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ABSTRACT

EQUITABLE DECISION MAKING APPROACHES
OVER ALLOCATIONS OF MULTIPLE BENEFITS TO

MULTIPLE ENTITIES

Sema Nur Kaynar Keleş
M.S. in Industrial Engineering

Advisor: Özlem Karsu
July 2017

In this study, we develop decision support tools for policy makers that will help them
make choices among a set of allocation alternatives. We assume that alternatives are
evaluated based on their benefits to different users and that there are multiple benefit
(output) types to consider. We assume that the policy maker has both efficiency (max-
imizing total output) and equity (distributing outputs across different users as fair as
possible) concerns. This problem is a multicriteria decision making problem where the
alternatives are represented with matrices rather than vectors.

We develop interactive algorithms that guide a policy maker to her most preferred
solution (a set of most preferred solutions), which are based on utility additive (UTA)
and convex cone methods. Our computational experiments demonstrate the satisfac-
tory performance of the algorithms. We believe that such decision support tools may
be of great use in practice and help in moving towards fair and efficient allocation
decisions.

Keywords: Interactive Approaches, Additive Utility, Convex Cone Method, Fairness,
Equity.
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ÖZET

BİRDEN FAZLA ÇIKTININ BİRDEN FAZLA
KULLANICIYA DAĞILIMLARINA KARŞILIK GELEN

ALTERNATİFLER ARASINDA EŞİTLİKÇİ KARAR
VERME YÖNTEMLERİ

Sema Nur Kaynar Keleş
Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Özlem Karsu
Temmuz 2017

Bu çalışmada, karar vericilere proje alternatifleri arasında başlatılacak olanı seçerken
yardımcı olacak karar destek sistemleri geliştirilmiştir. Proje alternatiflerinin bir-
den fazla çıktının birden fazla kullanıcıya farklı dağılımlarına karşılık geldiği bu
problemde, karar vericilerin alternatifleri sadece dağıtılan çıktının toplam mik-
tarına göre değil, çıktıların kullanıcılara nasıl dağıtıldığına göre de değerlendirdiği
varsayılmaktadır. Bu problem, alternatiflerin vektörler yerine matrislerle gösterildiği,
çok kriterli bir karar verme problemidir.

Karar vericiyi, en çok tercih ettiği alternatife yönlendirecek iki ayrı interaktif
yöntem geliştirilmiştir. Bu yöntemlerden ilki, toplanabilir fayda skorları yöntemine
(UTA) dayanırken, diğeri konveks koni yöntemi kullanılarak geliştirilmiştir. Elde
ettiğimiz sonuçlar doğrultusunda iki yöntemin de yeterli performansa sahip olduğu
gözlemlenmiştir. Bu tür karar destek sistemlerinin politika yapım süreçlerinde
karar vericileri eşitlikçi ve verimli alternatiflere yönlendirmekte faydalı olacağına
inanıyoruz.

Anahtar sözcükler: İnteraktif Yöntemler, Toplanabilir Fayda, Konveks Koni Yöntemi,
Eşitlikçilik.
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Chapter 1

Introduction

In many decision making settings the decision makers have to choose among a set

of given alternatives, considering multiple criteria. Due to the trade-offs that exist

between different criteria, this problem is a challenging problem, which motivated the

design of many decision support tools (see [2] for a survey). Some example settings

from the literature involve decision making problems in the areas of energy planning

[3], finance [4], and sustainable development [5].

In a classical multicriteria decision making (MCDM) setting, each alternative is

associated with a vector whose elements show the performance of that alternative with

respect to each criterion. These problems are multiple criteria evaluation problems

where a finite set of alternatives is given explicitly. For evaluation problems, one may

try to: identify the best alternative or a small subset of most preferred alternatives, rank

the alternatives, or sort the alternatives into predefined groups [6].

In some of the real life examples, alternatives correspond to different distribu-

tions of a single criterion/output to multiple users/entities. These cases lead to a

special multi-criteria choice problem where the alternatives are allocation vectors,

in which each element corresponds to the amount of a resource/benefit/good that a

user/entity/beneficiary enjoys. In these problems, the users are considered to be anony-

mous which means that their identities do not affect the decision. To exemplify, in a

1



two entity setting the policy maker would be indifferent between the following two

allocations (7, 8) and (8, 7). Equity is of great importance for these problems as an

expected result of the anonymity assumption. The policy maker needs to consider the

trade-off between equity and efficiency for such allocation problems before choosing

one. The trade-off between these two concerns makes the problem challenging.

To see the trade-off between equity and efficiency, let us consider a hospital site

selection problem where the entities are different neighbourhoods and the travel times

from the neighbourhoods to the hospital is the output. Each alternative location will

lead to a different distribution of travel times to the hospital. The policy maker may

want to choose the site considering both efficiency (minimizing the total travel time)

and equity (treating different neighbourhoods as equitably as possible). To illustrate

the trade-off between these two concerns, consider the following two allocations where

the vectors correspond to the travel times of three different neighbourhoods to two

alternative hospital locations: (3, 5, 6) and (5, 5, 5). While the total travel time is less

in the first allocation, second allocation is more equitable. Note that there is no obvious

choice given this pair, different DMs may choose different allocations depending on

how inequity-averse they are.

In this thesis, we consider a set of allocations that distribute multiple outputs among

multiple users and the problem is determining the most preferred one (or a set of most

preferred alternatives). This problem is a special type of multiple criteria choice prob-

lem since the alternatives correspond to matrices rather than vectors. It involves equity

concerns for users alongside the usual trade-off between different criteria. The de-

scribed problem will be called multi-dimensional equitable choice problem throughout

the thesis.

For example, let us consider a healthcare policy selection problem where a pol-

icy maker is given a set of alternatives. Assume that each alternative corresponds to

different allocations of two outputs, increase in quality adjusted life time and protec-

tion from health related out-of-pocket expenditures, to two population groups who are

anonymous. In most setting the alternatives will reflect the trade-off between equity

and efficiency; hence finding a most preferred allocation will not be easy. We develop

interactive approaches to help the DM to find her most preferred alternative in such

2



settings.

Multi-dimensional equitable choice problem has different characteristics than clas-

sical MCDM problems, hence it reveals the need of developing different approaches

than the classical methods in the literature. In this thesis, we discuss the different

properties of these problems and develop solution methodologies for such problems.

The rest of this thesis is composed of the following chapters:

Chapter 2: We describe the problem setting in detail and then provide the dominance

rules in line with the impartiality assumption used in equitable choice problems.

Chapter 3: We first provide a brief review of the related literature on MCDM prob-

lems and main solution methodologies. We then discuss the interactive approaches that

have been used in the literature and that motivated our algorithms. We conclude our

literature review chapter by discussing relevant work from the group decision making

literature.

Chapter 4: We use a value function based approach and assume that the decision

maker (DM)’s preferences can be represented by a value function that is not known.

Hence we make use of interactive algorithms that gather preference information from

the DM. We present the defined value functions (marginal value, user value, and social

welfare functions) that constitute the basis of our solution approaches. We then discuss

the main assumptions on the forms of the value functions by the two approaches that

we suggest (UTA-based and convex cone-based approaches) alongside the different

information retrieval procedures.

Chapter 5: We provide an extension of well-known UTA method which assumes an

additive value functions and discuss the UTA-based interactive algorithm designed for

the multidimensional equitable choice problems.

Chapter 6: We discuss the use of convex cone method for multi-dimensional equi-

table choice problem and present convex cone-based algorithm designed for our prob-

lem setting.

3



Chapter 7: We provide the result of computational experiments that we perform

to check the computational feasibility and the quality of the results for the proposed

algorithms.

Chapter 8: We provide the concluding remarks.

4



Chapter 2

Problem Definition

In this chapter, we provide the problem definition in detail and discuss how this prob-

lem extends the current literature on multi-criteria decision making. Then, we address

the multidimensional equity concerns of the policy maker and define some dominance

rule relations that will be used throughout the thesis.

Consider an example healthcare project selection problem in which the policy

maker is to choose a project to initiate among a set of projects. In this problem, we

are given a set of alternatives A =
{

a1,a2, ...,aN} and a typical member shows the dis-

tribution of multiple (n) outputs over multiple (m) users. In the matrix representation,

the rows and columns correspond to different users (population groups) and outputs,

respectively as follows:

ak = m Users

n Outputs
ak

11 ak
12 · · · ak

1n

ak
21 ak

22 · · · ak
2n

...
... . . . ...

ak
m1 ak

m2 · · · ak
mn


where for a given alternative ak, ak

i j represents the level of output j allocated to user i.

We assume that the decision maker is trying to select the best alternative in line with

her preferences.
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This problem can be considered as a multicriteria choice problem, in which alter-

natives are explicitly given and the problem is determining the most preferred one.

However, it is an MCDM problem of a special type. It is different than the classical

MCDM problems discussed in the literature in the sense that the alternatives distribute

multiple outputs to multiple users that is, they correspond to matrices rather than vec-

tors.

Moreover, unlike a classical MCDM problem, this problem involves a fairness fac-

tor alongside the usual trade-off between different outputs. That is, how we distribute

an output is also of concern to the decision maker. Such multi-dimensional equitable

choice problems are commonly encountered in public sector where equity concerns

have significant importance. For example, it is important to treat all the users as eq-

uitably as possible for some public sector problems such as healthcare project initial-

ization, R&D project selection, or resource allocation in different organization units.

Most of the alternatives that the policy maker considers may reflect the trade-off be-

tween equity and efficiency. Choosing among them is a difficult task hence it is great

importance of designing decision support tools that aid the DM.

We will try to explain the relation and the possible trade-off between equity and

efficiency by using a small example.

Example 1 Consider a problem in which a DM is faced with a set of alternatives

showing distributions of two goods (outputs) to two users. When we increase efficiency

while keeping the equity level same, we obtain a better alternative. For example, when

we have (5 5
5 5) and (6 6

6 6) as two alternatives, the DM will choose (6 6
6 6) over (5 5

5 5),

since(6 6
6 6) distributes higher amounts of outputs to the users and both alternatives

have complete equality. This example illustrates the efficiency concern of the DM.

When we have a more equitable allocation in both goods while keeping the effi-

ciency level same, we obtain a better alternative. For example, when we have (3 3
5 5)

and (4 4
4 4) as two alternatives, the DM will choose (4 4

4 4) over (3 3
5 5). Both alternatives

distribute 8 units of output 1 and 8 units of output 2, but alternative 2 provides a more

equitable allocation for each of the outputs.
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In the first example, only efficiency levels change and in the second example, only

equity levels change. Therefore, they do not reflect the trade-off between the two con-

cerns that many real life examples come along with. Choosing between alternatives

where both efficiency and equity levels change can be a cognitively challenging task.

For example,we cannot say which alternative would be chosen between (4 5
6 7) and (3 4

8 9).

In this example, the alternative that has higher efficiency level is worse in terms of eq-

uity. The trade-off between equity and efficiency can be observed here.

In this study we assume a non-hierarchical relation among the users. We assume

that changing the bundles over the users does not affect the social welfare value that

an alternative brings. (A bundle is a distribution of benefits to a single user and corre-

sponds to a row in our matrix notation). This is the so-called impartiality assumption

defined in equitable preferences [7]. For example, we assume that the DM will be

indifferent between two alternatives (4 5
3 6) and (3 6

4 5).

Since we consider situations in which multiple benefits are distributed to multiple

entities, the fairness concerns are of a multidimensional nature. There are well-known

results in the economics literature on single benefit (income) distributions to multiple

individuals that discuss various axioms and link these to dominance relations such as

Lorenz dominance [8] and Generalized Lorenz dominance [9]. However, it is con-

siderably harder to obtain such rules and equivalence results in a multidimensional

framework [10]. A pioneering work that touches upon these dominance issues in the

multidimensional settings is due to [11]. We also provide dominance rules in line with

the assumptions (impartiality and monotonicity) that we make on the preference model

of the central DM.

These dominance rules are obtained by extending vector dominance relations for

alternatives that are represented by matrices. We will first give the definition of (weak)

dominance relation over vectors and then, discuss the corresponding extensions.

Definition 1 Given two alternatives zk, zk′ ∈ Rn where n is the number of outputs

(criteria) and J = {1,2, ...,n},

zk �d zk′ (zk′ weakly dominates zk)⇐⇒ zk
j ≤ zk′

j for all j ∈ J.
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A simple extension of Definition 1 for our problem setting would be the following:

Definition 2 Given two alternatives ak, ak′ ∈ R(m×n) where m and n are the number

of users and the number of outputs, respectively, let us define the following sets I =

{1,2, ...,m} and J = {1,2, ...,n}

ak �d ak′ (ak′ weakly dominates ak)⇐⇒ ak
i j ≤ ak′

i j for all i ∈ I, j ∈ J.

Consider two alternatives ak = (5 4
4 3) and ak′ = (6 5

4 3). Since ak
i j ≤ ak′

i j for all i, j,

we say that ak′ dominates ak. Alternative k′ brings greater value to the f irst user

for each criterion than alternative k while the second user gets the same bundle in

both alternatives. Here, the users are called as f irst and second just to provide an

ease in the expression. Their usage do not imply any superiority relation. Let us

consider a scenario where alternative k becomes ak = (4 3
5 4). From the impartiality

assumption, the DM is indifferent between (5 4
4 3) and (4 3

5 4). However, the dominance

rule introduced in Definition 2 fails to acknowledge this relation when the row ordering

of the users changes. Hence, we modify this dominance rule to handle the impartiality

assumption.

Definition 3 For an alternative ak ∈ R(m×n) where m and n represent the number of

users and the number of outputs, respectively, let π(ak) be the set of all different row

permutations of ak and R = {1,2, ...,m!}. Given two alternatives ak and ak′ ∈ R(m×n),

ak �em ak′ (ak′ equitably matrix weak dominates (em-dominates) ak) ⇐⇒
πr(ak)�d ak′ for at least one r ∈ R.

Em-dominance enables us to make further inferences compared to the previous

dominance relations. Let us take the example where ak = (4 3
5 4) and ak′ = (6 5

4 3) and

π(a1) =
{
(4 3

5 4),(
5 4
4 3)
}

. Since π2(ak) =
{
(5 4

4 3)
}

and π2(ak)�d ak′ , ak′ em-dominates

ak.

The em-dominance relation will help us eliminate some alternatives. However, in

most real life cases, we will have trade-offs and using dominance relations will not be

8



sufficient to make decisions. Hence we propose decision support tools, that will help

the DM choose her most preferred alternative in a set of em-efficient alternatives (an

alternative is em-efficient if there is no other alternative that em-dominates it).

9



Chapter 3

Literature Review

In this study, we address multi-criteria decision making (MCDM) problems where

the alternatives correspond to distributions of multiple goods/outputs to multiple

users/entities. Hence the alternatives are not vectors but matrices, the columns and

rows of which show the allocated outputs and the users that enjoy these goods, re-

spectively. Each element of the matrix shows the level of an output a user receives.

Due to this property, the problem of concern is a special type of MCDM problem.

We tackle this problem by proposing two interactive approaches that are based on the

assumption that the policy maker has fairness concerns as well efficiency concerns.

Therefore, in our literature review, we will first discuss MCDM problems and main so-

lution approaches, and show where our problem fits in the literature. We then provide a

brief review of the interactive approaches that have been used in the literature and also

motivated our algorithms. Since the problem involves fair and efficient allocation of

benefits to multiple entities, it is also related to the group decision making settings. We

conclude our literature review chapter by mentioning some of the noteworthy studies

in group decision making literature.
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3.1 Multiple Criteria Choice Problems

MCDM is concerned with the problems that involve multiple criteria to be considered.

A typical MCDM model can be formulated as follows:

“Max” {z1(x),z2(x), ...,zn(x)}
s.t. x ∈ X

where x is a generic decision vector and X is the feasible decision space.

{z1(x),z2(x), ...,zn(x)} is the vector of n objective functions where z j(x) corresponds

to the value of jth objective function for x. Using quotation marks implies that the

maximization of a vector is not a well-defined mathematical operation. Unless there

exists a solution that maximizes all of the objective values simultaneously, the problem

will have multiple Pareto optimal solutions. A solution vector is called a Pareto opti-

mal/efficient solution if it is not possible to improve the value of one of the objectives

without making some of the other objective values worse.

MCDM problems are often categorized into two categories based on the structure

of the decision space X : i.e. multiple criteria design problems and multiple criteria

evaluation problems. In multiple criteria design problems, the decision space X is de-

fined by a set of constraints implicitly. In the design problems, the DMs deal with

either a continuous decision space or an exponentially growing discrete space of al-

ternatives [12]. In multiple criteria evaluation problems, a finite set of alternatives is

given explicitly [12] and the DMs deal with a discrete decision space. For example,

finding the most preferred house among the houses for sale in a specific region is a

multiple criteria evaluation problem. Note that the DM may not always try to find the

most preferred alternative given a set of alternatives. She may want to [13]:

1. identify the best alternative or a small subset of most preferred alternatives ;

2. rank the alternatives;

3. sort the alternatives into predefined groups.

11



Accordingly, the MCDM evaluation problem could be a finding the best, ranking

or sorting problem. In this thesis, we consider the first problematique and assume that

the DM is trying to determine a set of most preferred alternatives among a given set of

alternatives. This is also called a multi-criteria choice problem.

Multi-criteria choice problems generally assume that the criteria are not comparable

(they assume different criteria). In such settings, each alternative is associated with a

vector whose elements show the performance of that alternative with respect to each

criterion.

A line of the MCDM literature considers problems where the alternatives are allo-

cation vectors, in which each element corresponds to the amount of an output that a

beneficiary enjoys and the DM has equity concerns alongside the efficiency concerns

[14]. This problem is called as equitable choice problem and the tradeoff between

these two concerns makes the problem challenging. A distinguishing feature of such

choice problems is the impartiality property. In such a setting, the decision maker is

indifferent between an allocation and any permutation of that allocation, making the

problem and the solution approaches different than their counterparts in the classical

multi-criteria decision making literature.

[15] introduces the definition of equitable efficiency, which is used in this thesis

with an extension, and provides techniques to find the set of equitably efficient solu-

tions of resource allocation problems. [16] defines equitable aggregation functions of

the criteria for both linear and nonlinear multiple optimization problems to select eq-

uitable efficient solutions. They argue that the aggregation function has to be strictly

increasing for each criterion in a minimization setting to guarantee the consistency of

the results. [17] provides sorting algorithms for single outcome allocations where the

DM’s preferences are assumed to be in line with impartiality and convexity assump-

tions.

In this thesis, we consider a set of alternatives that distribute multiple outputs among

multiple users and the problem is determining the most preferred one. This problem is

a special type of multiple criteria choice problem since the alternatives correspond to

matrices rather than vectors. Hence, it has multidimensional equity concerns alongside

12



the usual trade-off between different criteria/outputs.

Figure 3.2 provides the categorization of MCDM problems as evaluation and design

problems and describes the main problematiques of each category. It also summarizes

equitable choice and multidimensional equitable choice problems.

 MCDM Problems 

MC Evaluation Problems MC Design Problems 

 Finding the best 
 Sorting 
 Ranking 

 

 Finding the set of pareto 
optimal solutions 

 Finding the most  
preferred alternative  
 

Equitable Choice 
Problems 

Multi-dimensional 
Equitable Choice 

Problems 

Alternatives 
are 

allocation 
vectors 

Symmetry 
holds 

Symmetry 
holds over 

users 

Alternatives 
correspond to 

different 
allocations of 

multiple outputs 
to multiple users 

Figure 3.1: Summary of the MCDM problems
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3.2 Interactive Approaches (UTA and Convex Cone)

The methods used to solve multiple criteria design (MCDM) problems are generally

categorized according to the involvement of DM in information retrieval process as

priori methods, posteriori methods and interactive methods. In priori methods, first

the preference information of DM is taken and then the solution set that satisfies the

provided information is found. Goal programming, value function, and lexicographic

ordering methods take the preference information as priori to the solution process.

Posteriori methods deal with finding the whole set of pareto optimal solutions and

presenting them to the DM for further evaluation. Weighted sum scalarization and ε

-constraint methods are examples of posteriori methods. Another solution approach

is to obtain preference information from DM iteratively until the best alternative or a

small subset of alternatives with predefined cardinality is found. This method is called

interactive approach. When multiciteria choice problems are considered, interactive

approaches are one of the most popular approaches.

In this thesis, we propose two interactive approaches for mutidimensional equitable

choice problems, that are motivated from UTA and convex cone methods. Both ap-

proaches are value function based approaches that assume that the preferences of the

DM is consistent with an underlying value function. Both UTA and convex cone ap-

proaches incorporate preference information of the DM into mathematical models to

infer the underlying utility function of the DM or to eliminate the alternatives that can-

not be the best alternative for the set of considered functions. Figure 3.2 demonstrates

the steps of these methods.

We now discuss the two interactive approaches that we extend in detail.
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Figure 3.2: Underlying setting of the UTA and the convex cone methods [1]

3.2.1 UTA Method

One of the well-known solution methods which uses additive value functions is the

UTA method. It is introduced by Jacquet-Lagrèze and Siskos ([18], [19]). This meth-

ods assumes that the overall utility of an alternative can be found by summing up the

marginal values that the alternative brings with respect to criteria. It generally assumes

piecewise linear marginal value functions and exploits linear programming techniques

to incorporate the preference information of the DM. A set of value functions which

are compatible with the provided preference information can be assessed using UTA

methods.

There are several variants of the UTA method, which use different optimality cri-

teria to achieve the value functions. There are also variations specifically designed

for the three problematiques mentioned before: finding the best alternative, sorting

(classification) and ranking.

[20] improves UTA approach to find the best alternative and propose a method

called UTASTAR. This method introduces error terms for both overestimation and

under estimation for each pair of consecutive alternatives in the ranking. They find
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additive value functions that are as consistent as possible with the provided preference

information by minimizing the summation of the error terms.

[21] extends UTASTAR method for classification of the alternatives by defining

UTADIS method. This method also uses two error terms to measure the differences be-

tween the obtained results and the real classification of the reference alternatives. The

error terms are calculated as the violations of lower and upper bounds of the groups by

the reference alternatives. Several new variants for the UTADIS method with different

objective functions can be found in the literature ([22], [23]).

In UTA methods, even though the value functions are required to be compatible

with the preference information, there may still exist many such value functions. Typ-

ically, only one value function is selected arbitrarly to make recommendations to the

DM among many other value functions. The idea of evaluating all functions that are

compatible with the preference information was firstly introduced in robust ordinal

regression method called UTAGMS [24]. They define necessary and possible conse-

quences for the provided preference information to make recommendations to the DM.

This method provides two different rankings (necessary and possible rankings) for the

alternatives. Necessary ranking is obtained by considering all value functions compat-

ible with the preference information whereas possible ranking is obtained by checking

the existence of at least one value function compatible with the preference information.

The UTA-based methods discussed in the literature have been used for the classical

MCDM problems, where each alternative corresponds to a vector. [17] extends the

approach by modifying and using it on a equitable resource allocation setting, where

the alternatives correspond to distributions of a single benefit to multiple entities and

the DM has fairness concerns, i.e. there is symmetry.

We extend these two lines of research by proposing UTA-based algorithm that ex-

ploits UTAGMS method for multidimensional equitable choice problems where multi-

dimensional fairness and efficiency concerns exist.
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3.2.2 Convex Cone Method

Convex cone method is another way of representing the DMs preference information

when the underlying value function of the DM is assumed to be quasi-concave. [25]

provides an interactive method to find the best alternative, where the DM is asked

pairwise comparison questions and the underlying value function of the DMs is as-

sumed to be a non-decreasing and quasi concave value function. They use the pairwise

comparison information to generate the corresponding cones and eliminate the inferior

alternatives which are inferior to any of these cones. [26] and [27] also exploit convex

cone method by aiming to increase the strength of cones generated by creating artifi-

cial alternatives or developing ways to choose the cone generators. The authors discuss

the ways of obtaining appropriate artificial alternatives. They managed to ask smaller

number of pairwise comparison questions to find the best alternative compared to [25].

[28] provides an experimental study which analyses the effects of selecting cone

generations, deciding the number of alternatives used for cone generation, and the

order in which pairwise comparisons are asked to the DM. [29] introduces p cones

concept to improve the performance of the interactive algorithms by reducing the pref-

erence information requirements. P cones concept is used to demonstrate the closeness

of an alternative to being cone dominated and they obtained satisfactory performance

of p cones concept on minimizing the burden of the DM. [30] provides an interactive

procedure to place alternatives into acceptable and unacceptable classes. The under-

lying value function of the DM is assumed to be quasi-concave and non-decreasing.

They employ convex cone and polyhedra methods to partition the alternatives into

these classes. [31] exploits convex cone method in optimization of multi-objective

knapsack problems. They provide an interactive multi-objective evolutionary algo-

rithm, genetic algorithm, where the solutions are obtained with a reasonable number

of comparison questions. [32] proposes an algorithm to determine a preference-based

strict partial order for a given number of alternatives when the underlying value func-

tion of the DM is assumed to be quasi-concave.

[33] extends the use of convex cones for allocation problems where a single benefit

is distributed to multiple users and impartiality holds. Since the preference model of
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the DM is assumed to be equitable, impartiality holds, which implies that the value

function of the DM is symmetric quasi-concave. Impartiality assumption implies that

the DM would be indifferent between an allocation vector and any permutation of that

vector and this brings a computational complexity. The study develops a method to

handle the complexity resulting from the impartiality assumption.

We will extend this work by proposing a convex cone based algorithm for multi-

dimensional equitable choice problems.

3.3 Group Decision Making

The problem of allocating multiple benefits to multiple users can be considered as

related to the group decision making problem, where alternatives that have different

consequences for a number of entities (individuals) are evaluated, typically by the

group of entities itself. Hence in such settings, one of the main concerns is constructing

a social welfare function whose arguments are the individual utilities. The suggested

decision support methods include assessments of the preferences of individuals and a

rule for aggregating these preferences to determine group preferences [34] [35]. The

pioneering studies that deal with aggregation of cardinal utilities are due to [34], [36],

[37], [38], [39].

One of the important concerns in group decision making is equity (fairness) of the

group decision [40], [41], [42], [43]. In line with this, [41] structures a framework

in which an individual’s utility depends on what others receive. Group members’ ap-

proach to equity is reflected through individual utility functions, which are functions

of the distribution vector. Similar to the previous studies, the authors consider a linear

aggregation rule. [42] considers equity in distributions of risk and [43] extends this

discussion by considering preferences on trade-offs and develops notions of inequity

neutrality and inequity aversion. He discusses different conditions and links them to

various forms of group value functions.

In most of the group decision making studies, individuals have different preference
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models (represented by different individual utility functions) and the aim is aggregating

these preferences into a group preference model. However, in the problem settings we

consider, we assume that there is a single policy maker (DM) hence we do not have the

concern of aggregating individual preferences. In group decision making, since each

individual’s utility is usually considered as a function of what he receives (independent

of what others get), assuming an additive social welfare function may be realistic. As

we will elaborate later, we try to relax the preferential separability assumption, which

is common to many group decision making settings, since we assume that the policy

maker’s preferences involve equity concerns (hence will depend on how a benefit is

distributed) alongside efficiency concerns. Even when separability is assumed, we

structure the framework so as to encourage equity in the distributions of benefits.
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Chapter 4

Solution Approaches

In this chapter, we define the value functions that constitute the basis of our solution

approaches and discuss their relations with each other. Then we discuss the main

assumptions of UTA-based and convex cone-based approaches that we propose and

the information retrieval procedures used in these two approaches.

Recall that we consider the problem of selecting the best alternative among a finite

set of alternatives. In the literature, different approaches such as outranking relations

and multi-attribute value theory approaches are used for this problem type [44]. We

propose value function based approaches to this problem. Such approaches assume that

the DM’s preferences can be represented by value functions and incorporate preference

information of the DM into the mathematical models to infer more about the DM’s

preferences.

We construct our approaches by defining three different value functions: marginal

value function (MVF), user value function (UVF) and social welfare function (SWF).

For each output a MVF is defined, which assigns value scores to different levels

of the output. Let MVj(.) be the non-decreasing marginal value function for output j.

MVj(ak
i j) represents the value derived by the DM (policy maker) from the allocation

of the jth output of alternative k to any user i. Marginal value that is obtained from an

output is independent from the users, hence MVF depends only on the output type and
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not the user enjoying it.

Another function that can be defined is the user value function (UVF). Let UV (bk
i )

be the social value (as perceived by the DM) derived by providing a user with bundle bk
i

(this is the ith row in alternative k). In other words, UV (.) assigns a total value score to

the bundles (vectors showing levels of output with respect to all output types). Again,

due to impartiality, we assume that given the same bundle, user values obtained from

that bundle does not change for different users. Since the users are indistinguishable

for the DM, this value is independent of the users’ identities.

We also define a social welfare function (SWF) for the alternatives. Let SW (ak) be

the total social welfare that alternative k brings. It is used to evaluate overall values of

the alternatives to the DM. The interactive algorithms that are developed for the prob-

lem introduced above aim to find the alternative which has the highest social welfare

value for the DM. The social welfare value of an alternative is not independent from

the corresponding user values and marginal values hence SW (.) may be considered

as a function of UV (.) and MVj(.). SWF can be assumed to have different forms in

different solution methodologies.

Example 2 To illustrate the three functions described above, let us consider an ex-

ample problem where a healthcare policy maker aims to choose the best alternative

among the six alternatives provided below. Let the alternatives correspond to different

distributions of two outcomes, the resulting quality adjusted life time and out-of-pocket

expenditures, to two user groups. Recall that MVFs are defined for the outputs. Hence

two MVFs will be defined: one for the quality adjusted life time and one for the out-of-

pocket expenditures (MV1(.) and MV2(.) for short.)

a1 =

(
2 8

3 4

)
a2 =

(
5 5

6 2

)
a3 =

(
4 6

3 5

)

a4 =

(
5 5

4 6

)
a5 =

(
3 5

8 2

)
a6 =

(
6 4

3 7

)
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In this example, the observed levels for outputs 1 and 2 are (2, 3, 4, 5, 6, 8) and

(2, 4, 5, 6, 7, 8), respectively. MVFs convert these levels into their value correspon-

dences. For example, MV1(6) and MV2(5) represent the values obtained from getting 6

and 5 units from the first and the second outputs, respectively. Notice that the functions

do not take into account the user information. They only consider the output types and

the level of outputs.

In all the alternatives, each user receives a bundle of two outputs (e.g. user 1 gets

(2, 8) in the first alternative and (5, 5) in the second alternative) and UVFs calculate

the total value (as perceived by DM) that a bundle brings to a user. Recall that bundles

show the distribution levels of the outputs to a single user. For example UV(2, 8)

returns the total value obtained from providing 2 units from the first output and 8 units

from the second output to a user.

Similarly, SWF assigns total values to the alternative. For example SW(2 8
3 4)

gives the social welfare value that first alternative brings. As indicated above, SWF

maybe a function of UVFs. Hence, SW(3 4
2 8) can also be represented as SW(UV(3,4),

UV(2,8)). Since the users are anonymous to the DM (recall the impartiality assump-

tion), (3 4
2 8) should have the same social welfare value with the (2 8

3 4). This implies

that SW(UV(3,4), UV(2,8)) and SW(UV(2,8),UV(3,4)) have to be the same. Therefore,

SWFs have to be a symmetric function of the user values.

The methods we discuss below are based on different assumptions on the forms of

these marginal value, user value, and social welfare functions, which are summarized

in Table 4.1.

Table 4.1: Summary of the solution approaches

Approach MVF UVF SWF Preference information

UTA-based Concave Additive Additive Vector comparisons
and/or holistic comparisons

Cone-based Linear Additive S. quasi-concave Holistic comparisons
and vector comparisons: optional
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The first approach exploits basic UTA techniques. It uses concave MVFs for the

outputs. UVFs are assumed to be additive, i.e. the total value that a user acquires

through an alternative is the sum of the values that she obtains from each output. Fur-

thermore, social welfare that an alternative brings is assumed to be the sum of user

values i.e. SWFs are additive. Note that use of concave functions encourages eq-

uitable distribution of an output since for any concave MVF, the social value of an

alternative increases when the the levels of each output get closer to each other which

reflects the DM’s concern on fairness.

The second approach (convex cone based approach) assumes linear MVFs and addi-

tive UVFs. User values are calculated as weighted aggregations of the marginal values

of the outputs. This approach also assumes SWFs are symmetric quasi-concave and

hence it relaxes the additivity assumption of the first approach.

We design interactive algorithms that take preference information from the DM

iteratively by asking pairwise comparison questions. In the UTA-based approach, we

ask the DM to compare two different bundles of outputs (vectors) while the convex

cone based approach asks the DM to compare alternatives holistically.

For example, when holistic comparison method is employed, the DM is asked to

compare two alternatives from the given set of alternatives such as (2 8
3 4) and (5 5

6 2)

whereas when vector (bundle) comparison method is employed, the DM is asked to

compare the following bundles (3, 4) and (6, 2), which represent different distributions

of outputs to only one user. In UTA-based method, one can also use holistic compari-

son method, too. On the other hand, in order to generate the corresponding cones, one

need to use holistic comparison method in cone-method.

Holistic comparison is more challenging in terms of its cognitive requirements. This

is because comparing alternatives requires to analyse trade-offs between the alterna-

tives in both user and output directions. Especially when the number of outputs and

the number of users are increased, it would get more difficult for the DM to compare

the alternatives holistically. However one can eliminate the alternative which is not

preferred, permanently from the set by asking holistic comparison questions
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On the other hand, vector comparison questions are not that cognitively challenging

for the DM since they do not require the DM to consider the trade-offs between/among

output levels of different users. This question type only requires comparing the trade-

offs between multiple the outputs given to a single user. Although, vector comparison

questions are easier for the DM, we cannot eliminate any alternative directly based on

such questions.

Following two chapters are devoted to discussion of UTA-based and convex cone-

based methods in detail.
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Chapter 5

UTA-based Method

In this part, we discuss the interactive approach based on the well-known UTA method

introduced by Jacquet-Lagrèze and Siskos ([18], [19]). In a classical MCDM problem,

this method assumes an additive unweighted global value function, which is the sum of

the marginal value scores and assigns values to alternatives in line with the preferences

of a DM by using linear programming techniques ([45], [46]).

Although the UTA method forces marginal value functions to be compatible with

the preference information, there may still exist many such value functions. The idea

of evaluating all value functions that are compatible with the preference information

(instead of chosing one) was firstly introduced in UTAGMS method [24]. Our approach

also follows this idea of evaluating all compatible value functions.

UTA-based methods are introduced and exploited for the multi-criteria evaluation

problems where the alternatives are represented as vectors instead of matrices. We

extend the use of these methods for the settings where alternatives are represented as

matrices rather than vectors. We further extend the use of UTA-methods in which the

DM has fairness concerns.

In the UTA-based method, we propose that the value that is obtained from an output

vector (bundle), which is defined as user value, is the sum of the marginal values

acquired from each output level in that bundle (we assume preference independence).
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Moreover the social welfare function is assumed to be sum of the users’ total values (i.e

we use a utilitarian framework) in that alternative. These functions are in the following

forms:

UV (bk
i ) =

n
∑
j=1

MVj(ak
i j) where bk

i = (ak
i1,a

k
i2, ...,a

k
in) ∀i = 1,2, ...,m, ∀k =

1,2, ...,N

SW (ak) =
m
∑

i=1

n
∑
j=1

MVj(ak
i j) ∀k = 1,2, ...,N

with the normalization constraints below,

MVj(a j∗)=0,
n
∑
j=1

MVj(a∗j)=1, MVj(ai j)≥ 0 ∀ j = 1,2, ...,n, ∀i = 1,2, ...,m

where a j∗ and a∗j are the least and most preferable levels of output j, respectively.

With the additivity assumption, inferring the marginal value functions of the outputs

will be sufficient to calculate the user value scores and also social welfare scores of the

alternatives.

There are different UTA applications in the literature, each with its own assump-

tions on the shape of the marginal value functions. They can be linear ([47] , [26]),

piecewise linear ([48], [21], [19]), or monotone [49]. In our problem setting, we as-

sume that all MVj(.)s are concave and approximate them in our mathematical models

using piecewise linear approximation. This assumption is used to (partially) reflect

the fairness concerns of the DM into the model. When concave marginal value func-

tions are used, the total value increases as the levels of an output distributed to users

get closer. (Everything else being the same the total value that the alternative brings

becomes higher.)

Figure 5.1 illustrates a concave marginal value function for an output with four

different levels and the corresponding piecewise linear function estimated by the UTA-

based method. As seen in the figure, increasing output level from 3 to 4 would increase

the marginal value score obtained from that output. Increasing the level from 4 to 5

also increases the marginal value score but in a smaller amount. That is, increasing

the output from a higher level results in a smaller increase in the marginal value score.
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This observation illustrates the effect of having concave marginal value functions on

promoting a fair allocation for each output to the users.

4 5 6
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Figure 5.1: Concave marginal value function and its piecewise linear approximation

We now introduce the UTA-based model which considers all marginal value func-

tions compatible with the preference information that the DM provides. Then, we

discuss the proposed algorithm that uses this model to find the best alternative (or a

small subset of most preferred alternatives), followed by a simple numerical example.

We finalize this chapter with a discussion of the UTA-based approach.

5.1 UTA-based Model

UTA-based model introduced below checks if alternative ak can have higher social

welfare value than alternative ak′ considering the DM’s preference information.
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UTA-based model

Sets:

I: the set of users {1, . . . ,m}.
J: the set of outputs {1, . . . ,n}.
Q: the pairwise comparison information gathered so far{

(p, p′) : p is preferred over p′ & p, p′ ∈ Rn}.

C j: the vector that stores unique values of output j in an increasingly ordered

manner.

Parameters:

L j: the number of different levels in output j.

Ti jk: The rank of ak
i j in set C j where i ∈ I, j ∈ J and ak ∈ A.

Tp j: The rank of p j in set C j where p ∈ Q, j ∈ J.

ε: a small positive number to ensure the MVFs are increasing.

γ: a small positive number to ensure the MVFs are strictly concave.

Ω: a small positive number to incorporate strict preference information.

Variables:

MVjt : the value of the tth minimum level in output j.

UVp: the total value achieved from the bundle p where p = {p1, . . . , pn} and p ∈Q.

SWk: the total social welfare that alternative k brings where k ∈ A.
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Maximize 0 (5.1)

subject to MVj,t+1−MVjt ≥ ε ∀ j ∈ J, t ∈
{

1, . . . ,L j−1
}

(5.2)
MVj,t+1−MVjt

C j,t+1−C jt
−

MVj,t+2−MVj,t+1

C j,t+2−C j,t+1
≥ γ ∀ j ∈ J, t ∈

{
1, . . . ,L j−2

}
(5.3)

∑
j∈J

MVjL j = 1 (5.4)

MVj1 = 0 ∀ j ∈ J (5.5)

UVp = ∑
j∈J

MVjTp j ∀p ∈ Q (5.6)

UVp−UVp′ ≥Ω ∀(p, p′) ∈ Q (5.7)

SWk = ∑
j∈J,i∈I

MVjTi jk (5.8)

SWk′ = ∑
j∈J,i∈I

MVjTi jk′ (5.9)

SWk−SWk′ ≥ 0 (5.10)

MVjt ≥ 0 ∀ j ∈ J, t ∈
{

1, . . . ,L j
}

(5.11)

The model is a feasibility check model which controls if alternative k can bring

higher social welfare value than alternative k′. It tries to assign values to output levels

in such a way that social value score of alternative k will be greater than social value

score of alternative k′. Constraint set (5.2) ensures that the marginal value functions

will be increasing. That is, for each output the assigned marginal value has to increase

when the level of the output increases. Constraint set (5.3) is used to have concave

marginal value functions. Parameter γ determines the concavity levels of the marginal

value functions. This constraint set ensures that the increments will be awarded more

when the output levels are small. Constraint sets (5.4) and (5.5) are for normalization.

Constraint set (5.4) guarantees that the user values are in the range [0-1] and hence

the social welfare values of all alternatives are in the range [0-m]. Constraint set (5.5)

ensures that the marginal value scores assigned to the minimum levels of outputs will
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be 0. Constraint set (5.6) assigns a user value score to each bundle p in the prefer-

ence information set using the marginal value scores assigned to the observed output

levels in that bundle. Constraint set (5.7) incorporates the provided information by

the DM to into the model. They ensure that the user values of preferred bundles will

be greater than the user values of bundles which are not preferred. Constraint sets

(5.8) and (5.9) assign social welfare values to alternatives ak and ak′ , respectively us-

ing the assigned marginal value scores for the output levels. Constraint (5.10) checks

if alternative ak can bring higher social welfare value than alternative ak′ considering

the UTA-assumptions (increasing and concave marginal value functions and additiv-

ity assumption on user values and social welfare values) and the provided preference

information.

Parameter selection is an important part of UTA-based method. Using high values

for the parameters (ε , γ , and Ω) would decrease the number of questions asked to the

DM (since the parameters also narrow the possible region for the MVFs); however it

may also result misrepresentation of the underlying value function of the DM. Hence

one may end up with the alternative which is not the real best alternative. On the

other hand setting parameters so small may lead to increase in the number of questions

asked to the DM. For example, if concavity parameter γ or strict preference information

parameter Ω are chosen so small, this may increase the number of questions that are

asked to the DM.

Observing the possible scores of the marginal value, the user value, and the social

welfare functions, one may have an insight into the parameter values. For example,

the marginal values of the outputs and the user values of the bundles are in [0-1]. So

setting ε or Ω to 0.5 would highly restrict the MVFs and UVFs.

5.2 UTA-based Algorithm

We now discuss the interactive UTA-based algorithm for the problem setting described

above, which finds the best alternative (or a small subset of most preferred ones) using

basic UTA principles.
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At each iteration of this algorithm, preference information of the DM is gathered

by asking vector (bundle) comparison questions. These comparison questions limit

the possible region for the MVFs in line with the preference information of the DM.

Then the algorithm checks for all alternatives which are not eliminated if there exists

any other alternative that brings higher social welfare value for all possible marginal

value function assignments that are compatible with given preference information and

makes the necessary eliminations. If the number of remaining alternatives is greater

than a predetermined threshold value K, the DM is asked another bundle compari-

son question. Obtaining preference information is key to eliminate alternatives since

they narrow the possible region of MVFs in line with the provided information. This

loop is repeated until the number of remaining alternatives is less than or equal to a

predetermined threshold value K.

Algorithm 1 Step 1: Initialization. Set REMAIN={a1,a2, ...,aN}. Find the em-

dominated alternatives and remove them from the set REMAIN.

Step 2: UTA eliminations. For all pairs of alternatives, make pairwise comparisons

using the Comparison subroutine. Make the necessary eliminations and update set

REMAIN accordingly.

Step 3: Take new preference information from the DM by using Vectorpreference-
info subroutine. Add the information as a constraint to the UTA-based model and go

to Step 4.

Step 4: Preference Information Eliminations. For all pairs of alternatives, make

pairwise comparisons using the Comparison subroutine. Make the necessary elimi-

nations and update set REMAIN accordingly. If all pairs in REMAIN have not been

checked yet, repeat this step. Otherwise, if the number of alternatives in set REMAIN

is higher than K, go to step 3. If not, go to Step 5.

Step 5: Stop and report REMAIN.

Let us now explain Vectorpreferenceinfo and Comparison subroutines in more de-

tail.
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Vectorpreferenceinfo
This subroutine is used to select the vectors to be asked to the DM. We tried three alter-

native methods to choose these vectors, which are based on random selection, distance

to an ideal vector and pairwise distances between the set of vectors and analysed their

performances in terms of the number of questions asked to the DM.

Random selection: We randomly choose two vectors/bundles from the provided set

of alternatives and the DM is asked to compare these two alternatives. Note that the

algorithm ensures that the DM will not be asked to compare the same bundles again.

Ideal: We create an ideal vector ((ideal1, ideal2, ..., idealn) where ideal j =

max∀k∈A,∀i∈I ak
i j) and calculate the Euclidean distances between the ideal vector and

each vector (bundle) in the given set of alternatives. The vectors to be asked are chosen

starting from the ones which have smallest distance to the ideal vector. After asking

the two bundles with the smallest distances, we eliminate one of the bundles from the

set of bundles to be asked to the DM in order not to ask the same question to the DM

with a predetermined rule.

The rule permits to eliminate the preferred bundle from the set because keeping the

strongest vector in the set decreases the set of possible questions that may be asked

to the DM. For example, suppose that the DM is asked to compare (9, 8) and (5, 9)

and (9, 8) is preferred. However, (9,8) may dominate many bundles and hence keeping

it in the set of bundles to be asked to the DM may decrease the possible number of

questions can be asked to the DM. Therefore, we permit (9,8) to be eliminated from

the set of bundles to be asked to the DM even though it is the closest bundle to the

ideal vector.

Minimum pairwise distance: We calculate the Euclidean distances between all pairs

of vectors in the given set of alternatives. For example let us consider the following

alternatives with two outputs and two users: (
ak

11 ak
12

ak
21 ak

22
) and (

ak′
11 ak′

12

ak′
21 ak′

22
). The distance is

calculated as follows:
√

∑ j∈J,i∈I |ak
i j−ak′

i j|2. Then the vectors/bundles that have the

minimum distance to each other are chosen to ask the DM.The pair asked is removed

from the set.

32



Comparison
This subroutine is used to compare the social welfare values of the alternatives with

each other. For any two alternatives ak and ak′ , we check if there exists a feasible solu-

tion where SW (ak)≥ SW (ak′) using UTA-based model. In Step 2, the alternatives are

compared only considering the assumptions on the form of marginal value functions,

i.e. being increasing and concave. Then, in Step 3 after obtaining a new preference in-

formation, we make all possible comparisons again. If SW (ak) cannot be higher than

SW (ak′), then we conclude that ak′ is preferred over ak. However if SW (ak) can be

higher than SW (ak′), then we need to check if SW (ak′) can be higher than SW (ak). If

SW (ak′) can be higher than SW (ak), we remain inconclusive. If SW (ak′) cannot be

higher than SW (ak), then we can conclude that ak is preferred over ak′ .

Table 5.1 provided below summarizes the elimination rules used in the UTA-based

algorithm.

Table 5.1: Elimination rules for UTA-based algorithm

Is SW (ak)≥ SW (ak′) possible? Is SW (ak′)≥ SW (ak) possible? Results

Yes Yes Inconclusive
Yes No Eliminate alternative ak′

No Yes Eliminate alternative ak

Given preference information, if SW (ak) ≥ SW (ak′) is possible but SW (ak′) ≥
SW (ak) is not possible, then we conclude that the alternative k is better. If both cases

are possible we do not make any eliminations.

Figure 5.2 illustrates the general overview of the UTA-based algorithm.
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Yes 

Make pairwise comparisons for all pairs of 
alternatives using UTA-based model and make 

necessary eliminations.  

Is the number of remaining alternatives greater 
than K? 

Take a new vector preference information. Add 
it to UTA-based model as a constraint 

Stop and report the 
remaining 

alternatives 

No 

Find em-dominated alternatives and eliminate 
them 
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Figure 5.2: General overview of the UTA-based algorithm
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5.3 Numerical Example

Let us now review the steps of the Algorithm 1 for the provided example (Example 2)

where the DM tries to find the best alternative among six alternatives.

Step 1. Checks the em-dominance relation among the alternatives. It eliminates a3

since a4 em-dominates a3.

Step 2. Compares the alternatives just considering the assumptions on MVFs (being

increasing and concave) without obtaining any preference information. At this step a5

is eliminated (the total levels of both outputs that are distributed by a2 and a5 are

the same and a2 distributes first output more equally than a5). The same relation is

observed between a4 and a6, hence a6 is also eliminated.

Step 3. The DM is asked to compare bundles (4, 6) and (5, 5) (assume that the

question selection method is based on the distance from the ideal vector). Assume that

the DM chooses (5, 5). This preference information is added to UTA-based model as

a constraint (constraint 5.7).

Step 4. Through solving the related mathematical models, we conclude that a1 can

not be better than a4, hence it is eliminated. The remaining alternatives are a2 and a4.

Step 3. The DM is asked to compare bundles (8, 2) and (3, 7). This preference

information is added to UTA-based model as a constraint (constraint 5.7).

Step 4. Through solving the related mathematical models, a2 is eliminated.

Step 5. The algorithm returns a4 as the solution.

5.4 Discussion of UTA-based Method

UTA-based approach introduces concave marginal value functions hence encourages a

more equitable distribution for each of the outputs over users regardless of the levels
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of other outputs that they receive. That is, using additivity over users, we make this

underlying assumption that the outputs are not substitutable and hence a more equitable

distribution is always desired regardless of users’ positions with respect to the other

outputs.

To illustrate, let us consider the following two alternatives in Example 2: a2 = (5 5
6 2)

and a5 = (3 5
8 2). The first output is distributed in a more equitable manner in a2 but

this occurs at the cost of making the second user, who was worse off with respect to

second output, have less of first output compared to a5. In UTA-based approach, a2 is

considered better since, everything else being the same, the first output is distributed

in a more equitable manner. However, one can argue that redistribution is only mean-

ingful and social welfare increasing when one user is definitely underprivileged and

redistribution alleviates this under-privilege, which is not the case in this example. In

such cases, the UTA-based approaches will not be of use and the preference model of

a DM who would prefer e.g. (3 5
8 2) over (5 5

6 2) on the grounds that the outputs may be

substitutable can not be taken into account. This is due to the additivity assumption of

the UTA-based approach.

There exists a large body of work in the economics literature discussing inequality

in single good distributions like income. When a single good is distributed, most of the

literature agrees on the suitability of using nonadditive social welfare functions rather

than assuming separability ([50], [51], [52]). The convex cone based approach, which

we discuss in the next chapter, alleviates some drawbacks of the UTA-based approach

as it (partially) relaxes the additivity assumption for the social welfare function used.

That is, the convex cones approach will allow a DM to prefer the first distribution over

the second in the above example as we will elaborate in the next chapter.
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Chapter 6

Convex Cone-based Approach

In this chapter, we discuss the convex cone based approach, which is widely used in

the MCDM literature ([53], [25], [27], [54], [28]). Convex cones are used in MCDM

problems to incorporate preference information in the model. This method assumes

that the underlying value function of the DM is quasi-concave and is based on elim-

inating the alternatives that are inferior with respect to the cones generated based on

preference information that she provides [25].

We first summarize the main findings in classical MCDM choice problems. Then

we discuss an extension of the approach to cases where each alternative shows the al-

location of a single output over multiple users and the DM has an equitable preference

model (discussed in [55]). Finally, we provide the extension we suggest for problems

where the alternatives are defined as matrices.
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6.1 Use of Convex Cones in Classical MCDM Choice

Problems

Most of the literature using convex cones deals with the classical MCDM choice prob-

lems where equity is not a concern of the DM. In this section, we give the main defini-

tions and results used in the classical MCDM choice problems, where alternatives are

vectors.

Definition 4 Given a set of k vectors, such that z1, ...,zk ∈ Rm, the cone

C(z1, ...,zk−1;zk) is defined, where z` : ` 6= k are the upper generators and zk is the

lower generator as follows:

C(z1, ...,zk−1;zk) =
{

z | z = zk +∑ 6̀=k µ`(zk− z`),µ` ≥ 0
}

.

The cone dominated region of C(z1, ...,zk−1;zk) is denoted by CD(z1, ...,zk−1;zk) and

defined as follows:

CD(z1, ...,zk−1;zk) =
{

z′ | z′ ≤ z where z ∈C(z1, ...,zk−1;zk)
}

.

If the value function of the DM (SW(.)) is quasi-concave, the following holds [25],

Lemma 1 For any zc ∈ C(z1, ...,zk−1;zk), SW (zc) ≤ SW (zk). Also, for any z′ ∈
CD(z1, ...,zk−1;zk), SW (z′)≤ SW (zk).

Each point z′ ∈CD(z1, ...,zk−1;zk) is called cone dominated.

Cone domination enables us to make eliminations in line with the preference infor-

mation that the DM provides. Figure 6.1(a)-(b) illustrates the relation between vec-

tor and cone dominance. Figure 6.1(a) shows the vector dominated region by (2,6)

without obtaining any preference information. Now suppose that the DM is asked

to select one of the following alternatives (2,6) and (3,4) and the DM prefers (3,4)

over (2,6). Figure 6.1(b) shows the 2-point cone generated by these alternatives. The

solid line represents C((3,4);(2,6)) and the filled area is the cone-dominated region,

CD((3,4);(2,6)). Any alternative in this region is cone dominated. As shown in the
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Figure 6.1: (a)The vector dominated region by (2,6). (b) C((3,4);(2,6)) and cone
dominated region

figure, cone dominance can make further eliminations compared to vector dominance

relation.

In interactive algorithms using convex cone, preference information is taken from

the DM iteratively. Based on this preference information, cones are generated. For any

candidate alternative in the set, one checks whether the alternative is cone dominated

and if so eliminates the alternative from further consideration, iteratively reducing the

set of candidate solutions.

Linear programming models can be used to check if an alternative is in the cone

dominated region. For an alternative zI , the following model checks if zI is in the

cone dominated region CD(z1, ...,zk−1;zk). The right hand side of constraint set (6.2)

corresponds to a point on C(z1, ...,zk−1;zk), which (vector) dominates zI . If this model

is feasible, zI ∈CD(z1, ...,zk−1;zk).

Minimize 0 (6.1)

subject to zI
i ≤ zk

i +
k−1

∑
`=1

µ`(zk
i − z`i ), f or i = 1, ...,m (6.2)

µ` ≥ 0, f or `= 1, ...,k−1 (6.3)
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6.2 Use of Convex Cones in Equitable MCDM Choice

Problems

A large body of the literature using convex cones in MCDM problems do not touch

upon the concept of equitability. [55] extends the use of convex cones for allocation

settings where a single output is distributed to multiple users and impartiality holds.

Since the preference model of the DM is assumed to be equitable, impartiality holds,

which implies that the value function of the DM is symmetric quasi-concave. This as-

sumption implies that each vector (allocation) of size m will have m! permutations and

the DM is indifferent to all these permutations. Hence given single pairwise preference

information, one can generate multiple cones considering various permutations of the

upper and lower generators.

[55] also involves using a different dominance relation than the vector dominance

relation, namely the generalized Lorenz dominance (also called equitable dominance)

relation, which is defined below.

Definition 5 Let~zk denote the permutation of zk such that~zk:~zk
1 ≤~zk

2 ≤ ...≤~zk
m where

m is the number of users. ~zk is called the ordered vector of zk. Let Q̄(zk) denote the

cumulative ordered vector of zk defined as follows:

Q̄(zk) = (Q̄1(zk), Q̄2(zk), ..., Q̄m(zk)) where Q̄i(zk) =
i

∑
t=1

~zk ∀i ∈ I, I = {1,2, ...,m}.

That is, Q̄i(zk) shows the total output amount provided to the poorest i users in the

distribution.

Theorem 1 Given two alternatives z1, z2 ∈ Rm,

z1 �GL z2 (z2 generalized Lorenz dominates z1)⇐⇒ Q̄i(z1)≤ Q̄i(z2) ∀ i ∈ I [16].

Generalized Lorenz dominance is introduced as an extension of the widely-known

Lorenz dominance concept used in the economics literature [9]. It can be used to
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compare distribution vectors over anonymous users even when the means of the dis-

tributions are not equal. Moreover, pairs of alternatives for which vector dominance

remains inconclusive, could be compared using generalized Lorenz dominance. For

example, assume that we have three alternatives where z1=(12, 7, 3, 18), z2=(2, 7, 12,

18), and z3=(9, 7, 15, 5). None of the vectors is dominated in the vector dominance

sense. However, since Q̄(z1)=(3, 10, 22, 40) and Q̄(z2)=(2, 9, 21, 39), z2 �GL z1.

Figure 6.2 shows the generalized Lorenz curves of the alternatives provided. It is seen

that the cumulative output amount given to the poorest i users in z1 is always higher

than that of z2; hence the generalized Lorenz curve of z1 is always above that of z2.

However, there is no dominance between z3 and z1 since the two curves intersect.
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Figure 6.2: Generalized Lorenz dominance illustration

Let us reconsider the example described above in Figure 6.1. When the DM has

equity concerns, the dominated region by vector (2,6) can be defined using generalized

Lorenz dominance relations. Figure 6.3(a) shows the generalized Lorenz dominated

region by (2,6) without obtaining any preference information.

If the DM prefers (3,4) over (2,6), impartiality implies that the DM prefers any

permutation of (3,4) over any permutation of (2,6). So in addition to C((3,4);(2,6))

we can generate the cones C((4,3);(2,6)), C((4,3);(6,2)) and C((3,4);(6,2)) and

eliminate the alternatives which are inferior to any of these cones. Figure 6.3(b) shows

all the 2-point cones generated by (2,6) and (4,3) and the dominated region by these

cones. As shown in the figure, when the impartiality over users is assumed, cone

dominance enables us to make further eliminations than generalized Lorenz dominance
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Figure 6.3: (a)Generalized Lorenz dominated region by (2,6). (b) C((3,4);(2,6)) and
its equitably cone dominated region

relations.

Considering multiple permutation cones increases the amount of inference one can

make from the preference information. However, note that, when one has a preference

information of n vectors of size m, the number of permutation cones to be considered

becomes m!n. [55] introduces results to handle this complexity.

When dealing with single benefit distributions, [55] eliminates an alternative if it is

generalized Lorenz dominated by any of the permutation cones. It is proved that, rather

than considering all the permutation cones, it is sufficient to use the cone generated

by the ordered versions of the generators. In order to check if an alternative zI is

(generalized Lorenz) dominated by any of the permutation cones the following model

is solved ([55]):
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Maximize
m

∑
h=1

hrh−
m

∑
h=1

m

∑
i=1

dhi (6.4)

subject to zc
i −

k−1

∑
`=1

µ`(~z k
i −~z `

i ) =~z k
i f or i = 1, ...,m (6.5)

rh−dhi− zc
i ≤ 0 f or i,h = 1, ...,m (6.6)

k

∑
j=1

~zI
j ≤ hrh−

m

∑
i=1

dhi f or h = 1, ...,m (6.7)

dhi ≥ 0 f or i,h = 1, ...,m (6.8)

µ` ≥ 0 f or `= 1, ...,k−1 (6.9)

where rh and dhi are auxiliary variables used to ensure that cumulative ordered

vector of zc is found (at optimality, hr∗h −
m
∑

i=1
d∗hi = Q̄h(zc). Note that the model has

alternate optima, r∗h =~zc
h + g, where g is a scalar and d∗hi = 0 for i : zc

i >~zc
h and

d∗hi =~zc
h− zc

i + g for i : zc
i ≤~zc

h. These ensure that at optimality the difference term

hr∗h −
m
∑

i=1
d∗hi = Q̄h(zc) (Please see [56] for more information). This model checks if

there exist zc ∈C(z1, ...,zk−1;zk) such that Q̄(zI) ≤ Q̄(zc). Constraint set (6.5) creates

zc such that zc ∈C(z1, ...,zk−1;zk). Constraint set (6.6) together with the objective func-

tion ensures that at optimality, hr∗h−
m
∑

i=1
d∗hi = Q̄h(zc) and constraint set (6.7) guarantees

that Q̄(zI)≤ Q̄(zc).

6.3 Use of Convex Cones in Multi-dimensional Equi-

table MCDM Choice Problems

We suggest a further extension of the convex cone method to problems where the

alternatives are defined as matrices rather than vectors. We assume that social welfare

is a symmetric quasi-concave function of the user values, which are assumed to be

additive.

We assume the DM has an equitable preference model over the distribution vector of
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these user values, hence use the convex cones method discussed in [55] (with the gen-

eralized Lorenz dominance relation). The user values are calculated as the weighted

sum of the scaled output levels. The scaled matrix aks
for an alternative ak is generated

as follows: aks

i j = (ak
i j−mini∈I,k∈A ak

i j)/(maxi∈I,k∈A ak
i j−mini∈I,k∈A ak

i j). For the sake

of simplicity, from now on we use ak for the scaled levels, too. UV (bk
i ) is calculated

as UV (bk
i )=∑ j∈J(w jak

i j), where w j is the weight given to jth output.

Then, the previous model becomes,

Maximize
m

∑
h=1

hrh−
m

∑
h=1

m

∑
i=1

dhi (6.10)

subject to zc
i −

k−1

∑
`=1

µ`(
−−−→
(wak)i−

−−−→
(wa`)i) =

−−−→
(wak)i f or i = 1, ...,m (6.11)

rh−dhi− zc
i ≤ 0 f or i,h = 1, ...,m (6.12)

h

∑
j=1

−−−→
(waI) j ≤ hrh−

m

∑
i=1

dhi f or h = 1, ...,m (6.13)

n

∑
j=1

w j = 1 (6.14)

dhi ≥ 0 f or i,h = 1, ...,m (6.15)

w j ≥ 0 j = 1, ...,n (6.16)

µ` ≥ 0 f or `= 1, ...,k−1 (6.17)

This model checks if there exists any zc vector on C(wa1,wa2, ...,wak−1;wak), that

generalized Lorenz dominates a given alternative aI (waI) for any weight value (w).

Since the weight vectors are also unknown, the model discussed above is non-linear.

Moreover, even when the above model is feasible we can not eliminate an alternative,

since it could have been cone dominated for some w vector and not dominated for

others. To be affirmative, one should ensure that alternative aI is cone dominated over

the entire feasible weight space. In order to handle this non-linearity and be conclusive,

we use discretization and perform a parametric search over the entire (discretized)

feasible weight region.
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We now introduce the Cone-based model developed for multi-dimensional equitable

choice problems. Then, we discuss the proposed algorithm that uses this model to

find the best alternative (or a small subset of most preferred alternatives), followed by

a simple numerical example. We finalize this chapter providing a discussion of the

convex cone-based approach.

6.3.1 Cone-based Model

Cone-based model introduced below checks if an alternative is in the cone dominated

region for a given weight vector. Assume that the DM is asked to choose between two

alternatives and aU represents the alternative that the DM prefers and aL represents

the alternative that the DM does not prefer and we want to check if aI is in the cone

dominated region of the cone generated by these alternatives. Remember that our

alternatives are represented by matrices. We first calculate the user value vectors for

the alternatives by using weighted sum of their output levels. After we obtain user

value vectors for the alternatives, we use Cone-based model to check if aI is cone

dominated.

The following model checks if alternative aI is in the cone dominated region gener-

ated by aU and aL.

Parameters:

~V L: the vector (~V L
1 ,
~V L

2 , ...,
~V L

m) ∈ Rm that stores ordered UVs of aL (for the given

weight values) in an ascending manner.
~VU : the vector (~VU

1 ,~VU
2 , ...,~VU

m ) ∈Rm that stores ordered UVs of aU (for the given

weight values) in an ascending manner.
~V I: the vector (~V I

1 ,
~V I

2 , ...,
~V I

m) ∈ Rm that stores ordered UVs of aI (for the given

weight values) in an ascending manner.
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Variables:

µ: the scalar for C(~VU ; ~V L).

V c: a vector ∈ Rm: V c ∈ C(~VU ; ~V L).

rh: auxiliary variables used to ensure that the cumulative ordered vector of V c is

found.

dhi: auxiliary variables used to ensure that the cumulative ordered vector of V c is

found.

Minimize
m

∑
h=1

hrh−
m

∑
h=1

m

∑
i=1

dhi (6.18)

subject to V c
i −µ(~V L

i −~VU
i ) =~V L

i f or i = 1, ...,m (6.19)

rh−dhi−V c
i ≤ 0 f or i,h = 1, ...,m (6.20)

hrh−
m

∑
i=1

dhi ≥
h

∑
j=1

~V I
j f or h = 1, ...,m (6.21)

dhi ≥ 0 f or i,h = 1, ...,m (6.22)

µ ≥ 0 (6.23)

Constraint set (6.19) creates a V c vector in C(VU ; V L). Constraint sets (6.20) and

(6.21) ensure that the created V c generalized Lorenz dominates V I by using rh and dhi

auxiliary variables. Constraints (6.22) and (6.23) are non-negativity constraints.

6.3.2 The Convex Cone-based Algorithm

We now describe the convex cone-based algorithm we use for our problem setting. We

will explain the algorithm for problems with two outputs and for the case where only 2-

point cones (these are cones with only two generators) are used. It is straightforward to

generalize the algorithm for problems with more than two outputs with an appropriate

discretization of the feasible weight space. The algorithm can easily be modified if one

wants to use k-point cones (cones with k−1 upper generators and one lower generator).

We assume that there are N alternatives and m users as before. In addition to the set
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REMAIN, which keeps the alternatives not eliminated so far, we define the following

sets: the set CONES stores all the alternative pairs on which the DM provides prefer-

ence information. The set POSW1 stores the possible weight values for the first output,

which are compatible with the preference information that the DM provided. Recall

that we discretize the weight space.

Algorithm 2 Step 1: Initialization. CONES= /0. REMAIN={a1,a2, ...,aN}. Find the

em-dominated alternatives and remove them from REMAIN. POSW1={0,0.05, ...,0.95,1}

Step 2: Take new preference information from the DM using Holisticpreferenceinfo
subroutine and let aU and aL indicate preferred and not-preferred alternatives, respec-

tively. Remove aL from REMAIN. If the number of alternatives in the set REMAIN is

greater than K, narrow the possible weight interval by using Narrowweight subroutine

(if possible) and go to Step 3. Otherwise, STOP.

Step 3: Update CONES={CONES} ∪ (aU ;aL) and remove the cone dominated

alternatives from REMAIN by using Conedominancecheck subroutine. If the number

of alternatives in the set REMAIN is greater than K, go to Step 2. Otherwise, STOP.

Let us now explain each subroutine in more detail.

Holisticpreferenceinfo

This subroutine is used to determine the alternatives to ask the DM for pairwise

comparison. It creates an ideal alternative, IDEAL, such that IDEALi j = max∀k∈A,∀i∈I

ak
i j and calculates the Euclidean distance between each alternative in set REMAIN

and IDEAL. Then the DM is asked to choose between two alternatives that have the

minimum distances.

Narrowweight

This subroutine is used to narrow the possible weight interval of the first output in

line with the preference information. Suppose that the DM is asked to choose between

two alternatives in R(m×n). Let aU be the preferred alternative and aL be the alternative
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which is not preferred. We eliminate the weights that satisfy the following inequality

Q̄(aU [
w1
...
wn
])≤ Q̄(aL[

w1
...
wn
]) based on Remark 1.

Remark 1 If the DM prefers aU over aL, then aL cannot generalized Lorenz dominate

aU . Then, from the definition of generalized Lorenz dominance, we are sure that the

following inequality Q̄(aU [
w1
...
wn
])≤ Q̄(aL[

w1
...
wn
]) cannot hold. The weight values that sat-

isfy the above inequality should be eliminated as they would lead to a less preferred

alternative to generalized Lorenz dominate a more preferred one, contradicting with

the assumptions made on the preference model.

Conedominancecheck
This subroutine is used to find the cone dominated alternatives in the set REMAIN.

The subroutine checks if aI (waI) is cone dominated by any C(waU ′;waL′) such that

(aU ′,aL′) ∈CONES ∀w ∈ POSW1 where aI ∈ REMAIN using cone-based model. To

eliminate an alternative, it is sufficient to ensure that for any weight level possible,

there exists a cone dominating the alternative. If so, that alternative is removed from

the set REMAIN. This is repeated for all the alternatives in the set REMAIN.

Figure 6.4 illustrates the main steps that the cone-based algorithm follows in a com-

pact way.
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Figure 6.4: Steps of the cone-based algorithm

49



6.3.3 Numerical Example

Let us now review the steps of the Algorithm 2 for the provided example (Example

2) where the DM tries to find the best alternative among six alternatives. We as-

sume that the underlying social welfare function of the DM is SW (ak) = (0.7ak
11 +

0.3ak
12)(0.7ak

21 +0.3ak
22).

Step 1. Checks the em-dominance relation among the alternatives. It eliminates a3

since a4 em-dominates a3.

Step 2. The DM is asked to compare a2 and a4 and prefers a2 to a4. This preference

information eliminates a4 and narrows the possible weight interval for the first output

to [0.7-1].

Step 3. C(wa2;wa4) is generated for all the possible discretized weights (0.7, 0.75,

0.8, 0.85, 0.9, 0.95, 1). The remaining alternatives (a1,a5,a6) are checked if any of

them is dominated using the cone-based model. In this example, none of the alterna-

tives are dominated so no elimination can be made.

Step 2. The DM is asked to compare a2 and a6 and prefers a2 to a6. This information

eliminates a6 but does not narrow the possible weight interval any further.

Step 3. Cones C(wa2;wa6) are generated and the remaining alternatives (a1,a5)

are checked for cone dominance using the cone-based model. a1 is dominated by

C(wa2;wa6) for all w, hence it is eliminated.

Step 2. The DM is asked to compare a2 and a5 and prefers a2 to a5. STOP. The

algorithm returns a2.

6.4 Discussion of Convex Cone-based Method

As discussed in Chapter 5, assuming a symmetric quasi-concave social welfare func-

tion partially handles the issue of preferential independence by relaxing the additivity
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assumption of the UTA-based approach. To elaborate, recall the previous example

consisting of alternatives a2 = (5 5
6 2) and a5 = (3 5

8 2), in which the UTA-based approach

always gives a2 more social value due to the assumption that allocating one output in a

more equitable manner is always desired regardless of the user’s position with respect

to the other outputs.

However, there may be symmetric quasi-concave function forms representing dif-

ferent comparisons. Consider the following types of social welfare functions, which

are symmetric quasi-concave (note that they are not necessarily additive in the way as-

sumed in UTA): additive, multiplicative, Rawlsian (maximizing the minimum), and or-

dered weighted averaging (a rank-based function which gives more weights to worse-

off entities and returns a weighted sum). For these two alternatives, the utility vectors

become (0.5,2w/3) and ((0.5− 2w/6),w), where w is the weight of the first output.

Note that we used scalarized matrices when calculating these utility vectors. An addi-

tive function, which assumes that the social welfare is the sum of user values, would

consider the two options as equally good; however, the results for the other functions

would change depending on the weight parameter, allowing more flexibility. For ex-

ample, when the underlying social welfare function is taken as multiplication of user

values, the DM would prefer a5 over a2 when w = 0.2. The convex cone based ap-

proach can take such preferences into account.
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Chapter 7

Computational Experiments

In this chapter, we provide the results of computational experiments performed to

check the computational efficiency and the quality of the results for proposed algo-

rithms. We first discuss the main results of UTA-based and convex cone-based ap-

proaches and then provide a comparison between these two methods.

We generate problem instances with two outputs (n = 2). We use two values for

the number of alternatives (N = 25 and N= 50) and two values for the number of users

(m= 3 and m= 5). We create 10 problem instances for each parameter setting. The

output levels are randomly generated in the range [10-100]. The algorithms stop when

the number of remaining alternatives is less than or equal to a pre-specified threshold

value. In our experiments, we set this threshold value K as K = 0.05N (K = 1 for

N = 25 and K = 2 for N = 50).

The algorithms are coded in MATLAB and solved by a dual core (Intel Core i5

2.40GHz) computer with 8 GB RAM. All models are solved by CPLEX 12.6 and the

solution times are expressed in central processing unit (CPU) seconds.
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7.1 Results of the UTA-based Algorithm

In this section, we discuss the results of the UTA-based algorithm for different question

selection strategies. We then discuss the effects of parameters used in the UTA-based

model on the number of questions asked and solution time. We report the average and

maximum values for the number of questions asked and the solution time (in seconds).

We also report the accuracy of the results, which is calculated as the percentage of

instances in which the actual best alternative is in the set of alternatives returned by the

algorithm.

We assume that the underlying marginal value functions are the square root function

of the levels of the outputs, i.e. MV (ak
i j) =

√
ak

i j and simulate the responses of the DM

accordingly for all computational experiments provided in this section.

7.1.1 Question Selection Strategy

In this part, we provide a comparison of three different question selection strategies

used in UTA-based approach: Random, Ideal and Minimum pairwise distance ex-

plained in Section 5.2. Table 7.1 summarizes the results of our experiments for these

three question selection strategies. In these experiments, we set the parameter values

as follows: Ω=0.005, γ = 10−5, and ε=0.002.
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Table 7.1: Results for UTA-based algorithm

# of questions sol. time

N m Method avg. max avg. max accuracy

25

3

random 56.8 97 17.34 34.22 90%

ideal 16.77 42 4.88 14.08 90%

min dist 28.9 59 7.18 19.66 90%

5

random 39.12 83 12.82 34.99 100%

ideal 19.8 45 10 23.3 100%

min dist 20.3 52 16.8 37.7 100%

50

3

random 28.3 83 9.64 26.2 100%

ideal 9.4 31 9.67 21.76 100%

min dist 7.6 29 8.46 19.3 100%

5

random 60.44 102 40.36 96.74 80%

ideal 17.9 47 20.34 58.46 80%

min dist 19.4 51 22.83 60.32 80%

Table 7.1 reveals the importance of the question selection strategy both on the num-

ber of questions asked to the DM and on the solution times. It is seen that, selecting

the vectors to be asked to the DM based on their distance to an ideal vector (generally)

outperforms other two strategies in both performance measures. This indicates that

because the information obtained from the comparison of bundles with higher output

values is more effective in finding the best alternative.

7.1.2 Parameter Selection

Recall that we use three parameters in the UTA-based model: ε , γ , and Ω. ε is used to

ensure having increasing MVFs, γ is used to ensure having concave MVFs, and Ω is

used to incorporate strict preference information of the DM to the model.
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In order to observe the effects of the parameters, we performed computational ex-

periments using different combinations of the parameter values. For each parameter,

we use two levels as shown in Table 7.2. In these experiments, we use Ideal vector

selection strategy.

Table 7.2: Different values used for each parameter

ε 0.002 0.004

γ 10−5 2.10−5

Ω 0.005 0.01

Table 7.3 shows the results of our experiments. As seen in Table 7.3, when a param-

eter set that implies a smaller set of possible MVFs (i.e. when ε,γ,Ω are set to higher

levels), the number of questions asked decreases with a few exceptions. On the other

hand, using large parameter values may deteriorate the accuracy of the results. Note

that this inaccuracy is due to the possible inconsistency between the chosen parameters

dictating the functional form (γ , ε) and the underlying social welfare function used for

simulating the responses.

Another inconsistency may result from using large values for Ω. When the DM

prefers one bundle over another, we assume that the difference between these two

bundles is greater than or equal to Ω. However, this may not be consistent with the

underlying value functions of the DM.
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Table 7.3: Results for the UTA-based algorithm for different parameter values

# of questions sol. time

N m Ω ε γ avg. max avg. max accuracy

25

3

0.005

0.002
1.10−5 16.77 42 4.88 14.08 90%

2.10−5 15.77 42 4.85 14.08 90%

0.004
1.10−5 12 40 3.79 14.03 90%

2.10−5 4.66 14 2.03 13.78 90%

0.01

0.002
1.10−5 16.12 41 4.26 12.3 90%

2.10−5 14.66 34 4.2 11.87 90%

0.004
1.10−5 13.11 40 3.75 12.2 90%

2.10−5 7.2 38 2.79 10.8 90%

5

0.005

0.002
1.10−5 19.8 45 10 23.3 100%

2.10−5 17.4 45 9.1 23.3 100%

0.004
1.10−5 10.6 31 2.5 10.3 100%

2.10−5 6.77 18 1.35 3.85 100%

0.01

0.002
1.10−5 8.77 19 4.92 15.98 100%

2.10−5 7.44 19 4.5 16.46 100%

0.004
1.10−5 7.22 19 2.02 8.49 100%

2.10−5 6.11 15 1.37 6.09 100%

50

3

0.005

0.002
1.10−5 9.4 31 9.67 21.76 100%

2.10−5 8.6 26 8.26 18.35 100%

0.004
1.10−5 8.5 30 8.11 20.6 100%

2.10−5 8.1 24 7.26 16.33 100%

0.01

0.002
1.10−5 5.6 9 6.31 15.72 70%

2.10−5 4.3 8 5.31 14.03 70%

0.004
1.10−5 5.1 8.7 5.94 15.01 70%

2.10−5 4.1 8 5.11 13.52 70%

5

0.005

0.002
1.10−5 17.9 47 20.34 58.46 80%

2.00E-05 14.8 45 14.6 35.44 70%

0.004
1.00E-05 3.2 14 0.87 3.79 70%

2.10−5 0.9 7 0.23 1.78 70%

0.01

0.002
1.10−5 8.5 30 9.76 30.89 70%

2.10−5 7.4 21 7.3 21 70%

0.004
1.10−5 1.2 6 0.36 1.63 70%

2.10−5 0.8 6 0.2 1.43 70%
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7.2 Results of the Convex Cone-based Algorithm

In this section we provide the computational experiments for the convex cone-based

method. For this method, we assume 5 different underlying symmetric quasi-concave

social welfare function forms to simulate the responses of the DM as follows:

1. The sum of user values (UVs): SWs(ak) = ∑
m
i=1UV (bk

i )

2. The multiplication of UVs: SWp(ak) = ∏
m
i=1UV (bk

i )

3. The minimum of UVs (Rawlsian): SWm(ak) = min∀i∈I UV (bk
i )

4. Sum of pairwise minima of UVs: SWsp(ak) = ∑i,i′∈I:i6=i′min(UV (bk
i ),UV (bk

i′)).

5. Ordered Weighted Average (OWA) of UVs: SWo(ak) = ∑
m
i=1 wowa

i
−→
U k

i , where Uk

is the vector of user values of ak and wowa ∈Rm is a nonincreasing weight vector.

For the OWA function we take wowa = (0.5, 0.3, 0.2) for m = 3 and wowa =

(0.4, 0.3, 0.2, 0.06, 0.04) when m = 5. In all these settings, ak corresponds to the

scaled matrix obtained by scalarizing the elements of the original matrix. Recall that

in this approach, UVs are calculated as UV (bk
i )=(w1ak

i1)+ (1−w1)ak
i2. We assume 3

different underlying weights for the outputs: w1 = (0.15, 0.85), w2 = (0.5, 0.5), and

w3 = (0.85, 0.15).

Tables 7.4 and 7.5 summarize the results of our experiments for the convex cone

based algorithm. We report the average and maximum values for the number of ques-

tions asked and the solution time (in seconds), for each parameter setting. We also

report the average and maximum reduction (as percentage) in the weight interval for

the first output. Recall that in the convex cone based approach, we narrow down the

possible weight interval of the user value function from initial interval [0-1] based

on the preference information. In these experiments we used the question selection

strategy that chooses two closest alternatives to an ideal alternative, due to its superior

performance in the experiments on the UTA-based algorithm.

57



Table 7.4: Convex cone results for additive, Rawlsian, and multiplicative social welfare
functions

# of quest sol. time weight red. (%)

SWF form N m w1 avg. max avg. max avg. max

SWs(ak) = ∑
m
i=1UV (bk

i )

25

3
0.15 8.3 13 40.7 69.8 61 85
0.5 5.8 9 29.5 57.1 51 90

0.85 5.4 9 24.6 54.9 52 80

5
0.15 9.9 13 44.2 95.0 73 95
0.5 11.1 15 83.8 127.2 56 90

0.85 10.2 13 61.9 126.7 68 90

50

3
0.15 6 9 43.38 93.82 64 85
0.5 5.7 9 43.7 91.89 58 90

0.85 6.8 10 49.05 94.4 60 95

5
0.15 15.4 24 304.3 634.1 74 95
0.5 15.3 20 376.6 697.0 80 100

0.85 14.9 18 307.0 676 65 95

SWm(ak) = min∀i∈I UV (bk
i )

25

3
0.15 8 11 38.4 68.7 64 85
0.5 6.3 9 31.2 52 58 95

0.85 6 10 29.5 56.3 46 65

5
0.15 11 15 64.9 122.4 70 90
0.5 10.9 14 83.9 144.1 69 95

0.85 11 14 68.0 111.3 61 100

50

3
0.15 6.2 9 41.09 73.19 63 95
0.5 6.9 11 59.5 102.4 66 95

0.85 7.8 11 65.1 100.9 61 95

5
0.15 16.3 20 275.9 637.7 77 100
0.5 15.4 19 339.7 634.6 77 95

0.85 14.9 17 237.7 483.6 75 90

SWp(ak) = ∏
m
i=1UV (bk

i )

25

3
0.15 8.3 12 38.8 67.48 58 75
0.5 5.9 9 32.6 59.8 50 90

0.85 5.9 10 29.3 68.1 49 70

5
0.15 11.2 15 77.5 123.3 62 80
0.5 11.2 14 93.5 139.1 62 90

0.85 10.3 13 70.9 127.5 65 85

50

3
0.15 6.8 10 57.3 110.8 59 80
0.5 6.3 9 58.5 112.6 56 85

0.85 6.1 9 43.5 79.8 64 85

5
0.15 17.2 24 377.1 666.7 63 75
0.5 16.4 20 394.0 681.6 71 90

0.85 15.6 18 337.6 667.4 64 80
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Table 7.5: Convex cone results for sum of pairwise minima and ordered weighted
averaging (OWA) social welfare functions

# of quest sol. time weight red.(%)

SWF form N m w1 avg. max avg. max avg. max

SWsp(ak) = ∑
i,i′∈I
s.t.
i 6=i′

min(UV (bk
i ),UV (bk

i′))

25

3
0.15 8.2 11 42.0 69.7 58 75
0.5 6.5 9 38.7 60.6 51 95

0.85 6 10 39.2 84.7 46 65

5
0.15 10.9 13 92.0 146.8 66 80
0.5 11.3 14 87.8 124.5 53 95

0.85 10.6 13 62.8 111.4 65 90

50

3
0.15 6.3 10 50.4 78.4 61 80
0.5 7.4 11 75.2 112.7 55 80

0.85 7.8 11 67.0 105.9 55 80

5
0.15 17.6 24 532.3 843.6 61 75
0.5 16.3 20 805.6 1329.8 64 85

0.85 15.7 18 541.9 1176.1 63 80

SWo(ak) = ∑
m
i=1 wowa

i
−→
U k

i

25

3
0.15 8.3 12 39.0 69.0 58 75
0.5 6.7 9 33.6 56.9 47 80

0.85 5.9 10 34.6 73.8 46 65

5
0.15 10.9 15 78.3 113.9 66 80
0.5 11.3 14 93.9 129.9 53 95

0.85 10.6 13 59.9 103.6 66 90

50

3
0.15 6.2 9 43.8 80.2 61 80
0.5 7.3 11 70.6 105812.0 57 80

0.85 6.8 10 60.8 111.6 59 80

5
0.15 17.6 24 385.4 638.7 61 75
0.5 16.4 20 424.9 731.2 65 90

0.85 15.7 18 329.5 632.4 63 80
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7.3 Discussion on the UTA-based and the Convex

Cone-based Methods

The previous sections discuss the results of the UTA-based and convex cone-based

algorithms. One could attempt to compare these approaches with respect to the number

of questions asked to the DM and the solution times. However, note that the type of

questions asked in these two algorithms differ in nature as one uses vector comparison

questions and the other uses matrix type comparison questions. This makes a direct

comparison impossible.

We observe that the accuracy and the general performance of the UTA-based algo-

rithm depend on how the parameters are chosen. A parameter set reducing the size

of the set of possible marginal value functions would make more eliminations at each

iteration; hence the algorithm would terminate with relatively less number of ques-

tions, sometimes at the expense of accuracy. On the other hand, convex cone method

is more stable and also more accurate (robust) in the sense that the true best alternative

is always returned. The convex cones based approach considers a larger set of social

welfare function forms hence more questions are asked to reach a conclusion.

We also observe that both approaches are satisfactory in terms of solution time as

linear programming models of small-sizes are solved. It is also observed that when

the number of users increases to 5, the number of questions asked in both algorithms

increases with a few exceptions. A similar case occurs when the number of alternatives

is increased from 25 to 50 especially for cases where m=5.
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Chapter 8

Conclusion

In this study we consider multicriteria evaluation problems in which a decision maker

has to choose the best alternative (or a small subset of most preferred alternatives)

among a given set of alternatives. Each alternative represents an allocation of multiple

types of outputs to multiple users and is associated with a matrix, whose columns and

rows correspond to outputs and users, respectively.

This problem is an extension of the classical multiple criteria choice problem, in

which alternatives are vectors. Moreover, since there are multiple users, equity in

the distribution of the outputs across the users is important as well as efficiency. In

that sense, the problem is an extension of the allocation problems that focus on the

distribution of a single output.

We design two interactive algorithms that will guide the decision maker to her most

preferred alternative. The first algorithm is motivated by the well-known UTA method.

It assumes additivity in the social welfare function. The second algorithm is motivated

by convex cone method and it (partially) relaxes this additivity assumption by defining

the social welfare as a symmetric quasi-concave function of the user values.

The fairness concerns imply special axioms for the underlying preference model of

the decision maker such as impartiality, which means that the identities of the users are
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not important and do not affect the decision, making the problem and the solution ap-

proaches different than their counterparts in the classical multicriteria decision making

literature.

In the UTA-based algorithm we check whether an alternative can be better than an-

other for all alternative pairs given the preference information via linear programming

models. We then reduce the set of alternatives that are candidates to be the most pre-

ferred alternative. The second approach is based on an extension of the well-known

convex cone approach. Due to the fairness concerns, the method uses generalized

Lorenz dominance instead of vector dominance while checking cone dominance. This

method checks dominance over the whole set of possible parameters (weights) to make

robust conclusions. Both approaches obtain the preference information of the policy

maker iteratively and incorporate it into mathematical programming models to infer

the best alternative.

We demonstrate the computational feasibility of our approaches by conducting ex-

periments on randomly generated problem instances. It is important to note that the

models are not directly comparable since they ask different comparison questions. The

computational experiments demonstrate that the parameter selection is an important

part for the UTA-based method. As expected, the parameter values have direct effects

on the number of questions asked to the policy maker or on the quality of the results.

Thus one needs to be careful while selecting the parameter values. Both algorithms

show satisfactory performance in terms of solution time, however they are not directly

comparable since they use different comparison questions.

As the problem is relevant in many real life decision making settings, more research

in this topic awaits further attention. Future research could be performed in a few direc-

tions: In the convex cone based approach, we considered problems where the number

of outputs and the number of users are not too large. Increasing the number of outputs

would significantly affect the solution times due to the discretization process. Further

research could be performed for developing algorithms for larger problem instances.

One can also consider the multi-criteria design version of this problem, in which the

alternatives are implicitly defined by constraints rather than given explicitly.
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[19] E. Jacquet-Lagrèze and J. Siskos, “Assessing a set of additive utility functions for

multicriteria decision-making, the uta method,” European journal of operational

research, vol. 10, no. 2, pp. 151–164, 1982.

[20] Y. Siskos and D. Yannacopoulos, “Utastar: An ordinal regression method for

building additive value functions,” Investigaçao Operacional, vol. 5, no. 1,

pp. 39–53, 1985.

65



[21] J. Devaud, G. Groussaud, and E. Jacquet-Lagreze, “Utadis: Une méthode de con-
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