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Abstract Maintenance of a machine and its replacements by newer ones in the
course of a predetermined planning horizon with fixed intermediate
dates for potential replacement opportunities is considered. Using the
Kamien-Schwartz optimal control model for maintenance, allowance for
ceasing of production until installation of a new machine is studied with
respect to regeneration points.

1. Introduction
We consider a single machine and its possible replacements (allowed

on a calendar of potential regeneration points) over time. The proba-
bility distribution of machine failure can be improved by predictive or
preventive maintenance. The natural hazard rate for which the ma-
chine was designed for, can thus be reduced to a more favorable effective
hazard rate.

If the retirement date of a machine is not required to be equal to the
installment date of its successor, then the length of the hibernation dura-
tion for the production operations need to be determined. When capital
expenditures of an organization are made at fixed points on a calendar
(such as release of funds in first week of each quarter, or semi annually
on first weeks of March and September), then new machine purchases
may have to wait for these dates for the availability of the acquisition
funds. In the meantime it is possible that the machine waiting for re-
placement may operate under potentially unprofitable circumstances.
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Selling the machine on hand and waiting idle may be more attractive
than suffering unfavorable production costs, or a rapid deterioration in
its resale/salvage value. In addition to such factors, constraints on de-
livery dates of the machine supplier can possibly prevent installation of
a replacement at the retirement time of its predecessor. Hibernation can
also be considered when buying the currently available machine yields
negative expected net present value of cash flow, making it preferable to
wait idle until the availability of profitable technologies.

We use the term hibernation to indicate such deliberate non-production
periods where the system waits for the arrival of a new and profitable
machine. If hibernation is allowed, when should they be scheduled? An-
swers to such questions may also put pressure for realignment of the
calendar for the regeneration points, as well as company policies on
borrowing versus use of internal funds. These in turn may raise consid-
erations for the modification of machine replacement time windows.

2. The Model
The main model to be used is that of Kamien and Schwartz (1971)

which was recently imbedded into a dynamic programming model by
Dogramaci and Fraiman (2004) (in short D-F), for potential machine
replacements at fixed intermediate dates over the planning horizon.

Notation:
T : Length of planning horizon consisting of T equal length periods.

Starting point of each period constitutes a potential for the acquisition of
a machine ( a replacement opportunity), i.e. a regeneration point. Gen-
eralization of the model for periods of unequal lengths is straightforward
and will not be addressed here.

j : Integer indicating a specific regeneration point in the planning
horizon. Chronologically the one at the start of the terminal period of
the planning horizon is set as j = 1, and earlier ones have higher values
(in order to serve as index for computational backsweep operations.)

FjFF (t): Probability that a machine of vintage j (bought when there
were j periods to go until the end of the planning horizon) fails at or
before t units of time from its purchase date.

hj(t) = [dFjFF (t)/dt]/[1 − FjFF (t)]: Natural hazard rate of a machine (of
vintage j).

u(t): intensity of maintenance effort at time t. u(t) ∈ [UjUU , UjUU ], 0 ≤
UjUU < UjU ≤ 1 where UjU and UjU denote minimum and maximum allowable
intensities on a machine of vintage j.

hj(t)[1 − u(t)]: Effective hazard rate of the machine.
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MjM (u(t))hj(t): Cost of maintenance effort at time t. MjM (u(t)) is
continuously differentiable with respect to u(t) , with M

′
jM > 0, M

′′
jM > 0,

and MjM (0) = 0.
r: Discount rate indicating time value of money.
Dj : Cost of acquiring and installing a machine of vintage j.
RjR : Revenue net of all costs except maintenance u(t) generated by a

machine of vintage j.
SjS (t): Resale value at time t, of a working machine of vintage j.

0 ≤ SjS (t) ≤ RjR /r.
Lj : Junk value of a failed machine costs due to in-service failure .

Lj < SjS (t).
f(j): Optimal dynamic programming value function at stage j of back-

ward sweep. This is the net present value (with respect to node j) of an
optimal regeneration and maintenance policy when there are j periods
to go until the end of the planning horizon. It will be computed for
j = 1, 2, ..., T in that order. Subscripts in parentheses indicate stage
number of dynamic programming calculations, rather than equipment
vintage. f(0) = 0.

V (j, K): Optimal expected net present value for a vintage j machine
acquired at time T − j, in other words at node j, at cost of Dj dollars
with the intention of keeping it for K periods (K ≤ j) and subsequent
replacements (if any). Present value is computed with respect to the
time when the machine is introduced to the production system (T − j.
Maximum value of K is j. However, managerial considerations can
dictate it to be shorter.

ZjZ : Hibernation time (measured in terms of machine age): Planned
retirement age of machine of chosen at node j. If hibernation is not
allowed, ZjZ = K. Otherwise, 0 ≤ ZjZ ≤ K.

KZjZ : Closest regeneration point downstream of ZjZ . (0 ≤ ZjZ ≤ KZjZ ≤
K). KZjZ is the smallest integer larger than or equal to ZjZ .

V (j, K) shall be determined after f(j−1),,f(0) are obtained, and will in
turn feed into the computation of f(j) as follows:

f(j) = max
K=1,..,jK

[V (j, K)] , j = 1, 2, ...., T ; jK ≤ j. (14.1)

jK is the upper bound on intended machine life for vintage j, as dictated
by technical, safety, and managerial considerations. If there is no such
limit, then one can set jK = j. At node j different types of machines may
be available, (and hibernation times of each of these alternatives may be
different.) If there are alternative models, i.e. a variety of technologies
available at time T − j, then V (j, K) can be solved for each and the
alternative with largest expected net present value may be chosen.
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Consider any point in time t, during the time span addressed by any
V (j, K). With probability 1 − FjFF (t) the machine has not yet failed
implying a cash flow rate of RjR − MjM (u(t))hj(t). On the other hand
failure of the machine at time t is associated with probability density
dFjFF (t)/dt = [1 − u(t)]hj(t)[1 − FjFF (t)] and cash flow of Lj right away, as
well as f(j−τ−1) which with respect to time t, is the nearest downstream
optimal dynamic programming value function. The index number of the
nearest downstream regeneration point is j−τ −1. In case machine fails
at time t a new one is bought at this node. (Values of τ , τ + 1, · · · are
chosen to target such nodes.) Thus V (j, K) is obtained by solving the
following problem.

V (j,K) =

= max
u(t),ZjZ

KZj
−1∑

τ=0

min[(τ+1),ZjZ ]∫
τ

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}
+ e−r(τ+1) f(j−τ−1)[1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+ [1 − FjFF (ZjZ )] [e−rZjZ SjS (ZjZ ) + e
−rKZj f(j−KZj

)] − Dj (14.2)

subject to
dFjFF (t)

dt
= [1 − u(t)]hj(t)[1 − FjFF (t)] (14.3)

with

0 ≤ UjU ≤ u(t) ≤ U j ≤ 1, FjFF (0) = 0, t ∈ [0, ZjZ ] and 0 ≤ ZjZ ≤ KZjZ ≤ K.

If solution of (14.2)-(14.3) above yields V (j, K) < 0, then managerial
policies allowing, we can set V (j, K) = 0 (implying that an imaginary
machine of zero costs and revenues) and stay idle from time T − j until
T − j + K.

In the objective function (14.2), jumps from f(j−1) to f(j−2) to f(j− 3)···
are addressed by breaking the problem into K unit period segments and
imbedding each into the adjacent upstream one.

3. A Solution Procedure
The procedure proposed here builds upon the D-F approach with

the added complexity of checking for hibernation possibilities. We first
investigate the (potentially) last period of usage to check whether KZjZ =
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K. Hence, the machine of vintage j , to be used for K periods is studied
from t = K − 1 to K.

Jj,KJJ −1,FjFF (K−1) =

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]

+ e−rKf(j−K)[1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)] (14.4)

subject to

dFjFF (t)
dt

= [1 − u(t)]hj(t)[1 − FjFF (t)] (14.5)

with 0 ≤ UjUU ≤ u(t) ≤ U j ≤ 1, FjFF (K − 1) given, and FjFF (K) free.
The probability that the machine would still be up and running is

reflected in the value of the state variable at time (in this context,
time=age) K − 1 : FjFF (K − 1). The optimal value of this problem,
J∗

j,KJ −1,FjFF (K−1), feeds in as a salvage value to the adjacent optimal con-
trol problem from K − 2 to K − 1. D-F showed that for τ = 1, ...,K,
J∗

j,τJ −1,FjFF (τ−1) is a linear function of the starting value of the state vari-
able FjFF (τ − 1). Thus the problem starting at τ − 1 needs only to be
solved for a starting state variable value of FjFF (τ − 1) = 0. Its optimal
value will be imbedded into the adjacent earlier problem on the left (i.e.
into the model that starts at time τ − 2) as salvage value term, in the
form: [1 − FjFF (τ − 1) ] J∗

j,τJ −1,0. Thus the objective function in (14.4) can
be stated for FjFF (K − 1) = 0 as:
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Jj,KJJ −1,0 =

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}
+ e−rKf(j−K)[1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)]

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}dt

+

K∫
t=K−1

{e−rKf(j−K)
dFjFF (t)

dt
}dt

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)]

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}}dt

+ e−rKf(j−K)[FjFF (K) − FjFF (K − 1)]

+ e−rK [SjS (K) + f(j−K)][1 − FjFF (K)]

Since FjFF (K − 1) = 0, the objective function of the problem becomes,

Jj,KJJ −1,0 =

= max
u(t)

K∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}}dt

+ e−rK [SjS (K)][1 − FjFF (K)] + e−rKf(j−K) (14.6)

Since 14.6 subject to 14.5 is structurally a standard K-S model, any
hibernation possibility in this period can be studied in the context of a
free terminal time problem. Keeping j and K − 1 fixed, and calling the
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terminal time ZjZ , the terminal condition for

Jj,K,JJ 0(ZjZ ) =

= max
u(t)

ZjZ∫
t=K−1

{e−rt{[RjR − MjM (u(t))hj(t)][1 − FjFF (t)]

+ Lj [1 − u(t)]hj(t)[1 − FjFF (t)]}}dt

+ e−rZjZ [SjS (ZjZ )][1 − FjFF (ZjZ )] + e−rKf(j−K) (14.7)

involves the evaluation of

e−rZjZ (1 − FjFF (ZjZ )) [RjR − MjM (u∗(ZjZ )) hj(ZjZ ) + Lj (1 − u∗(ZjZ )) hj(ZjZ )
− (r + (1 − u∗(ZjZ )) h(ZjZ )) SjS (ZjZ ) + dSjS (ZjZ )/dZjZ ] (14.8)

where u∗(ZjZ ) denotes the optimal value of the control at the optimal
hibernation time. (See for example Kamien and Schwartz (1971) or
Sethi and Thompson (2000) ch. 9.)

u∗(ZjZ ) is chosen so as to maximize the following:

max
0≤ u(ZjZ ) ≤ 1

{(SjS (ZjZ ) − Lj) u(ZjZ ) − MjM [u(ZjZ )]} (14.9)

The expression in square brackets in (14.8) determines sign of the mar-
ginal benefit (negative if cost) of an infinitesimal increase in terminal
time and shall be denoted by B(ZjZ ).

B (ZjZ ) = RjR − MjM (u∗(ZjZ ))hj(ZjZ ) + Lj (1 − u∗(ZjZ )) hj(ZjZ )

− (r + (1 − u∗(ZjZ )) h(ZjZ )) SjS (ZjZ ) +
dSjS (ZjZ )

dZjZ
(14.10)

and can be numerically evaluated for any candidate terminal time. It is
clear that at optimal ZjZ , we must have B (ZjZ ) ≥ 0. Otherwise for some
ε > 0, ZjZ − ε (which may be less than K − 1) may be more profitable.

Since all the expressions can now be numerically evaluated, the pro-
cedure involves the following:

1 If B(ZjZ ) ≥ 0 for all ZjZ ∈ [K − 1, K] then we can set ZjZ := K,
implying no hibernation.

2 If B(ZjZ ) ≤ 0 for all ZjZ ∈ [K − 1, K] then one can set K := K − 1
and if the new K ≥ 1, solve this one-period-shorter problem for
hibernation possibility.

3 Otherwise, using numerical search, find the values of ZjZ for which
B(ZjZ ) = 0 and compute the corresponding values of Jj,ZJJ jZ ,0 as well
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as for ZjZ = K − 1, and ZjZ = K. Pick the ZjZ for which Jj,ZJJ jZ ,0

is largest. (If this Jj,ZJJ jZ ,0 ≤ 0 then set K := K − 1 and if the
new K ≥ 1, solve this one-period-shorter problem for hibernation
possibility.)

4. Implications for Realigning the Calendar for
Regeneration Points.

Allowance for hibernation relaxes the D-F model to ensure non- nega-
tive expected net present values for a machine and in particular, for the
cash flow towards the end of its life.

If optimal value of hibernation time does not turn out to be an integer,
the management may be advised to evaluate the allowance of shorter
periods between regeneration points. Numerical experiments of D-F had
indicated that reduction of such granularity increases the computational
time as a polynomial function of the number of regeneration points. This
evaluation also needs to take into account other considerations including
whether acquisitions (or deliveries) of machines at the newly proposed
times are feasible. While the optimal control model cannot comprise
the non-quantifiable factors of managerial decisions, it nevertheless can
serve as a useful tool for providing some of the basic building blocks that
feed into the final decision.
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