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We present a connectionist approach for solving Tangram puzzles. Tangram is an ancient 
Chinese puzzle where the object is to decompose a given figure into seven basic geometric 
figures. One connectionist approach models Tangram pieces and their possible place- 
ments and orientations as connectionist neuron units which receive excitatory connec- 
tions from input units defining the puzzle and lateral inhibitory connections from compet- 
ing or conflicting units. The network of these connectionist units, operating as a 
Boltzmann Machine, relaxes into a configuration in which units defining the solution 
receive no inhibitory input from other units. We present results from an implementation 
of our model using the Rochester Connectionist Simulator. 0 1993 John Wiley & Sons, Inc. 

I. INTRODUCTION 

Tangram is an ancient Chinese puzzle in which the objective is to decom- 
pose a given figure into seven basic geometric figures.' (Henceforth, we will 
refer to these geometric figures as Tangram pieces, or pieces for short.) Tangram 
figures may belong to a broad spectrum, varying from geometrical Tangrams, 
such as triangles, trapezoids, or parallelograms, to representational ones, such 
as human figures. Our previous work has used traditional artificial intelligence 
and computational geometry techniques to solve these puzzles.* In this article, 
we present a connectionist approach for solving Tangram puzzles. Our connec- 
tionist approach models Tangram pieces and their possible placements and 
orientations as units which receive excitatory connections from input units 
defining the puzzle and lateral inhibitory connections from competing units. The 
system of units operating as a Boltzmann Machine relaxes into a configuration in 
which units defining the solution receive no inhibitory input from others. We 
have implemented this connectionist model using the Rochester Connectionist 
Sirnulato9 and present results from our implementation. 

*E-mail: ko@trbilun.bitnet; fax: (90)-4-266-4127. 
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Figure 1. The Tangram pieces: 1,2--large triangles; 3-square; 4-medium triangle: 
5-parallelogram; 6,7-small triangles. 

The seven-piece set of Tangram is cut from a square as shown in Figure 
1. The small triangles are called basic triungles. The other pieces are all composi- 
tions of basic triangles. The rules of Tangram are self-evident: the given figure 
is to be decomposed into the Tangram pieces, and the decomposition has to 
use all seven pieces. For example, in Figure 2, part (a) shows a Tangram that 
depicts a running man, and part (b) gives the solution for that Tangram. 

11. GRID TANGRAMS 

Grid Tangrams constitute a subclass of Tangrams in which every vertex of 
each of the seven pieces that comprise the Tangram coincides with the points 
on a square grid. The grid points are separated from each other by unit length, 

Figure 2. 
solution. 

A representational Tangram which depicts (a) a running man, and (b) its 
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the edge length of the square piece (cf. Fig. 1). (Figure 12 later in the article 
gives some examples of grid Tangrams and their solutions.) 

111. CONNECTIONIST MODELS 

Connectionism has come out as novel paradigm in artificial intelligence 
owing to results of the work of the past decade. The basic computational 
paradigm is based on a network of a massive number of simple processing 
units whose functionality models that of real  neuron^.^,^ There have been a 
tremendous number of applications of this computational paradigm in widely 
varying areas, such as cognitive science, signal processing, combinatorial opti- 
mization, and so forth. In the latter, such network models have been used to 
obtain approximate solutions to a number of well known hard  problem^.^,' 

Connectionist models have been applied to solving puzzles by Kawamoto,8 
who has used an autoassociative network with some extensions to implement hill- 
climbing for solving a number of puzzles, including the DOG j CAT puzzle, 
where the objective is to generate a sequence of three-letter words starting with 
DOG and ending with CAT, changing one letter at a time. Takefuji' has used a 
neural network model to obtain a parallel algorithm for tiling a grid with polyo- 
minoes. 

A. Boltzmann Machines 

Our approach in this work uses a Boltzmann Machine modello for solving 
grid Tangram puzzles. Boltzmann Machines are neural network models that 
are specifically applicable to constraint satisfaction problems which can be 
(approximately) solved by relaxation search. They combine the Hopfield 
model" with the simulated annealing paradigm12 to perform relaxation search 
through a state space. Contrary to Hopfield networks, where the state space 
search may get stuck in local minima of the energy measure being minimized, 
Boltzmann Machines introduce a probabilistic component to the state change 
decision of the neuron units along with the concept of a Temperature parameter 
to simulate annealing. The basic idea behind Boltzmann Machine operation is 
the following: Each neuron unit computes a weighted sum of the inputs that are 
connected to it. If the sum exceeds the unit's threshold then the output of the 
unit is set to 1, indicating active unit state. If, however, the sum is below the 
threshold, the output is determined by a probability distribution (described in 
Sec. IV-D). The unit's output may be set to 1 with a certain probability deter- 
mined by the distribution. Thus, instead of only moving downhill towards a 
minimum, the network exhibits some random behavior so that it may occasion- 
ally go uphill in the energy space to skip over or jump out of local minimum and 
not get stuck there. 

The probability distribution that determines this random behavior is a 
function of a parameter commonly called the Temperature in reference to the 
use of temperature in the process of annealing.'* The higher the temperature, 
the higher the probability a unit may turn on even though its net input is below 
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Figure 3. Representation of grid points by a group of eight units. 

the threshold. During the network's operation, the temperature is reduced 
slowly, reducing the chances that a unit may switch on with a given net input. 

Boltzmann Machines are especially suited for constraint satisfaction prob- 
lems where neuron units represent hypotheses and the connections between 
units represent constraints among hypotheses. Hypotheses that mutually rein- 
force each other have positive weights on their mutual connections, while 
competing hypotheses have negative weights. However, such machines are 
more suited to deal with weak constraints, where the problem is to find a 
configuration of units in which the most important constraints (indicated by 
connection strength) are satisfied. This is in contrast to hard constraint prob- 
lems, where the objective is to find a configuration where all constraints are 
satisfied. Solving Tangram puzzles involves satisfying a number of hard con- 
straints, but as will be seen below, Boltzmann Machines have been successful 
in solving this problem. 

IV. A CONNECTIONIST MODEL FOR GRID TANGRAMS 

A. Representing the Puzzle 

Our model represents a grid Tangram puzzle as sets of active units repre- 
senting grid points covered by the puzzle. Since such Tangrams may have holes 
or concave boundaries, we have chosen to represent each grid point by a set of 
eight units as shown in Figure 3.  The grid points are labeled with coordinates 
(i, j ) ,  i indicating the row and j indicating the column in the grid in standard 
matrix notation. The eight units associated with each grid point indicate in 
which orientations the puzzle area or boundary extends around that grid point. 
The orientations are: Left (L), Right (R), Down (D), Up (U), Right-Up (RU), 
Right-Down (RD), Left-Up (LU), and Left-Down (LD). A grid Tangram 
puzzle is represented by externally setting the grid units for relevant orientations 
of each point covered by the puzzle. For example, a grid point that is totally 
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Figure 4. Representation of the puzzle space around a grid point by orientation units. 

covered by the puzzle has all of its orientation units on; so does a point that 
is on a boundary but has a wedge missing, as shown in Figure 4. Figure 5 shows 
a complete example of the representation of a grid Tangram in our model. 
The reader may notice that there is a rather superficial similarity between our 
representation and Freeman’s “chain code.”13 

B. Representing the Tangram Pieces 

In grid Tangrams, the placement and orientations of the base puzzle pieces 
are limited. For example, the only way that the square piece can appear is when 
its corners are on the grid. There are four possible orientations of each of the 
other pieces: 

0 1 2 3  

(0,O): R, RD, D 
(0,l): L, LD, D, RD, R 
(0,2): L, LD, D, RD 
(1,O): U, RU, R, RD,D 
(1.1): L, LU,  U, RU, R, RD, D, LD 
(1,2): L, LU, U, RU, R, RD, D 
(1,3): LU, L, LD, D 

(2,O): U, RU, R, RD, D 
(2 , l ) :  L, LU, U, RU, R, RD, D, LD 
(2,2): L, LU, U, RU, R, RD, D, LD 
(2,3): U, LU, L, LD, D 
(3,O): U, RU, R 
(3,l): L, LU, U, RU, R 
(3,2): L, LU,  U ,  RU, R 
(3,3): U,  LU, R 

Figure 5. An example puzzle representation showing the orientation units activated for 
grid points covered by the puzzle. 
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small triangle medium triangle square 

large triangle parallelogram 

Figure 6. Orientations and labeling of Tangram pieces. 

(1) Small triangles can appear in orientations Left-Up (LU), Left-Down (LD), 
Right-Up (RU), and Right-Down (RD), depending on where the right-angle 
corner of the triangle is placed with respect to the grid point ( i ,  j ) .  If the corner 
is on point ( i ,  j )  then it is in LU orientation, if the corner is on point ( i  + 1, j )  
then it is in LD orientation, if the corner is on ( i ,  j + 1) then it i? in RU 
orientation, and when the corner is on ( i  + 1 ,  j + 1) it is in RD orientation. 
When we talk about the “LD small triangle at ( i ,  j ) ,”  we mean the triangle with 
the right-angle corner at ( i  + I ,  j )  with the other corners placed at ( i ,  j )  and 
( i  + 1, j + 1). 

( 2 )  Medium triangle can appear in orientations Up (U), Down (D), Left (L), and 
Right (R), depending on where the right-angle corner points to. For example, 
when we talk about the “R medium triangle at ( i ,  j),” we mean the medium 
triangle with the right-angle corner at ( i  + I ,  j + 1) and the two other corners 
at ( i ,  j )  and ( i  + 2 ,  j ) .  Similarly, a U medium triangle at ( i ,  j )  has its right-angle 
corner on ( i ,  j + 1) and its two other corners at ( i  + 1, j )  and ( i  + 1, j + 2 ) .  

(3) Parallelogram can appear in orientations L, R, U, and D. In the U and D 
orientations the longer dimension is along the vertical axis, and in L and R 
orientations the longer dimension is along the horizontal axis. For example, the 
“L parallelogram at (i, j)” has its corners at (i, j ) ,  ( i ,  j + l), ( i  + 1, j + l), and 
( i  + I ,  j + 2 ) .  

(4) Large triangle can be placed in the same orientations as the small triangle-that 
is, LU, LD; RU, RD--except that these pieces are larger. For example, the 
“RD Large triangle at ( i ,  j ) ”  has its right-angle corner at ( i  + 2 ,  j + 2 ) ,  and the 
two other corners at ( i ,  j + 2 )  and ( i  + 2, j ) .  

Because the grid is finite, certain placements of the pieces around the boundary 
are not applicable. Figure 6 shows the set of possible orientations for all the 
pieces. 

In a grid of size I rows by J columns, there are 4(1 - 1)(J - 1) possible 
placements of a small triangle, ( I  - l)(J - 1) placements of the square, 
2(1 - I)( J - 2) + 2(1 - 2)(5 - 1) possible placements for the medium triangle 
and the parallelogram, and 4(1 - 2)(5 - 2) placements for a large triangle. In  
our connectionist model, all these placements of pieces are represented by 
neuron units (depicted in Figure 7) which receive excitations from input units 
representing the grid area covered by the puzzle and inhibitory inputs from the 
outputs of other conflicting neuron units. They sum their inputs and determine 
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Figure 7. A neuron unit representing a single placement and orientation of a Tangram 
piece. 

their output probabilistically in the manner described in Sec. 1V.D. For example, 
the unit representing a square at (i, j )  receives excitatory inputs from the 
following grid orientation units: 

(1) For grid point (i, j ) :  R, RD, and D units. 
( 2 )  For grid point (i, j + 1): L, LD, and D units. 
(3) For grid point (i + I ,  j ) :  U, RU, and R units. 
(4) For grid point (i + 1, j + 1): U, LU, and L units. 

Similarly for instance, the unit representing a LD large triangle receives excit- 
atory inputs from the following grid orientation units: 

(1) For grid point (i, j ) :  D, RD units. 
(2 )  For grid point ( i  + 1, j ) :  U, RU, R, RD, D units. 
(3) For grid point ( i  + 2, j ) :  U, RU, R units. 
(4) For grid point ( i  + 1, j + 1): LU, L, LD, D, RD units. 
(5) For grid point ( i  + 2 ,  j + 1): L,  LU, U, RU, R units. 
(6) For grid point ( i  + 2 ,  j + 2): LU, L units. 

Figure 8 shows the inputs for one orientation of each of the five distinct 
Tangram pieces. 

C. Representing Placement Constraints 

Any unit that has at1 of its excitatory inputs active can be part of a solution 
of the given grid Tangram puzzle provided it does not conflict with another unit. 
The conflicts can be in one of two ways: 

(1) Only one of the units representing a class of units (e.g., squares) can be active 

(2) A given piece of area on the puzzle can be covered by only one piece, hence 
as there is only one such piece in the puzzle set.* 

only one of the units covering an area can be active. 

*For convenience, we treat the second small and large triangles as distinct classes 
of units, which just happen to have the same shape as their counterpart. 
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LU-small triangle U-medim- triangle 

(i, j+O (i, j+2) 

(i+l, j+2) 
(i+l, j+l) 

(i+2, j+2) 

D-parallelogram RD-large triangle 

Arrows originating from L grid point indicate the grid point orientation units sending exdta- 
tory input to the units repreoenting the piece with the given orientation. 

Figure 8. Excitatory inputs to some of the units. 

These constraints are represented by lateral inhibitory links between con- 
flicting units. For the first set of the constraints above, we use a standard winner- 
take-all network organizati~n.~ All units within a single class (e.g., squares or 
medium triangles) are linked to each other with inhibitory links representing the 
fact that only one of them can be active. Thus, within the resulting connectionist 
network for a given Tangram puzzle, there are seven separate such winner- 
take-all networks. 

For the second set of constraints, we establish mutually inhibitory links 
between any two units representing piece orientations and placements whose 
areas of coverage intersect. For example, Figure 9 shows all the other kinds 
and orientations of pieces corresponding to the units with which a single UP 
medium triangle unit has mutually inhibitory links. These correspond to the 
second set of constraints above. The inhibitory links enforcing the first set of 
constraints handles overlaps with other medium triangles. Thus, in the solution, 
a given piece of area of the puzzle is covered by only one piece which inhibits 
all other competing pieces. 

Figure 10 shows the general architecture of the resulting network and Table 
I shows some network statistics from a number of different grid configurations. 
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Figure 9. Piece orientations for units (shaded) mutually inhibitory with unit for a 
medium triangle piece in the UP orientation (white). 

Units for Square 

the puzzle area 

Inhibitory Connections 
among unita for a given piece 
enforcing the fact that there 
8hOkd be o d y  on occurrenee of 
the piece in the eolution 

for preventing pieces fmm 
covering overlapping area mangle 2 
of the puzzle 

Figure 10. General architecture for the Tangram network. 
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Table I. Network statistics from a number of grid configurations. 
Grid Size Number of Excitatory Inhibitory Avg. Inh. Links 

I x J  Units Links Links per Unit 
4 x 4  161 1892 ' 9472 58.83 
5 x 4  224 2688 16 008 71.46 
9 x 3  288 3376 22 696 78.81 
6 x 4  287 3484 23 794 82.91 
5 x 5  312 3824 27 488 88.10 
6 x 7  626 7912 88 474 141.33 

It should be noted that the average number of inhibitory links per unit is rather 
high. 

We use the following approach for setting the weights: For the excitatory 
links from the grid input units the link weights are set to 1/G, where G is the 
number of grid point orientation units that are connected to a given unit.* For 
the inhibitory links we use a link weight - 1.1, so that a unit with all excitatory 
inputs 1 and one inhibitory input active gets a net input of - 0.1, which gives it 
a reasonable probability of switching on. Figure 11 shows a plot of the logistic 
function and the probability of a unit's changing state for different temperatures 
and number of inhibitory inputs. 

This network operates as a Boltzmann Machine where units determine 
their output according to  a certain probability distribution which changes de- 
pending on a Temperature parameter T, which is slowly reduced as time pro- 
gresses. 

D. Operation of the Network 

Once the network is constructed, the grid units corresponding to the grid 
points covered by the puzzle are activated and these send excitatory inputs to 
all the units. With T set to its initial value, the units start operating in the 
following manner: 

If the total excitatory input to the unit is less than 1.0 (i.e., some of the underlying 
grid units are not active), then the output of that unit is set to 0 since this unit can 
never be a part of the solution. 
If the total excitatory input to the unit is 1 .O and there is no inhibitory input, the 
unit output is set to 1.0. 

0 If the total excitatory input to the unit is 1.0, the unit output is set to 1.0 with a 
probability p = l/(l f e where net = 1 + inh is the net input to the unit 
with inh being the total inhibition (hence negative). Thus units receiving a slightly 
negative net input (i.e., only one inhibitory input active) have a good chance 
(around 0.5 when the temperature is high) to turn on, while units receiving more 
inhibitory input have a much poorer chance of turning on. 

*The only reason the weights are selected in this way is that when all the excitatory 
inputs to a unit are active then the net excitatory input to a unit will be 1. C = 7 for the 
small triangle units, 12 for square, medium triangle and parallelogram units, and 22 for 
the large triangle units. 



TANGRAM PUZZLES 613 

Probability 

Net Input 

3 2 1  
Probabilities for units with 1.2 or 3 inhibitory inputs 
at different Temperatures 

Figure 11. The logistic probability function for Boltzmann Machines 

In a cycle, the network of units are updated in an asynchronous manner in 
a random order determined by the simulator. T is reduced by a factor of 0.9 after 
every Z iterations determined by the cooling schedule. Thus as the temperature 
“cools down,” the probability of a unit with a given negative net input switching 
on is reduced. If, in three consecutive cycles, no units change state, then this 
is interpreted to be a local extremum and the temperature is slightly raised to 
force the network out. For all puzzles with which we have experimented, the 
corresponding networks have converged to a solution in which seven active 
units do not receive any inhibitory inputs. 

E. Results 

We have modeled a number of grid Tangram puzzles using the model 
described above. Ten such puzzles are shown in Figure 12. We have tried a 
number of cooling schedules for the Boltzmann Machine by changing the initial 
temperature and the temperature change cycle-obviously many similar sched- 
ules are possible. Table 2 shows the number of cycles required for converging 
to a solution for the puzzles shown in Figure 12 for four cooling schedules. It 
can be observed that no schedule is in general better than the others. It is also 
possible to change the strength of the inhibitory connections to more negative 
values and get a (possibly) slightly different behavior. Figure 13 shows the plot 
of the range of cycles required for convergence to a solution vs the cumulative 
count of the runs, for 100 runs of two puzzles (puzzles 7 and 10) using the last 
schedule in Table 11. The only difference among these runs is the initial random 
number seed that determines the order of updates. It can be seen that a large 
percentage ( ~ 7 0 % )  of runs converge to a solution in relatively small number 
of iterations ( 4 0 0 )  in both cases. 



614 OFLAZER 

Puzzle 1 
Puzzle 2 

Puzzle 5 

Puzzle 3 

Puzzle 6 

Puzzle 4 

Puzzle 7 
Puzzle 8 

Puzzle 9 

Puzzle 10 

Figure 12. Some grid Tangram puzzles and their solutions. 

V. CONCLUSIONS 

We have presented a connectionist model for solving grid Tangrams based 
on the Boltzmann Machine model. This model represents the placements and 
orientation of the Tangram pieces by units which receive excitatory inputs from 
grid point units included in the puzzle area. The placement constraints between 
the units are represented by inhibitory links between conflicting units. We 
have implemented this model using the Rochester Connectionist Simulator and 
presented results from our implementation. Our results show that the networks 
constructed for a variety of puzzles converge in a few hundred iterations. 

Table 11. Cycles required for solution for various Boltzmann Machine cooling sched- 
ules. To is the initial temperature and I is the number of cycles after which the temperature 
is reduced bv 0.9. 

~~ -~ 

Sch. Puzzles 
Tn I 1 2 3 4 5 6 7 8 9 10 
1.0 10 618 392 934 129 1603 201 605 249 350 197 
1.0 5 1423 188 103 92 2254 108 200 548 705 534 
0.5 10 101 80 1459 377 255 353 225 276 332 201 
1.0 5 1055 763 783 2079 791 756 184 1291 464 70 
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