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Abstract—Advances in compressed sensing (CS) theory have
brought new perspectives to encoding and decoding of signals with
sparse representations. The encoding strategies are determined
by measurement matrices whose design is a critical aspect of the
CS applications. In this study, we propose a novel measurement
matrix design methodology for direction of arrival estimation that
adapts to the prior probability distribution on the source scene,
and we compare its performance over alternative approaches using
both on-grid and gridless reconstruction methods. The proposed
technique is derived in closed-form and shown to provide improved
compression rates compared to the state-of-the-art. This technique
is also robust to the uncertainty in the prior source information. In
the presence of significant mutual coupling between antenna ele-
ments, the proposed technique is adapted to mitigate these mutual
coupling effects.

Index Terms—Measurement matrix design, compressed sensing,
direction of arrival estimation, mutual coupling, atomic norm
minimization.

I. INTRODUCTION

COMPRESSED sensing (CS) enables the accurate recon-
struction of signals with sampling rates below the Nyquist

criterion by exploiting their sparse representation in a known
dictionary or domain [1], [2], [3], [4]. The successful recovery
of a signal requires the use of a sparsifying signal dictionary and
a proper sampling strategy. There is a vast literature on the choice
of an appropriate dictionary, which may be either learned using
model-based training data or can be pre-defined by exploiting
a known received signal model [5], [6]. Additionally, there is a
variety of known sampling strategies that provide signal samples
using a measurement matrix, that is designed to be as incoher-
ent as possible with the dictionary [7]. Random matrices are
the most commonly-used measurement matrices since they are
incoherent with any dictionary with high probability. However, it
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is possible to improve their performance using alternative design
criteria [7], [8].

Direction of Arrival (DOA) estimation using sensor/antenna
arrays is one field where CS has been successfully applied [9]
to overcome the limitations of classical DOA estimation tech-
niques such as Bartlett beamformer [10], [11], Capon’s beam-
former [12], Multiple Signal Classification (MUSIC) [13]. CS-
based DOA estimation techniques can provide improved angular
resolution and do not require accurate covariance matrix esti-
mates of the received signal across the antenna array. Further-
more, the new perspective on the sampling theory brought by CS
has also important implications for DOA estimation. In a typical
phased array antenna in practice, to reduce hardware complexity,
analog antenna outputs can be first combined in the analog do-
main and then digitized to obtain far fewer digital channels than
the number of antenna elements. This operation can be equiva-
lently expressed as multiplying the received analog signal with a
measurement vector/matrix in order to generate the compressed
measurements. CS-based techniques enable unambiguous DOA
estimates based on these compressed measurements allowing
for a significant reduction in the hardware complexity of the
sensor system [14]. The performance of such a sampling strategy
highly depends on the amount of relevant information captured
by the measurement matrix. Hence, measurement matrix design
is a crucial step in any implementation of CS, and an important
research area in CS theory [15], [16], [17], [18], [19], [20], [21],
[22].

In a typical DOA estimation scenario, the source DOAs are
expected to be correlated across different snapshots. Therefore,
previous estimates of the tracker can be used to obtain statistical
information for a prior DOA distribution on the current mea-
surements. Adaptive techniques can be designed to exploit this
prior information for a more reliable estimation. In addition to
their usefulness in classical DOA estimation algorithms [11],
adaptive techniques have a significant potential to improve
the performance of CS-based DOA estimation techniques as
well [23]. There are alternative adaptation strategies that can
be applied to CS-based DOA estimation. In one such approach,
prior information on the signal support over the dictionary is
used to formulate a weighted optimization problem in which the
sparsity is promoted more on a subset of vector entries [24].
Another approach is the design of measurement matrices in
order to perform adaptive measurements in the data acquisition
phase [25]. However, a relationship between these two strategies
has not been established so far. Here, we propose a novel,
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computationally feasible, and closed-form adaptation strategy
for designing measurement matrices that incorporates the prior
information on the signal support over the dictionary, which
are better suited for real-time applications than the state-of-the-
art alternatives. Our proposed Adaptive Measurement Matrix
Design (A-MMD) technique is also extended to mitigate the
performance degradation due to the mutual coupling between
antenna elements, and significantly reduces the necessary num-
ber of digital channels for a phased array antenna system. While
the design algorithm of A-MMD requires a dictionary and hence
a grid, A-MMD can also be used with gridless methods, which
we formulate as an atomic norm minimization (ANM) based
optimization problem [26]. Although A-MMD is demonstrated
on DOA estimation problems, it can be adopted in other ap-
plications of CS as well, such as image [8], [25] and audio
processing [27].

The paper is organized as follows. In Section II, the basics
of CS-based DOA estimation are introduced and discussed. In
Section III, various design criteria for measurement matrices
and the existing approaches in the literature are reviewed. In
Section IV, the proposed measurement matrix design method-
ology is introduced. The superior performance of this approach
compared to the existing alternatives is demonstrated in Sec-
tion V. Concluding remarks are given in Section VI.

Throughout this paper, uppercase bold characters denote ma-
trices and lowercase bold characters denote vectors. The ith

entry of a vector x is denoted by xi, the jth column of a
matrix X is denoted by xj , the ith entry in the jth column of a
matrix X is denoted by Xij . The �q-norm of x is denoted by
‖x‖q ≡ (

∑
i |xi|q)1/q where |xi| is the magnitude of xi. The

�0-norm of x is a special case and is denoted by ‖x‖0 which
is the number of non-zero entries in x. ‖X‖F is the Frobenius
norm of X which is defined as ‖X‖F ≡ (

∑
i,j |Xij |2)1/2. XT

and XH denote the transpose and the conjugate transpose of
X , respectively. Tr(X) denotes the trace of X and diag(X)
is a vector comprised of the diagonal entries of X . diag(x) is
the diagonal matrix with diagonal entries x. The vectors and
matrices of ones or zeros are denoted by 1 and 0, respectively.
X � 0means thatX is positive semi-definite. IN is the identity
matrix of size N ×N .

II. COMPRESSED SENSING BASED DIRECTION OF

ARRIVAL ESTIMATION

The DOA estimation problem for narrowband, far-field
sources using passive antenna/sensor arrays can be modeled as:

x = As + n, (1)

where x denotes the received signal by the array, s denotes the
vector of unknown source signals, and n is the measurement
noise. Here, A is the steering matrix that is determined by the
array geometry, the carrier frequency and the DOAs of the source
signals. For an array of M antenna elements and K far-field
sources, we have x ∈ C

M×1, A ∈ C
M×K , and s ∈ C

K×1.
Let θk, 1 ≤ k ≤ K, denote the DOA of kth source, then

we have A = [a(θ1) . . .a(θK)] where the steering vectors
a(θk)’s are the columns of A. For example, for an isotropic,

uniform linear array (ULA) with element spacing d, a(θk) =
[1 ejω(θk) . . . ej(M−1)ω(θk)]T /

√
M and ω(θ) = 2πd cos(θ)/λ

where λ is the wavelength of the impinging plane wave. The
source DOA coordinate θ is the angle which increases clockwise
and θ = 90◦ corresponds to the boresight of the array. Finally, the
real and imaginary parts ofn in (1) are assumed to be i.i.d. Gaus-
sian random variables with zero mean and a standard deviation
of σ/

√
2M , which implies that E[n] = 0, E[nnH ] = σ2IM ,

and E[nnT ] = 0.

A. On-Grid DOA Estimation

The CS-based, on-grid DOA estimation problem has the
measurement model:

x̄ = Ds̄ + n, (2)

whereD is a predefined signal dictionary whose columns are the
steering vectors corresponding to the sources that are assumed to
be located onL predefined directions θ̄i’s, 1 ≤ i ≤ L. We define
ωi, where ωi ≡ ω(θ̄i), as the grid point. Note that we use x̄ and
s̄ instead of x and s to emphasize that the models (1) and (2)
are fundamentally different. Here, x̄ ∈ C

M×1, s̄ ∈ C
L×1, and

D ∈ C
M×L where D = [a(ω1) . . .a(ωL)]. Since the sources

may appear in any direction, the columns of A in (1) may not
be among the columns of D in (2) which results in performance
degradation. This is known as the off-grid problem [26] and
a well-known issue also for many of the classical techniques
including Bartlett beamformer, Capon’s beamformer, and MU-
SIC. L can be increased to reduce the off-grid error, since the
estimation resolution and L are related. However, both the com-
putational requirements and the mutual coherence ofD, defined
as the magnitude-wise maximum of its columns’ normalized
inner products, increase with increasing L. While increasing
the mutual coherence weakens the recovery guarantees, mutual
coherence bounds are generally pessimistic [28] and increasing
mutual coherence does not necessarily result in performance
degradation [8]. On the other hand, it has been shown that
the mutual coherence related metrics are important for the
measurement matrix design in CS methods since they promote
receiving incoherent measurements [7], [8] and enable adaptive
data acquisition strategies [21], as we discuss in Section III and
demonstrate in Section V.

In CS-based reconstruction, the sparsity of s̄ in (2) is exploited
to estimate the unknown DOAs in the following optimization
problem:

ŝ = arg min
s̄

‖s̄‖0

s.t. ‖x − Ds̄‖2 ≤ ε. (3)

Unfortunately, (3) is an NP-hard optimization problem requir-
ing combinatorial search over the grid points [29]. There are
computationally-efficient algorithms to approximate the solu-
tion of (3) such as Orthogonal Matching Pursuit (OMP) [30],
and Basis Pursuit Denoising (BPDN) [31], [32]. While OMP is a
greedy algorithm, BPDN replaces the �0-norm with the �1-norm
to obtain a convex relaxation of the optimization problem that
can be solved by linear programming [4]. Indeed, the �1-norm
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Fig. 1. A phased array system consisting of 4 antenna elements each having an in-phase and quadrature channel output that is reduced to 2 digital channels
through an analog combiner. The phase shifting and attenuation determine the entries of the corresponding measurement matrix.

approach has a long history in the DOA literature, being advan-
tageous for estimation accuracy and robustness [9].

As mentioned in Section I, CS-based techniques enable un-
ambigious estimation using compressed measurements [14]. The
analog signal x is undersampled by the measurement matrix Φ
to obtain the compressed signal y as:

y = Φx = ΦAs + Φn. (4)

From an analog hardware implementation perspective, in an
antenna array, as shown in Fig. 1, measurement matrices can
be realized using low noise amplifiers, attenuators, and phase
shifters. Following these analog operations, the resulting analog
outputs are digitized to obtain a set of digital channels. Then,
the measurement matrix Φ becomes an m×M complex valued
matrix where m < M is the number of digital channels.

With the inclusion of Φ and by relaxing the �0-norm with
the �1-norm, the following convex optimization problem can be
formulated [31], [32]:

ŝ = arg min
s̄

‖s̄‖1

s.t. ‖y − ΦDs̄‖2 ≤ β̄. (5)

While the noisen in (1) is assumed to be spatially white [10],Φn
is colored in general. Hence, the least squares estimator (LSE)
and the maximum likelihood estimator (MLE) are not equivalent
in this case. In [33], the MLE-based framework in the data
fidelity is used leading to the replacement of ‖(y − ΦDs̄)‖2
with ‖(ΦΦH)−1/2(y − ΦDs̄)‖2 to improve the recovery per-
formance. This approach actually whitens the measurements.
The whitening matrix W is chosen as W = Σ−1/2UH , where
ΦΦH = UΣUH with a unitary U and diagonal Σ. The corre-
sponding DOA estimates can be obtained as:

ŝ = arg min
s̄

‖s̄‖1

s.t. ‖Wy − WΦDs̄‖2 ≤ β. (6)

There are many efficient algorithms to solve (6), including
the SPGL1 [34], [35] and the alternating direction method of
multipliers (ADMM) based methods [36], [37]. The results
presented in Section V are obtained using an ADMM based
algorithm. In (6), β determines the trade-off between sparsity
and data fidelity, and can be chosen as

√
E[‖WΦn‖22] =√

E[Tr(WΦn(WΦn)H)] = σ
√
m. In practice,β = cσ

√
m is

used where c typically resides in the interval [0.1, 10] to achieve
better performance.

B. Gridless DOA Estimation

Gridless CS-based techniques perform their estimation on a
continuous spectrum and hence avoid the grid mismatch prob-
lem [26], [38], [39], [40], [41], [42], [43], [44], [45]. The appli-
cation of gridless approaches using a measurement matrix such
as the one shown in Fig. 1 is currently limited to sub-Gaussian
measurement matrices [41], [42]. Although we shift our main fo-
cus on the grid-based reconstruction methods, we also formulate
how the gridless techniques can be used along with our proposed
methodology. To this end, we use the ANM, which poses the
DOA estimation problem, first as a semi-definite programming
(SDP) problem, then estimates the DOAs using the obtained
solution [40], [43]. Following the convention in [43], atomic
norm is defined through an optimization problem involving the
infimum point of a set as:

A = {a(θ)φ | φ ∈ C, |φ| = 1, θ ∈ [0, 180◦)} , (7)

‖x‖A = inf {t > 0 | x ∈ tconv(A)} , (8)

where conv(A) is the convex hull of A. For compressed sens-
ing based gridless DOA estimation using ANM, the following
problem is solved:

min
x

‖x‖A

s.t. ‖Wy −WΦx‖2 ≤ β. (9)

Indeed, (9) is highly related with (5). In �1-norm approach,
the sparsity is promoted over a dictionary, while the sparsity is
promoted over the atomic set (7) in ANM. Hence, ANM can be
considered as the continuous modification of �1-norm approach
where the grid is infinitely dense [26]. The ANM problem in (9)
can be recast to be solved using an SDP solver [26], [43]:

min
z,r,x

1

2
z +

1

2
r0

s.t.

[
z xH

x R

]
� 0, ‖Wy −WΦx‖2 ≤ β, (10)

where R is a Hermitian Toeplitz matrix characterized by the
vector r ∈ C

M×1 as Rkl = rl−k, 1 ≤ k ≤ l ≤ M , and r0 is the
first element of r. In (10), x denotes the uncompressed received

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on February 16,2023 at 11:51:52 UTC from IEEE Xplore.  Restrictions apply. 



KILIC et al.: ADAPTIVE MEASUREMENT MATRIX DESIGN IN DIRECTION OF ARRIVAL ESTIMATION 4745

signal by a ULA and R corresponds to its covariance matrix
allowing the unique decomposition ofR using the Vandermonde
decomposition of Toeplitz matrices [26] as R = Adiag(s)AH ,
where A is the steering matrix comprised of columns a(θi)’s
for 1 ≤ i ≤ K. Since (10) is valid for any Φ, the changes in the
antenna array can be reflected in (10) by replacing Φ with ΦG
where the array properties such as array element displacements
and mutual coupling effects are embedded in G as explained
in [41]. In this study, we used SDPT3 solver [46] of CVX [47]
to solve (10). Then, we used generalized pencil of functions to
estimate the DOAs using the Vandermonde decomposition of
R [40], [48]. In terms of the computational complexity, solving
(10) is O(M3.5) if an interior-point method such as SDPT3 is
used [49], while it can be reduced toO(M2) as proposed in [50].
On the other hand, solving (6) is O(L logL) per iteration using
an ADMM-based implementation [37].

While our focus is on single-snapshot signal model, the ex-
tension to the multi-snapshot case has been extensively studied
in the literature for both �1-norm minimization and ANM. In the
multi-snapshot case, dimensionality reduction methods can be
applied on the received data for computational efficiency. LetNs

denote the number of snapshots, then the computational com-
plexity becomes independent of Ns if Ns > M for ANM [26],
and if Ns > K for �1-norm minimization [9].

III. REVIEW OF THE MEASUREMENT MATRIX

DESIGN APPROACHES

In this section, we present a comprehensive review of the mea-
surement matrix design approaches with respect to their criterion
of optimality. The restricted isometry property (RIP) [4] and
the mutual coherence [51] of the effective dictionary B ≡ ΦD
are the two most common criteria to assess the stable recovery
performance of (5) or (6). Although the RIP provides a tighter
bound [29], it is NP-hard to evaluate [52]. The mutual coherence
μ of B is defined as the maximum of μij(B) for i 	= j where:

μij(B) =
|bHi bj |

‖bi‖2‖bj‖2
=

|Gij |√
|Gii||Gjj |

. (11)

In (11),G ≡ BHB is the Gram matrix ofB. The mutual coher-
ence does not necessarily reflect the true recovery performance
of the algorithms like BPDN and OMP [8]. In [8], the following
t-averaged mutual coherence metric is proposed:

μt(B)≡
∑

i	=j μij(B)I(μij(B), t)∑
i 	=j I(μij(B), t)

, I(x, t)≡
{
1, if x ≥ t

0, else
,

(12)
with the aim of excluding smaller μij values than t. For increas-
ing t, the t-averaged mutual coherence converges to the mutual
coherence. Even though most of the measurement matrix design
techniques do not directly attempt to minimize the t-averaged
mutual coherence, it provides important insights.

In adaptive approaches, the main purpose is to design a mea-
surement matrix that compresses the analog antenna measure-
ments adaptively for CS-based reconstructions. Indeed, linearly
combining the analog antenna measurements to decrease the
number of digital channels is not a new topic. Long before the use

of CS techniques in DOA applications, various techniques have
been proposed for optimally preprocessing the analog antenna
outputs prior to their digitization [53], [54].

We can broadly classify measurement matrix design tech-
niques in three different categories based on their respective
criterion of optimality: the mutual coherence, the Cramer Rao
Lower Bound (CRLB), and the mutual information (MI).

A. Mutual Coherence Based Measurement Matrix Design

Mutual coherence based measurement matrix design can be
formulated as the solution to the following optimization prob-
lem:

Ĝ = arg min
G

‖G − T ‖q

s.t. G � 0, rank(G) ≤ m, (13)

where T denotes the target matrix for G ≡ (ΦD)H(ΦD). The
reason why we call (13) as mutual coherence based is because
of the relationship given in (11). Typically, the dictionary D is
assumed to be fixed and Φ is the variable of minimization. Fol-
lowing the results presented in [7], for computational efficiency,
q is typically chosen as the Frobenius norm [55], [56]. Indeed,
when T = IL, ‖G − T ‖F is closely related to the t-averaged
mutual coherence [57]. In [15] and [58], T is chosen as DHD
to set T as the Gram matrix of the effective dictionary when
no compression is performed, but this has been shown to be
unsuitable for some signal models [21]. In [21], we proposed
using the element-wise magnitude of DHD:

Tij = |dH(ωi)d(ωj)|, 1 ≤ i, j ≤ L. (14)

The equiangular tight frame (ETF) criterion [59], [60] can also
be used in measurement matrix design [61], [62]. When T =
IL, the different columns of G are forced to be orthogonal.
However, there is a bound on the achievable minimum of mutual
coherence, called the Welch bound [63]:

μw =

√
L−m

m(L− 1)
, (15)

for any matrix with dimensions m× L with L > m. In ETF-
based designs, T is typically chosen as a target Gram matrix
from the following convex set [60]:

T =

{
T ∈ C

L×L : TH = T , diag(T ) = 1,max
i	=j

|Tij | ≤ μw

}
.

(16)
In addition to the non-adaptive methods mentioned above, there
are also adaptive mutual coherence based measurement matrix
design techniques [16], [21], [64]. In [16], (13) is solved after the
off-diagonal entries of T are set to 0’s and the diagonal entries
are set to 1 or 0 depending on whether a source is expected to be
located on the corresponding grid point or not. For ULAs with
isotropic antenna elements and uniform spacing of ω(θ) over
the grid points ωi’s, a closed-form solution for Φ is obtained for
a fixed dictionary D satisfying DDH = IM . In Section IV, we
provide the closed-form solution for Φ for any D and T .
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In [64], the objective function in (13) is replaced by
‖Γ(G− IL)Γ‖2F , where Γ ≡ diag(γ) and the vector γ is de-
fined as:

γ = τ1L + (1− τ)

√|s̃|
maxi

√|s̃i|
, (17)

where s̃ reflects the prior support information and τ ∈ (0, 1)
is a user-defined parameter.

√|s̃| is a vector where we apply
element-wise magnitude and square-root operators to each entry
of s̃. The resulting problem is solved using the iterative ma-
jorization minimization algorithm to find Φ for a fixed D. In
Section IV, a closed-form solution is provided.

In summary, in [16], a closed-form expression for Φ is
achieved. This is a significant result for the applications that
require real-time measurement matrix updates for each snapshot
of a sensor data stream. However, the result is obtained for ULAs
with isotropic antenna elements and uniform spacing of ω(θ)
over the grid points ωi’s. In [64], the measurement matrix is
obtained by the iterative majorization minimization algorithm
which is both computationally more expensive and less accurate
than obtaining the solution using a closed-form expression.
Moreover, both of these techniques are highly sensitive to the
accuracy of the prior information, as demonstrated in Section V.
In [21], we addressed these issues and proposed a measurement
matrix design methodology with a closed-form solution that is
robust to the uncertainties in the prior information. However,
we had not investigated the relationship between the prior sup-
port information and the adaptive measurement matrix design.
Hence, the adaptation had been achieved by only changing the
diagonal entries of T as in [16]. As detailed in Section IV, the
proposed A-MMD technique not only provides a closed-form
solution for the measurement matrix, but has a strong justifi-
cation for handling the prior information, alleviating the issues
associated with the approaches in [16], [21], and [64].

B. The CRLB Based Measurement Matrix Design

The CRLB provides the minimum mean-squared error (MSE)
that can be achieved by any unbiased estimator [65]. Minimiza-
tion of the CRLB to find an optimal pre-processing of analog
antenna measurements had also been used before the invention
of CS-based DOA estimation techniques [53]. Following the
development of CS approaches, the minimization of the CRLB
has been used for measurement matrix design [17], [18], [66].
The general form of the optimization task in such approaches
can be stated as:

Φ̂ = arg min
Φ

CRLB(A,Φ, s, σ), (18)

subject to application-specific constraints. Note that the explicit
form of CRLB(A,Φ, s, σ) depends on the assumed model.

In [66], by minimizing the CRLB, a closed-form expression
for the measurement matrix is derived. However, the dictionary
D is chosen to represent the shifted unit sample sequences which
is not applicable for DOA applications.

As in [66], a closed-form expression for the optimal mea-
surement matrix is found in [17]. However, it is assumed that
there is a single source with a known amplitude. This restricts

the optimality of the algorithm to single-source scenarios and
the availability of reliable amplitude information on the source
signals.

In [18], the proposed methodology is stated as suitable for
multi-source scenarios. However, the proposed extension to
multi-source scenarios is highly restricted. Furthermore, the
presented design is obtained as the solution to a non-convex opti-
mization problem that has a complicated cost surface, requiring
the use of global optimization techniques, that are too slow and
computationally challenging for real-time applications.

C. MI Based Measurement Matrix Design

The maximum MI criterion [67] is another criterion that has
been used for measurement matrix design [19], [20], [68]. The
basic idea is to maximize the MI or the conditional MI between
the measurements and the vector of unknowns (the DOAs). The
gradient of the MI, ∇ΦI(y, θ), can be expressed as [19], [20]:

∇ΦI(y, θ) = ∇ΦEy,θ[log f(y|θ)]−∇ΦEy[log f(y)], (19)

where f is the probability density function of the compressed
measurements. In the absence of a closed-form expression,
∇ΦI(y, θ) is numerically approximated and Φ is updated as:

Φ(k+1) = Φ(k) + μ∇Φ(k)I(y, θ), (20)

where k is the iteration number and μ is the step-size [19]. By
running the algorithm with several initializations, the desired Φ̂
is obtained [20].

The techniques in [19], [20], [68] require solutions to non-
convex optimization problems over complicated cost surfaces
using global optimization. Therefore, their computational re-
quirements limit their real-time applicability.

IV. THE PROPOSED MEASUREMENT MATRIX DESIGN

METHODOLOGY: A-MMD

In this section, we present the proposed A-MMD technique
that provides a closed-form expression for the measurement ma-
trix which is obtained as the solution to the following reweighted
�1 minimization problem that exploits the prior information on
the DOA distribution:

ŝ = arg min
s̄

‖P−1s̄‖1

s.t. ‖Wy − WΦDs̄‖2 ≤ β, (21)

where the diagonal entries of P denote the prior probability
distribution on each grid point, promoting sparsity over those
grid points with less likely DOAs. Note that the minimization
variable s̄ is weighted in (21), which is the only difference from
(6). By defining sp ≡ P−1s̄, (21) can be rewritten as:

ŝp = arg min
sp

‖sp‖1

s.t. ‖Wy − WΦDPsp‖2 ≤ β. (22)

By solving (22), the DOAs are found as ŝ = P ŝp. Note that in
(22), the effective dictionary changes from B to Bp ≡ ΦDp

where Dp ≡ DP . Hence, the corresponding Gram matrix be-
comes Gp ≡ BH

p Bp. Gp does not involve the term W since
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whitening does not affect the data acquisition stage of a DOA
estimation system. In other words, W can be implemented as
a decoupled operation following reception and digitization of
y. Similar to the mutual coherence based measurement matrix
designs, the following optimization problem can be cast in terms
of the Gram matrix Gp:

Ĝp = arg min
Gp

‖Gp − T ‖2F

s.t. Gp � 0, rank(Gp) ≤ m. (23)

Since the dimensions of Φ are m×M and m ≤ M ,
rank(Gp) ≤ m is guaranteed to be satisfied. Furthermore,Gp ≡
BH

p Bp also satisfies Gp � 0. Then, for a fixed D, (23) can
be written as an unconstrained optimization problem over the
measurement matrix Φ as:

Φ̂ = arg min
Φ

‖(ΦDp)
H(ΦDp)− T ‖2F . (24)

Let the singular value decomposition (SVD) of Dp be
UDp

ΣDp
V H

Dp
where ΣDp

is diagonal, UDp
is unitary and

V Dp
is semi-unitary, i.e., UH

Dp
UDp

= UDp
UH

Dp
= IM and

V H
Dp

V Dp
= IM . Then, (24) can be written as:

Φ̂ = arg min
Φ

‖V Dp
ΣH

Dp
UH

Dp
ΦHΦUDp

ΣDp
V H

Dp
− T ‖2F .

(25)
By defining Ψ ≡ ΦUDp

ΣDp
, the following optimization prob-

lem for Ψ is obtained:

Ψ̂ = arg min
Ψ

‖V Dp
ΨHΨV H

Dp
− T ‖2F . (26)

Expanding the Frobenius norm as a trace and using the cyclic
property and linearity of trace operator, we get:

J(Ψ) = Tr
(
(V Dp

ΨHΨV H
Dp

− T )(V Dp
ΨHΨV H

Dp
− T )H

)
= Tr

(
ΨHΨΨHΨ

)
−2Tr

(
ΨHΨV H

Dp
TV Dp

)
+ Tr

(
TTH

)
= ‖ΨHΨ− V H

Dp
TV Dp

‖2F + C, (27)

where J(Ψ) ≡ ‖V Dp
ΨHΨV H

Dp
− T ‖2F , and the constant C

includes those terms that do not depend onΨ. Then, (24) reduces
to:

Ψ̂ = arg min
Ψ

‖ΨHΨ− V H
Dp

TV Dp
‖2F , (28)

which is a quadratic optimization problem that can be recast in
terms of the Gram matrix GΨ = ΨHΨ, and Z = V H

Dp
TV Dp

as:

ĜΨ = arg min
GΨ

‖GΨ −Z‖2F

s.t. GΨ � 0, rank(GΨ) ≤ m. (29)

For a real-valuedGΨ, the optimization problem in (29) is solved
iteratively in [69] and analytically in [70]. Following [70], the
optimal solution of (29) is obtained as:

ĜΨ =

min{m,z}∑
i=1

λiqiq
H
i , (30)

where Z has the eigendecomposition Z = QΛQH =∑M
i=1 λiqiq

H
i with λ1 ≥ . . . ≥ λM , and z denotes the number

of non-negative eigenvalues of Z. Once the optimal positive
semi-definite matrix ĜΨ of rank at mostm is obtained by (30), Ψ̂

that satisfies Ψ̂
H
Ψ̂ = ĜΨ is found by the eigendecomposition

of ĜΨ:

Ψ̂ =

{
ΛmQH

m, if m ≤ z

[QzΛ
H
z 0]

H
, else

, (31)

where Qm (or Qz) is found by taking the first m (or z) columns
of Q, and Λm (or Λz) is found by taking the first m (or z)
columns and rows of Λ. Then, the optimal measurement matrix
Φ̂ that solves (29) is found as Φ̂ = Ψ̂Σ−1

Dp
UH

Dp
.

So far, for a given P and T , a closed-form expression, Φ̂,
for the optimal adaptive measurement matrix is obtained. A pre-
ferred choice forT is similar to (14), which we proposed in [21].
One motivation for this choice is to capture the correlation values
of the original dictionary D. Moreover, we reported its robust
performance in [21]. However, D is replaced by Dp here, and
(14) is modified as:

Tij = |dH
p (ωi)dp(ωj)|, 1 ≤ i, j ≤ L, (32)

where dp(ωi)’s are the columns of Dp.
The matrix P that is formed based on the prior probability

distribution can be initialized as P = IL if the sources are
equally likely to emerge from any direction. However, if the
sources are more likely to appear in certain angular sectors,
P can be initialized accordingly. This prior information can be
provided by a tracker operating on the previous source detections
obtained from the sensor array. Following the DOA estimations,
there are sources for which we have prior information, which are
called the tracked sources. In addition to the tracked sources, the
emergence of new sources is also a possibility. These sources
are called the emerging sources. While the probabilistic angular
distribution of the tracked sources is available with some level
of certainty, a uniform probability distribution can be assigned
to the emerging sources. Specifically, assume that there are
K sources and Q of them are tracked sources each having
probability mass function (PMF) of pq(ωi), 1 ≤ q ≤ Q, on the
grid point ωi. Then, the probability distribution of the overall
source scene is closely related to the convex combination of
pq(ωi)’s and the uniform PMF [21]:

p(ωi) =

Q∑
q=1

αqpq(ωi) +
(1− Prt)

L
, 1 ≤ i ≤ L, (33)

where Prt ≡
∑Q

q=1 αq ≤ 1, and αq’s can be chosen based on
the importance levels of the sources, power of the received
source signals that are impinging on the antenna array, and
Q/K ratio. While αq’s for different targets are chosen the same
in Section V, it is also possible to assign different αq values
to different sources. For example, if the detection of the ith

source is more crucial than the the detection of the jth source,
αi > αj should be chosen. In another scenario, the received
signal power of the ith source might be significantly lower than
the received signal power of the jth source. In this case, the
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Fig. 2. Application of the proposed A-MMD technique in the presence of a
tracker.

Algorithm 1: A-MMD.
Input: D, T , P , m where m < M < L
Output: Φ̂
1: Dp ≡ DP {Matrix multiplication: O(ML)}
2: Dp = UDp

ΣDp
V H

Dp
{SVD: O(M2 L)}

3: Z ≡ V H
Dp

TV Dp
{Matrix multiplication: O(ML2)}

4: Z = QΛQH =
∑M

i=1 λiqiq
H
i

{Eigendecomposition: O(M3)}
5: Compute Ψ̂ according to (31)

{Matrix multiplication: O(min{m, z}2 M)}
6: Φ̂ = Ψ̂Σ−1

Dp
UH

Dp

{Matrix multiplication: O(min{m, z}M2)}

imbalance between two received signal powers can be alleviated
by assigning αi > αj . After the selection of α parameters, the
diagonal matrixP is determined byPii = p(ωi). The schematic
of the overall procedure is given in Fig 2. Note that the tracker
implementation is out of the scope of this work, and reliable
prior distribution estimates from the tracker are assumed to be
available. However, the performance of algorithms with various
levels of uncertainty in the prior information is investigated in
Section V. The steps of A-MMD and their respective computa-
tional complexities are presented in Algorithm 1. Computational
complexity is dominated by the computation ofZ in Step 3, with
a cost of O(ML2). D is a discrete Fourier transform matrix if
the array elements are isotropic in a ULA configuration with the
uniform spacing of ω(θ) over the grid points ωi’s, 1 ≤ i ≤ M .
For this case, Steps 2 and 3 are not necessary since UDp

= D,
ΣDp

= P , V Dp
= I and Z = T .

So far, we have not considered mutual coupling between the
antenna array elements in our design methodology. Mutual cou-
pling can be a significant source of error in DOA applications, es-
pecially for most wideband antenna array designs that depend on
mutual coupling to reduce active reflection coefficients, e.g., in
tapered slot antennas [71] and in connected dipole antennas [72].
If the S-parameters (i.e., network parameters expressing mutual
coupling across elements) are known (via simulations or mea-
surements), the mutual coupling effects can be mitigated using
a slightly modified measurement matrix design. Let S denote
the matrix whose entries are the S-parameters, then the mutual

coupling matrix can be formed as M ≡ IM + S. The signal
model can then be updated asx = MAs + n. This update can
be reflected on the dictionary matrix using MD as the input to
A-MMD. The resulting design is called Adaptive Measurement
Matrix Design with Mutual Coupling Effects (A-MMD-MC).
Even when the mutual coupling matrix is not known precisely,
which may be the case for some practical applications, DOA
estimation algorithms should be robust against mutual coupling
effects.

A-MMD allows for joint optimization over both measurement
matrix and dictionary. In [73], we introduced a simple but useful
adaptive dictionary design. Although the proposed approach is
heuristic, it is used to show that A-MMD is suitable for any D.
The resulting method is called Adaptive Measurement Matrix
Design with Updated Dictionary (A-MMD-UD). The key idea
in [73] is to use a denser grid where the tracked sources are more
likely to appear. For this purpose, the following mixture PMF is
proposed, as the convex combination of the PMFs of the tracked
sources and the uniform PMF:

p̄(ωi) =

Q∑
q=1

ᾱqpq(ωi) +
(1− P̄ rt)

L
, 1 ≤ i ≤ L, (34)

whose parameters are different from those in (33). After forming
(34), the cumulative distribution function (CDF) F is computed
by integrating f̄ , which is achieved by interpolating p̄. Then:

ω̄i = F−1

(
i

L− 1

)
, 0 ≤ i ≤ L− 1, (35)

are the adapted, non-uniformly spaced grid points.
While the A-MMD is derived starting from a reweighted �1

minimization problem, it does not imply that the reconstruction
must be performed by solving (21). The designed measurement
matrix changes only the data acquisition strategy, and makes the
DOA system more focused on particular regions depending on
the prior information. Once y is received as in (4), the recon-
struction can also be performed using the ANM approach given
in (9), which is numerically validated in Section V. Note that the
ANM approach demonstrated in Section II-B does not include
any reweighting operation. On the other hand, reweighted ANM
has already been proposed in [74], which can be used along with
our proposed A-MMD as a future extension.

V. NUMERICAL RESULTS

In this section, a thorough performance comparison of the
measurement matrix design techniques is conducted using
Monte Carlo simulations over a large set of scenarios. First,
the performances of the various techniques are investigated for
a range of Signal-to-Noise Ratio (SNR) levels. Second, we
choose the best-performing techniques and continue to inves-
tigate their performances by changing other parameters, namely
the number of grid points (L), the compression rate (M/m),
and the uncertainty in the prior information for a particular
SNR level. Third, the mutual coupling effects for an antenna
array are included in the simulations. In all of the simulations
described above, a conventional λ/2 spaced ULA structure is
used and multipath effects are ignored. Fourth, a random linear
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TABLE I
LIST OF THE COMPARED TECHNIQUES

array (RLA) with multipath fading on the incoming signals is
modeled and DOA accuracy is compared to the ULA case. Next,
the performance of A-MMD is investigated using the phase
transition phenomenon [29], [75], where the effects of adaptive
reconstruction and A-MMD are also separately evaluated. Fi-
nally, A-MMD is used along with ANM to show its applicability
when gridless methods are used in the reconstruction. For the
sake of clarity, the techniques which are used in the performance
comparison are abbreviated as given in Table I.

Our performance criterion is the root mean squared error
(RMSE) between the actual and the estimated DOAs:

RMSE ≡

√√√√ 1

NK

N∑
n=1

K∑
k=1

(θ̂nk − θnk)2, (36)

where θnk and θ̂nk denote the actual and the estimated DOAs
(in degrees) for the kth source and the nth Monte Carlo iteration
among a total of N trials. For a more statistically reliable
comparison, bootstrapping is applied [76]. Specifically, let the
nth entry of the vector h ∈ C

N×1 be defined as:

hn =
1

K

K∑
k=1

(θ̂nk − θnk)
2, (37)

where hn is the mean squared error for the nth Monte Carlo
run and the square of the RMSE in (36) is the mean of h. For
bootstrapping, h is randomly sampled N times with replace-
ment, and a new vector is formed. This procedure is repeated J
times to form hj , 1 ≤ j ≤ J , where J is chosen as 10,000. The
bootstrap means are then computed as:

μ̄j =

√√√√ 1

N

N∑
n=1

hj
n. (38)

TABLE II
DOA DISTRIBUTION FOR CASE 1

After the calculation of (38), μ̄j’s for 1 ≤ j ≤ J are sorted in an
ascending manner, and their 2.5th and 97.5th percentile entries
are assigned as the lower and upper RMSEs [76]. In our results,
we include the lower and upper RMSEs in addition to the original
RMSE value, which is calculated using the original data as given
in (36). In all the simulations, the DOAs are realized from
a continuous distribution across the horizon; hence, off-grid
values are allowed and multiple sources can be arbitrarily close
to one another.

As shown in Table I; LZKR, KGKA, A-MMD, A-MMD-UD,
and A-MMD-MC are all parameter dependent techniques. For
LZKR, τ ∈ [0.1, 0.9] [64]; for KGKA α ∈ [0, 0.95] [21], for
the dictionary optimization procedure described in Section IV,
ᾱ ∈ [0.01, 0.05] [73] are used and the best results we could
achieve using the parameters in the given ranges are reported.
The choice of α used in A-MMD is explained in Section V-B
after the presentation of the first set of numerical results. Note
that A-MMD-MC and A-MMD-UD always use the same α
parameters since they are variants of A-MMD.

A. Performance Comparison At Different SNRs

To compare the performances of the techniques at different
SNR levels, we use a ULA with M = 50 antenna elements with
λ/2 spacing and digitize the analog output of these elements
in m ∈ {5, 10} digital channels. For this array configuration,
ω(θ) = π cos(θ). SNR is defined as 10 log10(mPs/σ

2) where
Ps is the received power of the source, and is assumed to be
the same for all K sources. Note that the array processing
gain is already incorporated into the SNR definition. In the
simulations, we have K ∈ {2, 3} and Q ∈ {1, 2}, so that there
are up to three sources and at least one of them is tracked.
Except for A-MMD-UD that adaptively assigns the grid points,
L = 3×M = 150 uniformly spaced grid points are chosen.
100,000 Monte Carlo runs, each with independent DOAs and
noise realizations, are conducted to produce the tabulated results
where the lower, mean, and upper RMSEs are shown. The lower
and upper RMSEs are computed using the bootstrap analysis.
For the sake of clarity, the mean RMSE of the best performing
technique is printed in bold.

Case 1 - K = 2, Q = 2,m = 10, L = 150: We first start
with a relatively simple scenario where all the techniques are
expected to perform well. There exist two tracked sources in
the environment and they are close to the boresight direction
of the antenna array (θ = 90◦). These sources have the DOA
distributions given in Table II. The interpretation of Table II is
as follows: the DOAs of both sources are chosen at random by
sampling a Gaussian distribution with means −0.5455, 1.0745;
and standard deviation σs = 0.2 (in the ω-domain). The value
σs = 0.2 is achieved by 5× 2/M = 0.2 for M = 50 antenna
elements where 2/M is the approximate half-power beamwidth
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Fig. 3. Magnitudes of the entries in (ΦD)H(ΦD), where Φ is designed according to the respective algorithms. For the leftmost figure Φ = IL, i.e., no
compression is performed. The same color axis is used for all results (see the colorbar).

TABLE III
THE RMSE [DEG] RESULTS FOR CASE 1. THE LOWER AND UPPER RMSES

ACHIEVED BY BOOTSTRAP ANALYSIS ARE ALSO GIVEN

of a λ/2 spaced ULA [77]. For Source 1, the DOAs are chosen
randomly over the interval [84◦, 116◦] and for Source 2, the
DOAs are chosen randomly over the interval [51◦, 87◦]. The re-
sults are given in Table III. As expected, all the given techniques
provide accurate results. Among the non-adaptive techniques,
IMD and ETFD outperform RGD, while their performances
are far behind all the adaptive techniques. Among the adaptive
techniques, A-MMD has the best performance. In the low-SNR
regime, a high α improves the performance of A-MMD, since
the prior information is more reliable than the noisy measure-
ments and it is available for both sources. In this scenario, the
use of an adaptive dictionary does not increase the estimation
performance.

We also plot |dH(ωi)Φ
HΦd(ωj)| for 1 ≤ i, j ≤ L in Fig. 3.

When IRG and A-MMD are used, the highest values are located
around ω = −0.5455 and ω = 1.0745, which are consistent
with the prior information that is embedded in the proposed opti-
mization. Moreover, the (unnormalized) cross-correlation of the
columns of ΦD are successfully suppressed by these methods,
while this is not the case for the results obtained with RGD and
IMD. Note that A-MMD does not perform normalization on the
columns of the effective dictionary sinceP is used to scale those
columns.

Case 2 - K = 2, Q = 1,m = 10, L = 150: Source 2 in Ta-
ble II is replaced with an emerging source having a uniform DOA
distribution between−0.9π and0.9π (in theω-domain) resulting
in the DOA distribution given in Table IV. Hence, the DOAs
of Source 2 are chosen randomly over the interval [25◦, 155◦].
The results for that scenario are given in Table V. Compared

TABLE IV
DOA DISTRIBUTION FOR CASE 2

TABLE V
THE RMSE [DEG] RESULTS FOR CASE 2. THE LOWER AND UPPER RMSES

ACHIEVED BY BOOTSTRAP ANALYSIS ARE ALSO GIVEN

to Case 1, there is a performance degradation for all the tech-
niques. For adaptive techniques, the reason for this degradation
is the lack of prior information about the emerging source. IRG
and LZKR almost completely miss the emerging source which
can be deduced by observing that their performance does not
change much with increasing SNR. A-MMD-UD improves the
performance of A-MMD at SNR = 10 dB and SNR = 40 dB.
The reason for the performance degradation of the non-adaptive
techniques is the DOA of Source 2. In Case 1, where the better
results are obtained, Source 2 is located around 70◦, where the
DOA estimation performance is expected to be more accurate in
general. In Case 2, the emerging source may appear anywhere
between ω = −0.9π and ω = 0.9π. As Source 2 may emerge
at DOAs that are far from the array boresight, a degradation
in performance is expected. For A-MMD and A-MMD-UD,
α = 0.15 was chosen.

Case 3 - K = 2, Q = 1,m = 10, L = 150: In Case 2, the
tracked source is located around the boresight of the an-
tenna array. Now, the mean position of the DOA distribution
of the tracked source (Source 1) in Table IV is changed to
θ = 30◦ (ω = 2.7207). The DOA distributions of the sources
are given in Table VI. The target DOAs of Source 1 are chosen
randomly over the interval [0.5◦, 54◦]. Compared to Case 1 and
Case 2, there is a performance degradation for all the techniques
as shown in Table VII. The conventional RGD outperforms both
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TABLE VI
DOA DISTRIBUTION FOR CASE 3

TABLE VII
THE RMSE [DEG] RESULTS FOR CASE 3. THE LOWER AND UPPER RMSES

ACHIEVED BY BOOTSTRAP ANALYSIS ARE ALSO GIVEN

TABLE VIII
THE RMSE [DEG] RESULTS FOR CASE 4. THE LOWER AND UPPER RMSES

ACHIEVED BY BOOTSTRAP ANALYSIS ARE ALSO GIVEN

IMD and ETFD implying that these designs are not robust to
the changes in the source DOAs. Only KGKA, A-MMD, and
A-MMD-UD can provide DOA estimates with RMSE < 10◦.
Among these three, KGKA is worse than the other two and
A-MMD-UD performs the best. For A-MMD and A-MMD-UD,
α = 0.15 was chosen.

Case 4 - K = 2, Q = 1,m = 5, L = 150: The same scenario
given in Table IV is repeated form = 5. Hence, the compression
rate is now M/m = 10. Examination of such a scenario is im-
portant since reducing the number of digital channels drastically
simplifies the hardware and software complexity. The results are
demonstrated in Table VIII. As the number of compressed mea-
surements is decreased, the RMSEs of all the techniques increase
compared to those in Table V. As before, only KGKA, A-MMD,
and A-MMD-UD can obtain RMSE < 10◦ with A-MMD-UD
providing the best performance. For A-MMD and A-MMD-UD,
α = 0.025 was chosen.

B. Selection of Parameters

Note that α = 0.15 is used in Case 2 while α = 0.025 is used
in Case 4, although the same scenario is simulated except for
decreasing m from 10 to 5. α serves as a parameter adjusting
the resource allocation, so less resources are allocated for the

Fig. 4. RMSE vs the number of grid points.

emerging sources when it is increased. When m is decreased for
a fixed M , the total allocation of resources decreases and setting
α = 0.15 makes it difficult to find the DOA of the emerging
source. Hence, the m/M ratio is important to determine α.
Moreover, α must be inversely proportional to K. Therefore,
α = m/(MK) is always used for A-MMD, A-MMD-UD, and
A-MMD-MC in the remainder of this manuscript. Note that
this choice does not directly consider the noise power, which is
shown to affect the optimal parameter choice in Case 1. Further-
more, different array configurations can also affect the optimal
parameter choice, which is not comprehensively investigated in
this study. An improved parameter selection algorithm for α can
be developed, which is left as a future study.

C. Effects of the Number of Grid Points, the Compression
Rate, and the Uncertainty in the Prior Information

In this section, we provide the results of the simulations
conducted at a fixed SNR level for different choices of the
number of grid points (L), the number of digital channels
(m), and the uncertainty in the prior information (σs). We also
report the results of RGD in addition to KGKA, A-MMD, and
A-MMD-UD as a reference design. The reported results are
obtained by performing 10,000 Monte Carlo iterations each with
independent noise and DOA realizations. The plots with error
bars are used to present both the upper and lower bounds of the
obtained RMSEs.

1) Effect of the Number of Grid Points: To investigate the
effect of L, we again use a ULA with M = 50 antenna el-
ements spaced λ/2 apart and m = 10 digital channels. The
DOA distribution given in Table IV is assumed and the SNR
is fixed at 40 dB. The results are given in Fig. 4. Although
the mutual coherence of the effective dictionary increases with
increasing L, the performances of A-MMD, A-MMD-UD and
KGKA improve. Hence, lower mutual coherence does not neces-
sarily imply higher performance in CS based DOA estimation.
This result also demonstrates that the proposed algorithm can
work with larger L values and provide higher resolution. Since
A-MMD-UD forms an adaptive, non-uniform grid, for L = 75,
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TABLE IX
DOA DISTRIBUTION OF THE SOURCES TO INVESTIGATE THE m DEPENDENCY

Fig. 5. RMSE vs the number of digital channels. The inset is used to show the
details better.

A-MMD-UD is the best performing technique as expected.
However, as L increases, A-MMD becomes the best performing
technique. Hence, when the computational requirements of a
system cannot support the use of large number of grid points,
A-MMD-UD offers computational advantages over A-MMD.

2) Effect of the Compression Rate: The performance of a
technique with varying M/m represents its compression ability.
As M/m increases, both the hardware and software complexity
of the system are reduced. For this case, a ULA with M = 100
antenna elements spaced λ/2 apart and m ∈ {5, 10, 15, 20, 25}
digital channels are investigated to check the performances of the
techniques at up to 20 times the compression rate. We fix SNR to
be25 dB. The noise power is increased with increasingm for this
scenario since SNR ≡ 10 log10(mPs/σ

2). L = 3×M = 300
uniform grid points are used, and the DOA distribution scheme
given in Table IX is assumed. The standard deviation is again
found by 5× 2/M . The target DOAs of Source 1 are chosen
randomly over the interval [93◦, 108◦]. The results are given in
Fig. 5. As expected, increasing m improves the performances of
all the techniques. However, when the compression rate is large,
RGD cannot perform reliable estimations. The other techniques
can perform reliable estimations up to a compression rate of at
least 20. Among them, A-MMD has the best performance for
all m values while the performance of A-MMD-UD is a close
second.

3) Effect of the Prior Information Uncertainty: In all the
simulations discussed before, σs is chosen as 5× 2/M . In
certain cases, σs can be set to a different value depending on
the rate of change of the dynamic sources or the reliability of
the tracker output. To see the effect of σs on the estimation per-
formance, we use a ULA withM = 50 antenna elements spaced
λ/2 apart and m = 10 digital channels. We fix SNR = 25dB,

TABLE X
DOA DISTRIBUTION OF THE SOURCES TO INVESTIGATE THE σs DEPENDENCY

Fig. 6. RMSE vs the uncertainty in the prior information. The inset is used to
show the details better.

and use L = 3×M = 150 grid points. The DOA distribution
given in Table X is assumed on the source scene. In Table X,
σs ∈ {1, 2, 3, 5, 7, 9, 11} × 2/M . When σs = 2/M , the DOAs
of Source 1 are chosen randomly over the interval [97◦, 103◦],
and the DOAs of Source 2 are chosen randomly over the interval
[56◦, 63◦]. When σs = 11× 2/M , the DOAs of Source 1 are
chosen randomly over the interval [69◦, 133◦], and the DOAs
of Source 2 are chosen randomly over the interval [11◦, 90◦].
Hence, a wide variation on the prior distribution of DOAs is
considered. The results are presented in Fig. 6. When σs <
5× 2/M , A-MMD-UD outperforms A-MMD and KGKA. For
otherσs values, A-MMD performs the best. Asσs gets larger, the
performances of the adaptive techniques tend to degrade as antic-
ipated, since the uncertainty in the prior information increases.
These results further imply that the adaptive dictionary design
strategies may cause performance degradation when there is high
uncertainty in the prior information.

D. Performance Comparison for Mutual Coupling Effects

We consider a simulated electromagnetic model of a ULA at
10GHz with M = 64 antenna elements and an element spacing
of d = 0.5λ = 0.015m. Electromagnetic coupling effects on
the array are analyzed via a Finite Element Method (FEM)
solver [78], and its S-parameters are exported as a matrix S
which is shown in Fig. 7. The source scenario given in Table X
is used with σs = 5× 2/M = 0.1563. The DOAs of Source 1
are chosen randomly over the interval [86◦, 113◦], and the DOAs
of Source 2 are chosen randomly over the interval [46◦, 74◦].
We set L = 3×M = 192, and m = 12. The same scenario
is simulated with and without including the mutual coupling
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Fig. 7. Mutual coupling matrix: The mutual coupling values are given in dB
scale.

Fig. 8. RMSE vs SNR under mutual coupling effects. The inset is used to
show the details better.

effects. The achieved results are shown Fig. 8. RGD (noMC),
KGKA (noMC), A-MMD (noMC) abbreviations are used to
label the performances of those techniques when the mutual
coupling effects are not included in the simulation. For RGD
(MC), KGKA (MC), A-MMD (MC); the mutual coupling effects
are included in the simulation. Fig. 8 shows that the existence of
mutual coupling decreases the performance of KGKA and A-
MMD. Note that RGD has already low performance; therefore,
the mutual coupling effects do not cause a noticeable degrada-
tion in its performance. By modifying A-MMD, A-MMD-MC
algorithm is designed as described in Section IV. Fig. 8 shows
that the mutual coupling effects are successfully mitigated by
A-MMD-MC since A-MMD (noMC) and A-MMD-MC per-
form very close to each other. Moreover, A-MMD-MC performs
significantly better than A-MMD (MC).

E. Performance Comparison Using a Random Linear Array in
Multipath Environments

Here we investigate the performance of A-MMD on a non-
uniform linear array. An RLA with M = 100 antenna elements

Fig. 9. RMSE vs SNR using an RLA in a multipath environment. The inset is
used to show the details better.

and m = 20 digital channels is used and the number of grid
points is selected as L = 3×M = 300. The multipath effects
are also included in the simulation. The element spacing between
two adjacent antenna elements is randomly sampled from the
uniform distribution U(0.4λ, 0.6λ). The source scenario given
in Table X is used with σs = 5× 2/M = 0.1 except that Source
2 is now the multipath of Source 1 with the received signal
power Ps/2. The DOAs of Source 1 are chosen randomly
over the interval [93◦, 107◦], and the DOAs of Source 2 are
chosen randomly over the interval [51◦, 68◦]. Fig. 9 shows that
A-MMD performs very close for both array configurations with
RMSE < 2◦ at the high-SNR regime. It shows that A-MMD can
provide reliable results with array structures other than ULA in
a multipath environment.

F. Phase Transition Results

So far, we have considered A-MMD with the reweighted
�1-norm optimization (21), i.e., by exploiting prior information
both in reconstruction and data acquisition stages. Since they
both affect the estimation performance, it is important to eval-
uate the performances of adaptive data acquisition (A-MMD)
and adaptive reconstruction (reweighted �1-norm minimization)
separately. To do that, A-MMD can be used with the standard �1
optimization (6) and RGD can be used with the reweighted �1
optimization (21). In this experiment, we investigate the RMSE
performances of A-MMD and RGD for variable number of
sources and channels using phase transition phenomenon. For
the simulation, a ULA with M = 64 antenna elements spaced
λ/2 apart is used, and SNR = 40 [dB], L = 3×M = 192,
σs = 5× 2/M are fixed. We obtain the results for different
m and K values, where m is changed from 8 to 32 with a
step-size of 4, and K is changed from 1 to 6 with a step-size
of 1. All the sources are assumed to be tracked sources, whose
DOAs are drawn from the distributions given in Table XI. The
DOAs of Sources 1–6 are chosen randomly over the inter-
vals [87◦, 111◦], [68◦, 91◦], [108◦, 135◦], [47◦, 74◦], [125◦, 163◦],
[19◦, 55◦], respectively. When K = 1, there is only Source 1 in
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Fig. 10. RMSE [deg] results achieved by A-MMD and RGD using standard and reweighted �1-norm optimization, depending on m and K. The same color axis
is used for all results (see the colorbar).

TABLE XI
DOA DISTRIBUTION OF THE SOURCES TO COMPARE RGD AND A-MMD

USING PHASE TRANSITION PHENOMENON

the environment. When K = 2, Source 2 is also included in the
source environment and so on. The obtained phase transition
results are demonstrated in Fig. 10. By comparing Fig. 10(b)
and Fig. 10(d), we observe that the reweighted �1 minimization
significantly improves the performance of RGD. On the other
hand, by comparing Fig. 10(a) and Fig. 10(c), we observe that
A-MMD provides high performance regardless of the recon-
struction technique. In all cases, A-MMD performs significantly
better than RGD, especially when m is low and K is high.

G. Gridless Reconstruction

As explained in Section II-B, A-MMD can also be used
with ANM. To demonstrate that, the same array configuration
described in Case 1 is used withL = 500. We assume the source
scenario given in Table X, where σs = 5× 2/M = 0.2. The
DOAs of Source 1 and Source 2 are chosen randomly over
the intervals [86◦, 114◦] and [42◦, 74◦], respectively. The results
are given in Fig. 11. A-MMD (ANM), A-MMD-UD (ANM),
and RGD (ANM) denote that the reconstruction is performed
using ANM for the corresponding measurement matrix design.
A-MMD (�1), A-MMD-UD (�1), and RGD (�1) are obtained
by using �1-norm minimization with the corresponding mea-
surement matrix design, i.e., (21) is used with A-MMD and
A-MMD-UD, and (6) is used with RGD. A-MMD and A-
MMD-UD perform significantly better than RGD, which shows
that A-MMD based algorithms can also be used in conjunction
with a gridless reconstruction algorithm. Furthermore, higher
resolution can be obtained by ANM since its resolution is not
limited by the grid resolution unlike �1-norm minimization.
Moreover, A-MMD (ANM) and A-MMD-UD (ANM) perform
differently, which shows that the grid selection for measurement
matrix design changes the data acquisition strategy even though
the reconstruction is gridless. As explained in Section II, the

Fig. 11. RMSE vs SNR when the DOAs are reconstructed using ANM and
�1-norm minimization. The inset is used to show the details better.

main disadvantage of ANM is its higher computational time.
For this scenario, our ANM implementation takes approximately
12 times longer compared to our implementation of �1-norm
minimization. If L = 3×M = 150 was used, the difference
would increase up to 40 times. As discussed in Section II-B,
there are more efficient algorithms for ANM. Adopting a more
computationally efficient methodology as in [50] can drastically
decrease this time difference.

Numerical results demonstrate that A-MMD and its varia-
tions, A-MMD-UD and A-MMD-MC, outperform their alter-
natives under various scenarios. Comparison between A-MMD
and A-MMD-UD indicates that their performance ordering de-
pends on the scenario. However, when L has to be kept small,
A-MMD-UD is shown to be advantageous due to its adaptive
grid selection strategy. The results further imply that the adap-
tive dictionary design is not necessary when the computational
resources allow selection of large L values. Furthermore, when
the prior information uncertainty is high, A-MMD-UD should
not be the preferred technique. It is also empirically demon-
strated that A-MMD based algorithms can compensate for the
hardware implementation issues such as mutual coupling, and
can also work with non-uniform array structures in multipath
environments. Phase transition results also validate the superior
performance of A-MMD for a variety of compression rates and
number of sources. When we present the phase transition results,
we also investigate the performance of A-MMD independently
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of the reweighted �1 optimization, where we show that A-MMD
provides high performance also in that case. Finally, we show
that gridless algorithms like ANM can be used in conjunction
with A-MMD and its variations.

VI. CONCLUSION

Measurement matrix design is among the most important
aspects of CS-based sensor processing applications. In this
paper, a novel adaptive measurement matrix design method-
ology that provides accurate results on the sensor data was
proposed. A computationally feasible, closed-form expression
for the measurement matrix was derived enabling online updates
of the measurement matrix at a high compression rate for each
snapshot of the sensor data. Thus, the proposed methodology
allows for efficient hardware and software implementations.
Over an extensive set of array signal processing scenarios, the
superior performance of the proposed measurement matrix de-
sign methodology over the alternative online design techniques
was demonstrated. The proposed technique successfully miti-
gates the mutual coupling effects between array elements and
provides accurate results even in multipath environments with
non-uniform array configurations. We further demonstrated the
applicability of our proposed algorithm along with a gridless re-
construction method, namely, atomic norm minimization. While
the atomic norm minimization based algorithm improves the
estimation performance, it has higher time complexity compared
to �1-norm minimization.

The proposed technique allows for joint optimization over the
measurement matrix and the signal dictionary. In the simulation
results, it was demonstrated that adaptive dictionary design may
improve performance. As a future work, alternative dictionary
optimization algorithms can be investigated. Moreover, the pa-
rameter selection methodology followed in this study can be
improved by defining the parameter as a function of not only
the number of digital channels, the number of sensors, and
the number sources; but also including other aspects such as
the noise power and array configuration. Decreasing the com-
putational complexity of atomic norm minimization is another
research topic. Although the main focus of this study was DOA
estimation, the proposed methodology can be applied to other
areas of sensor processing including detection of sparse signals
in video and audio streams.
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