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We give a closed-form solution to the single-period portfolio selection problem
with a Value-at-Risk (VaR) constraint in the presence of a set of risky assets with
multivariate normally distributed returns and the risk-less account, without short
sales restrictions. The result allows to obtain a very simple, myopic dynamic
portfolio policy in the multiple period version of the problem. We also consider
mean-variance portfolios under a probabilistic chance (VaR) constraint and give
an explicit solution. We use this solution to calculate explicitly the bonus of a
portfolio manager to include a VaR constraint in his/her portfolio optimization,
which we refer to as the price of a VaR constraint.

Keywords: dynamic portfolio selection; probabilistic chance constraint;
value-at-risk; mean-variance efficient portfolios; delegated portfolio management

AMS Subject Classifications: 91G10; 91B30; 90C90

1. Introduction

The problem of selecting an optimal portfolio is a central problem in finance. The Mean-
Variance portfolio theory introduced by Markowitz [1] had a tremendous impact on the
development of financial mathematics; see [2] for a more recent review. The Markowitz
framework advocated selecting a portfolio minimizing risk measured by the variance of
portfolio return while aiming for a minimum target return or maximizing expected return
while controlling the variance of the portfolio return. While not as popular as the Mean-
Variance portfolio theory, there exists other approaches to the optimal portfolio choice, e.g.
expected utility maximization, probabilistic chance constraints and so on; the literature is
vast on all these topics, for a sample see e.g. [2–6]. The Value-at-Risk introduced by Jorion
[7] is a widely used measure of risk in finance. For a given financial portfolio and a selected
probability level it gives the threshold value such that the loss of the portfolio exceeds that
threshold value with the given probability level. Imposing a limit on the Value-at-Risk thus
involves a probabilistic chance constraint. Although chance constrained portfolio selection
problems and second-order cone programming problems with a single cone constraint have
been studied previously,[8–11] it appears that a simple, closed-form solution in the case
of normally distributed returns of risky assets and no short sales restrictions has not been
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1420 M.Ç. Pınar

available, to the best of the author’s knowledge. Partial explanations for the absence of
closed-form solutions could be the advent of very efficient algorithms and software for conic
convex optimization problems, which made possible the treatment of portfolio problems
with more general restrictions such as no-short sales. The only partial exception to this lack of
interest in explicit solutions is the textbook by Ruszczynski [12] where a similar problem is
set-up and solved in closed-form in an exercise without a budget constraint and excluding the
risk-less asset. The author does not elaborate on the solution, does not allow short positions
and does not study a dynamic problem. Interestingly, the book,[13] while published later and
discussing at length the portfolio selection problem with probabilistic chance constraints,
ignores the solution in [12]. In the light of these remarks, the first main contribution of
this paper is to prove closed-form portfolio results using convex (conic) duality theory (see
[9,12] for treatments of conic duality for second-order cone programming problems), and
explore the consequences in a dynamic portfolio choice setting in Sections 2 and 3 when the
investor has a risk neutral objective function. The second contribution is an explicit formula
for the case of mean-variance portfolios under a chance constraint in Section 4. Admittedly,
the multivariate normally distributed returns and absence of restrictions on short positions
constitute unrealistic assumptions. However, the simplicity of the solutions obtained in the
present paper helps deliver simple insights analytically about optimal portfolios, and also
allows an explicit solution in a Delegated Portfolio Management model,[14–16] which is the
third contribution of the paper. The Portfolio Delegation problem is described in Section 5.
We consider a setting where an investor not willing or not able to invest on his/her own
delegates investment to a portfolio manager by means of a contract which is an affine
function of the wealth realized at the end of the horizon. We address the following problem:
how much bonus should the investor pay to the portfolio manager in order to convince the
manager to include a VaR constraint in optimizing the portfolio? We compute in closed
form the bonus, and investigate its dependencies on problem parameters. We conclude the
paper in Section 6 with a summary of results and future research directions. To keep with
length restrictions we omit the proofs of the results. They can be accessed in the online
technical report version of the paper.[17]

The results presented in the paper can also be positioned within the existing finance
literature on VaR restricted portfolio choice problem. An early reference is Roy [18] where
a safety first approach to a static portfolio problem is discussed under the assumption
that only the first and second moments of asset returns are available. In particular, the
case of normal distribution and continuous time (Brownian motion) is dealt with in Başak
and Shapiro [19] using the methods of continuous time finance; see also the review and
references therein. They consider a general utility function and establish that the solution
to the VaR problem involves an option problem, whereby the payout over a certain range
of the stock price realizations is enhanced by a corridor option (a corridor option is like
a barrier option, where a range is specified for the reference instrument, and for every
day that the instrument’s value falls within the range, a pay-off is earned by the holder of
the option), at the cost of an amount invested in the stock and risk-less bond. The solution
presented in the present paper considers a proportional decrease in the stock investment with
a simultaneous increase in the bond investment, since there are no derivative instruments
traded in our setting. When risky returns are normally distributed, so that the markets can be
viewed as complete and options exist, Başak and Shapiro show that the optimal solution is
to have a limited increase in investment for a subset large enough to meet the VaR restriction
(by means of options) and to cut down on the investment in the stocks and bond. See also
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Optimization 1421

Danielsson et al. [20] for an exposition in a discrete setting. Note also that the portfolio
insurance problem as discussed in Grossman and Vila [21] is related to the VaR restricted
portfolio optimization problems of the present paper since it corresponds to the case of the
parameter α (see below) set equal to zero, i.e. the final portfolio value is not allowed to fall
below a target.

2. The setting and the single-period portfolio policy

We wish to invest capital W0 in n + 1 assets, the first n of which are risky assets and the
last one represents a risk-free asset, e.g. the bank account. Each risky asset has a respective
random rate of return Ri during the investment horizon for i = 1, . . . , n, and the risk-
free asset the fixed rate R. We assume that the rates of return of risky assets collected
in the random vector R follow a Normal distribution with mean μ and positive definite
variance-covariance matrix �.

Let xi the monetary amount invested in the i-th asset. At the end of the horizon, the
realized wealth W1 is a random variable given by

W1 =
n∑

i=1

Ri xi + xn+1 R.

We are interested in the solution of the following problem:

max E[W1]

s.t.
n+1∑
i=1

xi=W0

Pr{W1 ≥ b} ≥ 1 − α

for some positive constant α ∈ (0, 1] (the smaller α is, the more protection is enforced).
The last constraint above is a probabilistic constraint, also known as a Chance Constraint. It
expresses the requirement that the realized wealth at the end of the horizon exceed a certain
target wealth b with probability at least 1 − α. By passing to a loss representation using
b − W1, the above constraint can be recast as a Value-at-Risk constraint as well; see p. 16
of [13] for details. A detailed discussion of Value-at-Risk in an optimization context can be
found in [22].

Let us collect the portfolio positions in the risky assets in the n-vector x. It is easy
to see using well-known techniques that the above problem is equivalent to the Chance
Constrained Portfolio Problem (CCPP)

max μ̄T x + W0 R

s.t. zα

√
xT �x ≤ μ̄T x − b + W0 R

where μ̄ = μ−R1 (1 denotes a n-vector of all ones), zα := �−1(1−α) is the (1−α)-quantile
of the standard Normal distribution and �(z) is the cdf of a standard Normal random variate;
c.f. [13]. If α satisfies 0 < α ≤ 1/2 then zα ≥ 0 and the problem above is a convex conic
(second-order cone) optimization problem. Variants of this problem have been formulated
and solved in the context of portfolio optimization under various additional restrictions in
the portfolio positions, see e.g. [23]. One usually resorts to available second-order cone
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1422 M.Ç. Pınar

optimization solvers to solve numerically the resulting portfolio problems. Second-order
cone programming problems with a single cone constraint have been studied in e.g. [10]
where an algorithm exploiting the presence of a single cone constraint is proposed for
their numerical solution. The simple version of the problem formulated here can be solved
analytically without resorting to an algorithm, a fact that seems to have gone undocumented
thus far.

In the present paper, we shall first be concerned with closed-form solution of (CCPP)
and its consequences in a multi-period setting.

Proposition 1

(1) If zα >
√H and b < W0 R then (CCPP) admits an optimal solution given by

x∗ =
(

W0 R − b

zα

√H − H

)
�−1μ̄

where H = μ̄T �−1μ̄.
(2) If zα >

√H and b > W0 R then (CCPP) is infeasible.
(3) If zα <

√H and b < W0 R then (CCPP) is unbounded.

Proposition 1 shows that a (CCPP) solving investor makes an optimal portfolio choice
if he/she chooses a stringent probabilistic guarantee that is larger than the market optimal
Sharpe ratio (the quantity

√H that is known from MV portfolio theory as the slope of the
Capital Market Line (see e.g. [24]) plays an important role in Proposition 1 as well as in
subsequent sections), and a target wealth smaller than the wealth that would be obtained by
putting all the initial wealth into the risk-less asset. Put in other words, strong protection
(i.e. small probability of falling short of target wealth) coupled with a relatively low target
results in an optimal portfolio rule while the combination of strong protection and high
target does not give any feasible portfolio.

The only case not covered by the above result is when zα <
√H and b > W0 R. In this

case, although not strictly guaranteed, we expect (CCPP) to be unbounded. This happens if
it is feasible since the dual is surely infeasible following part 3 of Proposition 1.

Note that the optimal portfolio of Proposition 1 is a mean-variance (MV) efficient portfo-

lio. The optimal position in the risk-less asset is obtained as W0 −
[

W0 R − b

zα

√H − H

]
1T �−1μ̄.

For the case b = W0 R the optimal portfolio is a totally risk-less portfolio, i.e. all of initial
wealth is invested into the risk-less asset. The optimal expected excess return μ̄T x∗ =
W0 R

√H
zα−√H −

√H
zα−√Hb depends linearly on target wealth b. In case 1 of the above result, the

expected excess return increases with decreasing target wealth b. It is apparent from the form
of the optimal portfolio that as the protection level increases (i.e. zα increases) the portfolio
tends to put more weight into the risk-less asset.

In the multi-period case we shall also be interested in a slight generalization of the CCPP
which we shall refer to as (aCCPP):

max aμ̄T x + W0 R

s.t. zα

√
xT �x ≤ μ̄T x − b + W0 R
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Optimization 1423

for some scalar a. We can state now the corresponding result to Proposition 1 for (aCCPP).
The proof is similar to the proof of Proposition 1. We assume b < W0 R.

Proposition 2 If a > 0 and zα >
√H then (aCCPP) admits an optimal solution given

by

x∗ =
(

W0 R − b

zα

√H − H

)
�−1μ̄.

The result is unaffected by the choice of the positive scalar a.

3. The multi-period VaR-constrained model

We consider now a multi-period version of the portfolio choice problem. The investment
horizon is divided into N periods, in each of which the rates of return Ri , i = 1, . . . , n of
risky assets are independently and identically (multivariate normally) distributed with mean
vector μt and positive definite variance-covariance matrix �t , t = 1, . . . , N . For simplicity,
we assume that the risk-less account has return equal to R throughout the horizon.

Given an initial wealth W0 at the beginning of the investment horizon, i.e. beginning
of time period t = 1, minimum target levels bt for the chance constraints in each period,
and appropriately chosen positive scalars zα,t for t = 1, . . . , N , denoting the n-dimensional
portfolio decision vectors in risky assets xt , t = 1, . . . , N , the multi-period VaR-constrained
portfolio selection problem is posed as follows:

V ∗
N = max

xn∈X N
μ̄T

N x N + WN−1 R

V ∗
N−1 = max

xn−1∈Xn−1

EN−1[V ∗
N ]

...

V ∗
2 = max

x2∈X2

E2[V ∗
3 ]

V ∗
1 = max

x1∈X1

E[V ∗
2 ]

where Xt = {x ∈ R
n : zα,t

√
xT �t x ≤ μ̄T

t x − bt + Wt−1 R}, μ̄t = μt − R1, for
t = 1, . . . , N , and Et [.] denotes expectation conditioned on the information known at
the beginning of decision period t. We assume bt < Wt−1 R for every t = 1, . . . , N .

We have the following result.

Proposition 3 Under the choices zα,t >
√Ht , where Ht = μ̄T

t �−1
t μ̄t , for

t = 1, . . . , N the dynamic portfolio policy given by

xt∗ =
[

(Wt−1 R − bt )

zα,t
√Ht − Ht

]
�−1

t μ̄t ,

with

V ∗
t =

N∑
j=t

⎛
⎝ N∏

i= j+1

(1 − γiHi )

⎞
⎠ RN− j b jγ jH j +

(
N∏

i=t

(1 − γiHi )

)
RN−(t−1)Wt−1
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1424 M.Ç. Pınar

where γt = 1
Ht −zα,t

√Ht
, for t = 1, . . . , N solves the multi-period VaR-constrained

portfolio selection problem.

The result implies that in the multi-period case, the optimal solution prescribes a myopic
dynamic portfolio choice; see [25] for a discussion of myopic multi-period portfolio policies.

4. Chance constrained mean-variance portfolios

Now, we shall turn to the problem of selecting a portfolio according to the Mean-Variance
criterion while satisfying a VaR-constraint as in the previous sections. Without repeating
the details we pose the problem we refer to as (MVCCPP) directly as follows:

max μ̄T x + W0 R − ρ

2
xT �x

s.t. zα

√
xT �x≤μ̄T x − b + W0 R

where we introduced a positive scalar ρ, a parameter controlling the aversion to large
variance of expected portfolio return. The above model gives two handles on risk control
to the investor: in addition to ensuring that the probability of falling below a target wealth
is small, it also penalizes large variations in expected portfolio return à la Markowitz. Now,
we shall prove a result which completely characterizes the optimal solution of the problem
(MVCCPP). We denote as usual by H the quantity μ̄T �−1μ̄.

Proposition 4

(A) If

(1) zα >
√H, b < W0 R and ρ < zα

√H−H
W0 R−b or,

(2) 0 < zα <
√H, b > W0 R and ρ > zα

√H−H
W0 R−b

then (MVCCPP) admits an optimal solution given by

x∗ =
(

W0 R − b

zα

√H − H

)
�−1μ̄.

(B) If zα > 0, and ρ ≥ zα

√H−H
W0 R−b (regardless of the choice of b) then (MVCCPP) admits

an optimal solution given by

x∗ = 1

ρ
�−1μ̄.

(C) If zα >
√H, b > W0 R then MVCCPP is infeasible.

Notice that in Part A, the optimal portfolio expression does not contain the variance
aversion parameter ρ, and hence is only dependent on it indirectly. This dependence is
through a critical value of ρ which is equal to the inverse of the optimal portfolio constant

W0 R−b
zα

√H−H .
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Optimization 1425

Figure 1. Portfolio positions versus zα for H = 0.4722, W0 = 10, R = 1.1, for b = 10.5.

As in Section 2, for the case b = W0 R, the optimal portfolio is a totally risk-less
portfolio, i.e. all of initial wealth is invested into the risk-less asset in Part A.

The result of Proposition 4 shows the interplay between the two risk parameters acting
on the optimal portfolio, namely zα and ρ. It is clear that of the two risk control parameters
zα and ρ only one can be pushed to high values if one is interested in a meaningful portfolio
(that is a feasible portfolio where the chance constraint is active). In Part C, we clearly see
that an (MVCCPP) solving investor cannot push the probabilistic protection level beyond
the slope of the Capital Market Line, while at the same time aiming for a target larger than
the wealth that would be obtained by keeping all initial endowment in the risk-less asset. Part
B shows that specifying a high (higher than a specific threshold) variance aversion with any
probabilistic guarantee gives an optimal portfolio which disregards the chance constraint.
Hence, there is no point in solving (MVCCPP) since the VaR constraint is inactive at the
optimal solution.

In Part A case 1, the target value for the wealth W1 is chosen less than the critical value
W0 R, hence as in Proposition 1, the probabilistic protection factor α can be pushed to zero
(i.e. zα can increase without bound), whereas the variance aversion parameter is limited
from above. In case 2 of Part B, the opposite occurs. The target value b is chosen larger
than W0 R, then we only expect a bounded (from above) maximum protection in the chance
constraint, which is indeed the case. The maximum protection affordable is 1 − �(

√H),
whereas one can now push as much variance aversion as desired into the optimal portfolio.

In Figures 1–3 we illustrate the behaviour of optimal portfolio holdings in case 1 of Part
A for n = 2 with R = 1.1 and μ̄ = [0.1, 0.05]T , the expected excess portfolio return (from
the risky portion of the portfolio, i.e. μ̄T x∗) and variance as a function of zα and jointly as zα

and b vary, respectively. As expected, as zα increases, α tends to zero, which means a more
stringent VaR restriction. Hence, the optimal portfolio tends to shed the initial (for small
values of zα) large long positions in risky assets, and puts increasingly more on the risk-less
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1426 M.Ç. Pınar

Figure 2. Expected excess return of optimal portfolio versus zα and b for H = 0.4722, W0 = 10,
R = 1.1.

asset. This behaviour is predictable from the optimal portfolio rule in Proposition 1, Part A
since the optimal portfolio coefficient W0 R−b

zα

√H−H already makes this relationship transparent.
The drop in expected return and variance are quite marked initially as zα and b increase.
These remarks apply verbatim to the optimal portfolios of Section 2 as well.

5. The price of a chance constraint in delegated portfolio management

In this section, we consider the following problem from Delegated Portfolio Management.
[14,15] An investor, who delegates investment of an initial wealth W0 to a negative ex-
ponential utility portfolio manager, wishes to enforce a probabilistic VaR restriction in the
form of a guarantee on the wealth W1 realized at the end of the investment horizon.

Typically, in Delegated Portfolio Management, one investigates the form of the optimal
contract under certain assumptions on the investor and the portfolio manager using a
Principal-Agent framework. In this paper, we assume the form of the contract to be fixed.
More precisely, the investor allocates a capital W0 to the portfolio manager with the mandate
to trade in the set of risky assets and the risk-less asset. The compensation of the manager
is a function of the final wealth achieved at the end of the horizon given by

f (W ) = AR + βW, (1)
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Optimization 1427

Figure 3. Variance of portfolio return versus zα and b for H = 0.4722, W0 = 10, R = 1.1.

where A is a fixed fee received at the beginning of the period and β is the fee received on
the realized wealth W at the end of the horizon, and given by

W (x) = xT R +
[
W0 − 1T x

]
R. (2)

In the above equation, as in previous sections x is n-dimensional vector representing the
allocation in the risky assets and 1 is a n-vector of ones. We assume that the manager can
also choose a second contract where the investment is taken on a set of assets where there
is no probabilistic restriction, and with pay-off

r(W ′) = AR + β0W ′, (3)

and final wealth W ′

W ′(x) = xT R +
[
W0 − 1T x

]
R. (4)

The difference � = β − β0 is the “bonus” of the manager for accepting the investment
under the VaR restriction. The purpose of this section is to compute the optimal bonus using
the results of the previous section.

The investor wishes to maximize the expected final wealth after rewarding the manager.
More precisely, he/she wants to solve

max
�

E[W (�) − f (W (�))] (5)

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

56
 1

2 
N

ov
em

be
r 

20
17

 



1428 M.Ç. Pınar

Figure 4. Case 1: �∗ versus zα for H = 0.4722, W0 = 10, R = 1.1, β0 = 0.05, ϑ = 0.5, for
b = 10, 10.5, 10.9.

where we define

W (�) = (x∗(�))T R +
[
W0 − 1T x∗(�)

]
R

and x∗(�) is an VaR-constrained portfolio allocation in the sense that it solves the following
problem

max
x

{
E

[
−e−ϑ(AR+(β0+�)W (x))

]}
(6)

where ϑ is a positive constant, subject to

Pr{W (�) ≥ b} ≥ 1 − α.

Furthermore, � is chosen so that the participation constraint for the manager is satisfied:

E

[
−e−ϑ(AR+(β0+�)W (x∗(�)))

]
≥ E

[
−e−ϑ(AR+β0W ′)

]
(7)

where we define

W ′ = (xM )T R +
[
W0 − 1T

n xM

]
R

and xM solves the problem
max

x
E[−e−ϑ(AR+β0W ′)]. (8)

The solution xM is known to be [5]

xM = 1

ϑβ0
�−1(μ − R1). (9)

D
ow

nl
oa

de
d 

by
 [

B
ilk

en
t U

ni
ve

rs
ity

] 
at

 2
3:

56
 1

2 
N

ov
em

be
r 

20
17

 



Optimization 1429

Figure 5. Case 2: �∗ versus zα for H = 0.4722, W0 = 10, R = 1.1, β0 = 0.045, ϑ = 10, for
b = 11.5, 11.75, 12.

In other words, the manager’s reservation utility (on the right hand side of (7)) is measured
as its maximum utility that would be attained with a classical Markowitz portfolio ignoring
the VaR restriction.

Proposition 5 The solution to the problem (5)–(7), i.e. the price of a chance constraint,
is obtained at the smallest of the two conjugate values

�∗ = W0 R + cH − ϑβ0c2H ± √
W0 R

√
W0 R + 2cH − 2ϑβ0c2H

ϑc2H (10)

where c = W0 R−b
zα

√H−H provided that ϑβ0 < zα

√H−H
W0 R−b + W0 R(zα−√H)2

2(W0 R−b)2 and ϑ(β0 + �∗) < 1
c

in case 1 or ϑ(β0 + �∗) > 1
c in case 2 of Part A of Proposition 4.

One normally expects �∗ to increase with increasing zα , however increasing zα beyond
a certain value ceases to be effective since it implies almost zero α. Therefore, one expects
the increase in �∗ to follow suit, i.e. to tail off to a limiting value. This kind of behaviour is
difficult to infer from the complicated expression (10). However, the tail-off behaviour can
be ascertained by taking the limit of the root with the negative sign in front of the square
root in (10) (this turns out to be the smaller root), which gives

1

2

H
ϑW0 R

.
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This limiting bonus depends on the optimal Sharpe ratio H of the market, and is inversely
proportional to risk aversion coefficient ϑ of the manager and the wealth that would be
realized if all endowment were kept in the risk-less asset. This property is also verified by
numerical computation. In Figure 4, for case 1 of part A of Proposition 4 we illustrate the
behaviour of the smallest root �∗ (obtained with the plus sign in front of the square root)
for H = 04722, W0 = 10, R = 1.1, β0 = 0.05, ϑ = 0.5, and for three different values
of b = 10, 10.5, 10.9. As expected for larger values of b, the the investor pays a larger
bonus to the manager, and the bonus increases with increased protection level expressed
in increasing zα . However, the increase in the bonus in return for more protection is not
without bound. It tails off to an upper limit quickly. The limiting value is around 0.043 (also
verified from the limit above), which is less than the fixed part β0 = 0.05 of the variable
portion of the contract.

In Figure 5, we repeat the illustration for case 2 after changing the parameters to fit
the conditions of Proposition 5. In this case, the increase in �∗ is much more abrupt as zα

increases, i.e. as more protection through the chance constraint is demanded. At the end,
the choice of which of cases 1 and 2 will apply depends on the choice of factors α, b and ρ.

6. Conclusions and outlook

We conclude with a brief summary of our results. In this paper, we derived closed-form
solutions to portfolio selection problems in which short positions are allowed, and with a
Value-at-Risk constraint which is a kind of probabilistic chance constraint. For the case of
an investor with a risk neutral objective function we showed that if the protection level in
the chance constraint is higher than a threshold expressed as the slope of the Capital Market
Line and the target wealth is kept below a threshold level (equal to the wealth that would
be realized if all endowment was kept in the risk-less account), an optimal portfolio rule
is obtained. The result is also extended to multiple periods and yields a myopic portfolio
policy which is a replica of the static policy.

When the investor employs a risk-averse mean-variance objective function allowing
also control of variance of the portfolio return as well as the VaR constraint, we showed
that to obtain an optimal portfolio rule either the probabilistic protection level should be
kept under a threshold while the target wealth and variance aversion can be chosen above
specific thresholds, or, conversely, the target wealth and aversion to risk should be kept
under specific thresholds if one desires a higher protection level. As the protection level
increases, the optimal portfolio puts more emphasis on the risk-less asset as expected.

Finally, using our portfolio rule we derived a closed-form expression for the bonus to
be paid to a portfolio manager by an investor who desires a VaR type guarantee on the
realized wealth. While the resulting expression is complicated, we inferred that the bonus
due to the manager for including a VaR constraint increases (as would be expected) with
increasing protection level (i.e. decreasing α) and increasing target wealth if emphasis is
placed on the protection level rather than controlling the variance of portfolio return (i.e.
part A case 1 of Proposition 4). However, it is interesting that the increase in bonus with
respect to α diminishes and tends to zero. That is, pushing for more protection level does not
result in increased bonus after a certain value is reached. The limiting bonus depends on the
optimal Sharpe ratio of the market, and is inversely proportional to risk aversion coefficient
of the manager and the wealth that would be realized if all endowment were kept in the
risk-less asset. On the other hand, if emphasis is placed on controlling the variance rather
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than a stringent VaR requirement, the optimal bonus may increase sharply as a function of
the protection level although we are dealing here with smaller protection levels compared
to case 1.

It would be interesting to test the Delegated Portfolio Management results of the paper
on real financial data by including other instruments like options in the asset universe and
relaxing for instance the assumptions of unlimited short sales and borrowing and lending
at the same rate. Such a study requires data from portfolio delegation practice and carefully
planned experiments, hence will be undertaken in the future.
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