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Abstract—We consider the problem of exchanging messages in
two-way relay (TWR) systems when the sources are correlated
binary sequences. In a TWR system, two users communicate
simultaneously in both directions to exchange their messages with
the help of a relay. Harnessing the fact that the users have access
to their own non-compressed messages as side information, each
user can compress its message according to the Slepian-Wolf
coding strategy by using low-density parity-check codes, partic-
ularly, the syndrome approach. Through numerical examples, we
show that the proposed scheme offers significant improvements
in compression rates compared to the existing solutions in the
literature.

Index Terms—Two-way relay, compression with side informa-
tion, correlated sources, Slepian-Wolf coding, LDPC codes.

I. INTRODUCTION

OST of the existing schemes for two-way relay (TWR)

systems assume independent sources (see [1], [2], and
the references therein). However, in many practical scenarios
the users’ messages are correlated, which, if properly har-
nessed, could allow for the use of distributed source coding
techniques. As an example, consider a wireless sensor network
in which the nodes wish to exchange their measurements. Such
a setup may also model a cooperative file-sharing network in
which users communicate through a relay.

A widely-adopted scheme in TWR systems is physical-layer
network coding (PNC) [1] in which users exchange data by
first simultaneously transmitting their messages to a relay. The
relay then maps the superimposed signal to the estimate of
exclusive-OR (XOR) of the users’ bits, modulates the latter
and broadcasts an amplified version of the modulated symbol.
In the current literature, only a limited number of works con-
sidered exchange of correlated messages in TWR systems. For
instance, [3] proposes Huffman-compressed PNC (HPNC) in
which compression is performed at the relay by utilizing the
sources’ correlation structure. Specifically, the relay maps the
received signals to the corresponding PNC-coded symbols and
performs Huffman coding. Upon receiving the noise-corrupted
Huffman coded packet, each user uncompresses it and retrieves
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its partner’s message via symbol-wise XOR operation between
the non-compressed packet and its own message.

In this letter, to improve the temporal efficiency (defined as
the number of exchanged bits per unit time), we propose a
scheme that utilizes the correlation between the users’ mes-
sages to perform compression via distributed source coding,
thus performing compression at the users rather than the relay.

Based on Slepian-Wolf (SW) coding, distributed encoders
can achieve the same compression rate achieved by a sin-
gle encoder that has access to the outputs of the correlated
sources. In our model, and considering detection at user B,
the encoding (compression) at user A applies the syndrome
approach based on low-density parity-check (LDPC) codes.
User A compresses its message based on the fact that user B
has knowledge of its own non-compressed message which is
correlated with the message of user A. This formulation resem-
bles the problem of compression of binary sources with side
information [4], which we extend to the case of TWR sys-
tems with additive white Gaussian noise (AWGN) channels
(instead of a perfect link). SW-based compression has been
also adopted in a parallel work [5] to propose source com-
pression with PNC (SCPNC). SCPNC uses a linear block code
with a correlation-dependent correction capability that guaran-
tees the ability to retrieve the partner’s message. Here, instead
of using a generic linear code, we employ an LDPC code
and design its specific iterative decoder that can efficiently
decode the partner’s uncompressed message by jointly using
the received symbols and the side information. We refer to
the proposed scheme as LDPC-Compressed XOR Sum (LXS).
Through numerical examples, we show that the proposed
scheme outperforms existing solutions in the literature. Low
error rates are obtained while compressing the users’ messages
at rates close to the SW coding bound.

Notation: Unless stated otherwise, bold-capital letters, bold-
lower case letters, and lower-case letters denote matrices,
vectors, and scalars, respectively. Hy(p) is the binary entropy
function, Hy(p) = —plog,p— (1 —p)log,(1 —p), 0 <p < 1.

: Pr(x = 0ly)
The notation L(x|y) = log(—————) denotes the log-

Pr(x = 1y)
likelihood ratio (LLR) of x given the knowledge of y. The
notations @, 0y and I, refer to XOR sum, length-M all-zero

column vector and the M x M identity matrix, respectively.

II. SYSTEM MODEL

We consider a TWR system wherein two users exchange
messages by first transmitting their compressed messages to
a relay, which then processes and broadcasts its received
signal.

The data vector representing the message of the ith user,
i € {A, B}, is denoted by ¢; = [¢;.1,¢i2, .- ci,N]T where ¢; ,,
n € [1 : NJ, are independent and identically distributed (i.i.d.)
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Fig. 1.

equiprobable binary random variables. We assume that ca4 ,
and cp , are correlated with Pr(ca , # cp.n) = p, and that c4 ,
and cp v, n # n', are independent. Fig. la depicts the system
model of the two users’ transmitters, the relay and the receiver
of user B. The two blocks ¢4 and ¢p are compressed to s4 and
sp, respectively, where s; = [s; 1,52, ..., sl-,M]T with M < N.
The latter are then modulated using binary phase-shift key-
ing (BPSK) modulation to obtain x; = [x; 1, X2, .. .,xi,M]T,
i € {A, B}. After that, the two users simultaneously transmit
/Paxs and /Pgxp where P;, i € {A, B}, is the transmission
power at the ith user. The relay’s received signal is given by
Vg = ~/Paxa+~/Pgxg+ng where ng ~ N0y, 031y) and o
is the noise variance at the relay. We adopt a Gaussian TWR
model to simplify the description of the decoder even though
the model can be extended to account for channel fading and
possible phase shifts in practical systems.

III. THE LDPC-COMPRESSED
XOR SuM (LXS) SCHEME

To compress the messages, we apply the syndrome approach
based on LDPC codes [4], m which each user selects an LDPC
code of rate Ry ppc = N ; , and obtains the length-M com-
pressed message characterized by the syndrome s; = Hic;,
i € {A, B}, where H; is the M x N parity-check matrix of the
LDPC code of user i. We assume symmetry in terms of the
selected LDPC codes, hence we write H instead of H;.

Discarding noise, the proposed scheme can come very close
to the SW coding bound from the perspective of each user [4].
With noise, however, the scheme is only approximate and its
performance is not necessarily close to optimal. From the per-
spective of user i, the problem is simply to compress ¢; in
a way that efficiently harnesses its side information, i.e., ¢y,
which is correlated with ¢;. This formulation resembles the
asymmetric case of SW coding wherein one of the sources is
available losslessly at the decoder.

Let R; denote the rate used to compress c;. Since the
other user has side information characterized by its own non-
compressed message ¢y, i’ # i, the decoder at user i’ has
access to ¢y with a rate equal to its entropy (i.e., NRy =
NH(cy ) = N bits). Thus, according to the SW theorem, the
theoretical limit for lossless compression of ¢; is given by
NR; > NH(c;nlci,) = NHp(p). Having p = 0.5 corresponds
to the independent sources case, and hence the users cannot
compress below their individual entropies, i.e., NR; > N, while
having p = 0 indicates full correlation, and hence the users
need not send anything, i.e., NR; > 0.

We perform XOR mapping at the relay (as in conventional
PNC) in which yp is mapped to the estimate of s¢, which can
be optimally performed by minimizing the probability of error.

For the i received symbol of y, this mapping is given by
A )L =y <yrRi<v . .
m—h e cielliMl, (D)

(b)

(a) System model of the proposed LXS scheme based on XOR mapping at the relay. (b) Tanner graph of the decoder.

where y is the optlmal decision threshold derived as y
‘/PT‘J“/ﬁ + UR 122 The derivation follows from [6] by

notmg that PA "and Pp can be unequal in our case. The
relay then performs BPSK modulation and broadcasts xg
\/P_R(l — 2§R) where §R = [S'R,lv 3'R,2, ey S‘R,M]T.

Due to symmetry, we only describe the detection process
at user B. The received M-sample block is given by yp =
bB.1,.¥B2, -, yB,M]T = XR + np where ng ~ N(OM, O'I%IM).
A joint LDPC decoder that uses yp and the side informa-
tion p is then used to decode the partner’s message. Since
H(can) = H(cpn), the two users can compress their mes-
sages in a lossless manner down to the same compression
rate, specifically, NH(ca n|cB,n) = NH(cpnlca,n). Therefore,
the same rates for the LDPC codes are adopted by the two
users. To make the decoding of the LXS scheme simpler, we
further assume that the two users use the same LDPC code,
and since the code is linear under binary addition, s = s4Dsp
is the syndrome of ¢ = ¢4 ®cp. The objective of the decoder
is thus to decode c¢g which is then used to decode c4 using
¢p. We adopt the following notation for the decoder:

The LLR sent from the jth variable node (VN) to the
ith check node (CN).

The LLR sent from the ith CN to the jth VN.

The set containing indices of all CNs connected to
the jth VN, i.e., C(j) = {ili € [1 : M], [H];; = 1}.
The set containing indices of all VNs connected to
the ith CN, ie., V(i) = {jj € [1 : N1, [H]; = 1}.

The joint LDPC decoder is a variant of the conventional
sum-product algorithm (SPA) with soft-decision decoding [7].
We characterize the correlation between ¢4 and ¢p by a binary
symmetric channel (BSC) with cross-over probability p. Other
correlation models, e.g., described by a joint probability mass
function (PMF), including higher order modulation schemes,
can be addressed similarly, wherein, if the joint PMF is known,
the LLRs can be readily calculated. The decoding process can
be described as follows.

Initialization: The decoder’s Tanner graph is shown in
Fig. 1b. Decoding starts by calculating the LLRs associated
with the virtual BSC at the VNs, which are calculated as

Lj_”'Z

Kij:
Cc():

V():

Loy = Licajlenp) =log L, jel:Nl, @)
which, clearly, does not depend on the jth bit of ¢p. Instead, it
only depends on the correlation structure of the two sources,
which, in our case of using a BSC model, is strictly described
by p. Hence, the side information in Fig. 1a is denoted by p.

The LLR of the ith bit of sg, s, at the ith CN cor-
responding to the (physical) binary-input AWGN channel is
denoted by L,; = L(sg,ilys.;) where “a” refers to AWGN.
We model sq; as s@.; = Sr.; ® zi, where the binary variable
z; 1s 0 if there is no decoding error at the relay, and 1 oth-
erwise. Hence, L, ; can be calculated similar to the way it is

done in single parity check codes that uses the conventional
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“tanh rule” [7], specifically, using the LLRs L(Sg i|yp.i) = 2ai
and L(zilyr.;) = log((1 — Pg,xs)/(Pgxs)) as inputs where
a; = /Prys,i/of and Pgxs is the average probability of
bit error incurred while mapping yg; to Sg;, i € [l : M].
Evaluation of Pg xs depends on the modulation scheme and
the XOR mapping at the relay. For the two-user BPSK case,

NP+ A/P
Pgxs = QQ(A—B) + Q( ) where Q(-) is the
Q-function [8, Appendlx El. Lo, s1mp11ﬁes to

Ll 1 — (1 —exp(—2a;))PE xs
@t & exp(—2a;) — (exp(—2a;) — DPgxs )’

Iterations:
1) The LLRs sent from the jth VN to the ith CN are
given by
Lj—)i = Lv,j + Z Ki’—>js (3)
i'eC()—{i)

where K _,; Vi', j are initialized to zero.
2) The LLRs sent from the ith CN to the jth VN are
given by

- 1 1
K; .; =2tanh™" |tanh ELa’i l_[ tanh 3 Lyi|l]-
JeV@D—{j)
Termination: When a stopping criterion is reached, the
estimate of cg ; is

R 0,

CQ;’ / = { 17
The receiver then removes the self interference (cg) to detect
its partner’s non-compressed message as ¢4 = € D Cp.

Even though the LXS scheme assumes perfect time and
carrier-phase synchronization, since the decoder performs
belief propagation for decoding, the iterative decoder can
be redesigned to efficiently estimate and compensate for
time and frequency offset as in [1]. Furthermore, other non-
idealities can be addressed by extending the corresponding
results from conventional PNC. This includes more-than-
a-symbol time misalignment [9], [10] and lack of CSI
knowledge [11].

Lv,j + ZiEC(]') Kiaj = O, (4)
else.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
scheme in relation to some recently proposed solutions. We use
BPSK modulation and assume that SNR = 1/02, aé =02 =
o2 and the LDPC decoders terminate after 100 iterations.

First, we compare the lower bound of the compression rate
of the Huffman-compressed PNC scheme in [3] to that of the
LXS scheme as a function of the correlation level character-
ized by p. The lossless compression rate in case of HPNC is
bounded as C,ppnc > (1 4+ Hp(p))/2 [3], while in LXS it
is bounded as C, > Hp(p). Notably, since 0 < Hp(p) < 1,
LXS can provide significantly lower compression rates. For
instance, for p = 0.1, the compression rates are bounded by
about 0.74 and 0.47, for HPNC and SW coding, respectively.

In Fig. 2, we evaluate the LXS scheme at different SNRs
as a function of Hp(p). We consider a rate-1/2 irregular
LDPC code with lengths 1k, 10k and 20k, randomly gener-
ated using the degree distribution in [12, Example 2], which
is optimized for BSCs. As shown in Fig. 2, as the code

IEEE WIRELESS COMMUNICATIONS LETTERS, VOL. 6, NO. 5, OCTOBER 2017

Crossover probabili}gy, o]
0.0019 0.0352 0.0581 0.0851

0.0163 0.1168

: :
—<—N =1k 9
—&—N = 10k xR
—%r— N = 20k :

BER
3

«

T
®

/*X
&
/
/
3 N
10'4§ v /ﬂ E
SNR = 12d
! [
/ I
/ I Isw Limit
2 | ‘ | ‘ V. L bx
005 01 015 02 025 03 035 04 045 05
Hy (P)

Fig. 2. Performance of the LXS scheme with rate-1/2 LDPC codes for SNRs
of 8 dB (dash-dotted), 10 dB (solid) and 12 dB (dashed).
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Fig. 3. BER performance of the LXS and the HPNC schemes. Curves for

uncompressed PNC, LXS, HPNC, and SCPNC are represented by dash-dotted,
solid, dashed, and dotted lines, respectively.

length increases, the performance improves. In this compar-
ison with C,1xs = M/N = 1 — Rippc fixed, the noiseless
SW limit for compression is Hp(p) = 1/2 bit, and, as the
code length and SNR increase, the gap between this limit and
the LDPC code threshold gradually decreases. The SW limit
is only approachable if both the code length and SNR tend to
infinity.

To further show the advantages of LXS, we compare its
performance in Fig. 3 to those of HPNC and SCPNC ver-
sus the SNR at the same correlation level (p = 0.05). For all
schemes, the transmission of one frame involves N bits. For
HPNC, we assume that the length of the users’ transmitted
blocks is Npuff = 8 bits where one frame consists of N/8
blocks. At the relay, the corresponding PNC-coded symbols
are first obtained, then conventional Huffman coding is per-
formed. On the other hand, the frame in SCPNC and LXS is
one block of N bits which is compressed to M bits.

For a fair comparison, the compression ratios C, ypNe =

(Nrufr + Nruse)/ @Nputr) and Crscpne = Crixs = M/N for
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HPNC, SCPNC and LXS, respectively, are set equal, where
Nuugr is the average length of Huffman-compressed blocks.
Herein, we pick p = 0.05 resulting in Hp(p) = 0.2864, and
with Npuer = 8, the resulting C, ppnc is about 0.65. To match
the compression rates, LXS uses a randomly generated irreg-
ular LDPC code of rate N_TM = 1/3 following the degree
distributions in [13, Table II] with a maximal left degree of 50
while we use primitive binary BCH codes with approximately
the same code rate. The selected BCH codes are the (31, 11)
and the (15, 5) codes with error correction capabilities (ECCs)
of 3 and 5, respectively. Fig. 3 shows that, unlike LXS, due to
error propagation, the performance of HPNC degrades as the
frame length increases. Clearly, the LXS scheme outperforms
HPNC in the considered SNR range for N = lk and N = 10k.
However, an error floor is observed when N = 100 since the
employed ensemble is designed for long codes, and there are
many short cycles resulting in an inferior iterative decoder
performance. This error floor can be lowered by designing the
code such that the occurrence of trapping sets is reduced [14].

In addition, LXS outperforms SCPNC as the latter is based
on taking a hard decision on sg prior to decoding (unlike
LXS), and also because the selected “short-length” BCH codes
for the latter have low ECCs unlike the LDPC codes. We avoid
long block length BCH codes as they require huge syndrome
decoding tables (with a brute force decoding approach), and
even if bounded-distance decoding (whose decoding table lists
only the error patterns guaranteed by the ECC) is used, it still
requires huge memory. Moreover, the error floor in SCPNC is
due to the fact that our correlation model does not guarantee
a maximum difference between the users’ messages (which
is an assumption in SCPNC); but instead it describes their
average bit difference (ABD) given by 2pN. That also explains
why the (31,11) code outperforms the (15,5) code as it is less
probable to cause an uncorrectable error pattern due to the
larger difference between its ECC and ABD (i.e., 5—3.1 =
1.9) versus (3-1.5=1.5) for the latter.

We further plot the performance of uncompressed PNC
in [6] which has a transmission rate of 1 bit/s while the other
curves assume a compression rate of about 0.65. Hence, to
maintain fairness, the SNR of the former is penalized. As
shown in Fig. 3, the LXS scheme (at large block lengths)
and also the HPNC scheme (at small block lengths) provide
a better performance than conventional PNC due to the added
coding advantage. However, at large block lengths, the HPNC
falls behind the conventional PNC due to error propagation.

Finally, we remark that the irregular codes used in this let-
ter (from [12] and [13]) are optimized for a different model.
For large block length codes, techniques adopted from density
evolution or EXIT chart analysis [7], that use random codes,
can be used to design good LDPC codes for our model, but
the recursions would have to be modified accordingly. Such
techniques aim at minimizing the decoding threshold, pos-
sibly at the expense of a higher error floor. Unlike designs
intended for channel coding, here we have two sources of a
priori information, specifically, the “physical” AWGN chan-
nel and the “virtual” BSC that characterizes the correlation.
For EXIT chart analysis, the extrinsic mutual information (for
a given prior mutual information) is calculated for the VN
and CN decoders. For the VNs, the input LLRs are from the
BSC and CNs, whereas for CNS, they are from VNs and
the AWGN channel. Interestingly, the “virtual” BSC supplies

the same a priori information to each VN which causes a
specific mean shift (that depends on p) to the distribution of
the output LLRs of the VN decoder. For finite block lengths,
using random codes may not guarantee good performance, but
there have been successful designs based on structured LDPC
codes (e.g., quasi-cyclic LDPC codes [15]) and trellis-based
codes [16].

V. CONCLUSION

We have proposed a novel solution to the problem of
exchanging correlated messages in TWR systems. By using
the syndrome approach coupled with LDPC codes, each user
compresses its message assuming that the other user that will
receive it has access to side information. Through numeri-
cal examples, we showed that the proposed scheme offers
significant advantages in terms of reduced compression rates
compared to other alternatives for the present setup.
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