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ABSTRACT

Motivation: The high throughput sequencing (HTS) platforms gene-

rate unprecedented amounts of data that introduce challenges for the

computational infrastructure. Data management, storage, and ana-

lysis have become major logistical obstacles for those adopting the

new platforms. The requirement for large investment for this purpose

almost signaled the end of the Sequence Read Archive hosted at

the NCBI, which holds most of the sequence data generated world

wide. Currently, most HTS data is compressed through general pur-

pose algorithms such as gzip. These algorithms are not designed for

compressing data generated by the HTS platforms; for example they

do not take advantage of the specific nature of genomic sequence

data, i.e. limited alphabet size and high similarity among reads. Fast

and efficient compression algorithms designed specifically for HTS

data should be able to address some of the issues in data manage-

ment, storage, and communication. Such algorithms would also help

with analysis provided they offer additional capabilities such as ran-

dom access to any read and indexing for efficient sequence similarity

search. Here we present SCALCE, a “boosting” scheme based on

Locally Consistent Parsing technique which reorganizes the reads in

a way that results in a higher compression speed and compression

rate, independent of the compression algorithm in use and without

using a reference genome.

Results: Our tests indicate that SCALCE can improve the compres-

sion rate achieved through gzip by a factor of 4.19 - when the goal

is to compress the reads alone. In fact on SCALCE reordered reads,

gzip running time can improve by a factor of 15.06 on a standard PC

with a single core and 6GB memory. Interestingly even the running

time of SCALCE + gzip improves that of gzip alone by a factor of

2.09. When compared to the recently published BEETL - which aims

to sort the (inverted) reads in lexicographic order for improving bzip2,

SCALCE+gzip provides up to 2.01 times better compression while

improving the running time by a factor of 5.17. SCALCE also provides

the option to compress the quality scores as well as the read names,

in addition to the reads themselves. This is achieved by compressing

the quality scores through order-3 Arithmetic Coding and the read

names through gzip through the reordering SCALCE provides on the

reads. This way, in comparison to gzip compression of the unorde-

red FASTQ files (including reads, read names and quality scores),

SCALCE (together with gzip and arithmetic encoding) can provide up

∗to whom correspondence should be addressed

to 3.34 improvement in the compression rate and 1.26 improvement

in running time.

Availability: Our algorithm, SCALCE (Sequence Compression Algo-

rithm using Locally Consistent Encoding) is implemented in C++ with

both gzip and bzip2 compression options. It also supports multithrea-

ding when gzip option is selected, and the pigz binary is available. It

is available at http://scalce.sourceforge.net

1 INTRODUCTION

Although the vast majority of HTS (high throughput sequencing)

data is compressed through general purpose methods, in particu-

lar gzip and its variants, the need for improved performance has

recently lead to the development of a number of techniques spe-

cifically for HTS data. Available compression techniques for HTS

data either exploit (1) the similarity between the reads and a refe-

rence genome or (2) the similarity between the reads themselves.

Once such similarities are established, each read is encoded by the

use of techniques derived from classical lossless compression algo-

rithms such as Lempel-Ziv-77 (Ziv and Lempel, 1977) (which is the

basis of gzip and all other zip formats) or Lempel-Ziv-78 (Ziv and

Lempel, 1978) .

Compression methods that exploit the similarity between indivi-

dual reads and the reference genome use the reference genome as

a “dictionary” and represent individual reads with a pointer to one

mapping position in the reference genome, together with additio-

nal information about whether the read has some differences with

the mapping loci. As a result, these methods (Hsi-Yang Fritz et al.,

2011; Kozanitis et al., 2010) require (i) the availability of a refe-

rence genome and (ii) mapping of the reads to the reference genome.

Unfortunately, genome mapping is a time-wise costly step, espe-

cially when compared to the actual execution of compression (i.e.

encoding the reads) itself. Furthermore, these methods necessitate

the availability of a reference genome both for compression and

decompression. Finally, many large-scale sequencing projects such

as the Genome 10K Project (Haussler et al., 2009) focus on spe-

cies without reference genomes. Compression methods that exploit

the similarity between the reads themselves simply concatenate the

reads to obtain a single sequence: Bhola et al., 2011 apply modifi-

cation of Lempel-Ziv algorithm, Tembe et al., 2010; Deorowicz and

Grabowski, 2011 use Huffman Coding (Huffman, 1952), and Cox

et al., 2012 employ Burrows Wheeler transformation (Burrows and
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Wheeler, 1994). In particular, the Lempel-Ziv methods (e.g gzip

and derivatives) iteratively go over the concatenated sequence and

encode a prefix of the uncompressed portion by a “pointer” to an

identical substring in the compressed portion. This general metho-

dology has three major benefits: (i) Lempel-Ziv based methods (e.g.

gzip and derivatives) have been optimized through many years and

are typically very fast; in fact the more “compressible” the input

sequence is, the faster they work, both in compression and decom-

pression; (ii) these methods do not need a reference genome; and

(iii) since these techniques are almost universally available, there is

no need to distribute a newly developed compression algorithm.

Interestingly, the availability of a reference genome can improve

the compression rate achieved by standard Lempel-Ziv techniques.

If the reads are first mapped to a reference genome and then reor-

dered with respect to the genomic coordinates they map to before

they are concatenated, they are not only compressed more due to

increased locality, but also in less time. This, mapping first com-

pressing later approach, combines some of the advantages of the

two distinct sets of methods above: (a) it does not necessitate the

availability of a reference genome during decompression (compres-

sion is typically applied once to a data set, but decompression can

be applied many times), and (b) it only uses the re-ordering idea as a

front end booster (Burrows Wheeler transform – BWT – is a classi-

cal example for a compression booster. It rearranges input symbols

to improve the compression achieved by Run Length Encoding and

Arithmetic Coding. Further boosting for BWT is also possible: see

(Ferragina and Manzini, 2004; Ferragina et al., 2005, 2006)). Any

well-known, well-distributed compression software can be applied

to the re-ordered reads. Unfortunately, this strategy still suffers from

the need for a reference genome during compression.

In this paper we introduce a novel HTS genome (or transcriptome,

exome, etc.) sequence compression approach that will combine the

advantages of the two types of algorithms above. It is based on

re-organization of the reads so as to ”boost” the locality of refe-

rence. The re-organization is achieved by observing sufficiently long

“core” substrings that are shared between the reads, and clustering

such reads to be compressed together. This reorganization acts as a

very fast substitute for mapping based reordering (see above); in fact

the first step of all standard seed and extend type mapping methods

identify blocks of identity between the reads and the references

genome.

The core substrings of our boosting method are derived from the

Locally Consistent Parsing (LCP) method devised by Sahinalp and

colleagues (Sahinalp and Vishkin, 1996; Cormode et al., 2000; Batu

et al., 2006). For any user-specified integer c and with any alphabet

(in our case, the DNA alphabet), the LCP identifies “core” sub-

strings of length between c and 2c such that (1) any string from

the alphabet of length 3c or more include at least one such core

string, (2) there are no more than three such core strings in any

string of length 4c or less, and (3) if two long substrings of a string

are identical, then their core substrings must be identical.

LCP is a combinatorial pattern matching technique that aims to

identify “building blocks” of strings. It has been devised for pat-

tern matching, and provides faster solutions in comparison to the

quadratic running time offered by the classical dynamic program-

ming schemes. As a novel application, we introduce LCP to genome

compression, where it aims to act as a front end (i.e. booster) to com-

monly available data compression programs. For each read, LCP

simply identifies the longest core substring (there could be one or

more cores in each read). The reads are “bucketed” based on such

representative core strings and within the bucket, ordered lexico-

graphically with respect to the position of the representative core.

We compress reads in each bucket using Lempel-Ziv variants or any

other related method without the need for a reference genome.
As can be seen, LCP mimics the mapping step of the mapping-

based strategy described above in an intelligent manner: on any
pair of reads with significant (suffix-prefix) overlaps, LCP identi-
fies the same core substring and subsequently buckets the two reads
together. For a given read, the recognition of the core strings and
bucketing can be done in time linear with the read length. Note
that the “dictionary” of core substrings is devised once for a given
read length as a pre-processing step. Thus, the LCP-based boo-
ster we are proposing is very efficient. LCP provides mathematical
guarantees that enable highly efficient and reliable bucketing that
captures substring similarities. We have applied the LCP-based reor-
dering scheme for (i) short reads of length 51 bp obtained from
bacterial genomes and (ii) short reads of length 100 bp from one
human genome, and obtained significant improvements in both
compression rate and running time over alternative methods.

2 METHODS

A theoretical exposition to the LCP technique. The simplest form of the LCP

technique works only on reads that involve no tandemly repeated blocks (i.e.

the reads can not include a substring of the form XX where X is a string

of any length ≥ 1; note that a more general version of LCP that does not

require this restriction is described in Sahinalp and Vishkin, 1994, 1996;

Batu et al., 2006 so that LCP works on any string of any length). Under this

restriction, given the alphabet {0, 1, 2, . . . , k − 1}, LCP partitions a given

string S into non-overlapping blocks of size at least 2 and at most k such that

two identical substrings R1 and R2 of S are partitioned identically - except

for a constant number of symbols on the margins. LCP achieves this by

simply marking all local maxima (i.e. symbols whose value is greater than its

both neighbors) and all local minima which do not have a neighbor already

marked as a local maxima - note that beginning of S and the ending of S are

considered to be special symbols lexicographically smaller than any other

symbol. LCP puts a block divider after each marked symbol and the implied

blocks will be of desirable length and will satisfy the identical partitioning

property mentioned above. Then, LCP extends each block residing between

two neighboring block dividers by one symbol to the right and one symbol

to the left to obtain core blocks of S. Note that two neighboring core blocks

overlap by two symbols.

Example. Let S = 21312032102021312032102; in other words S =
X0X , where X = 21312032102. The string S satisfies the above

condition; i.e. it contains no identically and tandemly repeated sub-

strings. When the above simple version of LCP is applied to S,

it will be partitioned as |213|12|03|2102|02|13|12|03|2102|. Clearly,

with the exception of the leftmost blocks, the two occurrences of

X are partitioned identically. Now LCP identifies the core blocks as

2131, 3120, 2032, 321020, 2021, 2131, 3120, 2032, 32102.

Observe that the (i) two occurrences of string X are partitioned by LCP

the same way except in the margins. Further observe that (ii) if a string is

identified as a core block in a particular location, it must be identified as a

core block elsewhere due to the fact that all symbols that lead LCP to identify

that block as a core block are included in the core block. As a result (iii) all

core blocks that entirely reside in one occurrence of X should be identical

to those that reside in another occurrence of X . Finally observe that (iv) the

number of cores that reside in any substring X is at most 1/2 of its length

and at least 1/k of its length.

The above version of LCP can return core blocks with length as small as

4; a length 4 substring is clearly not specific enough for clustering an HTS
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read; we have to ensure that the minimum core block length c is a substantial

fraction of the read length. LCP as described in Sahinalp and Vishkin, 1994,

1996; Batu et al., 2006 enables to partition S into non-overlapping blocks of

size at least c and at most 2c − 1 for any user defined c. These blocks can

be extended by a constant number of symbols to the right and to the left to

obtain the ”core” blocks of S. (Please see the Supplementary Data to get a

flavor of how this is done.) In the context of compressing HTS reads, if c is

picked to be a significantly long fraction of the read size, LCP, applied on

the HTS reads will guarantee that each read will include at least one and at

most three of these core blocks.

Unfortunately this general version of LCP is too complex to be of practical

interest. As a result we have developed a practical variant of LCP described

below to obtain core blocks of each HTS read with minimum length 8 and

maximum length 20. Interestingly we observed that in practice more than

99% of all HTS reads of length 50 or more include at least one core of length

14 or less. As a result, we are interested in identifying only those core blocks

of lengths in the range [8, 14]. Still there could be multiple such core blocks

in each HTS read; SCALCE will pick the longest one as the representative

core block of the read (if there are more than one such block, SCALCE may

break the tie in any consistent way). SCALCE will then cluster this read with

other reads that have the same representative core block.

A practical implementation of LCP for reordering reads. The purpose of

reordering reads is to group highly related reads, in fact those reads that

ideally come from the same region and have large overlaps together so

as to boost gzip and other Lempel-Ziv-77 based compression methods. If

one concatenates reads from a donor genome in an arbitrary order, highly

similar reads will be scattered over the resulting string. Because Lempel-

Ziv-77 based techniques compress the input string iteratively, from left to

right, replacing the longest possible prefix of the uncompressed portion of

the input string with a pointer to its earlier (already compressed) occur-

rence, as the distance between the two occurrences of this substring to be

compressed increases, the binary representation of the pointer also incre-

ases. As a result gzip and other variants only search for occurrences of

strings within a relatively small window. Thus reordering reads so as to bring

together those with large (suffix-prefix) overlaps is highly beneficial to gzip

and other similar compression methods. For this purpose, it is possible to

reorder the reads by sorting them based on their mapping loci on the refe-

rence genome. Alternatively it may be possible to find similarities between

the reads through pairwise comparisons (Yanovsky, 2011). However each

one of these approaches are time-wise costly.

In contrast our goal here is to obtain a few core blocks for each read so that

two highly overlapping reads will have common core blocks. The reads will

be reordered based on their common core blocks which satisfy the following

properties. (1) Each HTS read includes at least one core block. (2) Each HTS

read includes at most a small number of core blocks. This would be achieved

if any sufficiently ”long” prefix of a core block can not be a suffix of another

core block (this assures that two subsequent core blocks can not be too close

to each other).

We first extend the simple variant of LCP described above so as to handle

strings from the alphabet Σ = {0, 1, 2, 3} (0=A, 1=C, 2=G, 3=T) that can

include tandemly repeated blocks. In this variant we define a core blocks as

any 4-mer that satisfies one of the following rules:

• (Local Maxima) xyzw where x < y and z < y;

• (Low Periodicity) xyyz where x 6= y and z 6= y;

• (Lack of Maxima) xyzw where x 6= y and y < z < w;

• (Periodic Substrings) yyyx where x 6= y.

We computed all possible 4-mers (there are 256 of them) from the 4 letter

alphabet Σ and obtained 116 core blocks that satisfy the rules above. The

reader can observe that the minimum distance between any two neighboring

cores will be 2 and the maximum possible distance will be 6.1. This ensures

that any read of length at least 9 includes one such core block.

In order to capture longer regions of similarity between reads, we need to

increase the lengths of core blocks. For that purpose we first identify the so

called marker symbols in the read processed as follows. Let x, y, z, w, x, v
∈ Σ, then:

• y is a “marker” for xyz, when x < y and z < y;

• y is a “marker” for xyyz, when x < y and z < y;

• y is a “marker” for xyyyz, when x 6= y and z 6= y;

• yy is a “marker” for xyyyyz, when x 6= y and z 6= y;

• y is a “marker” for xwyzv, when y < w ≤ x and y < z ≤ v.

Now on a given read, we first identify all marker symbols. We apply LCP

to the sequence obtained by concatenating these marker symbols to obtain

the core blocks of the marker symbols. We then map these core blocks of

the marker symbols to the original symbols to obtain the core blocks of the

original read. Given read R = 0230000300, we identify its marker symbols

as follows: 3 is the marker for 230, 00 is the marker for 300003, and 3 is the

marker for 030 as per the marker identification rules above. The sequence

obtained by concatenating these markers is 3003, which is itself (4-mer) core

block according to the LCP description above. The projection of this core

block on R is 23000030, which is thus identified as a core block (actually

the only core block) of the read.

For the 4 letter alphabet Σ, we computed all (approximately 5 million)

possible core blocks of length {8, . . . , 14} according to the above rules.2

These rules assure that the minimum distance between two subsequent core

blocks is 4 and thus the maximum number of core blocks per read is at most

11 per each HTS read of length 50. Furthermore we observed that more

than 99.5% of all reads have at least one core block (the other reads have

all cores of length 15 to 20). Although this guarantee is weaker than the

theoretical guarantee provided by the most general version of LCP, it serves

our purposes.

A data structure for identifying core substrings of reads. We build a trie data

structure representing each possible core substring by a path to efficiently

place reads into ”buckets”. We find “all” core substrings of each read and

place the read in the bucket (associated with the core substring) which con-

tains the maximum number of reads (if there are two or more such buckets,

we pick one arbitrarily). If one simply uses the trie data structure, finding

all core substrings within a read would require O(cr) time where r is the

read length, and c is the length of all core substrings in that read. To improve

the running time we build an automaton implementing the Aho-Corasick

dictionary matching algorithm (Aho and Corasick, 1975). This improves

the running time to O(r + k), where k is the number of core substring

occurrences in each read. Since the size of the alphabet Σ is very small (4

symbols), and the number of the core substrings is fixed, we can further

improve the running time by pre-processing the automaton such that, for a

given state of the automaton we calculate the associated bucket in O(1) time,

reducing the total search time to O(r).

Compressing the quality scores. Note that the HTS platforms generate addi-

tional information for each read that is not confined to the 4 letter alphabet

Σ. Each read is associated with a secondary string that contains the base cal-

ling phred (Ewing and Green, 1998) quality score. Quality score of a base

defines the probability that the base call is incorrect, and it is formulated as

Q = −10 × log10(P (error)) (Ewing and Green, 1998). The size of the

alphabet for the quality scores is typically |Σ| = 40 for the Illumina plat-

form, thus the compression rate for quality scores is lower than the actual

1Note that this implementation of LCP is not aimed to satisfy any

theoretical guarantee; rather, it is developed to work well in practice.

2This is about 1% of all blocks in this length range.
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reads. As mentioned in previous studies (Wan et al., 2012), lossy compres-

sion can improve the quality scores compression rate. We provide an optional

controlled lossy transformation approach based on the following observa-

tion. In most cases, for any basepair b, the quality scores of its “neighboring”

basepairs would be either the same or within some small range of b’s score

(see Figure 1). Based on this observation, we provide a lossy transformation

scheme to reduce the alphabet size. We calculate the frequency table for the

alphabet of quality scores from a reasonable subset of the qualities (1 mil-

lion quality scores). We first use a simple greedy algorithm to find the local

maxima within this table. We then reduce the variability among the quality

scores in the vicinity of local maxima up to some error threshold e.
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Fig. 1. Original (red) and transformed (blue) quality scores for four random

reads that are chosen from NA18507 individual. The original scores show

much variance, where the transformed quality scores are smoothened except

for the peaks at local maxima, that help to improve the compression ratio.

3 RESULTS

We evaluated the performance of the SCALCE algorithm for boo-

sting gzip on a single core 2.4GHz Intel Xeon X5690 PC (with

network storage and 6GB of memory).

We used four different data sets in our tests:

(1) P. aeruginosa RNA-Seq library (51 bp, single lane), (2) P. aeru-

ginosa genomic sequence library (51 bp, single lane). (3) whole

genome shotgun sequencing (WGS) library generated from the

genome of the HapMap individual NA18507 (100 bp reads at 40X

genome coverage), and (4) a single lane from the same human WGS

data set corresponding to approximately 1.22X genome coverage

(SRA ID: SRR034940). We removed any comments from name sec-

tion (any string that appears after the first space). Also the third row

should contain a single character (+/-) separator character.

The reads from each data set were reordered through SCALCE

and three separate files were obtained for (i) the reads themselves,

(ii) the quality scores and (iii) the read names (each maintaining

the same order). Note that LCP reordering is useful primarily for

compressing the reads themselves through gzip. The quality scores

were compressed via the scheme described above. Finally the read

names were compressed through gzip as well.

The compression rate and run time achieved by gzip software

alone, only on the reads from the P. aeruginosa RNA-Seq library

(data set 1) is compared against those achieved by SCALCE fol-

lowed by gzip in Table 1. The compression rates achieved by the

gzip software alone in comparison to gzip following SCALCE on

the combination of reads, quality scores and read names are presen-

ted in Table 2. The run times for the two schemes (again on reads,

quality scores and read names all together) are presented in Table 5.

When SCALCE is used with arithmetical coding of order 3 with

lossless qualities, it boosts the compression rate of gzip between

1.42 − 2.13-fold (when applied to reads, quality scores and read

names), significantly reducing the storage requirements for HTS

data. When arithmetical coding of order 3 is used with 30% loss

– without reducing the mapping accuracy – improvements in com-

pression rate are between 1.86 − 3.34. In fact, the boosting factor

can go up to 4.19 when compressing the reads only. Moreover, the

speed of the gzip compression step can be improved by a factor of

15.06. Interestingly the total run time for SCALCE + gzip is less

than the run time of gzip by a factor of 2.09. Furthermore, users

can tune the memory available to SCALCE through a parameter to

improve the run time when a large main memory is available. In our

tests, we limited the memory usage to 6GB.

Note that our goal here is to devise a very fast boosting method,

SCALCE, which, in combination with gzip gives compression rates

much better than gzip alone. It is possible to get better compres-

sion rates through mapping based strategies but these methods are

several orders of magnitude slower than SCALCE+gzip. We tested

the effects of the lossy compression schemes for the quality scores,

employed by SCALCE as well as CRAM tools, to single nucleo-

tide polymorphism (SNP) discovery. For that, we first mapped the

NA18507 WGS data set with the original quality values to the

human reference genome (GRCh37) using the BWA aligner (Li and

Durbin, 2009), and called SNPs using the GATK software (DePri-

sto et al., 2011). We repeated the same exercise with the reads after

30% lossy transformation of the base pair qualities with SCALCE.

Note that the parameters for BWA and GATK we used in these

experiments were exactly the same. We observed almost perfect

correspondence between two experiments. In fact, > 99.95% of

the discovered SNPs were the same (Table 6); not surprisingly most

of the difference was due to SNPs in mapping to common repeats

or segmental duplications. We then compared the differences of

both SNP callsets with dbSNP Release 132 (Sherry et al., 2001)

in Table 6.

In addition, we carried out the same experiment with compres-

sing/decompressing of the alignments with CRAM tools. As shown

in Table 6, quality transformation of the CRAM tools introduced

about 2.5% errors in SNP calling (97.5% accuracy) with respect to

the calls made for the original data (set as the gold standard).

One interesting observation is that 70.7% of the new calls after

SCALCE processing matched to entries in dbSNP where this ratio

was only 62.75% for the new calls after CRAM tools quality trans-

formation. Moreover, 57.95% of the SNPs that SCALCE “lost” are

found in dbSNP, and CRAM tools processing caused removal of

18.4 times more potentially real SNPs than SCALCE.

As a final benchmark, we compared the performance of SCALCE

with mapping based reordering before gzip compression. We

first mapped one lane of sequence data from the genome of

NA18507 (same as above) to human reference genome (GRCh37)

using BWA (Li and Durbin, 2009), and sorted the mapped reads

using samtools (Li et al., 2009), and reconverted the map-sorted

BAM file back to FASTQ using Picard (http://picard.
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Table 1. Input data statistics and compression rates achieved by gzip only and SCALCE+gzip on reads from the P. aeruginosa

RNA-Seq library. File sizes are reported in megabytes. M:million, B:billion.

Data Set gzip SCALCE+gzip

# of Reads Size Size Rate Time Size Rate Boosting factor gzip only time SCALCE+gzip time

89M 4,327 1,071 4.04 13m 18s 256 16.92 4.19x 53s 6m 21s

Table 2. Input data statistics and compression rates achieved by gzip only and SCALCE+gzip+AC on complete FASTQ files. File sizes are

reported in megabytes. M:million, B:billion.

Data Set gzip SCALCE (lossless) SCALCE (lossy 30%)

Name # of Reads Size Size Rate Size Rate Boosting factor Size Rate Boosting factor

P. aeruginosa RNAseq 89M 10.076 3,183 3.17 1,496 6.74 2.13x 953 10.58 3.34x

P. aeruginosa Genomic 81M 9,163 3,211 2.85 1,655 5.54 1.94x 1,126 8.14 2.85x

NA18507 WGS 1.4B 300,337 113,132 2.65 76,890 3.91 1.47x 58,031 5.18 1.95x

NA18507 Single Lane 36M 7,708 3,058 2.52 2,146 3.59 1.42x 1,639 4.70 1.86x

Table 3. Comparison of single-threaded SCALCE with DSRC.

Name DSRC Time DSRC Size SCALCE Time SCALCE Size

P. aeruginosa RNAseq 12m 1,767 13m 1,496

P. aeruginosa Genomic 6m 1,846 11m 1,655

NA18507 WGS* 3h 16m 94,707 6h 1m 76,890

NA18507 Single Lane 4m 2,341 10m 2,146

DSRC was tested using the -l option except on the WGS sample (marked with *), where it crashed.

Instead we had to use a faster but less powerful setting for this data set.

Table 4. Comparison of single-threaded SCALCE with BEETL. Here, the data sets contained

only reads from the FASTQ file, as BEETL supports only FASTA file format.

Name BEETL Time BEETL Size SCALCE Time SCALCE Size

P. aeruginosa RNAseq 29m 197 8m 95

P. aeruginosa Genomic 31m 257 6m 137

NA18507 Single Lane 51m 448 10m 412

Table 5. Run time for running gzip alone and SCALCE+gzip+AC on complete FASTQ files.

gzip SCALCE+gzip+AC, single thread SCALCE+gzip+AC, 3 threads

Name Time Reordering gzip+AC Total compression Total compression

P. aeruginosa RNAseq 20m 7m 6m 13m 9m

P. aeruginosa Genomic 20m 6m 5m 11m 9m

NA18507 WGS 10h 52m 3h 3h 1m 6h 1m 4h 28m

NA18507 Single Lane 18m 5m 5m 10m 7m 32s

sourceforge.net), resulting in raw FASTQ files of size 7, 964

MB. We then used the gzip tool to compress the map-sorted file to

3, 091.5 MB, achieving 2.57-fold compression rate. The preproces-

sing step for mapping and sorting required 18.2 CPU hours, and

FASTQ conversion required 30 minutes, while compression was

completed in 28 minutes. Moreover, the mapping based sorting did

not improve the compression run time even if we do not factor in

the preprocessing. In contrast, SCALCE+gzip generated a much

smaller file in less amount of time, with no mapping based pre-

processing. We then repeated this experiment on the entire WGS

data set (NA18507). The mapping based preprocessing took 700

CPU hours for BWA+samtools, and 10 CPU hours for Picard, gzip

step was completed in 11 CPU hours, resulting in a compression

rate of 4.93x. On the other hand, gzip needed only 6.5 CPU hours

to compress the same data set (1.69x faster) after the preproces-

sing by SCALCE which took 8 CPU hours, and achieved a better

compression rate (6-fold, Tables 2 and 5). The run time of mapping

based preprocessing step can be improved slightly through the use of

BAM-file-based compressors such as CRAM tools (Hsi-Yang Fritz

et al., 2011), but this would reduce the time only by 10 CPU hours
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Table 6. Number of SNPs found in the NA18507 genome using original qualities and transformed

qualities with 30% noise reduction. Also reported are the number and percentage of novel SNPs in

regions of segmental duplication or common repeats (SD+CR).

# SNP Count dbSNP v132 Novel

Total in SD+CR

Original Qualities 4,296,152 4,092,923 (95.26%) 203,229 192,114 (94.53%)

Qualities using SCALCE 4,303,140 4,098,875(95.25%) 204,265 192,976 (94.47%)

Lost 7,931 4,596 (57.95%) 3,335 2,963 (88.84%)

New 14,919 10,548 (70.70%) 4,371 3,825 (87.51%)

Qualities using CRAM tools 4,202,298 4,013,401 (95.50%) 188,897 179,875 (95.22%)

Lost 101,957 84,607 (82.98%) 17,350 15,036 (86.66%)

New 8,103 5,085 (62.75%) 3,018 2,797 (92.67%)

for the Picard step. Thus, in total, SCALCE+gzip is about 45 times

faster than any potential mapping based scheme (including CRAM

tools) on this data set.

Our tests showed that SCALCE (when considering only reads)

outperforms BEETL (Cox et al., 2012) combined with bzip2 by a

factor between 1.09 − 2.07, where running time is improved by a

factor between 3.60−5.17 (see Table 4). SCALCE (on full FASTQ

files) also outperforms DSRC (Deorowicz and Grabowski, 2011)

compression ratio on complete FASTQ files by a factor between

1.09 − 1.18 (see Table 3).

4 CONCLUSION AND DISCUSSION

The rate of increase in the amount of data produced by the HTS tech-

nologies is now faster than the Moore’s Law (Alkan et al., 2011).

This causes problems related to both data storage and transfer of

data over a network. Traditional compression tools such as gzip and

bzip2 are not optimized for efficiently reducing the files to managea-

ble sizes in short amount of time. To address this issue several com-

pression techniques have been developed with different strengths

and limitations. For example pairwise comparison of sequences can

be used to increase similarity within “chunks” of data, thus increa-

sing compression ratio (Yanovsky, 2011), but this approach is also

very time consuming. Alternatively, reference-based methods can

be used such as SlimGene (Kozanitis et al., 2010) and CRAM

tools (Hsi-Yang Fritz et al., 2011). Although these algorithms

achieve very high compression rates, they have three major short-

comings. First, they require pre-mapped (and sorted) reads along

with a reference genome, and this mapping stage can take very long

time depending on the size of the reference genome. Second, speed

and compression ratio are highly dependent on the mapping ratio

since the unmapped reads are handled in a more costly manner (or

completely discarded), which reduces the efficiency for genomes

with high novel sequence insertions and organisms with incomplete

reference genomes. Finally, the requirement of a reference sequence

makes them unusable for de novo sequencing projects of the geno-

mes of organisms where no such reference is available, for example,

the Genome 10K Project (Haussler et al., 2009).

The SCALCE algorithm provides a new and efficient way of reor-

dering reads generated by the HTS platform to improve not only

compression rate but also compression run time. Although it is not

explored here, SCALCE can also be built into specialized alignment

algorithms to improve mapping speed. We note that the names asso-

ciated with each read do not have any specific information and

they can be discarded during compression. The only considera-

tion here is that during decompression, new read names will need

to be generated. These names need to be unique identifiers within

a sequencing experiment, and the paired-end information must be

easy to track. In fact, the Sequence Read Archive (SRA) developed

by the International Nucleotide Sequence Database Collaboration

adopts this approach to minimize the stored metadata, together with

a lossy transformation of the base pair quality values similar to our

approach (Kodama et al., 2011). However, in this paper we demon-

strated that lossy compression of quality affects the analysis result,

and although the difference is very small for SCALCE, this is an

optional parameter in our implementation, and we leave the decision

to the user. Additional improvements in compression efficiency and

speed may help ameliorate the data storage and management pro-

blems associated with high throughput sequencing (Schadt et al.,

2010).
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