If z € ¥
satisfies [Z)y Z12)(z1 = 0, then applying Lemma (4.1) with Z := [Z, Zy3], P :=
Py, and R = [Ry R.] we'have

rank [ © Rk } (z)=gq, (4.24)
-P 0 0
where the strict equality holds since (Q, Ry, R2) is left coprime.
Let Z., € P"Xin 7 =12 be the transfer matrices of some compensators with.
the number ol unstable poles ny and ny, respectively, counted with multiplicities.
Also assume that dicy{Za, Z.2} solves DSP for Z. Lel Zg = PoQZ) be a coprime

representation over S. Then, Theorem 3.2 of [37] and Theorem (3.1) imply that

: -1

. QO  RyP, R |

21 Zer) =[P 0] { }2) . (; 2 J { 01 J (4.25)
-2 c2

is a bicoprime [raction and (Z(Ze). Zey) is stable. For any z € Ry, for which

(4.23) or (4.24) holds. it is easy to see that

Q@ RiFe R
rank | =Py Qa0 | (2)=q+pa
- P 0 0
Using the bicoprimeness of the fraction (4.25) and applying Lemma (4.2) to
,’/:(Zc-_,), we have that every z € W is an Rye-blocking zero of Z(Zs). From

the proof of Theorem 1| in [66] Z. stabilizes Z(Zc-z) only if the number of sign

¢ R.P, .
del 4.26
([ P Qo J ) ( )

in the sequence ay, s, ..., ;15 not greater than nq, the number of nnstable poles

changes of

Z.a. (Since each o; 13 an Ry-blocking zero of Z(ZC-_;), the determinant in (4.20)
is nonzero when evaluated at any o; and therefore its sign in the sequence oy, o4,
..., 0¢ 18 well-defined.) On the other hand, for any z € W it holds that Z5,(z) = 0.
Thercfore, the number of sign changes of the determinant in (4.26) and that of

det(Q).del(Q.2) in the sequence 7y, 3, ..., 0, ave equal. It follows that the number
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of sign changes of dei:()) in this sequence equals 5 (the number of odd integers
in the set {1, 92, ....1:}). Then, del(Q).det(Qc2) has at least » — ny, sign changes
in the sequence gy. 0., ...,7,. In other words, for Z, to stabilize Z(Zt.-z) it must

hold that 5y — ny < 1y, This establishes the basis of induction for N = 2.

Now assume that -he statement holds true for L. We establish the statement
for NV := L + 1. Let Z,; with n; unstable poles for 7 € N solve DSP for Z. Let
Zen = Pon @y be arizht coprime fraction over S of Z.nv and consider Z(ZCN) and
its iudnced fraction i (1.13). By Theorem (3.2), (4.13) is o bicoprime fraction
aud DSP for A(Z\ 15 solvable. et \111,(7:), namely the set of real unstable
decentralized blocking cevos of Z(Zax 1. be as defined by (4.1%1. By Lemma (4.7),
we have W C W,(Z) and, by Lemua (4.4), the elements of W, (Z) and the poles
of Z(Z.n) ave disjoius. Let &, &, ... 57 denote the elemen= of VL(2) arranged
in the ascending order. Also let 7j; denote the number of poles of Z(Z,,N) counted
with multiplicities in rhe interval (4,.6:2), 7 € {1,2,....71 = 1}. (Clearly, every
unstable pole of Z(Z.;) is an unstable zero of

ded( v H”\_’ Fen ) (4.27)
=Py Qe

with the same multiplicity and vice versa.) By the inductive hypothesis the
nuber of odd integers in the sequence 7y, 72, ..., Ji-1 s less than or equal to
Sk i I this case e number of sign changes of the deterninant (4.27) in the
sequence oy, o, ... 7. is nol greater than YL, n;. Also in this sequence (4.27)
and det(Q).det(Q.x) rakes the same sign as every decentralized blocking zero z
of Z satisfies Zyn(z) = 0. The number of sign changes of det(Q).det(Q.n) in
this sequence is no less than 5 — ny. where » 1s the munber of sign changes of
del(Q) i oy, 7y, ... o, which is precisely the number of odd iutegers in the set
{m.onaoned. Thatis p =y <ny+ 1y + . 40y Since the number of unstable

poles of Z. is equal to TN, n; the proof of the first statement is completed.

—
(i1) For the proof of the second statement we first consider the simplest case
’ . Sy . .
where N 5, = 7. Applying Lemma (4.8) inductively we obtain compensators

LeNy ooy Loz With nn, ., 0y Cy poles counted with multiplicities, respectively, such
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that the following fraction of the closed-loop single chaunel plaut is bicoprime

r 9-1 B
Q RnPuw Py || Ry
. — Py o 0 0
Z=[p oo 0] @
. “P‘i 0 ch J 0

and has the following property: If oy, a3, ..., &; denote the R, blocking zeros

of Z arranged in the ascending ovder and if 7j; deuotes the mumber of poles of Z

counted with multiplicities i the interval (&, 6,2,9. ¢ & {1,2....,¢ - i}, it holds
that n = n — Z,-l‘:l n; where 7 is the number of odd integers in the sequence

My <o Nizy- Then, gy — 7 = 0 and (1) of Theorem {1.1) implies the existence
of Zg such that Z., has ny Ci poles counted with multiplicizies and (Z: Z) is
stable. Consequently, diag{Z.i,.... Z.x} is a solution to DSP for Z. Moreover

the compensator Z; has n; Cy poles counted with multipliciti=s, 2 € N,

The general case where Y n; — 5 is a nonnegative even number is treated
similarly, however a modification on Lemma (4.8) is needed. Due to its complex
nature, we omit the modified version of Lemma (1.8; and give only a sketch of

the proof for the case N = 2. The case N > 2 can be handled similarly.

Let 1y +n2—n be a nonnegative real number. A local compensator Z,, around
channel 2 can be found such that the induced fraction (125 of Z = Z(Z.) is
bicoprime and Z,, has 1, poles in Cy. with multipheities. These voles are allocated
in such a way that 7y of them are real whereas the others are nonreal where
1y < man(n,ny) 1s the maximum integer satisfying n; - ity ix an even number.
Moreover, if 7, ..., 0; denole the Ry, blocking zeros of Z i the ascending order
and if 7; denotes the number of poles of 7 connted with nndtiplicities in the
interval (6;,6i41), ¢ € {I,....f =1}, it bolds that §j = 5 — & where 3 is the
number of odd imegers in the sequence 7;, 1 =1, ... { — 1. Observe that if ny <y
then ny, = ny, if 1y >y and ny — 5 1s even then 7o =y, and il vy > 9y and
ny — 1 is odd then 1y =9 — 1. In all cases ny + 112 — y = ny — 7 is a nounegative
even number as 1y + ny — 7 is even. Applying (ii) of Theorem (4.1) we obtain a
compensator Z, which has n; poles in Cp with multiphaties and (Z(ch), Zey) 1s

stable. This completes the prool.0
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Remark (4.1). If the plant Z is not strongly connected, it can be decomposed
into its strongly connected subsystems using known procedures [10]. In this case,
for each strongly connected subsyvstem DSP can be considered independently of
the other strongly connected subsystems. Therefore, assuming that DSP for Z
is solvable, the synthesis of a decentralized stabilizing controller with minimum
number of unstable poles can be achieved by applying the procedure in Theorem
(1.2) to the strongly connected subsystems of Z separately.e

Remark (4.2). Note-that the connectivity assumptions (A1), (A2) -are
nsed only in the proof of part (i1). Therefore, part (1) of Theorem (4.2) is valid
even in the absence of these assumptions. It is our belief that even part (ii) is
valid in the absence of assumption (A2) as the notion of decentralized blocking

zeros sees Lo be very natural for those plants where the assumption (A2) fails.e

Remark (4.3). On comparing Theorems (4.1) and (4.2), we now conclude
that the “least possible” unstable order (McMillan degree) of centralized and
decentralized stabilizing controllers are determined, respectively, by the number
ol odd distributions of R4 poles among Ry.-blocking zeros of Z and among the
R4e decentralized blocking zeros of Z. Since the set of decentralized blocking
zeros may be a much larger set than the set of centralized blocking zeros, the
least unstable order of a centralized controller is usually much smaller than the
least unstable order of a decentralized controller.e

We can now state a solution to DSSP. The result is immediately obtained on
noting that » = 0 is a necessary condition for the solvability of DSSP by part (1)
of Theorem (4.2).

Corollary (4.1). DSSP is solvable if and only if Z is frec of unslable de-
centralized fixed modes and there are an even number of real unstable poles of 7
between each pair of zeros in the sct .

By Remark (4.3), the solvability of DSP together with the strong central-
ized stabilizability is in general not enough for the solvability of DSSP. This is

Hlustrated by the following example.
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Example (4.2). Let a 2 x 2 transfer matrix be given by

(z—1)(z=3) {(z—1){(2—3)
f (s z=2)(2~4)  (=241)(2=2)(z—4)2
/=
{1 {=+1)3

It is easily checked that [1] 7 is free of unstable decentralized fixed modes. We
have W = {1.3, oc}. 5 = | (corresponding to the pole at z = 2) and p, = 1
(corresponding to the pole at = = ). Theorem (4.2) and Remark (4.2) yield that
7 is not decentralized strong stabilizable. and that any decentralized stabilizing
controller of Z has al least o + 7, = 2 unstable poles with multiplicities. On the
other hand, since 7 has no R,.-vlocking zeros except z = o0, it Is (centralized)
strong stabilizable. A

By using various different characterizations of the Ry, decentralized blocking
zeros given 1n Section 1.2, it is possible to obtain many interesting sufficient
conditions for the solvability of DSSP. One obvious condition is that U has at
most oue clement since then any set of Ry poles will have parity interlacing
property with W. We state four less obvious conditions below: condition (a)
follows by (4.3) and (b) by the definition of Sz and by the fact that any symmetric
permutation of block rows and columns will include either Z;; or Z;; in its lower
triangular for any 2 # J. Condition (c¢) follows by the fact that every decentralized
blocking zero of Z is actually a conunon blocking zero of varions complementary
transfer matrices. (See Section 4.2.) Conditions (d), (e) are consequences of the

conclusion lollowing Lemima (4.5,

Corollary (4.2). Let Z = [Z:)] be free of Cye decentralized fized modes. Each
of the following conditions implies the solvability of DSSP for Z:

(a) There crist 0= N for which Zi; has no Ry decentralized blocking zeros.

(b) There exist o) € N with ¢ # J for which Z;; and Z;; each has at most
one Ry, decentralized blocking zero. )

(c) Lvery complementary transfer matrie of Z is free of Ry blocking zeros.

(d) There exislts © € N such that the ¢ + 1’st invariant factor of system
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(P, Q, %) has no Ry, zeros excepl possibly zeros at oo, i.e., equiralertly

1 Q R
mnk([ “P 0 J (z2)) 2 q+ 1. Vz€R,.

(e) The plant Z is full rank and has no Ry, transmission zeros.
The following example illustrates the determination of a solution :0 DSSP.

Exainple (4.3). Let Z below be the transfer matrix of a 2-chant-| system.

[ =) 1 |
{z+1)? (z41)* (z+1)2
7 = (2:-5) 1 1
- GEDGE=-2)(E-3) | (==2)(z41) (z=2)(z+1)
(2:23) ) (2:-3)
L (e=D(=+1)(z=2) | (z+1)%(2~2)  (241)(z=-1)(z=2) ]

where Zy, € P?X', Z;, € P¥*% 7, € P and Zy € P The vlant Z is
free of unstable decentralized fixed modes and ¥ = {oo}. That is. Z is de-
centralized strong stabilizable. A Dbicoprime fraction of Z over S is given by

[])1’ P'zl]l(o)_l[R] R,] where

=y = 0.

. L=y 1
(z+1) (=41)2  (z41)
— ] —_— 1 1
o=t mn | =) @
1
ey o0

and Q = diag{(z - 1)/(z+ 1),(z = 2)/(z + 1),(2 = 3)/(z + 1)}. Following the

procedure in Lemma (4.8) we obtain Z., = [0 1] 'which is such that the following
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fraction of the single channel closed loop plant is bicoprime:

[ (:-1) : 17!
0 0 | &=m
(z—2) 1
0 (z+1) 0 (=+1)
. R,
Zza)=[ o)) 0 =B [ 0 }
z+1
1 1 .
L @ e Y L

(c=1)(z=2)
(z4+1)(z3=22242-1)

(2:3-55242)
(z#1)(2* =222 42—1)(2-2)

Since ZA(ZCQ) has no Ry blocking zeros, Theorem (4.1) implies that it can be

stabilized by some Z.; € S1X2. In particular,

N

(:(7.) [ (3323 -5627 4422 —29) (66822 —835:—2648) (532 ~5652+422-29)(3345:2 — 1200424 7955) ])
“e2)s 22(z+10)(z41)* 22(z+10)(=+1)°

is a stable pair. Thus, the stable decentralized controller

[0 0 0
I 0 0

0l - (632% = 5622 +42:-29) (36822 -8352—2648) (5323 =562 +422-29)(33452% — 1200424 7955)
L 22(z410){z+1)4 ’ 22(z+10)(z+1)*

stabilizes Z.A

[t is known that strong stabilization problem is generically solvable for non-
scalar systemis.  We can prove the following analogue result for decentrahzed
strong stabilization problem. Let PPX" he a subset of PPX" such that Z € PP*
if and only if (A1), (A2) hold for Z and DSP for Z is solvable.

Theorem (4.3). For almost all Z € PP*" DSSP is solvable, wherce the quan-
tificr “almost all” is with respecl to the subset topology induced by the graph

topology.
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Proof. If DSSP for Z € PP is solvable then there exists a stable decen-
tralized coutroller which stabilizes all the plants contained in a sufficiently small
neighborhood around Z'in PP*". This proves that the set of plants for which
DSSP is solvable is open in PP*". Now let Z € PP*" be such that DSSP for Z
is not solvable. Let 2> 0 be given. Assume that the fractional representation in
(4.6) holds. Let iy.jo € N. tg # jo be fixed. One Ean construct matrices Apy,
Apzy, Ag. Nri, Ao of appropriate sizes over S such that (i) [|[[A%, AR )| < ¢,
Aol < = HAr Apall < &. (1) (Q + Dg. Py + Npy), (Q + Do. Pj, + Aps)
right coprime aud (Q + Ay, Rj; + Apry), (Q = Ag. Ri, + Apy) are left coprime
pairs [6G]. Furthermore. they satisfy that (311) (P + dp1 )(Q 4+ Ng) ™' (R + ARi)
and (P, + Xpalt 0 + D)™ (R, + Ap2) bave no unstable blocking zeros except
possibly zeros at x [67).

Then. define 24+ Ay as the plant whose a bicoprime fractional representation
is given by (1G] where Py — Py + Apyy, Py = P, + Apa, Riy — Rig + Ara,
Riy — Rj, + Apy. Q@ — Q + Ag. By keeping € small enough one can ensure
that (A1). (A2) hold for Z + Az and Z 4+ Az is free of unstable decentralized
fixed modes. i.e.. Z + Az belongs to PP*" [56]. Furthermore, (Z + Az)i,;, and
(Z4+A2) 5, vach has at most one Ry, decentralized blocking zero. From Corollary
(4.2) (b} we conclude that DSSP for Z + Az is solvable. This shows that the set

of Z for which DSSP is solvable is dense in P¥*" and terminates the proof.0

The statement (i) of Theorem (:.2) answers the question (c) at the begin-
ning of Chapter {4 affirmatively and provides a partial solution to the problem of
distributing the controller complexity among the local controllers, [3]. In [3], the
controller complexity refers to the McMillan degree of the controller. We have
shown that the unstable McMillaw degree of the controller can nearly arbitrarily
be distributed aiong the local coutrollers such that every local controller has a
prespecified number of unstable poles with the exception that an arbitrary one
of the controllers may have to posess one extra pole. (This constraint is due to
Theorem (4.1) (ii1).) Note, however, that an arbitrary distribution of unstable
poles among the local controllers might yield an undesived distribution of stable

poles among the controllers since no attempt has been made in the synthesis
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procedure of Theorem (4.2) to allocate the stable compensator poles.
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Chapter 5

DECENTRALIZED CONCURRENT
STABILIZATION PROBLEM

The objective of this chapter is to rigorously establish the relationship between
the notion of Decentralized Blocking Zeros, Decentralized Strong Stabilization
Problem (DSSP), Decentralized Concurrent Stabilization Problem (DCSP) and

the apphcations of DCSP in the decentralized synthesis problems.

The motivation of DCSP. which is a special decentralized simultaneous stabi-
Jization problem [58], arises from the controller synthesis problems for large-scale
systems. In the following sections we will be dealing with three special problems
concerning large-scale systems. namely (pl) stabilization of composite systems
using locally stabilizing subsystem controllers, (p2) stabilization of composite
systems via the stabilization of diagonal transfer matrices and (p3) reliable de-
centralized stabilization problem. All these problems will be formulated and
solved in the DSSP and DCSP framework under a mild connectivity assumption.
For a discussion and brief overview of these problems the reader is referred to
Chapter 1.

We now state a smmmary of the main results presented in this chapter. Sec-
tion 5.1 considers the solution of DCSP. In Theorem (5.1) we obtain a solution
to DCSP by transforming it to a Decentralized Strong Stabilization Problem.
Proposition (5.3) ijuvestigates the set of decentralized blocking zeros of a sub-

sidiary plant associated with Z and T;, ¢ € N and establish a relation between

93
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this set of zeros and the set of invariant zeros of the complementary subsys-
tems associated with Z. (See also Remarks (5.1), (5.2).) Theorem (3.2) states a
solution to DCSP in a spevial case. Theorem (5.3) states that DCSP is a gener-
ically solvable problem. Section 5.2 is concerned with the solution of problem
(p1). Theorems (5.4), (5.10) and (5.14) give solutions to the problem and Theo-
rems (5.9), (5.13) and (5.17) state that the problem is generically solvable in the
state-feedback. output feedback and dynamic interconnection cases, respectively.
Section 5.3 considers problem (p2). Theorem (5.13) gives a solution to the prob-
lem by formulating it in the DCSP setup. Theorems (5.19)-(5.21) investigate the
problem in the special cases (i) the diagonal plants are stable (3i) the plant 1s
stabilizable and detectable from all channels and (i11) the off-diagonal plants are
stable, respectively. Theorem (5.22) states that the problem is generically solv-
able. In Section 5.4 problem (p3) is considered. We formulate the problem by
generalizing the reliable decentralized stabilization problem considered in [57] to
N-channel systems. Theorem (5.23) gives a solution to the problem in the DCSP
framework. Theorems (5.24) and (5.25) investigate the problem in some special
cases. Theorem (5.26) states that the problem is generically solvable. Theorem
(5.27) considers a more special reliable stabilization problem, namely the “mul-
tiple controller reliable synthesis problem™ (MCRSP) for 2-channel decentralized

e

systems and states the solution of the problem using the results of Section 5.3.
We note that some partial results were recently reported on MCRSP using a
similar technique in [54] where various sufficient solvability conditions are given.
Here, under a mild connectivity assumption we provide a complete solution to

the problem in terms of a parity interlacing property among the subplant zeros

and poles in Theorem (5.27).

5.1 Decentralized Concurrent Stabilization Problem

In this section decentralized concurrent stabilization problem and its relations

with the decentralized strong stabilization problem will be investigated.
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Decentralized Concurrent Stabilization Problem (DCSP). Let Z =
1Z;], Zi; € P, 4,5 € N be the transfer matriz of a given plani where p =
SN pi, =S, v Alsolet some plants T; € PP i € N be given. Determine
local controllers 7., € P"*" 1 € N such that the pairs (T;,Z;), ¢ € N are stable
and the pair (Z.diag{Ze,.... Zcn}) is slable.

Observe that DCSP is actnally a special decentralized simultaneous stabiliza-
tion problem (see [58]).

The solution of DCSP 15 obtained by transforming it to a decentralized strong
stabilization problem. To do this. we first give some definitions.

Let some lefi and right coprime [ractions of T3, ¢ € N be given as
T, = Di'Nyy = N DY, i e N. (5.1)
There exist matrices K; € SPXPe Lo @ STXpi i, @ Snixri [ ¢ §"Xpi 4§ ¢ N
Dy Ny N N, | :
[ t 1 [ T — [, h e N (5'2)

such that

Li --I_X,,' L; —D,.,.

where L;, i+ € N ave strictly proper. Then, (T}, Z:) is a stable pair if and only if

Zei = (L — D X;) (K + N lXy)™! (5.3)
for some X; over S. Also let a coprime {raction of Z be given by Q7'[R; ... Rn]
where () € S, R; € SP*", 1 € N, Deﬁ-pe P, € SP*? 3 € N as {ollows:

P
o= (5.4)
Py
It {ollows that Z,; = P,Q™'R;. 1,5 € N and diag{Z, ..., Z.n} stabilizes Z, where

Zei 18 given by (5.3), if and ouly if

[ O R = DaX) Ra(ls = DiXs) Rn(Ly - Div Xn) |
P (K + Na X)) 0 0
iy 0 (K3 + Ny Xa) 0 (5.5)
. 0
| —Pn 0 0 (Kn + NewXy) |




96 Ch. 5. DECENTRALIZED CONCURRENT STABILIZATION PROB.

s unimodular over S. Define

[ @ RL R RnLn |
- 0
Gn=| -~ 0 e 0 )
: : : 0
~Pv 0 0 Kn
“ (5.6)
Dy =ity D —Hn Dy |
N,y 0 0
P = 0 N 0
: : 0
0 0 New |
and
P
P=|0, : (5.7)
Py

urther, define Ty = diag{T,...,Tn}, Dy = diag{Dr1, ..., Dyn}, Ny = diag{ Ny, ...,
N,._.V}, /X’,,{ = r'[lt(l,y{/\'],..., [\’,\r}, Ld = (li(lg{L1,..., L_,\'}, Dd = (li(tg{Du,..., D[,V},
Ny = diag{Nn...., Nin}, K4 = diag{K,....,Kn}, Lq = diag{L;....,Ln}, R =

[Ry ... Rx]. Various coprimeness relations yield that
Z:=PQi'R (5.8)

is a bicoprime fraction where the nonsingularity of (0, is ensured by the fact that
Li. 1 € N ave strictly proper. With this notation the matrix in (5.5) is unimodular
il and only it sois Q@ + Rdiag{X),..., Xy} P. The following theorem states the
solution of DCSP.

Theorem (5.1). DCSP is solvable for Z and T;, © € N if and only if DSSP
for the plant Z is solvable.

Proof. If DCSP is solvable, then by the problem definition the matrix (5.5)

is unimodular for some X;, ¢ € N which implies that (Z, diag{X,,..., Xn}) is a
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stable pair. Conversely, if (Z, diag{X,,..., Xn" is stable for some X;, i € N, then
Qn + Rdiag{Xy,.... Xn} P is unimodular, vzich implies via the unimodularity
of the matrix in (5.5) and equation (5.3) tiat DCSP for 7 and T;. i £ N is
solvable.0

It is clear from the problem dehinitions t}::r for DSSP to be solvable Z must
be free of unstable decentralized tixed modes. The following result states that if
Z is free of unstable decentralized fixed modes then so is Z.

Proposition (5.1). Let Z be free of unsictie decentraiized fived modes. Then,
Jor all K., Li, Ki. L;, i € N salisfying (5.2 7 given by (5.6), (5.7). /5.8) is

also frec of unstable decentralized fiecd modcs

Proof. Fix arbitrary A, L;. K;. [; 7 € N :atisfying (5.2) where L;. L,.: € N
are strictly proper. Define I' = QN + Iji’]_.., and S = QNg — RDy. Observe
that 7" € SP*? and is nonsingular, and S € § 77 Let S; € S denote the 2’th
block-column of 5 for + € N. Simpie manipt.ations on the equation (5.%) yield
that a coprime fraction of Z is given by Z = 7~15. Define

N (59)

Le —Kqy

which is unimodular. For any proper subset ¢t = {¢),...,7,} of N define A, €
SputoAPytritot TPt g he the submatrix of A consisting of block rows

iy ety N i, 0, N+, Also let [, € S™ 7 tPinXP denote the matrix whose

l_,,J' )/ j =1,
0 olherwise
for k= 1,...,0. 5 = 1,..., N. 1t holds vhat (Treorem (3.2). [22], [37])) Z = 'S
is free of unstable decentralized fixed modes if wud only if for every proper subset

r= {1:1" ...,?:“} of N

kjy’th submatrix equals

T oSS |
rank ; "“0 T (z) 2 p=size(T), V2 € Cy. (5.10)
r
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Equation (5.10) holds if and only if

41T 5]
rank | I, 0 |(2)>p+ Zri, Ve l,
. = tér
0 1

where [, € St X" and whose kj’th submatrix equals

Iy, of 7 =1
0 olherwise

for k=1,...,pn, = 1,..., N. It can be verified that

T S o
I, 0 |A= { / } .
Ay

0 L

Since A is unimodular we conclude that (5.10) holds if and only if

R
(z) 2 p+ D ri, Yz €Cyl (5.11)

€Y

rank

r

Applying unimodular operations, equation (5.11) holds if and only if

Q R
rank | I, 0 {(z)2p+ Zr';, Yz ey,
0 ] e

or equivalently

t
~
v
<

<

W

m

)
+

(5.12)

Iy

Ri ., ... R
rank [Q Fins . N J (z

Since Z is free of unstable decentralized fixed modes, for every proper subset

Loy ty ) of N the mequality stated 1o (5.12) holds (Theoren (3.2), [22], [56].
I “

This completes the proof.O

Proposition (5.2). If the following condition holds

rank Z;; > 2orrank Z; > 2, Vi,j €N, i # j (5.13)
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and 7 is strongly connected then there evist Ny, L, K;, Li, i € N satisfying (5.2)
such that Z given by (5.6), (5.7), (5.8) satisfies

rank Zi; > 2orrank Z; > 2. Vi, €N, i # § (5.14)

where Z;; denotes e 1 ) th submatrie of Z. Further, Z is strongly connected.

Proof. Deline a subset YV of & x N such that (¢,5) € Y if and only-if
[ # j and rank Z; > 2. Let T be the subset of Cy. excluding the poles of T,
¢ € N. Determine a positive real number 25 € 7 satisfying that for-all {z,7) € V-
rank Z;(z0) 2 2. (Such a z5 can be found easily, since 7 is an open and dense

~ ~

subset of Cy,.) Given /;"i, L; N;, Li. 1 € N where i, L;, i € N are strictly

D/,‘ N(,' [; /V,.'
L, -k:|| i =D,

determine ©; over S satisfying that 'G)i(zo) = D,.‘,-](zo)ii(zo), 1 € N where the

nonsingularity of D,;(z0), 1 € N is ensured by the fact that zy € 7. Define

proper and

=1,i€N,

Ki= Ki+ Nu®;, Li=Li—Dn0;, Ki=K:+O;Ny, Li = Li —0;Dy;, i € N.
(5.15)
Obtain Qqy, I and Z = PQ7'R. It follows that, for 7 # j, Z}_,- = -K'P.Q7'R;
(D; + L; ]\"j" N, ;) where Q:=0Q+ Z;’-\;I RiL:NTYP Sincé L;, @ € N are strictly
proper, il lholds that rank Z;; > 2 if rank PQ™'R; > 2. For any (¢,j) € Y
(5.15) yields by the construction of ©; that Li(zp) = 0, € N. In other words,
Q(zg) = (=), therefore rank P,-Q"'R,- > 2. This shows that rank Zij > 2.
Since (z,7) € YV is arbitrary, we have the inequalities stated in (5.14) which also
imply that Z is strongly connected.O
We hereafter assume that

(1) Zis frec of unstable decentralized freed modes
(1) 7 is strongly connected (5.16)

(1) rank Zy; 220 rank Z; 22, Vi,j € N, 1 #
The following procedure summarizes the solution of DCSP. First obtain left and

right coprime fractions of 7; as in (5.1). Then, determine initial compensators



100 Ch. 5. DECENTRALIZED CONCURRENT STABILIZATION PROB.

LiK7' = K7L, in (5.2) such that Z in (5.8) is strongly connected and (5.14)
holds where @y, R are given by (5.6) and P is given by (5.7). Determine the
solvability of DSSP for Z using Corollary (4.1). If DSSP is solvable construct X;
following the proof of Theorem (4.2). This yields the compensators Z. in (5.3)
which solve DCSP.

The solution of DCSP is obtained via a transformed decentralized strong
stabilization problem on the auxiliary plant Z. Note that in the solution of
DCSP one can obtain infinitely many auxiliary plants for which the solvability
of DSSP implies the solvability of DCSP and vice versa. In the sequel we will be
dealing with some spectal choices of the auxiliary plants which would enable us
to obtain more transparent solvability conditions.

The vext result is concerned with the unstable decentralized blocking zeros of

the auxiliary plant Z. Define

7| 7 is given by (5.6). (5.7), (5.8) for some K;, L;, K;, L;. i€ N

™
I
N

salisfying (5.2)}.

In other words, Z is the set of all auxiliary plants obtained via (5.6), (5.7), (5.8).
Forany Z € Z let S be the set of unstable decentralized blocking zeros of Z. Also
define Q; € SP*”, i € N to be the i’th block column of @, i.c., Q = [Q) ... Qn].

Proposition (5.3). The following equality holds: For every Z € Z, Sz = ¥
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where
Vo= {z € Cyel There cxists a permutation {iq,...,in} of N such that
[ Qi R
rank i "l
| Duy, N,
Qi Qi Ry, R,

rank = z) =p;, + pips
0 Du, 0 Ny }( )= it P

4

0 0 Diy 0 0 Niiy

rank

[0, 0, Qi Ri, R, Ri, JH_

Proof. Fix any arbitrary Z € Z. Recall from Lemma (4.5) that the following
holds

Sy = {z € Cye| There exists « permutation {i1,...,in} of N such that

[ QKy+ RLy [QNi = RDJ)gi)
rank - P () =p, V7 € N}
: 0
-I’,-A_. J

[iy....,i;} of QNg — RDy. Now let z € Cye be such that

[ QKq+ BlLy [QNo— RDdq,..5
rank -F, (z) =p, V7 €N. (5.18)
0
L — Py ]

Postmultiplying the above matrix by a suitable submatrix of A in (5.9) and
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erppl&ing further unimodular operations we obtain that (5.18) holds if and only if

O Q2 Q R R R
0 Dy 0 0 Ny,

L)

(z)=pi+p2+...+p;, VjEN.

rank

By modifving the indices appropriately and repeating the above arguments one

can show that for any permutation {7;,...,1v} of N and for any z € Cy,

[ QKu+ RLs [QNi— RD g, )

rank -

(z)=p. VjeN
0
_P

i,\'

holds if and only if

Qil Qi'z Qt Ri, Ri'z R; .
’ _) (3)21-)i1+7)i2+"'+/)ia VJEN
0 0 Di, 0 0 .. Ay )

rank

This shows that z € Sz implies z € W in (5.17) aud vice versa. Since Z € Z is
arbitrary, this completes the prool.0

Remark (5.1). From Proposition (5.3) we couclude that the set of unstable
decentralized blocking zeros of any auxiliary plant in Z is independent of the
mitial compensators; it depends only on the plants Z and 1;. ¢ € N. Therefore.
1t constitutes an jnvariant set associtated with Z and T, 7 € N.e

Let us now vestigate the set ¥ in detail. The [ollowing proposition states
that the zeros in the set ¥ are among the set of zeros of invariant factors associated
with the complementary subsystems of ([P ... PL]". Q,[Ry ... Rx]). (See Remark

(5.2).)
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Proposition (5.4). Define

= {z€Cic|lzisazeroof the p+1'st invariant factor associated with the
system
Pi;4+l
( a(gr[Rie_ Hi,. ])
Py

for some proper subsel {i;.....1,} of N}
(5.19;

Then. the following inclusion holds: U Cr.

Proof. Recall lrom Clapter 2 that for any z € Cy.,
Q R, R;,
)

i/4+l

rank ' (z) =p

—P, ]

holds if and only if = is a C.. zero of the p + U'st invariant factor associated with
the system

P,

Lt

P,

iy

That is, the following equality holds:

"= {z € Cye] For some proper subsel {iy,...,%1,} of N
Q R, I,
__.]-71.
rank n (z)=p }
: 0
__.P‘-N

Let zp € C,. satisty that

h Q@  Q R R R;

C () =ptpet o+, (5.20)
0o .. D(J' 0 0 !\’[j l ’

rank
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for some j € {2,.... N}. Since Z is {ree of unstable de~entralized fixed modes, it
holds that rank[Qy ... Q-y Ry .. 8,1)(z) 2 p1 + ... + pjo1. 72 € C4. Then, for

some unimodular matrices {7 and V of appropriate size

: {i: 0

where p:= py+...=pj_y. A € SPTPXH+T-1 and the matrix at the right hand size
of (5.21) is the Smith cauonical form of the middle matrix at the left. Equation
(5.20) holds if and only if

QN I
rank _2"" g
/)U 0 1\'r[j

A
o
(SN

S

J (z0) = 1 (5.3

where _ -
Q} o .
N S =Ul0Q; R;
[ o B J @5 Ri)

so that Q} € 877, R} € §P*m Q% € SP7PXPr and R} = 8777, Equation (5.22)
holds if and vuly if [RID,; - QN,; A)(z0) = 0. The fact that A(zg) = 0 implies

Q0 R .. R
- ]'_)j
rank 0 (z0) = p.
L '—[‘)N J

ie, zo € I Now let {¢y,....2;} be some permutation of N. Modifying the indices
appropriately and applying the arguments similar to those above, it can be shown
that for any z, € C.. for which

Q,’l Q,-) ]‘w’,'l R,'J

o) = pip T+ Pi
A o) =P P

rank
L

holds for some 7 € {2,...,N} only if

7

[ Q R, . Ry,

~P;

(z0) = p.

rank

~P, ]
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This implies by definition that every z € ¥ is contained i I, completing the
proof.0

Remark (5.2). Consider the cases where I' = § or I' contains only one
element. In these cases. it follows from Proposition (5.4) and Theorem (5.1) that
DCSP for Z and T;, + € N is solvable. This sufficient condition will be used
in the following sections where we consider the synthesis of special decentralized
controllers for large-scale systems.e

We now give a necessary and sufficient condition for the solvability of DCSP in
a special case. Let 2 and 7y denote the sets of Cy poles of Z and Ty, respectively,
with multiplicities.

Theorem (5.2). Lt TyNZ =0 and Ty N U = 0. Then, DCSP is solvable if
and only if DSSP for T — Z is solvable:

Proof. The strong connectedness of Z implies that the transfer matrix 1'— 7
is also strongly connected. Since TyN Z = 0. (@, Dy) is a left coprime pair. Let
QD;! = [)JIQ for a left coprime pair of matrices (Dd O) Then, a left coprime
fraction of T'— Z is given by Q™'D; (QNy — DqR?). Define

D = {z € Cy| = 45 a decentralized blocking zero of T'— Z} U W

From Lemma (4.4) = € D implies Dy(z) is nonsingular. Following the proof
of Proposition (5.2) let us choose Ly such that Ly(z) = 0 Vz € D and Z =
(QKy+ RLy)™ (QNg - RD,) satisfies that the relation (5.14) holds and Z is
strongly connected. With this choice of Ly, it z € D then (QKy + RLg)(z) =
(QK4)(z) = (QD7')(2). 1t now holds that

[((21\,1 + HL ( )J Q \(l - RD(I)( )
(D,,Q 'QUT = Z)Da)(2)
(DT - Z)Da)(z)

eV = Z(z)

Since Dy and Dy are block diagonal, z is a decentralized blocking zero of T' — Z.
Conversely, if z is an C,, decentralized blocking zero of 7' — Z then the same
arguments vield that z is a decentralized blocking zero of Z as well. Hence,

the set of Cy. decentralized blocking zeros of T' — Z is precisely ¥. Note that
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det(QKy + RLy) takes the same sign at all z € ¥ N Ry4e if and only if so does
det(Q).det(Dy), since for each = € W, det(QKy + RLy)(z) = (det(Q).det(Kq))(z)
= (det(Q).det='(Dy))(z). This completes the proof.0

The assumption that ;N Z =P and T, N = § generically holds in PP*"
xPPxmx PPNXTN with respect to the product topology induced by the graph
topology where PP*" denotes the set of transfer matrices Z in PP*" satisfying
that (5.16) holds. From Theorem (5.2) we conclude that for almost all plants
Z, T = diag{T;; 7 € N}, a solution Lo DCSP exists if and only if DSSP for the
difference plant T — 7 is solvable.

We will now show that DCSP is a generically solvable problem.

Theorem (5.3). The set of N + L-tuples (Z,Ty....,Tn) for which DCSP
is solvable is open and dense in PP xPrioxn o Pray (wille respect Lo the
product topology induced by the graph topology).

Proof. Let DCSP be solvable for some (Z,77,...,Tv) by a set of local con-
trollers Ze1, ..., Zen. Under sufficiently small perturbations on Z and 7T;'s it holds
that the pairs (Z + A, diag{Z1, ..., Zen}), (1 + D1, Zaa)s ooy (T + An. Zon) are
still stable with A and A;, + € N denoting the perturbations over P. This proves
that the solvability of DCSP is an open property. Now suppose that DCSP is
not solvable for some (Z,7T},...,Tn). We will show that by an arbitrarily smuall
perturbation A € PP*" on Z the matrix Z + A belongs to PP and the set of
C4. decentralized blocking zeros associated with Z + A and 13, ¢ € N denoted
by \i/L\ satisfies \i/A NR4e C {0}, i.e., it contains at most only one Ry, element.
In this case Remark (5.2) states that DCSP for Z + A and 7},7 € N is solvable.
This shows that the set of (Z, T}, ..'., T'n) for which DCSP is solvable is dense. To
prove the existence of such perturbations we proceed as follows. Let Z be given
by (5.2), (5.6), (5.7), (5.8). We remind that for ¢ € N, S; € SP*" denotes the 2'th
block columu of S = QNy — RDy. One can find arbitrarily small strictly proper
perturbations A; € SPX™ on S;’s such that { Ry, zeros of sif (Si+4A;)} C {0},
i € N. Since (Dy, Ny) is a right coprime pair we can find strictly proper ma-

trices Al € Srxr, A, € SP* such that AIN,[ - A-zD,l = [Al A,\r]. Define
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A= (Q+A) " (R+A;)— Z. It can be ensured by choosing the relevant norms
sufficiently small that Z + A = (Q + ;) (R + A,) is a coprime fraction and
Z + A is a matrix over P?*" . The choice of A reveals that \i/A N R4 contains at
most one element: z = 0o, because every unstable decentralized blocking zero =z
of

(Q+ AN K+ (R+A) L7 {(Q + A1) Ny = (R + Ay) Dy

satisties (.S; + A;)(z) = 0 for some ¢+ € N. This and the above discussion complete
the proof.0r
Before closing this section we give a uecessary condition for the solvability of

DCSP. (See also Section 5.3.) Define
O ={:eRy|Ti(z)=0.i e N}.

U ={z € Ry| Thereecxists a permutation {t1,...,in} of N such that

[z 0
Ziviy  Digiy 0 (2) = 0}
| Ziniv Zigiy Zinin J

i.e., ¥ is the set of Ry decentralized blocking zeros ol Z.

Proposition (5.5). The problem .DCSP for Z and T;, © € N is solvable
only if there arc an coen number of real elements of T4U Z between each pair of
elements in the sct © NV, where the union Ty U Z is taken with multiplicities.

Proof. From Lemma (4.4) every z € @ NV implies ¢(z) # 0. Then, we can
choose Ly such that L(z) = 0 for all - € @©N VY, 7 satisfies that the relation
(5.14) holds and Z is strongly connected. Let zo € © NV be fixed. Observe that

Dy(z0) and Ny(zo) are nonsingular. It holds that

(QA’(I)—](ZU)(QACI - RD(I)(ZU)
K7 (z0)(NaD7' = Q7" R)(20) Du(20)
= —[i’d—l(ZQ)Z(Zo)Dd(Zo).

(T~15)(=)
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Since Iy and Dy are block diagonal matrices this latter equality shows that
50 € W. This concludes us that © N W C . On the other hand det(T)(z) =
det(Q K q)(z). From Proposition (5.3) and Theorem (5.1) DCSP is solvable only
if det(T)(2) takes the same sign at the Ry, elements of the set ¥ which holds,
by the fact that @ N W C \f/, only if det(Q).det(Dy) takes the samelsigu at all
z € @M. This completes the proof. Note that in Proposition (5.3) the plant Z
does not need to satisly (i1i) of (5.16), since we consider only a necessary condition
for the solvability of DSSP (Remark (4.2)).0

Corollary (5.1). Let T = Z,. i € N. Then, DCSP is solvable only if
there are an even manber of veal clements of Ty U Z between cach pair of R,

decentralized blocking zcros of Z, where the union s taken with multiplicities.

Proof. The proof {ollows from the fact that in this special case ONY = ¥ O

5.2 Locally Stabilizing Subsystem Controllers
Consider a collection of linear Lime-iuvariant finite-dimeuosional systems described
by

v, = A+ Bivg + u;
yi = Chrg ‘

(&4
[
()
~—

ieN (5.2

where A; € R™*™ B, € R™*™ and (/; € RPFX™ corresponding to stales, inputs
and outpnts, respectively. Assime that these systems are intecconnected accord-

mg to the rule u; = Z’i\':, Ay, © € No Then, the composite (interconnected)

system can be described as

Y: 2= Au+ Bv (5.24)
5.24
y= Cu
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where z := [z} ... 24,

A+ An A, Ain
An Ayt Ap Asn
A= 7 P 2N . B = diag{ B, ..., Bx}),
A AN Av 4+ Avn |

Y] X v I VR VA oy e [ !
Co=diag{Cy,....Cn}, y =1yl o yh] and v = [e] vl
(5.25)
[t is assumed that the subsystems &; = (C;, A;, Bi), © € N and the composite

system & = (C, A, B) are stabilizable and detectable. We let 1 = 2% n,.

The problem of stabilizing the composite system ¥ using locally stabilizing
subsystem controllers, denoted by (pl), is defined as synthesising local controllers
Sei, 1 € N around subsystems E; such that (1) when the interconnections do not
exist (X4, 8q), © € N are stable and (ii) when the interconnections A;; exist the
composite closed-loop system becomes stable. In the control theory there is an
enormous literature concerning this problem. When the states of the subsystems
are directly measurable, there is a variety of solution procedures employing the
vector Lyapunov functions [23], [40], [52], high gain controllers [75], {23], [43],
special interconnection structures [24]. [46], [53] etc.. In case where the subsystem
states are not directly measurable the problem is attempted to solve by observing
the subsystem states and, in some cases. decentralized state feedback laws using
local controllers [69], [52], [50]. [71], [25). We note that all these methods give
only some sufficient solvability counditions for the problem. lu fact, as indicated
in [52], the problem is a decentralized simultaneous stabilization problem which

can be formulated and solved in the DCSP framework.

Let A; and Ay be the sets of Cy eigenvalues of A;, + € N and A, respectively,
with multiplicities. Define A = (U;enAi) U Ag, where the nuions are taken with

multiplicities.
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5.2.1 Dynamic State Feedback

Let the subsystem states be directly measurable by the corresponding controller.
Define

Z=(sI=A)7"Band T, =(s] — A)™"Bi. i € N, (5.26)
where the plant Z is assumed to satisfy (5.16) (see [15]). In the special case (5.261

N and ('; = [,,. ¢« € N. Then, the problem is to determine

M

above n; = p;, 0
controllers Zg;, 1 € N such that the pairs (T}, Zs), ¢ € N are stable and the pair
(Z.diag{Ze,.... Z:n}) is stable. We have the following result whose proof follows
from the problem delinition.

Theorem (5.4). Let Z and T;. @ € N be defined according to (5.26). Ther.
(pliis solvable using state feedback if and only if DCSP for Z and 1;, i € N
solvable.

Although the above theorem gives a complete solution to the problem, some
further analysis concerning the decentralized blocking zeros of the auxiliary plant
associated with Z and T;. « € N will now be made.

Proposition (5.6). The set of Cy. decentralized blocking zeros of the auxiliary

plant 7 associated with Z and Ti. i € N denoted by U is given as follows.

o= (YU {2 €04 There eatate a permutation {1y, ..., 1y} of N such thut

:1'—.-{,1 I B'l
=iy
tank . . (_:):pl-l,
Ainiy )
..I—AIl B'l
-I—A,l A'l'l Ay B'l 0
—A,“] :I—A,‘2 A,2"2 IJ|2
"l';ll A13l2 0
rank (z) = Piy + Piyo
—/\,‘\.,l —-1\,\.'2 0 0
0 = a,. 0 B,
R T R ~An B, o
» —.-1,'2,_I - r\” - 4.,.2 —.—l,,_).'N 0 3,2 0
a R . . . . . .
: : ; : , . (2)=r}
n . . . . . .
k —A.’Nl: —A'N'? :I—A,N —A'.N'.N 0 0 B"N
0 0 :I—A"N 0 B,’N
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Proof. We let Q = (:-:1 - A)(~+l)’ ]-? = B(lel) D(,‘ = (Z[ - A")'(_z-}-_l)’
S » S
[Vlt - Bz-(z+1)7

and Ti’s, the special form of ¥ above follows from the definition. We note that

¢ € N. With these particular choices of coprime fractions of Z

z = oo belongs to W oas § = QNy — RD, is a strictly proper rational matrix.O

Utilizing the above proposition we below give two sufficient conditions in
Theorems (5.5) and (5.6) for the solution of DCSP in terms of various system
matrices associated with the composite system £ = (C, A, B) and the susbsystems

Y, = (5 A B:), 1 € N. Note that for ' € N

[ -1— A B
Ay 0

ﬂ, : -—.-’-1-2,' 0

—Ani 0]

is a system matrix associated with the system consisting of the state matrix A;,
input matrix B; and output matrix [47, AL, ... AY,). Also, for a proper subset
{11,...,4,} of N the matrix

[ 21— Ay, = A, ~ i, ~ A, Bi,, 0 0
— A, 2 = A = A, —Aigi, 0 Bi, 0
lnl{,-l__‘ an) = —.-‘\,-“,-, ——,4,',‘,._ z! - /1,'“ — /'l,'",'" 0 0 B,'"
_Aiu+1f1 _"]i..+:{; —"4":‘—:”.» 0 0

A, — A — A, 0 0 0 |

is a system matrix associated with the system counsisting of the state, input and
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output matrices, respectively, below.

[~ a
Ail + .:1,'1,1 Ai.iz Ai,,'“
/41--_)1'] -’('lt'g + fllgl_) -/ligi“
i)
L Aiu"l Aiu’"—’ Aiu + -‘li,‘i,‘ .

A

rd i . . . . .
fli,.+l'll '41"-}-]12 Lt ltp

(lm_(/{B,-J;,j € N}.

A A

Nl inia Sinin

Theorem (5.5). Let rank Ili(2) > p;, ¥z € Cy. Then. (pl1) is always. solvable
nsing state fredback.

Proof. If zo € ¥, then rank Ti(z0) = p;. for some ¢ € N. If the hypothesis of
the theorem is satisfied it holds that ¥ = {sc}. In this case Theorem (5.1) states
that DCSP is solvable and the proof is completed.O

Theorem (5.6). Let rank I"]{,,-l ,,,,, i (2) > piy + P+ Fpi, V2 €Cy, forall
proper subsels {uy,...,1,} of N. Then, (pl) is always solvable using state feedback.

Proof. Observe from the proof of Proposition (5.6) that
"= {oo}U {z € Cy| IFor some proper subset {i,....i,} of N

}.

rank UG, 00 (2) = Pi + pig + -+ pi,

Then, the result follows from Theorem (5.1).0
Corollary (5.2). Consider the special case where the composite system
(5.24) is symmetrically interconnected [51} (see also [32]) so that A; = A,

H . i#y
Aij: . )
0 1=y

B; = B, and p; = p, t.j € N for some matrices A,, H, B,. Theorem (5.5)

states that (pl) for the symmetrically interconunected system is solvable using
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state feedback if

i z[ - A, B, (2) > Vs e
TanK | Z )0) ot .
"0 ! ¥

which holds if and only if the p, 4+ I’st invariant factor of the system (H, 27 —
Ay, By) bas no unstable zeros.O

As an application of Theorem (5.2) we have the following result,.

Theorem (5.7).. Assume that (UienAi) N Ag = @ and (UenA, 09 = 8,
Then, (pl) is solvable using state feedback if and only if DSSP for T — 7 is
solvable.

We now investigate a previously established fact using our setup [43]. [52] (sce
also the references in [52]). Let the input matrices By, ¢ € N be full-colmmm rank.

Theorem (5.8). Assume that range A;; C rangeB;, i,j € N. Then, (pl) is
always solvable using state feedback.

Proof. Let Dy, Ni. i € N, Q and R be as in the proof of Proposition (5.6).
We also obtain D,;, Ny, K;, L;, K;, L; i € N defined by (5.1) and (5.2) such that

Z given by (5.6), (5.7), (5.8) satisfies (5.16). By assumption we have

( A“ Al‘l A]‘.-v ] [ B] 0 0
A-z] .f"-_)-g Ag,\/ _ 0 B-z 0 P
Anr Ao Axn J 0 0 By ]

for some matrix E = [E;] of appropriate size where E;; € R"*? 4 j € N. It
holds that Q = Dy + NE. Hence QKq+ RLy =1+ NyEK, and QN,— RD, =
NyENg. We bave Z = (1 + N E Ko)™"V NyENy = Ny(I + EKyN) ™' EN,. Since
Bi.i¢€ N are full (:611,111111 rank /\A";IN,[ = ],..(H]_—]) for some Nd of appropriate size.
Fhen, z is an unstable decentralized blocking zero of 7 it and ouly if it is an

unstable decentralized blocking zero of (I + EKyNy) ™' ENy. The identity

Dy, Ny Ky —Ny _
~Lq Ky Ly Dy
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implies that K4N; = N;Ky. As a result, DSSP for Z above is solvable if and
ouly 1l DSSP for 7= (] + ENgK )7 2Ny is solvable. Tt will now be shown that
DSSP for Z is solvable. ‘Let an unstable decentralized blocking zero zy of Z be

such that

[ I+ ENgIR, E\Nyy ... E;N,; |
(0 0 -1, 0 0
rank 0 0 0 —/, 0 0 (20)
L ¢ 0 0 e =y | ]
=17, Vj €N,

(5.27)
where £; € S™*Pi i = N denote the 2’th block column of E. Using (5.27) above
one can show that £ N ) (z0) = 0,0 =1, N, 5 = 1,...,2. Observe that in this

case det(/ + ENgN4)(z0) = det(I) = I. Modifying the indices appropriately and
repeating for all R., decentralized blocking zeros of Z we conclude that for any
Roy. decentralized blocking zero = of Z, del(I + ENyKy)(z) = det(!) = 1. This
shows that DSSP for Z is solvable. The proof is then completed via the above
discnssion. O

The following result states that (pl) is generically solvable in terms of the

intercouncetion matrices. Consider the following condition

for cach proper subsel {iy,...,i,f of N (5.28)
' 5.2
rank diag{('i,,.....Cx} 2 2 or rank diag{Bi,, ..., B.} =2 2

which is already implied by (iii) of (5.16) when N > 3.

Theorem (5.9). [or almost all

( An o An Ain
A= Ay Ap Agn c R
| Axt Ane ANN |

(p1) is solwable using state feedback.
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The proof is based on the following lemmata.

Lemma (5.1). Let A € R™", B € R*™*" — {0} and € RP*" — {0} be

given such that rank3 > 2 or rankC > 2. Given each = < R_ — {0} there exists

A € R™™ such that [|A]] < e and

[zi—(/nA) B ]
rank _

z)>n. Vz=C_.
G 0 (2)

The proof of Lemma (5.1) is based on the following iemmn:a.

Lemma (5.2). Let B\, E; € R be given. Given cach £ € Ry — {0}
there exists A € R"™*™ such that ||A]] < & and rank(zEy — £y — N)(z) > n,
Vz € C+'

Proof. The proofl is given by induction. For n = | iet £y = [e1 ), £y =
[€) &) where ¢4, €3, €, é; € R. Itis clear that with arbitrarily small perturbations
81, 63 € R the polynomials ze; — €, — & and zey — €2 — &5 can be made coprime,
proving the claim for n = 1.

Now assume that the lemma holds true for [ > 1. Let n = [+ 1. Define

) nl - 7

en Eun - en En
El = - 4 ! bl‘z -: — Tl

Ly By £y Eyy

where ¢11. €11 € R, By, Evy R By, By € RN Byl By € RN By the
inductive hypothesis, there exists Ayy € RIFX with norm less than £/3 such that
rank([z [y, — [yy— Ap)(z) 2 1, Vz € C;4. There exists a unimodular polynomial
‘matrix 77 € R guch that

,['(S]bzg - [1/2-2 — Agzl)‘Z [ 0 J .

Define [T T']' = T such that T € R** T ¢ R+ Further define £ =

T(zEy — [5)) and e = T(zFy — 1251). Since T is nonzero. there exists Ag €
21 :

RIFIXT with norm less than &/3 such that e — T Ay is a nonzero polynomial.

There also exists §;; € R satisfying |6),| < £/3 such that the polynomials

€ — én - (213]2 - ju)(E - T'A'zl) - 61], c— TAQ] (529)
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are coprime. Observe that the norm of

A _ (\:11 0 i
Ay Ay

is less than & We will now verify that rank(zE; — E,— A)(z) > 1+ 1, Vz € C4.
For any z € C4 it holds that
I 0

.;“E*Eo—:f&:
OT}(l 2 — A))(z)

rank(zE, — Fy — Aj(z) = 7'(171/‘:([

zepy — 6 = b6y — (2B — Ey)(E = TAy) 0
= rank(] 0 I 1)(z)
e — TAy 0
Since the polynomials in (5.29) are coprime rank(z0, — Fy — A)(z) > 1 +1
Yz € C.. This completes the proof. o

Proof of Lemmma (5.1). We assume without loss of generality that r = 1,

p = 2. There exist nonsingular real matrices U/ and V such that CV = [[, 0],

UB=[107. Let
A Al v /:1‘ A
A:3 El A3 E;z ]

so that 4, A, € R Ay, Ay € R 2 A, Ay € RV and Iy, E, €
Rr=1%1-2  Teom Lemma (5.2) there exists A € R*™'"=2 with norm less than

/(I MENV ) sueh that rank(z 12, —Ey—A) >n—2 Yz €C,. Deline

= UAV

0 0 |

v
0 A

A=

Observe that ||A]] < e. On the other hand,

21— (A 5] rolla-(A+a) B[V oo
rank =t 1,_+ A) B (z) = rank( ( .O (f._.+ ) )(z)
-C 0 0 IJ ~C 0 0 I

0 0 1
=rank | 0 zE - Ey-A 0 |(z2),
I, 0 0
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Vz € C,. By the choice of A

0 0 1
rank | 0 FE - Ey =N 0] (zi>n+1, VzeC,
I, 0 0

which implies

2I—(A+A) B
7.(171/\7[ ((_7’+ ) 0 J (2)2n+1,VzeC,.

This completes the proof:0

Proof of Theorem (5.9). For Q aud R we again refer to the proof of

Proposition (5.6). We remind also that [P] ... Py}’ = I, so that P, € SPxp,
t € N,
Step 1. Since
P
(diag{Cy,...,Cx}, 2] = A, diag{B. ..., Bx}). (] : Q. Ry )
Py
are two stabilizable and detectable realizations of Z, they are Fuhrmann equiva-
leut over P, [27]. Fix any proper subset {¢},...,7,} of N. From Lemma (2.1) the
svstems
bl
(diag{Ciyprs s Cin}o s T= A diag{ By, ., B, ). (| ¢ |,Q,] R, R, |)
Fiy

are also [Fubrmann equivalent over P,. From Lemma (2.2) we conclude that

- A () B; ,....,B,'l n
rank _ _ _ diag{ By 2 (z) >p, Vz€C:  (5.30)
diag{-Ci i —Ciy} 0
if and only if
. Q R, R,
- b +1 .
rank e (z) >p, Vz€C4. (5.31)

-P, J
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If (5.31) holds for all proper subsets {iy,...,7,} of N then by definition I' C
{oo}. Thus. if we can show that (5.30) holds for almost all A. and for all proper
subsets {7;,....7,} of N for which (z/ — A)7!'B satisfies (5.16) then the proof
will be completed via Proposition (5.4) and Remark {5.2). ( Recall that A =
diag{Ay, ..., AN} + Ac)

Step 2. Fix any proper subset {i1,...,7,} of N. If A, is such that (5.30) holds

this means that the p+ 'st invariant factor of the system matrix associated with
(diag{Ci, .. Cic}, 2zl = A diag{ By, ..., Bi,})

has only stable zeros, which 1s a robust property under sufficiently small pertur-
bations on A.. On the other hand. if A, is such that (5.30) fails. i.e.. if for some
T E C+

=] — A diag{B,,...., B}

rank ] § (z) = p,
diag{—Ci . ,....=Ciy} 0
Lemma (5.1) reveals an arbitrarily small perturbation on A, such that (5.30) is
made to be satisfied with A modified accordingly. ( Note that (iii) of (5.16)
ensures rank diag{C; ,,,...., Ciy} 2 2 or rank diag{B;,, ..., Bi,} > 2.) Hence,
the set of A, for which (5.30) holds is open and dense in RP*P. Repeating tor all
proper subsets of N and using the fact that the intersection of open and dense
subsets is also open and dense we conclnde that for all proper subsets {i,...,in}
of N (5.30) holds, for almost all 4. Also note that the set of A, for which
(5.16) is satisfied is open. These arguments, together with the conclusion of Step
1 above complete the proof. ( Tu the above proof the dependence of A, ) and

I' on the interconnection matrix A, has not been indicated for the notational

convenience. )3

5.2.2 Dynamic Output Feedback
[n case only the subsystem outputs are available to the local controllers, we define

Z=C(s/=A)"'"Band Ty = Ci(sl - A)™'B;, 1 €N (5.32)
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so that Zy; = [0 ... C; ... 0] (27 = A)7H [0/ ... B ... 0')". We assume that Z satisfies
(5.16).

Theorem (5.10). Let Z and T;. i € N be defined according to (5.32). Then,
(p!) is solvable using oulpul feedback if and only if DCSP for Z and T,. | € N is
solvable.

As in the case of state feedback we will investigate the solvability of DCSP in
detail. We first give the set of Cy, decentralized blocking zeros W of the auxiliary
plant Z associated with Z and T;. /i € N.

Proposition (5.7). The set W associated with Z and T;, i € N is given as

Jollows:

V= {~xju{ze Cql There exvsts o permutation {iy,. 15} =/ N such that

0 0 a ) By 0 o
0 0 0 0 =l - A s 3, 0 0
0 0 0 0 0 3 8, 0
7
l,;.vl 0 0 —b,l 0 0 0 i 0 ) 0 0
" 1
1 o Ip, 0 0 -y, 0 o | o 9 0 0
o - 1
. . ! (=
n .
k
0 v Ip; 0 0 = i "] 0 3 0 0
0 o 0 0 0 o o =Gy 0 2 0 0
0 0 0 0 0 0 ) 0 ) B, - A
0 0 Ip; 0 0 0 0 0 2 0 -
L ) 7

=p

nto ke tete;, VIENT

Proof. Let Z = PQ7'R be a bicoprime fraction of Z over S such that
Qe Sy, P =[P .. By, PeSrxe R=[R .. Ryv]. Ri € S { €N,
Also let T, = PQ;'R; be a b].CO])l:iln(‘ fraction of T;. i € N. where (), = S
P e Srixai e Snxni g N‘. Alsorecall that Z = Q" "R and T; = Dy N, i € N

be some left and right coprime fractions of Z and T;. ¢« € N. Using unimodular

operations it holds that

rank Qi R (2) = p,,
Dii,  Ni,
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for some z € C; if and only if

I[-B |0 o

0 =P, | 0 0

rank | - : : : (3) =py+q+q;-
0|-Fy| O 0
0] 0 |Ry Q

L ] U U _JL‘;.A J
Stmilarly. for any ; € N

0;, Q., R, R,

<

0 ] N

J vl

rank

for some z € C4 if and only if

[0 0 0| Q@ Ry, Ry, .. Riy 0

L, 0 0| =P, {0 0

0 I, 0 -P, 10 0

0 0 I, Pl 0 0 0 0

rank ’ ! (z)

0 0 0 _]31'1+1.& 0 0 0 0

0 0 .. 0 Poi o 0 .. 0 0

0 0 0 0 10 0 R, Qi
0 If 0 0o 0 0 -7, |

=pytpytoF s et

; ofine ; — > - __1._. e Y — - N
\We define Q =(z/ A)'(:+1) P = C, R B.—= +1) Qi = (21— A; ) +1)’ P =
R, = B;.—— (_ ) 7 € N. The result now follows from the above discussion. Note
that z = oo l)elougs to W as Z and T} are strictly proper.O

As an application of Remark (5.2), the following theorem states a sufficient

coudition for the solvability of DCSP.
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Theorem (5.11). Lel

=l = A liag{B;,.... B;
rank diag{B, 2 (z) >n, vz €C,

diag{—Ci 4+ —Cip} 0
Jor all proper subsets {iy,...,4,} of N. Then, (p1) is alvays solvable using output
feedback.
Proof. Following similar arguments to the proof of Proposition (5.4) it can

be shown that the set 1" associated with (C; A, B takes the following forn

"= {oc} U {z € Cy|For some proper subset {iy,....i,} of N
= — A liag{B,,..... B; ‘
rank | _ diag{B. 2 (zr=n )
| diag{=Ci 40y on=C ) 0
If the hypothesis of the theorem holds then I' = {oc}. The result now follows
from Remark (5.2).0 .

Our next result is the extension of Theorem (3.7) to output feedback case.

Theorem (5.12). Assume that (UienA) N Ay = 0 and (Uien-\i) NU = 0.
Then, (pl) is solvable using dynamic outpul feedback if and only if DSSP for
T — 7 is solvable.

The final result for the output feedback case is given by the next theorem
which is concerned with the genericity of solution in terms of the interconnection
matrices. The proof of Theorem (5.13) follows the same arguments as that of

Theorem (5.9) and is therefore omitted.

Theorem (5.13). For almost all

" A Ap A
A= A.?.l /1.-22 :‘1-‘2,\' € RIXn
| Ani Anz ANN |

(p1) is solvable using output feedback.
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5.2.3 Dynamic Interconnections

A more general version of the above problem can be stated in terms of dynamic
St er et ions 4= SN A N B o :
interconnections [41}. Let % = Y5, Ayzi+ 2= Bije;, 1 € N describe the

interconnection dynanmics. Assume that the subsystems (5.23) are interconnected

A N : :
by u; = Zf;l Cijzj + X5 Aiej, o € No Then, the composite system can be

described as [_ _
x| X
v [J: A, l + B.v
z =
(5.33)
NER
y = C.
B
where
[ Ay + Ay A1 AN Cui Ch Civ |
A Ay + A AN Cy Co Can
A = ANy An Av + Anvn Cni Oy Cnn
c B By BIN /‘in /112 A ,
By By Ban Az Ay Aan
L BN] BN') BNN AN] ‘4/\’2 /-{NN_]

(', =[C 0}, and B, (', y and v ave as in (5:25). It is assumed that & = ((', A., Be)
is stabilizable and detectable. The problem (pl) is now to design local controllers
Yoy t € N around subsystems X, which yield that the pairs (£,. X)), 2 € N are
stable when the interconnections do not exist. It is further required that when

the interconnections do exist the composite closed-loop system is stable. Let
Z = Co(sl — A)7'Be and T; := Ci(s — A;))"'B;, i € N, (5.34)

We assume that Z satisfies (5.16).
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Theorem (5.14). Let Z and T;, 7 € N be defined according to (5.34). Then,
(p1) is solvable using outpul feedback if and only if DCSP for Z and T;, i € N is
solvable.

To investigate W. the set of unstable decentralized blocking zeros associated
with Z and T, i € N we define ¢ = (], i, € N, B = [By],4,7 € N, 4 = [Ai]s
i.j € N, where A € R***, Then, we have the following result.

Proposition (5.8). The set U associated with Z and T, i € N is given as
follows:

¥ = {w}ul:ze Cq| There #aists a permutation {iy,...,iN} of N such that

( 0 v 0 By, 0 0 0
0 0 D] 21 - A -B 0 B,, 0
0 0 0 0 0 B, 0
0 0 0 — /-A] o 0 0 0
. i, Bl G “ ) 9 i o 0 0 0 0
a 0 Ip,, 0 0 -y, 0 0 0 ° 0 0 0
n . . . .
& . . :
0 o Iy, 0 0 -y 0 0 0 0 0 0
i i
[ 0 0 0 0 0 ~Ciy 0 o 0 0 0
0 [} 0 0 0 0 0 [ [} 0 v By sl 4y
0 0 Ip, 0 0 0 0 0 0 (] 0 =i, J

Sy tetmy +n+ﬁ+n,‘j, v; €N}

Proof. We define Q = (2] — A, )TT]T)’ P=C., R= BE"El_l)' The proof can
be given similarly to Proposition (5.7).0 -
A sufticient condition for the solution of the problem is given next.

Theorem (5.15). Lel

[ B;, 0 |
=1 - A -3
0 B,
rank —( =AL 0 .. 0 (z) >n+n, V2€Cy
—Cy., 0 0
: 0
0 ¢, 0 |
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for all proper subsets {11,....,74,} of N. Then, (pl) is always solvable using output
feedback.
Proof. Similarly to the proof of Theorem (5.11) the set T' associated with

(Ce, Ac. B,) is given by

I'={x}U {z€Cyq| For some proper subset {iy,...,in} of N
T B;, 0 ]
- A -B : :
0 B,
rank -C I -4 0 0 (z) =n+n
. 0 0
. 0
L0 —Cliy 0 ]

The result then follows from Remark (5.2).0

We conclude this section by the following results. Theorem (5.16) is an ex-
tension of Theorem (5.12) and gives the solution of the problem in a special case.
Theorem (5.17) is an extension of Theorem (5.13) aud states that the composite
system (5.33) can be stabilized using locally stabilizing subsystem controllers for
almost all interconnection dynamics. The proofs of these theorems can be given
following the proofs of Theorems (5.2) and (5.9), respectively.

Let A, be the set of Cy eigenvalues of A, counted with nudtiplicities.

Theorem (5.16). Assume that (Uien\i) 0 Aa, =0 and (UienA;) NT = 0.
Then, (pl) is solvable using dynamic outpul feedback if and only if DSSP for
T — Z is solvable.

Theorem (5.17). For almost all (CC, A, B. A) € RT*% x R™*™ x RFX™ x RIXT
(pl) is solvable using output feedback.
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5.3 Diagonally Stabilizing Controllers

Oue of the approaches to the synthesis of controllers for multi input-muiti output
systems 13 to generalize the Nyquist and Inverse Nyquist Array methods which
were originally developed for single input-single output systems [42]. The tecnique
used to achieve this objective is, in general, based on the diagonal dominance of
transfer matrices and has many applications to decentralized control ([78], {34],

[74). 151], see also the references therein). One of the applications is concerned
thh the following problem.

(p2): Let Z = (2], sz,' € PP 4 g € N be the transfcr matriz of a given
plant where p = Z;\;, Pi, 1 Z,—n ri. Determine local controllers Zy;, 1 € N
sueh that (1) (7, Z.)0 0 € Noare stable and (1) (Z, diag{Z.1..... Z.x}) is stable.

In the abovementioned references several aspects of this problem are consid-
ered and some sufficient. conditions for its solntion are given. Observe that the
problem has already been formulated as a decentralized simultaneous stabiliza-
tion problem and a necessary and sufficient solvability condition for it can be

given using the solution of DCSP. Define

—~~
(7

We assume that Z satisfies (5.16). Assume that T;, ¢« € N have the left and right
coprime fractions as defined by (5.1).

Theorem (5.18). Lt T;, @ € N be defined according to (5.53). Then, (p2)
is solvable if and only if DCSP for Z and T;, 1 € N s .solzmblc,

Let a coprime [raction of Z be given as Z = Q~'[R; ... Ry} where Q € SP*7,
R; € SP*" 7 € N. Also let P, € PP*? ¢ € N be defined as in (5.4). The

following result is immediate {rom Proposition (5.4) and Remark (5.2).

Proposition (5.9). Let the following set be empty or contains only one
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element
I'={:z€C..] Forsomepropcr subsel {i1,....,i,} of N
e, R;, R;,

-F }
rank (z) =p, Vze 4,

D
-P,.

Then, (p2) is always solrable.
Theorems (5.19)-(5.21) below investigate three special cases of this problem
by extending some of the vesults i [57] to V-channel case.

Theorem (5.19). Let Z;. & = N be all stable. Then, (p2) is solvable if and

only if DSSP for .
0 -, ~Zin
-2, 0 -Z.
o o (5.36)
| —Zn1 =4z 0 |

is solvable.
Proof. If Z;. ¢ € N be all stable then we can set T; = Ny = Ny, Dy = D, =
I, K; =1, Li =0.for all i € N. The matrices @;; and R in (5.6) become

[0 00 0] [ —R, -R, —R,

- T 0 0 Ny 0 0
OQn=1| - 01 0. R=| 0 Ny 0

i — .:\' 0 0 / _J i 0 0 /V'rl\’ -J

Simple manipulations yield that Z in (3.8) is given by equation (5.36). This
completes the proof.O

We note that the solvability of DCSP can be more explicitly observed in this
special structure. For example il N = 2 then DCSP is solvable if and only if Z
is free of unstable decentralized fixed modes and the ordered pair of sets (S, S2)

satisfies the parity interlacing property, where S; := { the set of Ry, poles of
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Z1z with multiplicities } U { the set of Ry, poles of Zy; with multiplicities } and
Sy i={ the sel of Ry.-blocking zeros of Zy, } U { the set of Ry.-blocking zeros
of Za1 } where the union in Sy is taken with multiplicities.O

The interesting result below has various applications in the synthesis of reliable
controllers (see also the next section). The result is due to the fact that the
determinant of the auxiliary plant considered in DSSP becomes equal to either

an even or odd power of a certain determinant when evaluated at decentralized
blocking zeros.

Theorem (5.20). Let Z be stabilizable and detectable from all channdls.
(a) If N is odd then (p2) is always solvable

(b) I N is even then (p2) is solvable if and only if there are an cven nwinber of
real poles of Z, counted with multiplicities between each pair of Ry, decentralized

blocking zeros of the malrix

[- 0 —Zl-g —ZIN
5 —Zy 0 —?2/\'
L _ZJ\"I —ZN‘.Z 0 ]

Proof. The hypothesis implies that (Q, R;), 1 € N are left coprime and
(@. F;), © € N ave right coprime pairs. Since N, D' = PQ7'R;, i € N, det(D,;)
and del(Q) are associates for all 7 € N. Let ¥ he defined as in (5.17).

Step ‘1. It will be shown that ¥ is precisely the set of Cie decentralized
blocking zeros of Z. Let z € . Then, from Proposition (5.4) there exits a
permutation {¢y,...,4v} of N such that

0 R, R

P |
rank Y (z)=p, V7€ {2,..,N}. (5.37)

i)y

= |

Since (@, iy, ... £, ) is left coprime and (Q. Ry, ..., R;y,) is vight coprime, Lemma
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(4.4) implies that equation (5.37) holds if and only if

: (2)=0,V5€{2,..,N}.
Ziniy Lini o

This shows that z is an C,, decentralized blocking zero of Z. Conversely, if
z1s an Cy, decentralized blocking zero of Z then Lemma (4.4) implies Q(2) is
ronsingular. In this case Dy(=) is also nonsingular. We can choose L, <uch that
the plant Z giver: by (5.6), (5.7), (5.8) satisfies (5.16). With this choice of Z one

can show, following the prool of Proposition (5.5), that

Z02) = QD7) (:)VaDj - Q7 B)()Du() )
= Da(z)2(: »D( ) o

We conclude that every C,. decentralized blocking zero of Z belongs to . Hence
¥ is the set of Cy. decentralized blocking zeros of Z.

Step 2. Observe from (5.38) that = € ¥ implies del(QNy + RLy)(z) =
del(Q)(z).del(Dyr(z). U N is even the sign of det(Q)(z).det(Dy)(=) and the sign
of det(Q)(z) are the same for any = € Rye. If N is odd, on the other hand the
sign of det(Q))(z).det(Dg)(z) is positive for all z € Ry,. The result now folllows
from Theorem (5.1).0

Theorem (5.21). Let Z;;. 4,) € N, i # 5 be all stable. Then. (p2) is always
solvable.

Proof. If Z;., ¢, € N, i # j are all stable, a bicoprime representation

Pl PYYQTYRy ... Ry]of Z can be given as follows: Q = drag{Dn, Dpy...., Din},
1 N ]

[ N Dy Zy, Dnzn |
Dy, Z. N Dy Zon
[]{l F[’z . Rl\y] — IZ- 21 (2 12. 2N ’
| DivZni DinZns Nin ]

and P is as in (5.4), where we remind that Z; = N, D3 Referring to (5.6) it
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holds that

[ Dy 0 0 NoLy  DuZialy DuZinLy ]
0 Dp 0 Dy Ziyy Iy N Ly DiZonLn
0, = 0 0 Dix DixZniLy DinZn2Lo NinLn
! 7 0 0 K, 0 0
I 0 0 Ny 0
L ] O —] 0 0 1\’1\1
such that
L D Z3s Ly DuZinbn |

Dy 2y Ly ! Dy Zan Ln

det(Q) = dei( ). (5.39)

| DivZiiLy DinZnaly I

We now claim that DESP for Z and Z;, ¢ € N is solvable. Indeed, let an Rye

decentralized blocking zero z of the auxiliary plant 7 satisfy

Zii

_E\\

(z) =0, Vie N.

Zx A

Then, (DpZn Du)(z) = 0, (DisZsy Dn)(z) = 0, (DizZsz Diy)(z) = 0, ...,
(DinZni Diyi(2) = 0, (DinZn: Di2)(z) =0, ..., (DinZnn-1 Den-y)(2) = 0.
In this case. via (3.39) we have det(Q1)(z) = 1. Repeating lor all permutations
{iy,....in} of N we obtain the result that Z is decentralized strong stabilizable.

The result now {ollows from Theorem (5.1).0

Remark (5.3). In [34] and [74] the problem of stabilizing a plant via the
stabilization of diagonal transfer matrices is investigated using the block diagonal
dominance properties of the plant. In the abovecited references, however, it is
assumed that the number of unstable poles of Z and diag{Zu, ..., Znn} are the

same. The following example shows that unless that assumption holds, one cannot
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guarantee the solvability of the problem even when the block diagonal dominance

is achieved i the closed loop system. Let

G=2) g 17 e =a)e-1),
(z+1) ) (=+1)4 (z41)F <2
4=
0 {z—4) 1. (:=3){z-1)
(=+1) (z=41)~ (=+1)3

(z=1)(z=3) (2=3)(z—1) _
) (GH)2(z-2) "2

1 . (:=3)(=—1)
(z—a)- 1! (z41)2(z-4)

where 25, €5 are real nunbers. The plant Z 1s {ree of unstable decentralized fixed
modes [1] and is strongly connected. We note that W = {1,3. 00}, Z = {2,4} and
Ty = {4} where ¥ is the set of Ry, decentralized blocking zeros of Z. Observe that
the number of nnstable poles of 7 and diag{Zy\, Zs2} are not the same. One has
ZUTy = {2,4,4}. Between | and 3 there are an odd number of elements of ZUT,.
Therefore, the composite svstem Z cannot be stabilized via the stabilization of
Zn and Zyy regardless of how small €1, g9 are. 1t 1s, however, not difficult to
show that the block diagonal dominance for Z is achievable in the closed loop
system by choosing &1, g, suitably small [74], [34, Thm. 3.15]. (Although Z does
not satisfy (iil) of (5.16) this does not cause any problems as we consider only a
necessary condition for the solvability of DSSP (Remark (4.2).)e

We finally mvestigate the genericity properties of the problem. The quantifier
‘almost all” below is with respect to the graph topology.

Theorem (5.22). (p2) is solvable for ahnost all Z € P#*",

Proof. The [act that the set of Z which can he stabilized via the stabilization
of diagonal transfer matrices is open in PP*" can be proved similarly to the proof
of Theorem (5.3). The proof of the fact that the set of such Z is dense can be
given by applying the the following lemma, where we assume (p; 2 2 and r; > 2)
or (p; 2 2audr, > 2), 4,5 € N, i #j, and Proposition (5.4).0

Lemma (5.3). For almost all (Q,[Ry, ... Ry]) € S¥*P x S'*" {he set T
defined by (5.19) is contained in {oo} where P;, © € N are as defined by (5.7).

Note that the proof of Lemma (5.3) is similar to the proof of Lemma (5.1).
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5.4 Reliable Decentralized Stabilization Problem

Let a nominal system be-given. Assume that this system is subject to some finite
number of discrete variations in its parameters each resulting in a new system.
If there exists a controller showing a satisfactory performance (stabilization) for
each of the resulting systems, as well as the nominal system, it is called a reliable
controller. Since reliable controllers have many practical advantages; there has
been a continuing interest in the control theory considering the synthesis of reli-
able controllers [45], [47], [13], [67). [43], [31], [35), [21], [9], [20]. [11], [62], [43].
[8], [331. [57]. [54]. In [35], [62] and [3] decentralized reliable stabilization problem
has been investigated and its relations to DSSP and DCSP are discussed (see
also [45]). In [57] some particular examples of decentralized reliable stabilization
problein hiave been solved. o this section we formulate and solve the reliable

decentralized stabilization problem in the DCSP framework.

We consider a system whose transfer matrix is given by Z = [7Z;], ¢,; € N.
Z;; € PP7 4,5 € N where Zj;, 1 € N are strictly proper and Z satisfies (5.16).
It is assumed that the system is subject to a finite number of discrete variations in
its open-loop parameters, such as the interconnection breakdowns or on-off type
of changes in the physical elements. For each variation we associate an integer /
so that I = {I,..., 7} represents the set of all possible variations. These variations
yield new physical systems which are given by the transfer matrices Z* = [Z}],
7}, € Prexm k1€ N, i € I The variations are assumed to have a special form

so that associated with I there exists a set of plants T; € PP*" '€ N where

(a) Foreachi €1 2}, =1, k€N,

(b) For each ¢ € I there exists a permutation P = {i,...,ix} of N satisfying

that Zi, =0, k=1, ., N=L.I=k+1,..,N.

Observe that corresponding to each variation, the main diagonal blocks in the
transfer matrix of the resulting system are equal to T;, @ € N. Moreover, the

resulting transfer matrix can be put into-a lower triangular form by a symmetric
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permutation of block rows and columns. It is assumed that Z%, i € T are free of

unstable decentralized fixed modes.

The Reliable Decentralized Stabilization Problem (RDSP) is defined as de-
termining controllers Ze;, + € N such that (Z.diag{Z., ..., Z.n}) is stable and
|Zi,(/,i(tg{Zc1, een Zen}) s stable, for all i € 1.

Example (5.1). We consider RDSP of a feedforward interconnected system
57). Let Z = [Zi]. 4,5 € 3 be a nominal plant where the off-diagonal subplants
are subject bo four different group of discrete variations represented by the set
I= {1234} Iris assumed that 7 satisfies (5.16) and Zi;, i € 3 ave strict]y

proper. We let T = Zy, 1 € 3. The plants Z'. ¢ € T are given as {ollows.

Zip 0 0 Zu Ziyy 2y Zun 0 0
Z'=\Zy Zyn 0 | 2= 0 Zp 0 |,2%=|2y Zn 0
Zynn 0 Zs 0 Zsy Za Zs1 L3y s

Zn 0 2

z' = Zyn Zy Zy |,

so that P! = {1,3,2}, P? = {2.3,1}, P* = {1,2,3}, P* = {3,1,2}. In RDSP
our objective is to determine a decentralized controller 7. = diag{Ze1, Zezy Zes}

satistying that (Z, Z.), (Z'. Z.). (7%, Z.), (23, Z.), (Z*, Z.) are all stable.A

Example (5.2). In this example we cousider RDSP for a feedback intercon-

nected system. Let two systems be given by

o= A+ Biog 4w
.1 t , LE 2
yi = Cur

which are interconnected according to the dynamical rule

2= Az 4 Buy, uy =Cz, uy = Ana;.
) 1 s
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The composite system is described by

[ .'1'31 ] A] O (:1 ] £ B]
Y .’i}z = .Agl A-_) 0 N +
s 0 B 4[]z 0

.
b . €T

= R

] o0 ool

Let the elements B and Ay of the composite system ¥

ations represented by I = {1,2} such that

: "1 2
A j 0 Ay
BB 0

where ¢ represents the corresponding variation. We let

0 B

be subject to some vari-

[ (4000 ) [ B,
: ‘ v
E] . .i.'2 = 0 A'z 0 Ty =+ 0 [ ! J ’
o - - Uy
E: | 0 B A z 0 0
X
i Y1 Re ¢ 00 ]
= ty |,
Y | 0 Cy 0 )
‘i"l [ Al 0 (' ] 1 Bl 0
22 : :i.7~2 = /121 /1-_) 0 vy | + 0 Bz [ ! J )
. V.
Lo oo A= 0 o |t7”
X
ml (oo o]l
= . £
U2 L 0 (_.-12 )

[t 1s assumed that £, &,. ¥, are stabilizable and detectable. Let Z. Z'. Z2 denote
1 ) )

the transfer matrices from the input {v] v})’ to the output [y y4]’ associated with
] 1 W I Y1 Y2

systems ¥, ;. Xy, respectively. It is not difficult to verify that

. { Cr(zl = A)T' By Ci(=] = A)7'C(zl — A1 B(=] — A,)"' B,

0

02(21 - Ag)—l B,



134 Ch. 5. DECENTRALIZED CONCURRENT STABILIZATION PROB.

(,.:'1(3’] - A])—]Bl 0
Colzl = Ay) TV Azl = A)7T'By Co(z] — Ay)7'By |

AR
We also assume that 7', 7% are free of unstable decentralized fixed modes and Z
satisfies (5.16). In RDSP onr objective is to determine Z, = diag{Z.,, Z.3} such
that (Z, Z.), (21, Z.), (Z%. Z.) are all stable. In the RDSP set-up above observe
that P = {2,1}, P* = {1.2} and Ty = (21 =A)) 71 By, Ty = Co(2] = Ay)™ 1 By.A

The solution of RDSP is given by the following theorem.

Theorem (5.23) The problem RDSP is solvable if and only if DCSP for Z
and T;, t € N is solvable. ‘

Proof. Since for cach ¢ € I, Z¢ is {ree of unstable decentralized fixed modes,
any deceutralized controller diag{Z,,.... Zx'} of appropriate size stabilizes Z* if
and only if (Z{, Zk), k € N are stable {56], [22]. (See also Chapter 3.) [If]: If
DCSP for Z and T3, 2+ € N 1is solvablé then there exist controllers Z.;, ¢ € N such
that (Z, diag{Ze,..., Zen}) 1s stable and (T, Z;) is stable. for all © € N. The
solvability of DCSP and (b) above together imply that (Z¢, diag{Z.,, ey ZeNY)
is stable for all © € I. Tlus, by the problem definition, implies that RDSP is
solvable.

[Only If]: If RDSP is solvable there exist' controllers Z, ¢ € N such that
(Z,diag{Z..,.... Zen}) is stable and (Z°, diag{Ze1, ..., Z.n}) is stable, ¢ € 1. From
(b) above we conclude that (T, Z.;) is stable, for all + € N. This implies by
problem definition that DCSP for Z and T;, ¢ € N is solvable.O

The following theorem gives a sufficient condition for the solution of RDSP.
We refer to Section 5.3 for the terminology.

Theorem (5.24). Tl problem RDSP is solvable if the set 1 given by (5.19)

is empty or contains only onc element.
Proof. Iollows from Remark (5.2).0
We now state the solution of RDSP in a special case.

Theorem (5.25). Lot TyNZ =@ and TyN' ¥ = §. Then, RDSP is solvable
if and only if DSSP for T' — Z is solvable.
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Proof. Follows from Theorem (5.2).0

Example (5.2) (Continued) The applications of Theorems (5.24) and (5.25)
will be demonstrated. Assume that Z satisfies rank Z; > 2 or rank Zyn 2
2 where Z;, and Zy are the transfer matrices between m — yy and vy — yy,
respectively.

(a) Let ¢ + st invariant factors of the following complementary subsystems

have ouly stable zeros:

(B [ 4 0o C]
(1 0] An 4 0[]0 ¢ 0])
0] o B A]
0 ] { A 0 C
(| B A A 0] [Cr 0 0]
0| | 0 B A]
where ;
A 0 C
g=stze(| Ay Ay 0 ).
0 B A

Then, from Lemma (2.2) the set I' in (5.19) satisfies that 1" = {co}. From The-
orem (5.24) we conclude that RDSP is solvable, 1.e., there exists a decentralized
compensator Z. = diag{Z., Z} such that (Z,7Z.), (Z', Z.) and (22, Z,) are all
stable.

(b) (This part is iudependeut of part (a) above.) Let A; and A, have only
stable eigenvalues. Then. 7y = . Cousequently, 7, N2 =@, T, N ¥ = §. From
Theorem (5.25) RDSP is solvable if and ouly if DSSP for diag{Z', Z*} — Z is
solvable. A

Our final result is concerned with the genericity of solution of RDSP.

Theorem (5.26). The set of N + 1-tuples (2,14, ..., Tn) for which RDSP
is solvable is open and dense in PPXT x PP x PPNXIN (with pespect to the

product topology induced by the graph topology).

Proof. Follows from Theorem (5.3).0
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5.4.1 Further Results on Reliable Stabiization

The above results are concerned with the reliable stabilization with respect to
subsystem interconnection breakdowns. However, it is possible to extend some of
the results in Section 5.3 Lo obtain a reliable decentralized stabilization procedure
against actuator/sensor failures for 2-channel systems. In this context we counsider

the following problem (see also [47]. [57]. [54]).

Multiple Controller Reliable Synthesis Problem (MCRSP): Lt Z = [Zi],
where Zi; € PP 4 5 € 2, be the transfer matriz of a two-channel plant. De-
termine compensators Zg € PT*f £ 2 such that (&) (Z,diag{Z.,,Z.}) is
internally stable, (b) (Z,diag{Z..0}) is internally stable, (c) (Z,ding{0, Ze;})

is internally stable.

The motivation of the problem can be explained as follows. [t is assiuned that
around each chaunel there are one actuator and one sensor. Let a;, s, ¢; 1 € 2
denote the actuator, sensor and the compensator respectively, aronnd channels |
and 2. In the following table six different failure combinations ol these elements
are shown where *-" indicates that the associated element has a [ailure (modelled

as fixed zero output) and ‘+’ indicates that the associated element is functional.

ay | ay | 81| 821 ¢ | ¢y | Failure Model of Compensator

SN I S IV R R diag{0, Z-}

o I T I diag{Za,0}
Type -4+ + diag{0, Z.»}
of + |+ -]+ diag{Ze1,0} :
Faillure | + | + |+ |+ | - |+ diag{0, Z:}

+ !+ |+ |+ [+ - diag{Z«.0}

It follows that if MCRSP is solved the stability of closed loop system is preserved
under any failure shown in the table (see also [57], [60], [47]). We assune that Z
1s stabilizable and detectable from both chanuels 1 and 2 (which is a necessary

condition for the problem to be solvable).

Theorem (5.27). Suppose that cither rankZyy > 2 or rankZy, > 2. Then,
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MCRSP is solvable if and only if Z has even number of real poles between each

pair of zeros in the union of the scts of Rye-blocking zeros of Zyy and Zyy.

Proof. Follows from Theorem (5.20).0
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Chapter 6

CONCLUSIONS

In this chapter, we summarize the results obtained in the thesis. Some research

topics for future investigation are also addressed.

In Chapter 3, we have cousidered the solution of DSP using a stable proper
fractional approach. A hierarchically stable synthesis procedure for decentral-
ized stabilizing controllers is proposed where each local controller is chosen as
a stabilizing controller for the associated channel in the closed loop system. A
characterization of decentralized stabilizing controllers are obtained and several
genericity properties of these controllers are investigated.

In Chapter 4, we first introduce the notion of decentralized blocking zeros of a
multichannel plant. Various properties of decentralized blocking zeros are inves-
tigated. Then, the synthesis of least unstable decentralized stabilizing controllers
and the solution of DSSP are considered. It is shown that the least unstable de-
gree of a decentralized stabilizing controller is determined by the number of odd
distributions of poles among the real unstable decentralized blocking zevos of the
system. Tt is further shown thal the nnstable poles of decentralized stabilizing
controllers can be nearly arbitrarily spread among the local controllers.

In Chapter 5, we have investigated the Decentralized Concurrent Stabilization
Problem (DCSP) for a pair of plants Z, diag{T}, .... T} and the applications of
DCSP to the synthesis of decentralized controllers for large-scale systems. DCSP

is a special decentralized simultaneous stabilization problem. 1t is shown that a

139
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solution to DCSP exists if and only if DSSP is solvable for an auxiliary plant.
Thus, the set of unstable decentralized blocking zeros of the auxiliary plant plays
a primary role in the solution of DCSP {38]. Summarizing the results in Chapter
5 we have the following.

(1) The set of decentralized blocking zeros of the auxiliary plant associated
with Z and diag{T}, .... Ty} has been shown to be a subset of the invariant
zeros of the complementary subsystems associated with Z. Thus, if that set of
invariant zeros is empty or. contains only one element DCSP is solvable regardless
of the diagonal plants T;. » € N.

(1) DCSP is a generically solvable problem

(111) If the sets of the unstable poles of Z and diag{T\, ..., T} are disjoint then
DCSP is solvable if and only if DSSP for the difference plant diag{Ty,...,Tn} -2
is solvable. This is an analogous result to [66, Lemma 4.4.20] in the centralized
case.

The following large-scale control problems have been formulated and solved
in the DCSP framework: (pl) Stabilization of composite systems using locally
stabiliziug subsystem controllers, (p2) Stabilization of composite systems via the
stabilization of diagonal transfer matrices and (p3) Reliable decentralized sta-
bilization problem. It has been shown that the following properties commonly
appear in these problems:

(1) they are generically solvable

(i) if a set of mvariant zeros of the complementary subsystems associated
with the composite system Z is stable then they are solvable.

We believe that the solvability conditions obtained for problems (pl) and (p2)
provide a considerable progress in the research for large-scale systems as they
coustitute a suitable framework for the related problems in terms of well-known
system invariants such as zeros and poles and the new notion of decentralized
blocking zeros. For example, a more general version of problem (p1) is known to

be the the expanding system problem [14], [53] for which our results yield several
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necessary conditions.

It should also be noted that although problems (pl) and (p2) have become
two main approaches to the synthesis of decentralized stabilizing controllers for
large-scale systems, they have not been considered in the same fraiuework so far
as the relevant solution techniques for these problems are quite different from
each other. The approach in this thesis yields a unified synthesis methodology
for these problems by assembling these into DCSP.

Some {urther rescarch topics related to this thesis can be proposed-as follows.

(i) In problem (p2) of Chapter 5 the relation between theorems (5.18)-(5.21)
and the sufficient conditions obtained in [34], [74] using diagonal dominance tech-
niques need to be clarified.

(11) It comes forth that time-varying controllers should be given more emphasis
in the controller synthesis problems for large-scale systems, since they have signif-
icant advantages in the decentralized stabilization and decentralized concurrent
stabilization problems compared to time-invariant controllers [4], [39], [72], [73],
23], [58]. In [38] a time-varying version of DCSP is considered and it is shown
that periodic controllers weaken the solvability conditions of DCSP considerably.
For example, if Z is strongly connected, DCSP can always be solved using a peri-
odic controller. These results can be extended to continuous-time systems using
sampled-cdata periodic controllers. The abovementioned expanding construction
problem of large-scale systems can also be analysed using periodic controllers.
The advantages of time-varying controllers in some multipurpose decentralized
synthesis problems, such as the servomechanism problem [12], can also be inves-
tigated.

(1) It is possible to extend the results in Chapter 3 to a class of infinite-
dimensional systems [61]. One can investigate the solutions of DSSP and DCSP
in the same set-up. The extension of the results in chapters 4,5 to infinite-
dimensional systems would be quite nontrivial as infinite-dimensional systems
may have infinitely many blocking zevos (5], [6], [7].

(iv) Perhaps the most challenging problem that can be addressed for future
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imvestigation in this thesis is bringing forth the role of decentralized blocking zeros
in design limitations. From the proof of Theorem (4.2) (1), it follows that every
Cie decentralized blocking zero is a fived C,. blocking zero associated with every
single channel in the closed loop system resulting from the application of any
decentralized stabilizing controller. Since right half plane zeros impose certain
performance limitations regarding sensitivity reduction, it is our intuition that
decentralized blocking zeros are also pertinent to various design limitations in

multivariable systems.
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