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ABSTRACT 

 

 

PRODUCTIVE EFFICIENCY OF TURKISH WIND FARMS: A TWO-STAGE 

DATA ENVELOPMENT ANALYSIS 

 

Adibfar, Behzad 

M.A. Program in Energy Economics, Policy and Security 

Supervisor: Assoc. Prof. Dr. Fatma Taşkın 

September 2019 

 

This thesis estimates the relative productive efficiency of Turkish wind farms to 

discover their inefficiency reasons using a two-stage Data Envelopment Analysis 

(DEA). We choose three input variables and two output variables to conduct 4 

different DEA models including input- and output- oriented CCR (Charnes, Cooper, 

Rhodes) and BCC (Banker, Charnes, Cooper) models. Sensitivity analysis is applied 

to DEA results to ensure the stability and robustness of the four models. In the second 

stage Tobit regression models are utilized to explore the exogenous factor that affect 

the efficiency of Turkish wind farm. DEA results indicate that 40% of Turkish wind 

farms were operating at preferable levels during 2017. Moreover, 42% of the wind 

farms should increase their operation levels by adding new installations, and 46% 

should decrease their capacity due to overinvestments. The sensitivity analysis 

confirms the robustness of DEA models in this thesis and reveals that amount of 

electricity generation as an output has substantial impact on the DEA results. Finally, 

Tobit regression results indicate age and site elevation do not have significant effect 

on the efficiency of Turkish wind farms. Furthermore, using Tobit regression, we 

discovered that Chinese and Indian made turbines have negative effect on the 

performance of Turkish wind farms. 

Keywords: Data Envelopment Analysis (DEA), Productive Efficiency, Tobit 

Regression, Wind Farms,  
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ÖZET 

 

 

TÜRKİYE RÜZGAR ENERJİ SANTRALLERİNİN ÜRETKEN VERİMLİLİĞİ: 

BİR İKİ-KADEMELİ VERİ ZARFLAMA ANALİZİ 

 

 

Adibfar, Behzad 

Yüksek Lisans, Enerji Ekonomisi ve Enerji Güvenliği Politikaları Programı 

Tez Danışmanı: Doç. Dr. Fatma Taşkın 

Eylül 2019 

 

Bu tez, Türkiye’deki rüzgar santrallerinin iki aşamalı Veri Zarflama Analizi (VZA) 

kullanarak, verimlilikleri tahmin etmek ve yüksek verimlilik  nedenlerini araştırmayı 

amaçlamaktadır. Çalışmada ilk aşamada olarak girdi ve çıktı odaklı CCR ve BCC 

modelleri dahil olmak üzere 4 farklı VZA modeli, seçilen üç girdi ve iki çıktı 

değişkeni ile incelemiştir. İkinci aşamada, Türk rüzgar çiftliğinin verimliliğini 

etkileyen dışsal faktörleri belirlemek için Tobit regresyon modelleri kullanılmıştır. 

VZA sonuçları, Türkiye rüzgar santrallerinin % 40'ının 2017 yılında tercih edilen 

seviyelerde çalıştığını göstermektedir. Tanımlanan ölçek ekonomilerine göre, rüzgar 

santrallerinin % 42'sinin yeni tesisler ekleyerek işletme seviyelerini yükseltmesi ve % 

46'sının fazla yatırımlar nedeniyle kullanım kapasitelerini azaltması gerektiğini 

göstermektedir.Girdi ve çıktı tanım farklılıklarının VZA sonuçları üzerindeki etkisinin 



viii 
 

incelemek için modelde duyarlılık analizi uygulanmıştır. Farkı girdi ve çıktı 

karışımlarına VZA sonuçlarının duyarlılığı araştırılmıştır. Kullanılan elektrik üretimi 

miktarının VZA sonuçları üzerinde en önemli bir etkisini olan çıktı olduğunu 

görülmüştür. Son olarak, Tobit regresyon analizde santral yaşı ve alan yüksekliğinin, 

Türk rüzgar santrallerinin verimliliği üzerinde önemli bir etkisi olmadığını sonucuna 

varılmıştır. Ayrıca, Tobit tahminleri Çin ve Hint türbinlerinin, Türk rüzgar 

santrallerinde en düşük verimlilik performansını gösterdiği görülmüştür. 

 

Anahtar kelimeler: Rüzger Enerji Santralleri (RES), Tobit regresyon, Veri Zarflama 

Analizi (VZA), Üretken verimlilik 
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CHAPTER I 

 

 

INTRODUCTION 

 

 

1.1 Introduction 

Human activities (e.g. burning fossil fuels, clearing land for agriculture, and 

deforestation) since the industrialization era has led to significant accumulation of 

Green House Gases (GHG) in the atmosphere of Earth. These gases such as carbon 

dioxide, nitrous oxide, methane, etc. block heat from escaping out of the Earth’s 

surface. According to the Intergovernmental Panel on Climate Change (IPCC), since 

1870, there is a direct linear correlation between cumulative total CO2 emissions and 

global mean surface temperature response (IPCC 2018). Consequently, the 

temperature of the Earth’s surface has approximately increased by 1±0.2 °C in 2017 

compared to pre-industrial levels, with an average increase of 0.2±0.1 °C per decade 

(IPCC 2018). The warmer surface of the Earth will increase evaporation and 

precipitation which drives the wet regions to be wetter and dry regions to be dryer. 

Moreover, melting polar glaciers on the surface of Earth will increase sea levels 

which could lead to devastating impacts on different regions. The impacts of climate 

change are already being perceived globally, and insufficient actions against this crisis 

would drive life on Earth to an irreversible situation. Thus, in a global attempt to 

reduce the global temperature to pre-industrial levels, within the United Nations 
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Framework Convention on Climate Change (UNFCCC), 197 parties signed the Paris 

Agreement on 22nd April 2016. According to this agreement, by 2050, member states 

should expand the portion of renewables and nuclear energy substantially in their 

energy portfolio. Besides, immediate steps required for energy efficiency plus capture 

and storage of carbon dioxide released by the combustion of fossil fuels. Hence, 

climate change and global warming along with the intensive surge in global energy 

demand accelerated energy transition toward the development of clean and 

sustainable sources of energy. Renewable energies and energy efficiency as the pillars 

of that transition are now applicable to the energy sector at a large scale thanks to 

available and cost-competitive technologies. 

 

International Energy Agency (IEA) has forecasted that renewables will have the 

fastest growth in the electricity sector, providing almost 30% of power demand in 

2023, up from 24% in 2017. Hydropower will remain the largest renewable source, 

meeting 16% of global electricity demand by 2023, followed by wind (6%), solar 

photovoltaic (4%), and bioenergy (3%) (IEA, 2018). Among renewables, wind power 

has proven to be one of the cleanest and most reliable sources of energy. The global 

wind energy market has experienced remarkable growth since the second millennium 

due to availability, zero CO2 emission during electricity generation, and advanced 

cost-competitive technology. Wind power is even preferable over hydropower 

because of sustainability and substantially low water consumption, specifically in 

countries facing a water crisis. Consequently, compared to only 17 GW in 2000, 

global installed wind power capacity surged to 564 GW by the end of 2018. With 

growing interests in wind power, more countries are increasing the share of this clean 

energy in their energy portfolio and Turkey’s energy market is not an exception. 
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 Since the ratification Renewable Energy Resources Support Mechanism (RERSM) in 

2005 and due to remarkable rising demand for energy and the desire to mitigate share 

of imported fossil fuels wind energy industry started to boom in Turkey. The 

cumulative installed wind power capacity of Turkey reached 6,516.2 MW in 2017 

which compared to European countries, after Germany, France, Sweden, and the UK 

has the most installed capacity for wind energy. Currently, wind power supplies 7% 

of the electricity demand in Turkey which is the second largest source of renewable 

energy after hydraulic power. The official 2023 vision for wind capacity in Turkey is 

20,000 MW. This target is arguable and with the recent trend in capacity addition, 

Turkey’s installed wind capacity is expected to reach to a value of approximately 

11,000 MW in 2023 (Melikoglu, 2018). 

 

Development of wind industry in Turkey will continue to grow, however wind power 

is variable renewable energy (VRE) in which the electricity generation process is 

intermittent due to the fluctuating nature of wind. Hence, it is essential to develop a 

capacity to harness wind power in an efficient manner. Moreover, since the rapid 

expansion of the wind energy industry in Turkey, there is a gap in scholar research on 

performance assessment of the existing wind farms. The performance assessment of 

operating Turkish wind farms is pivotal: first to provide an insight to the productive 

efficiency level of the existing wind farms and to recognize the reasons for 

inefficiency in performance and launch policies to improve the efficiency of 

electricity generation process. And second, to present guideline for future investments 

in the Turkish wind energy industry and contribute to achieving sustainable 

development goals in this sector. 
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This study aims to empirically address the question of “whether Turkish wind farms 

have been generating electricity efficiently or not?”. Using a two-stage Data 

Envelopment Analysis (DEA), a non-parametric non-stochastic technique first we 

appraise the relative productive efficiency level of 73 operating Turkish wind farms in 

year 2017. In this stage, three input and two output variables are determined to 

implement both input- and output-oriented efficiency models. Subsequently, in the 

second stage, Tobit regression models identify the effect of major factors e.g. age, site 

elevation, and brand of the turbines, on the performance level of the wind farms. 

Results of this study can guide the managers of the Turkish wind farms to formulate 

appropriate policies to improve the efficiency level of the wind farms and will shed 

some light on investment strategies in the Turkish wind industry.  

 

The remainder of this study is organized as follows; 

In Chapter II, Section 1 presents a historical review of the use of wind power. Section 

2 explains the current status of the global wind market and in Section 3 a 

comprehensive overview of the Turkish electricity market and development of the 

wind energy market in the country is provided. Chapter III includes three sections in 

which Section 1 presents a thorough literature review for application of DEA 

methodology in the wind industry, Sections 2-4 provide the introduction of the DEA 

method, Tobit estimation technique, and sensitivity analysis. Section 5 presents the 

description of data used in the computation of productive efficiency which includes 

two output and three input variables. Section 6 presents the DEA results obtained 

from four common models in the literature. The results of the sensitivity which 

confirm the robustness and stability of different DEA models are also reported in this 

section. Moreover, this section presents the result of Tobit regression models which 
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are used to explain the effect of various determinants of productive efficiency in wind 

farms. Lastly, Chapter IV provides the conclusions and policy recommendations for 

the Turkish wind farms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

 

CHAPTER II 

 

 

 WIND POWER 

 

 

2.1. A Brief History 

The use of wind power as a source of energy goes back to early 5000 BC when the 

propel boats used wind energy along the Nile River. Years later, simple wind-

powered pumps have been invented by Chinese. At the same time in Persia and the 

Middle East windmills with woven-reed blades has been implemented; this invention 

leads to extend the usage of wind pumps and windmills to produce more food by the 

end of the 11th century. Eventually, this technology had spread to the Western 

Hemisphere by European immigrants. King Hammurabi of Babylon has been known 

as the one who implemented the plan of using vertical-axis wind-powered machines 

to transfer fertile plains of the Euphrates and Tigris Rivers. Since A.D. 1350, Holland 

has used windmills to drain marshes and shallow lakes to turn them into productive 

agricultural lands. 

 

The first practical horizontal windmills had been installed in Sistan, a region in Iran 

during the 9th and 7th centuries. These windmills became popular across the Middle 

East and spread to China and India. On the other hand, American colonies utilize 

wind power to run windmills to grind grains, pump water to settlements in the 
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Western United States, and also cutting woods. The first small wind-powered 

generators which also known as wind turbines have been invented in the late 1800s 

and early 1900s and been used widely since then, even though with the extension of 

power lines in the 1930s, the usage of wind pump and small wind turbines decreased 

dramatically. The small wind turbines continue to be popular to supply the electricity 

demand of remote and rural areas which connected them to the power grid.  

The UK has been installed its first windmill at Weedley in Yorkshire at 1158. The 

Dutch started to use their windmills in the Rhine delta. These windmills had been 

used for farming or even drawing water from one place to another until the end of the 

19th century when Scottish scientist introduce wind as an alternative source for 

producing electrical energy. The first renewable wind turbine invented by Scottish 

Professor James Blyth in 1887. Nevertheless, during the industrial revolution, most of 

the Dutch-style windmills replaced by steam-powered mills. In summary, windmills 

and water-driven mills have been used over 1200 years to power generators. By 1900, 

Denmark had about 2500 windmills installed, which had been used for mechanical 

loads like pumps and mills. At the same time, the American scientists were 

developing the larger wind turbine project to create large enough power stations to 

provide the electricity at a more affordable price. However, the first wind-powered 

turbine has not been installed until 1941. These turbines have greater abilities to 

provide distributable energy with less risk and stronger efficiency. The evolution that 

perfected procedure to create the components and features of the modern windmills 

took about 500 years. The combination of wood and metal has been used to prevent 

fires as a result of storms or other hazardous weather conditions. However, nowadays, 

this metal has been replaced with glass epoxy, fiberglass, aluminum, and even 

graphite composite materials. 



8 
 

Energy crisis in the 1970s had a great influence on energy production all around the 

world. Shortages in oil supply, led mankind develop ways to utilize alternative energy 

sources like wind, to produce electricity. With such developments, wind power 

generated electricity started to be used in small scales in more than 83 countries all 

over the world. Moreover, such wide usage and updates in its technologies, lead to 

installment and operation of the world’s first offshore wind-powered generators in 

Denmark in 1973. Nowadays, based on the 2017 reports, Denmark generates its 

43.4% electricity demand by using wind power generators. Such reports also listed 

Denmark alongside Spain and Germany as the most wind energy-producing countries 

of the European Union. 

Turkey’s first wind farm has been built in 1998 which led to establishing the 

Renewable energy law that includes financial incentive to develop the wind power 

plants. Not accessing to fossil fuel, make available renewable energy sources like 

wind power plants crucial for Turkey’s economy. Furthermore, wind measurements 

that have been performed by the National Meteorology Institute indicated the 

potential of agricultural and even living areas for wind farm implementations. Such 

environment-friendly wind power generators convert the kinetic energy of wind into 

electricity. 

In the last 20 years, with increasing concerns toward the development of cleaner 

energies in large scales to create energy security, wind farm development has been 

moved at a pace. Even with the reduction in government green subsidies, wind 

turbines provide the most electricity demand among the other types of renewable 

energy technologies including solar panels. Yet, wind power technology in the past 

had limited application because of the lack of economic benefits and supply stability. 

By the start of the twenty-first century, innovations in materials, construction, control 
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designs, and other technologies had a great impact on the capacity and efficiency of 

the installed wind power generators.  

In conclusion, the desire to produce more sustainable and clean energy makes wind 

turbines one of the most important alternative sources to supply future energy need. 

Wind-powered generators have been considered as an inevitable part of every 

development planning because of its merits in cost, ecological compatibility, 

sustainability, and ubiquity natures. On the other hand, wind speed and its fluctuations 

have been considered by engineers while designing the farm wind plants during the 

development of its technology. Moreover, in such wind farms, the generation 

schedule planned based on the day-ahead wind power forecast. 

 However, wind farms future depends on settings the basis on solid and reliable 

science, engineering and economics. The advantage of the wind is its infinite 

magnitude orientation in the Sun’s fusion energy which is trapped in the atmosphere. 

Furthermore, the implementation of wind turbines is rapid cause it takes about 2 years 

since they only require local regulations. On the other hand, with the world embarking 

to the third industrial revolution, namely, the Low Carbon Age, wind farms 

installation plays a pivotal role in sustainable development. Global studies indicated 

that in the next 40 years, wind farm technologies are going to improve and the 

generation cost will decrease more than 50% to generate more affordable and cleaner 

energy for the increasing population. Furthermore, nowadays advanced technologies 

create opportunities for various sized wind-powered generators to operate to charge 

batteries or even provide electricity demand of the whole nation. But, it should be 

noted that wind power is variable, so during the low seasons, alternative resources 

should be considered to supply the energy demand. 
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2.2. Global Wind Energy Market 

Wind power is a mature and yet rapidly developing renewable energy technology. 

Considering the devastating consequences of climate change attempts to curb the 

reliance on fossil fuels and rapidly growing demand for energy, more countries 

include wind power in their energy mix. Advancement of wind power technology has 

made the sector more cost-competitive compared to conventional sources of energy 

which also intensifies incentives for investment in the wind energy sector. 

International Renewable Energy Agency (IRENA) estimates the cost of per kW of 

different wind power technologies in its annual reports. According to these reports, 

the average cost of wind turbines ranges from 527 USD/kW for the Chinese turbines 

to 980 USD/kW for the BNEF WTPI1 technology in 2017. The average cost of 

turbines has plunged significantly in the last decade. For example, the Chinese wind 

turbines’ price has decreased more than 53% since 2007 and the other wind turbines 

have experienced almost the same drop in the price since then (IRENA, 2017). 

 

Figure 1. Worldwide Employments Provided by Wind Energy Sector. (Source: IRENA) 

                                                
1 Bloomberg New Energy Finance Wind Turbine Price Index 
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Since the fuel for wind power production is provided by nature each megawatt-hour 

generated by wind power costs significantly less compared to power plants fueled by 

the conventional sources of energy, where additional costs for the fuel increase the 

variable costs for electricity generation. Wind energy also provides effective 

contributions to the countries’ economy. While the sector grows rapidly, job 

opportunities increase correspondingly, which range from technology expert to wind 

farms operator positions. Wind energy market, in 2017, has created more than 1.1 

million jobs worldwide and the number is expected to increase with further 

developments in the sector as can be seen in Figure 2. Moreover, governments 

purchase electricity from the companies running wind farm projects at fixed prices 

based on 20-25 years contracts which contribute to price stability. Therefore, wind 

power development as a domestic source of energy decreases the vulnerability of 

energy consumers against the unpredictable and fluctuating prices of fossil fuels. 

Furthermore, since generating electricity by wind has zero CO2 emissions, it is also 

contributing to decreasing environmental impacts and necessary governmental 

expenditures by cutting carbon costs imposed on the economy especially in developed 

countries.  
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Figure 2. World Wind Energy Installed Capacity & Electricity Generation Development. (Source: 

IRENA) 

 

In an exponential trend, since the second millennium, the global total installed wind 

capacity reached 564 GW by the end of 2018 and 1,134 TWh of electricity generated 

by wind in 2017. In this regard, in a decade, both total installed capacity and 

electricity generated by wind power increased by approximately fivefold which 

resulted to bring the share of wind energy in the global market to eight percent. Today 

China is the leading country in the wind power sector with 184,6 GW of cumulative 

installed capacity in 2018 due to the promotion of favorable governmental policies 

and the country’s high potential for wind energy. The second-largest wind market 

belongs to the US with a total installed wind capacity of 94.2 GW in 2018. In addition 

to China and the US, Germany (60 GW), India (35 GW), and Spain (23 GW) 

collectively form the top five wind markets. Figure 3 illustrates the top 10 countries 

by the highest installed wind power in their energy portfolio, in 2018. 
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Figure 3. Top 10 Wind Markets in 2018. (Source: IRENA) 
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is expected to emerge as a large-scale global market in the next five years. Currently, 

nine percent of world new wind installation include offshore and this portion is 

expected to double in by 2023.  

 

 

Figure 4. Near-Term New Wind Power Installations Vision by Regions 

 

2.3. Wind Energy in Turkey 

 

Turkey’s economic development parallel to its growing population has lead the 

country’s demand for energy to the all-time high point which comparing to the OECD 

countries, it has the largest positive change rate in energy demand over the last 15 

years. (MFA, 2019) By the end of 2017, the electricity demand in Turkey has reached 

297 TWh, which has been doubled since 2004 (Figure 5). Furthermore, according to 

government reports, the lowest expected electricity consumption amount could reach 
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453 TWh by the year 2030. Increasing demand for energy requires the development 

of electricity infrastructure, market liberalization, and establishing long term 

production visions. 

 

 

Figure 5. Demand for Energy in Turkey, 2000-2017. (Source: TEİAŞ) 

 

Therefore, the Turkish energy sector has experienced significant growth over the past 

decade. Since 2007, as the result of liberalization and privatization legislations in the 

electricity market, Turkey’s total installed power capacity doubled and reached 

85,200 MW generating 295 TWh of electricity (Figure 6). In its latest report, Turkish 

Ministry of Energy and Natural Resource (MENR) reveals that the country has 7,423 

electricity production power plants, which according to their primary sources of 

energy are categorized as; 653 hydraulic, 42 coal, 249 wind, 48 geothermal, 320 

natural gas, 5868 solar, and 243 other power plants. (MENR, 2019) 
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Figure 6. Turkey’s Total Installed Capacity & Total Electricity Generation, 2004-2017. (Source: 

TEİAŞ) 

 

By the end of 2017, 37% of Turkish electricity production was supplied by natural 

gas; 33% from coal, 20% from hydropower, 6% from wind, 2% from geothermal, and 

2% from other sources. Figure 7 and 8 illustrate the share of primary sources of 

energy in Turkey regrading amount of electricity generation and installed capacity, 

respectively. Thermal sources, specifically natural gas and coal, by generating more 

than 70% of the electricity, predominate the country’s energy portfolio. Additionally, 

more than half of the fossil fuels used for generating electricity was imported, leaving 

only 45.2% for the domestic resources to supply the country’s rising energy demand. 

Hard coal is the only domestic conventional energy source of Turkey and there are 

policies to increase the number of coal-fired power plants. These policies, beside 

over-dependency on imported natural gas and lignite in order to generate electricity, 

could raise serious economic and environmental issues for the country. Thus, the 

Turkish policymakers have initiated strategies in order to mitigate the share of fossil 

fuels and by 2023, the government aims to raise the share of domestic energy sources 
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to two-thirds by diversification of energy sources, increasing the share of renewables, 

and enhancing energy efficiency.  

 

Figure 7. Development of Turkey’s Electricity Generation by Primary Energy Resources, 2000-2017. 

(Source: TEİAŞ) 

 

Even though Turkey does not possess significant conventional energy sources, the 

country has a high potential for renewable sources of energy. According to research 

by MENR, Turkey’s renewable energy potential 136.6 GW. Assuming that this 

potential could be fully utilized, it is more than sufficient for the country’s current and 

mid-term demand for electricity. As Table 1 presents, Turkey has significant potential 

for utilizing wind and solar power which together if fully developed have the potential 

to exceed the country’s current total installed power capacity.  
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Table 1 Economic Potential of Renewable Energy Sources in Turkey (Source: MENR) 

Renewable 

Energy 

Sources 

Potential 

(MW) 

Installed 

Capacity in 

2017 (MW) 

Capacity 

Factor 

2023 

Vision of 

Installation 

(MW) 

Average 

Annual 

Electricity 

Generation 

Potential 

(GWh/yr) 

Hydro 36,000 27,273 %44 36,000 144,000 

Wind 48,000 6,516 %30 20,000 60,000 

Solar 50,000 3,420 %20 3,000 7,500 

Geothermal 600 1,064 %84 600 4,400 

Biomass 2,000 477.4 %80 2000 14,000 

Total 136,600 38,750.4 - 61,600 229,900 

 

Regarding wind power, Turkey is amongst the world’s leading countries to expand its 

wind installed capacity. Starting from 2009, wind power has gained significant 

importance in Turkey’s energy mix and it has become the second-largest renewable 

source of energy after hydropower. 

According to the Potential Wind Energy Map (PWEM), theoretically, Turkey has 

roughly 48,000 MW potential to harness wind power (38,000 MW onshore & 10,000 

MW offshore). The total area which is equivalent to this potential is just 1.30% of the 

total surface area of Turkey. Besides, it has been estimated that under the current 

electricity network infrastructure, Turkey has 10,000 MW potential of wind power. 

This potential could hit 20,000 MW by implementing necessary development in 

electricity transmission and distribution infrastructures. Turkey has set the target to  
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Figure 8. Development of Turkey’s Installed Capacity by Primary Energy Resources (Source: TEİAŞ) 

 

reach 20,000 MW of wind power installed capacity by 2023. The cumulative installed 

wind power capacity reached 6,516.20 MW by the end of 2017. The nominal 

generating capacity for wind energy in 2004 was only 18.90 MW. Since then, wind 

power installed capacity surged exponentially as a result of governmental subsidies 

and private sector’s investments. In Turkey, wind power generated 17,903.80 GWh of 

electricity by 164 wind power plants in 2017, 144 of them generated 16,667.92 GWh 

of electricity under the Renewable Energy Resources Support Mechanism (RERSM). 

Figure 9 illustrates the cumulative and new installed wind power capacity of Turkey 

between 2004 and 2017.  
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Figure 9. Wind Energy in Turkey, 2004-2017 (Source: TEİAŞ) 

 

Diversification of energy sources toward renewables and implementation of 

efficiency policies are inevitable for Turkey to reach 2023 vision. The limited wind 

power potential of Turkey compared to countries like China and the US demands 

comprehensive research and analysis of the existing wind farms before the 

establishment of new capacity. Moreover, examination of current wind farms is 

crucial for increasing the efficiency of electricity generation in order to propel the 

production to the optimum point. 
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CHAPTER III 

 

 

LITERATURE REVIEW, METHODOLOGIES, AND EMPIRICAL 

RESULTS 

 

 

3.1. Literature Review 

 

Developed by Charnes (1978) Data Envelopment Analysis (DEA) is a non-parametric 

and non-stochastic linear programming, technique to evaluate the relative 

performance of homogeneous Decision Making Units (DMUs). DEA has opened up 

numerous possibilities for benchmarking cases which have been resistant to other 

approaches by solving the complex (often unknown) nature of the relationships 

between the multiple inputs and multiple outputs involved in many of activities. This 

method has also proven to be a reliable benchmarking tool in the energy sector and it 

has been utilized by a vast number of scholars focused on energy efficiency issues. 

Regarding the application of DEA method in the energy sector, (Mardani, Zavadskas, 

Streimikiene, Jusoh, Khoshnoudi, 2017) present a comprehensive literature review of 

144 articles published between 2006 and 2015 on the DEA applications in energy 

sector. This survey categorizes the examined articles into nine application areas: 

environmental efficiency, economic and eco-efficiency, energy efficiency issues, 

renewable and sustainable energy, water efficiency and other application areas. 
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(Zhou, Ang, Poh, 2008) provide a thorough literature survey on the application of data 

envelopment analysis (DEA) to energy and environmental studies by a classification 

of 100 publications related to the fields. Also, in an exhaustive review, (Sueyoshi, 

Yuan, Goto, 2017) summarize previous research efforts of 693 DEA-related articles 

published from the 1980s to 2010s. The study indicates that more than 400 articles 

applied DEA methodology to energy issues including electricity generation, 

transmission & distribution network, renewables, energy efficiency, etc. 

 

The accelerated development of wind power industry in recent years has promoted the 

significance of efficiency evaluation of wind farms. In this regard, DEA has also 

proven to be a promising method in the literature of the efficiency analysis of wind 

power sector. This literature is divided into two categories; the first category deals 

with the efficiency analysis of wind power technology compared to other 

technologies, and the second category analyze the efficiency of a group of wind farms 

as decision making units (DUMs). Within the first group of studies, which compare 

the efficiency of wind power technology with other electricity generation technology 

following examples are presented; (Lins et al., 2012) analyze the performance of 

alternative energy sources of Brazil from socioeconomic and environmental aspects. 

The study justifies that the Brazilian government should prioritize policies which 

encourage investments in technologies using solid wastes to generate electricity. 

(Kim, Lee, Park, Zhang, Sultanov , 2015) utilize DEA to assess the efficiency of 

investments in three major sources of renewable energy in Korea including 

photovoltaics, wind power, and fuel cells. The results indicate wind power as the most 

efficient renewable energy technology in Korea from the perspective of government 

investment. (Sarıca, Or, 2007) implement DEA to evaluate investment and 



23 
 

operational efficiencies of 65 thermal, hydro, and wind power plants, owned by both 

private and public sectors in Turkey. The study concludes the scale efficiency of 

renewable source power plants decreases exponentially with respect to the size of 

plant for both investment and operational efficiencies. In addition, the results show 

that wind power plants in Turkey have the highest DEA efficiency values regarding 

their operational and investment performances. (Ramanathan, 2001) combines 

divergent characteristics of eight different energy supplying technologies by 

associating DEA and Comparative Risk Assessment (CRA), benchmarking them to 

comprehendible rankings. The findings rate nuclear and solar PV technologies as the 

most efficient supply of energy. Further arguments by the study reveal that large land 

requirement of renewable technologies is the main obstruction for large deployment 

of them. (Sağlam, 2018) applies DEA to predetermined input and output variables to 

compare efficiencies of the eight major renewable energy sources including; wind 

power (onshore & offshore), solar photovoltaic (crystalline & thin film), solar 

thermal, geothermal, biomass, and hydropower. According to the results of this DEA 

analysis, geothermal and biomass outrank rest of the studied renewable energy 

sources regarding the efficiency of the performance. Moreover, the study claims that 

land requirement, as input, plays a crucial role in DEA modeling of renewable energy 

technologies. (Sağlam, 2017) 

 

Within the second category of DEA studies in the wind power sector, researchers 

attempt to evaluate the productive efficiency of a group of wind farms as the DMUs. 

Table 2 summarizes most recent studies regarding performance assessment of the 

wind farms. (Wu, Hu, Xiao, Mao, 2016) evaluates productive efficiency of 42 large-

scale wind farms in China using DEA in the first stage to determine efficiency scores 
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of wind farms. In the second stage, Tobit regression has been utilized to find a 

correlation between DEA scores and uncontrollable variables such as the age of wind 

farms and wind curtailment rate. The results confirm that efficiency scores of all wind 

farms are relatively high, however, half of the wind farms are overinvested regarding 

installed wind power capacity, and about 48% have the potential of reducing the 

auxiliary electricity consumption. (Iribarren, Vázquez-Rowe, Rugani, Benetto, 2014) 

synthesize DEA and Life Cycle Assessment (LCA) to benchmark the operational and 

environmental performance of 25 wind farms in Spain. Average reductions of 19–

45% in the consumption of selected inputs were considered to be feasible when 

current WFs have to be reconstructed or substituted by new farms at the same 

location. It was also quantitatively verified that these reductions would result in lower 

environmental impacts (average reductions of 18–29%).  

 

Table 2. Summary of literature on application of DEA in wind industry 

Publication DMUs Methods Input variables Output variables 

Wu et al. 

(2016) 

42 wind farms in 

China 

DEA and 

Tobit 

Installed capacity 

Auxiliary electricity 

consumption 

Wind power density 

Electricity 

generated 

Availability 

Sağlam 

(2017) 

95 wind farms in 

Texas 

DEA and 

Tobit 

Installed capacity 

Number of wind turbines 

Wind power density 

Net generation 

Capacity factor 

Sağlam 

(2018) 

236 wind farms in 

the USA 

DEA and 

Tobit 

Installed capacity 

Number of wind turbines 

Wind power density 

Net generation 

Value of 

production 

Homes powered 

Iglesias et al. 

(2010) 

57 wind farms in 

Spain 

DEA and 

SFA 

Installed capacity 

Labour 

Interposed surface 

Wind speed 

Fuel 

Availability 

factor 

Active energy 

Ederer  

(2015) 

22 offshore wind 

farms 

DEA and 

Tobit 
Specific capital costs 

Installed capacity 

Distance to shore 

Water depth 

 

(Iglesias, Castellanos, Seijas, 2010) simultaneously apply DEA and Stochastic 

Frontier Analysis (SFA) methodologies to measure the productive efficiency of a 
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group of wind farms in Spain between 2001 and 2004. The study claims that there is a 

strong correspondence between the results of the application of both methods on the 

same data set showing high average technical efficiencies for almost 75% of the 

DMUs. (Sağlam, 2018) conduct a two-stage performance assessment for 95 large 

utility-scale wind farms in Texas using DEA in the first stage to determine efficiency 

scores and Tobit regression method in the second stage in order to find the reasons of 

ineficiencies. DEA results indicate that half of the wind farms were operated 

efficiently in Texas during 2016. Additionally, Tobit regression models indicate that 

elevation of the site, rotor diameter, hub height, and brand of the turbine have 

significant contributions to the relative efficiency scores of the wind farms, and the 

age of turbine has a negative impact on the productive efficiency of the wind farms. 

(Ederer, 2015) utilizes DEA as an operations research tool in order to evaluate the 

relative capital and operating cost efficiency of offshore wind farms based on their 

main characteristics. The results revealed that using average cost as an input for 

evaluating the performance of the off-shore wind farms is insignificant and more 

sophisticated cost assessments should be applied to appraise the productive efficiency 

levels of offshore wind farms. 

 

3.2. Data Envelopment Analysis (DEA) 

This linear programming based technique appraise the relative performance of 

homogeneous entities by maximizing the ratio between the weighted sum of outputs 

and the weighted sum of inputs (Charnes, Cooper, Rhodes, 1978). The weights are not 

predetermined but rather assigned by the model, avoiding bias resulting from 

subjectively assigned weights similar to the Analytic Hierarchy Process (Merkert, 



26 
 

Hensher, 2011). Therefore, when there is not an apparent market for valued outputs or 

even when other possible sources for reasonably supportable systems of weights are 

not readily available, the DEA can be proposed as a reliable method. 

The general mathematical equation in order to maximize the relative efficiency score 

of unit k with x input and y output can be formulated as follows; 

Max hk =
∑ ujyjk

m
j

∑ vixik
n
i

                                                                        (1) 

s. t. 

∑ ujyjk
m
j

∑ vixik
n
i

≤ 1 

uj, vi ≥ 0;   k = 1, 2, … , t;   i = 1, 2, … , n;   j = 1, 2, … , m 

 

Where hk is the efficiency score for kth DMU, uj and vi are respectively the weights 

of output and input of the kth unit which are determined by the model. 

In the literature of DEA, CCR (Charnes, Cooper, Rhodes) and BCC (Banker, 

Charnes, Cooper) models are the most prominent models used by scholars in different 

research areas. The two models are based on the law of returns to scale which 

describes the rate of change in outputs relative to the associated change in the inputs 

of any production process in the long term. The CCR model (Charnes et al., 1978) 

evaluates the overall technical efficiency of DMUs based on the Constant Returns to 

Scale (CRS) hypothesis which indicates that any change in outputs is proportional to 

change in inputs. The BCC model (Banker, Charnes, Cooper, Clarke, 1989), on the 

other hand, measures the pure technical efficiency of DMUs based on the Variable 

Returns to Scale (VRS) assumption in which there is not particular proportion 
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between changes in outputs and inputs. Both models appoint an efficiency score to 

each DMU ranging from zero to one. Those DMUs obtain maximum score establish 

an efficient production frontier whereby, scores and the inefficiency level of the other 

DMUs can be determined relative to the frontier. Moreover, the scale efficiency of the 

DMUs can be calculated by the ratio of efficiency scores of the CCR and BCC 

models. A scale efficient DMU has the optimal size of operations in which any 

alteration on the size will drive the unit to inefficiency. The CCR and the BCC both 

can be categorized based on two models; input-orientation model and output-

orientation model. The former model minimizes the inputs while fixing the outputs, 

however, the latter model conversely maximizes the outputs while keeping the inputs 

constant. 

To simplify the analysis, take an example which is restricted to one input variable and 

one output variable; Figure 10. Demonstrates the CCR and BCC efficiency frontier 

for seven presumed DMUs. Points A, B, C, D, E, F, and G represent the different 

input and output combinations of presumed DMUs. The dashed radial line (Oz) 

represents the CCR frontier based on CRS assumption in which among the DMUs 

only recognizes the points B and C as the most efficient units. Yet, the piece-wise 

solid line ABCD illustrates the BCC frontier under the VRS assumption. Points A, C, 

and D also become efficient in the BCC model while points E, F, and G are the 

inefficient DMUs. As it is obvious, the BCC frontier under the VRS assumption is 

more flexible and envelope more efficient DMUs than the CCR frontier. 
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Figure 10. Graphical Illustration of CCR and BCC Frontiers 

 

Taking point G as an example, input-oriented and output-oriented CCR, BCC, and 

Scale Efficiency (SE) scores for this DMUS can be calculated as the ratios included in 

the following table; 

 

Table 3. Summary of CCR, BCC, and SE calculations for point G in figure 10. 

Input-oriented models Output-oriented models 

θCCR =
XCCR

XG
 

 

φCCR =
YG

YCCR
 

 

θBCC =
XBCC

XG
 

 

φBCC =
YG

YBCC
 

 

θSE =
XCCR

XBCC
 θφSE =

YBCC

YCCR
 

 

Returning to general DEA formulation, Equation (1) has n+m+t+1 constraint however 

if we formulate it in dual form number of the constraints will decrease to n+m. 
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Therefore, in order to simplify the calculations, it is common to solve the DEA 

models in dual forms.  

Following equations represent the formulation of input- and output-oriented CCR and 

BCC models. 

1. Input-oriented models: 

Min.       θk − ε (∑ sik
−

n

i=1

+ ∑ sjk
+

m

j=1

)  

s. t.   

 θkxik − ∑ xirλr

s

r=1

− sik
− = 0;                                                                   (2a) 

yjk − ∑ yjrλr

s

r=1

+ sjk
+ = 0; 

λr, sik
− , sjk

+ ≥ 0;   r = 1, 2, … , s;   i = 1, 2, … , n;   j = 1, 2, … , m 

 

Min.       ωk − ε (∑ sik
−

n

i=1

+ ∑ sjk
+

m

j=1

)  

s. t.   

 ωkxik − ∑ xirλr

s

r=1

− sik
− = 0;                                                         (2b) 

yjk − ∑ yjrλr

s

r=1

+ sjk
+ = 0;     

∑ λr

s

r=1

= 1 

λr, sik
− , sjk

+ ≥ 0;  k = 1, 2, … , t;   i = 1, 2, … , n;   j = 1, 2, … , m 
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2. Output-oriented models: 

 

Max.       φk + ε (∑ sik
−

n

i=1

+ ∑ sjk
+

m

j=1

) 

s. t. 

φkyjk − ∑ yjrλr

s

r=1

+ sjk
+ = 0;                                                                             (3a) 

xik − ∑ xirλr

s

r=1

− sik
− = 0; 

λr, sik
− , sjk

+ ≥ 0;  k = 1, 2, … , t;   i = 1, 2, … , n;   j = 1, 2, … , m 

 

Max.       ψk + ε (∑ sik
−

n

i=1

+ ∑ sjk
+

m

j=1

) 

s. t. 

ψkyjk − ∑ yjrλr

s

r=1

+ sjk
+ = 0;                                                                                 (3b) 

xik − ∑ xirλr

s

r=1

− sik
− = 0; 

∑ λr

s

r=1

= 1 

λr, sik
− , sjk

+ ≥ 0;  k = 1, 2, … , t;   i = 1, 2, … , n;   j = 1, 2, … , m 

 

Where 𝜃𝑘 is the overall input-oriented CCR efficiency measure of the DMU 𝑘, 𝜔𝑘 is 

the pure output-oriented BCC efficiency measure of the DMU 𝑘 , 𝜑𝑘 is the overall 

input-oriented CCR efficiency measure of the DMU 𝑘 , and 𝜓𝑘 is the pure output-

oriented BCC efficiency measure of the DMU 𝑘. 𝑘 is a subscript to indicate the 
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evaluated DMU by the model in set of  𝑟 = 1, … , 𝑠 DMUs. 𝑥𝑖𝑘 is the quantity of the 

input 𝑖 of the DMU 𝑘 ; 𝑥𝑖𝑟 is the quantity of the 𝑖𝑡ℎ input variable for the 𝑟𝑡ℎ DMU; 

𝑦𝑗𝑘 is the quantity of 𝑗𝑡ℎ output variable that is produced by the DMU 𝑘;  𝑦𝑗𝑟 is the 

quantity of 𝑗𝑡ℎ output variable that is produced by 𝑟𝑡ℎ DMU; 𝜆𝑟 is a structural 

variable assigned to all inputs and outputs of DMU “r”; 𝑠𝑖𝑘
−  and 𝑠𝑗𝑘

+  are the non-

negative slack variables for input and output constraints respectively. 

Returns to Scale (RTS) status of the DMUs is another information provided by the 

input- and output-oriented CCR models. This index suggests whether a given DMU 

should decrease, increase, or sustain its current operational level. According to DEA 

equations for a given wind farm the status for RTS are identified with the following 

conditions; 

 If  ∑ 𝜆𝑟
∗ = 1 then, Constant Returns to Scale (CRS) prevail. 

 If  ∑ 𝜆𝑟
∗ > 1 then, Decreasing Returns to Scale (DRS) prevail. 

 If  ∑ 𝜆𝑟
∗ < 1 then, Increasing Returns to Scale (IRS) prevail. 

Where 𝜆  is the dual weight obtained from the CCR models. DMUs with CRS status 

should maintain their current operational level because they are operating at the 

optimal efficiency level. On the other hand, DMUs with IRS and DRS status should 

respectively increase and decrease their inputs to become efficient. 

 

3.3. Tobit model  

Tobit model, developed by Tobin (1958), is a regression model for the cases when the 

range of the dependent variable is censored or truncated. The DEA model in the first 

stage provides efficiency scores range from 0.0 to 1.0, indicating that the dependent 

variable could be left-censored or right-censored. Tobit regression model is useful to 
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investigate the impact of exogenous factors on the efficiency of the DMUs. The 

formulation of the Tobit model has been described in equation (5)  

θit
∗ = zit

′ β + εit  with εit ≈ N(0, σ2)                                                     (5) 

θit = {
θit

∗    if   0 < θit
∗ < 1

            0  for other values of θit
∗                          

Where β is a vector of coefficient to be estimated, 𝑍𝑖𝑡 is the vector of independent 

variables, 𝜃𝑖𝑡 denotes the relative efficiency obtained from the DEA models, 𝜃𝑖𝑡
∗  is a 

latent random variable, and 𝜀𝑖𝑡 is the error term with normal distribution. 

 

3.4. Sensitivity Analysis 

 

Sensitivity analysis explores the effects of specific variations in the inputs and/or 

parameters of a mathematical model on the outputs of the system. In other terms, 

sensitivity analysis examines the robustness and reliability of the model results 

exposed to uncertainties which arise from the inputs of the model. There are a variety 

of methods to conduct sensitivity analysis. One-[factor]-At-a-Time (OAT) method is 

the most common method in sensitivity analysis literature (Federico Ferrettia, Andrea 

Saltelli, Stefano Tarantolac, 2016). In OAT approach, output variations of a model are 

examined by fluctuating or eliminating one input factor at a time, while fixing all 

other factors (Pianosi et al., 2016). Due to the orientation of DEA to relative 

efficiency, it is exposed to degrees of freedom problems which increases with the 

number of DMUs and decrease with the number of input and outputs (Cooper, 

Seiford, Tone, 2007).  

Considering that the efficiency scores of the DEA models are highly dependent on the 

number of DMUs and input and output variables, conducting sensitivity analysis is 
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indispensable to assess the robustness and stability of the DEA results. Hence, after 

the initial computations, we extended the efficiency computations where each output 

and input is eliminated from the model. The comparison of these efficiency scores 

under alternative input/output mixes are examined in the results. 

 

3.5.  Data Description and Sources 

In this empirical application, we choose a sample of Turkish wind farms connected to 

the Turkish Electricity Transmission Corporation’s network, the sole owner of the 

electricity transmission system in Turkey, as DUMs to be evaluated regarding their 

efficiency of energy production. Turkish Energy Market Regulatory Authority 

(EMRA), on its annual report, has published the list of the operating wind farms 

during 2017 (EMRA, 2019). According to this report, 146 wind farms with the total 

installed capacity of 6,559.4 MW have generated 16,667,918.65 MWh of electricity in 

2017, licensed by the Renewable Energy Resources Support Mechanism (RERSM). 

Using the available data for the operating wind farms, this study benchmarks 73 large-

scale wind farms with the installed capacity of greater than 10 MW which includes 

total 3,293.20 MW of power and 8,601,421.05 MWh of energy. This accounts for 

51.6% of total licensed wind energy generation of Turkey in 2017. The evaluated 

wind farms are located at 5 different regions predominately wind-rich regions of Ege 

and Marmara. Table 4. represents the distribution of the regions for the evaluated 

wind farms. 
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Table 4. Distribution of the evaluated wind farms’ regions 

Regions 

Number of Wind 

Farms 

Percent 

Ege 31 42.74 

Marmara 28 38.36 

Akdeniz 9 12.33 

İç Anadolu 3 4.11 

Karadeniz 2 2.74 

Total 73 100 

 

The DEA method estimates the relative productive efficiency of DMUs based on 

chosen input and output variables. So, the results of the approach are intensely 

sensitive to the specifications of input and output variables and the errors in the data 

set. Therefore, the selection of inputs and outputs as well as the collection process of 

the required data set ought to be carried out meticulously. In this regard, we 

considered availability and validity of sources as two principal criteria for the data set 

of input/output variables. 

 

Similar to other electricity-generating technologies, the ultimate output of wind farms 

is electrical energy transferred to the distribution grid, while, capital, labor, and fuel 

would be the typical inputs of the process. If one defines, a general microeconomic 

production function can be formulated based on the aforementioned inputs and output 

for a given wind farm; 

 

𝐸 = 𝑓(𝐿, 𝐾, 𝐹) 
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Where E is the electrical energy, L the labor, K the capital, and F the fuel. 

However, in wind farm operations, inputs of the electricity generation process are 

slightly different than a standard production function. The labor factor performs an 

insignificant role in efficiency levels of wind farms (Iglesias et al., 2010). Because it 

presents the highest slack values in the DEA results, which means any change in the 

labor factor would result in a negligible change in the efficiency of the wind farms. 

Thus, beside the unavailability of labor data, in this study, we eliminated the labor 

factor from the input data set. 

 

In this study we define 3 input variables and 2 output variables for conducting input- 

and output-oriented CCR and BCC models in order to evaluate the productive 

efficiency of the selected wind farms using data envelopment analysis. The summary 

statistics of the inputs, outputs, and other key variables affecting the performance of 

the wind farms are shown in Table 5. The first input is installed power capacity of a 

wind farm, which provides a rational economic indication for the capital invested in 

the project. Undoubtedly, the amount of generated electricity is directly dependent on 

the installed capacity of the power plants and wind power plants are not the exception. 

Hence, the installed capacity is a prevailing input variable in DEA models regarding 

benchmarking the performance of wind farms as well as the other electricity-

generating technologies e.g.[ (Iglesias, Castellanos, Seijas, 2010); (Wu, Hu, Xiao, 

Mao, 2016); and (Sağlam, 2017)]. Therefore, denoted by X1, we selected the installed 

capacity measured in megawatts (MW) as the first input variable.  
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Table 5. Statistical summary of input and output variables; and exogenous variables.  

Variable Description Unit Mean Minimum Median Maximum S.D. 

X1 

Installed 

capacity 
MW 45.11 10 32 200.25 35.87 

X2 

Number of 

wind turbines 
# 18.21 4 15 81 14.29 

X3 

Wind power 

density 
W/m2 166.6 5.19 78.13 1389.96 239.2 

Y1 

Electricity 

Generated 
MWh 117827.69 17672.11 88648.00 453356.00 90946.28 

Y2 Availability % 30.55 6.23 31.02 45.93 6.1 

Z1 Age 
 

5.0 1.0 4.0 18.0 3.3 

Z2 Site elevation m 660 8 515 1909 525 

 

The installed power capacity of the evaluated wind farms varies from 10 MW to 

200.25 MW, and the average installed capacity in the data set is 45.11 MW. 

The number of wind turbines is the second input variable that reflects the production 

level of wind farms. Single modern onshore wind turbine whose power capacity can 

reach 7 MW requires significantly less area compared to the group of old turbines 

with 700 kW. Thus, installing brand new powerful turbines can reduce land lease 

expenditures of the companies involved in wind farm projects. Indeed, the installed 

power capacity and the number of turbines have a direct correlation with the capital 

factor of the production function. Therefore, the number of wind turbines, denoted by 

X2, is chosen as the second input variable of the DEA analysis. The number of the 

turbines range from 4 to 81, and the average number of turbines on the wind farms are 

18. 

The fuel propelling turbines of the wind power plants is provided by the kinetic 

energy of wind. When air stream crosses blades of the turbines, some portion of this 
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kinetic energy is transformed into electricity. The kinetic energy of the air parcel 

moving towards the wind turbine can be formulated as 

𝑃 =
1

2
𝜌𝑎𝐴𝑇𝑉3 

Where P is the wind power density, ρa is the density of air on the site, AT is the swept 

area by the turbine, and V is the wind velocity. 

In the formula above, wind velocity has a more influential effect due to its cubic 

meter correlation with the power. Regarding previous formula, if we know the 

elevation and temperature at a given wind farm’s site, then the air density can be 

calculated by the following formula (Mathew, 2006); 

𝜌𝑎 =
353.049

𝑇
𝑒(−0.034

𝑧
𝑇

)
 

Where Z is the elevation of the site measured in meters, and T is the average 

temperature in degrees of kelvin. After the calculation of wind power density for each 

wind farm, denoted by X3, the third input variable of the DEA models in W/m2 unit is 

included in the data set.  

 

The primary objective of wind farms is to generate electricity. The net electricity 

generated by not only wind farms but by plants powered by the other sources of 

energy e.g. thermal, hydraulic, solar, etc. is a crucial output for the assessment of their 

productive efficiency.  Therefore, denoted by Y1, we selected the annual net 

electricity generation of the selected operating wind farms in Turkey measured in 

megawatt-hour (MWh) as the first output variable of the DEA models. Electricity 

generated by the evaluated wind farms range from 17,672.11 MWh (Manastır-
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Esenköy RES) to 453,356.00 MWh (Dinar RES) and the average electricity 

generation of the 73 wind farms is 117,827.69 MWh. 

 

Availability is another common metric for evaluating the performance of operation 

and maintenance of wind power plants, giving an insight into the potential for 

generating electrical power (Ederer, 2015). Wind turbines can generate electricity at 

an average wind speed of 3-4 meters per second (cut-in speed) and at the speed of 15-

16 meters per second (rated speed) the electricity generation is at the optimal level. 

However, at the speeds beyond 25 meters per second (cut-out speed) the turbines are 

shut down to prevent them from potential damages. Thus, wind power plant 

shutdowns due to maintenance, downtimes, or extreme wind speeds prevent wind 

power plants from generating electricity constantly so they are not always available 

for the production. That is why wind farms could only reach 40%-70% of their 

theoretical maximum power.  

 

There are two common methods in order to calculate the availability of wind farms; 

time-based and production-based.  While the former may be simply calculated using 

the operational time of the wind farms with the ratio of the available time to total time 

in consideration, the latter is an indication for the energy losses and it is the ratio of 

the net generated energy to potentially expected energy under the ideal wind speeds 

and site conditions. According to the unavailability of essential data to calculate the 

time-based availability, in this study, we opted production-based availability, denoted 

by Y2, as the second output variable. (Sağlam, 2018) proposed the following formula 

for the production-based availability in a study to benchmark the performance of 95 

wind farms in Texas; 
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Y2 =
Net generation (MWh)

365 (days) × 24 (
hours

day
) × InstalledCapacity (MW)

× 100 

 

The availability of the wind farms ranges from 6.23% to 45.93%, and average 

availability of a wind farm is 30.55%. 

 

The data of the input and output variables are acquired from various sources. The data 

on the amount of electricity generation, the number of turbines, and installed capacity 

are obtained from the annual electricity market reports of the Turkish electricity 

market regulatory authority (EMRA, 2019). The average wind speed and the average 

temperature of the nearest weather station to the wind farms are acquired upon a 

request form the Turkish State Meteorology Service Department. Google Earth 

software was utilized to find the elevation of each wind farm. Finally, the information 

on the turbine models in order to find the swept area of them is obtained from annual 

reports published by the Turkish Wind Energy Association (TÜREB, 2017). 

 

3.6. Empirical Results 

 

3.6.1. DEA Results 

In this section, we attempt to appraise the relative productive efficiency of 73 Turkish 

wind farms operating during 2017 for the first time. The DEA models using equations 

(1)-(4) presented in section 3.2., calculates the efficiency scores of the wind farms as 

DMUs with predetermined three input variables and two output variables. The relative 

productive efficiency scores of the representative sample of Turkish wind farms are 
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given in Table 6. The scores are computed by input- and output-oriented CCR and 

BCC models. Moreover, Table 6. presents the Scale Efficiency (SE) scores calculated 

by the ratio of the corresponding CCR and BCC scores and the Returns to Scale 

(RTS) status of the evaluated wind farms. 

 

We realized that the input- and output-oriented CCR models under Constant Returns 

to Scale assumption present the same results for corresponding DMUs. The reason 

lies in the fact that the duality gap2 between input- and output-oriented CCR models 

are equal to zero (Sağlam, 2017). Thus, in both of these models; overall efficiency 

scores range from 0.214 to 1.000, the average efficiency score is 0.770, and the 

median score is 0.757. The CCR models disclose that out of 73 wind farms, 8 wind 

farms achieve the maximum possible efficiency score of 1. Also, there are 28 wind 

farms with the CCR efficiency scores greater than 0.8 and 21 wind farms exceeding 

the score of 0.9 which means about 30% of the wind farms were operating at 

acceptable levels3. We noticed that the CCR efficiency scores of 28 wind farms are 

below 0.7 and the analogy between these wind farms is the availability of below 30% 

maintaining the significance of availability on the efficiency of wind farms. 

Moreover, we detected that among the 8 wind farms with the CCR scores below 0.6, 4 

wind farms were using Chinese and Indian wind turbines. It also should be noted that 

the efficiency scores of wind farms which utilized Chinese and Indian wind turbines 

do not exceed 0.75. “WF46” (Manastır-Esenköy RES) is the most inefficient wind 

farm with the least generated electricity and availability in the data set. However, we 

observed that the wind farms with approximately the same installed capacity as 

                                                
2 The duality gap is the difference between the optimal values of the primal and dual problems. 
3 This standard comes from the empirical works done on the US, Spanish, and Chinese wind farms 

using a similar methodology  in papers of (Sağlam, 2018), (Iglesias, Castellanos, Seijas, 2010), and 

(Wu, Hu, Xiao, Mao, 2016) 
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“WF46” generated about four times more electricity during the same period. 

 

      Table 6 Efficiency Scores of 73 Wind Farms in Turkey 

DMUs 
Input-oriented models  Output-oriented models 

CCR BCC SE RTS CCR BCC SE RTS 

WF 1 0.9870 (3) 1.0000 (1) 0.9870 (20) IRS 0.9870 (3) 1.0000 (1) 0.9870 (24) IRS 

WF 2 0.5490 (62) 0.6126 (55) 0.8963 (51) IRS  0.5490 (62) 0.5552 (56) 0.9890 (20) IRS 

WF 3 0.7491 (31) 0.7619 (33) 0.9832 (24) DRS  0.7491 (31) 0.7795 (28) 0.9610 (39) DRS 

WF 4 0.6316 (55) 0.7314 (41) 0.8635 (58) IRS  0.6316 (55) 0.6487 (50) 0.9736 (33) IRS 

WF 5 0.9157 (9) 0.9334 (9) 0.9810 (26) IRS  0.9157 (9) 0.9246 (10) 0.9904 (18) IRS 

WF 6 0.7753 (25) 0.8372 (21) 0.9261 (46) IRS  0.7753 (25) 0.7779 (29) 0.9967 (8) IRS 

WF 7 0.8648 (17) 1.0000 (1) 0.8648 (57) DRS  0.8648 (17) 1.0000 (1) 0.8648 (58) DRS 

WF 8 0.7173 (37) 0.7585 (34) 0.9457 (37) IRS  0.7173 (37) 0.7212 (38) 0.9946 (16) IRS 

WF 9 0.7341 (35) 0.7408 (39) 0.9910 (14) IRS  0.7341 (35) 0.7370 (35) 0.9961 (12) IRS 

WF 10 0.7734 (26) 0.8274 (22) 0.9346 (44) DRS  0.7734 (26) 0.8451 (20) 0.9151 (49) DRS 

WF 11 0.6988 (39) 0.7098 (45) 0.9845 (23) DRS  0.6988 (39) 0.7226 (37) 0.9670 (36) DRS 

WF 12 0.8974 (15) 1.0000 (1) 0.8974 (50) DRS  0.8974 (15) 1.0000 (1) 0.8974 (54) DRS 

WF 13 0.7022 (38) 1.0000 (1) 0.7022 (63) IRS  0.7022 (38) 0.7132 (40) 0.9845 (27) IRS 

WF 14 0.6790 (46) 0.6830 (49) 0.9941 (9) IRS  0.6790 (46) 0.7175 (39) 0.9463 (45) IRS 

WF 15 0.7721 (28) 0.7771 (30) 0.9935 (12) IRS  0.7721 (28) 0.7811 (27) 0.9884 (21) IRS 

WF 16 0.6876 (44) 0.6944 (48) 0.9903 (15) DRS  0.6876 (44) 0.7047 (42) 0.9758 (32) DRS 

WF 17 0.7880 (22) 0.8822 (16) 0.8932 (52) DRS  0.7880 (22) 0.9106 (13) 0.8654 (57) DRS 

WF 18 0.6626 (49) 0.7674 (32) 0.8634 (59) IRS  0.6626 (49) 0.6648 (46) 0.9966 (9) IRS 

WF 19 0.9104 (11) 0.9688 (6) 0.9397 (40) DRS  0.9104 (11) 0.9722 (6) 0.9364 (47) DRS 

WF 20 0.7601 (29) 0.8132 (25) 0.9348 (43) IRS  0.7601 (29) 0.7601 (33) 1.0000 (1) IRS 

WF 21 0.7345 (34) 0.7816 (27) 0.9397 (41) IRS  0.7345 (34) 0.7433 (34) 0.9881 (22) IRS 

WF 22 0.6006 (58) 0.6140 (54) 0.9782 (29) DRS  0.6006 (58) 0.6554 (49) 0.9163 (48) DRS 

WF 23 0.6442 (53) 1.0000 (1) 0.6442 (64) DRS  0.6442 (53) 1.0000 (1) 0.6442 (64) DRS 

WF 24 0.7382 (33) 0.7455 (37) 0.9902 (16) DRS  0.7382 (33) 0.7704 (30) 0.9583 (41) DRS 

WF 25 0.7859 (23) 0.8589 (18) 0.9150 (48) DRS  0.7859 (23) 0.8778 (16) 0.8953 (55) DRS 

WF 26 0.7783 (24) 0.8393 (20) 0.9274 (45) IRS  0.7783 (24) 0.7879 (26) 0.9878 (23) IRS 

WF 27 0.6911 (42) 0.7139 (44) 0.9681 (32) DRS  0.6911 (42) 0.8137 (23) 0.8494 (60) DRS 

WF 28 0.9962 (2) 1.0000 (1) 0.9962 (5) IRS  0.9962 (2) 1.0000 (1) 0.9962 (11) IRS 

WF 29 0.5602 (61) 0.7492 (36) 0.7478 (62) DRS  0.5602 (61) 0.8168 (22) 0.6859 (63) DRS 

WF 30 0.6902 (43) 0.7340 (40) 0.9403 (39) IRS  0.6902 (43) 0.6904 (43) 0.9997 (3) IRS 

WF 31 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 

WF 32 0.6525 (51) 0.6572 (51) 0.9928 (13) DRS  0.6525 (51) 0.6824 (44) 0.9562 (43) DRS 

WF 33 0.6542 (50) 0.6800 (50) 0.9621 (33) IRS  0.6542 (50) 0.6576 (48) 0.9949 (15) IRS 

WF 34 0.8330 (19) 0.8455 (19) 0.9852 (21) DRS  0.8330 (19) 0.8745 (17) 0.9526 (44) DRS 

WF 35 0.6161 (56) 0.6525 (53) 0.9443 (38) IRS  0.6161 (56) 0.6191 (54) 0.9952 (14) IRS 

WF 36 0.7729 (27) 0.9439 (8) 0.8188 (60) DRS  0.7729 (27) 0.9539 (9) 0.8102 (62) DRS 

WF 37 0.8143 (20) 0.8245 (23) 0.9876 (19) DRS  0.8143 (20) 0.8305 (21) 0.9805 (31) DRS 

WF 38 0.8478 (18) 0.9064 (14) 0.9354 (42) IRS  0.8478 (18) 0.8533 (19) 0.9935 (17) IRS 

WF 39 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 

WF 40 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 
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       Table 6 (cont’d) 

WF 41 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 

WF 42 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 

WF 43 0.7579 (30) 0.7773 (29) 0.9751 (31) DRS  0.7579 (30) 0.8010 (24) 0.9462 (46) DRS 

WF 44 0.9694 (7) 0.9870 (2) 0.9822 (25) IRS  0.9694 (7) 0.9827 (4) 0.9865 (26) IRS 

WF 45 0.6335 (54) 0.7309 (42) 0.8668 (56) IRS  0.6335 (54) 0.6341 (52) 0.9990 (6) IRS 

WF 46 0.2144 (66) 0.7802 (28) 0.2749 (66) IRS  0.2144 (66) 0.2179 (60) 0.9842 (28) IRS 

WF 47 0.9707 (6) 0.9854 (4) 0.9851 (22) IRS  0.9707 (6) 0.9838 (2) 0.9867 (25) IRS 

WF 48 0.6776 (47) 0.7767 (31) 0.8724 (54) IRS  0.6776 (47) 0.6783 (45) 0.9990 (7) IRS 

WF 49 0.9144 (10) 0.9334 (10) 0.9796 (28) IRS  0.9144 (10) 0.9233 (11) 0.9904 (19) IRS 

WF 50 0.5875 (60) 0.5905 (57) 0.9949 (7) DRS  0.5875 (60) 0.6113 (55) 0.9610 (40) DRS 

WF 51 0.9770 (5) 0.9789 (5) 0.9980 (3) IRS  0.9770 (5) 0.9770 (5) 1.0000 (1) CRS 

WF 52 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 

WF 53 0.5456 (63) 0.8722 (17) 0.6256 (65) IRS  0.5456 (63) 0.5480 (58) 0.9957 (13) IRS 

WF 54 0.4342 (65) 0.4558 (59) 0.9525 (35) IRS  0.4342 (65) 0.4415 (59) 0.9833 (30) IRS 

WF 55 0.8933 (16) 0.8969 (15) 0.9960 (6) IRS  0.8933 (16) 0.8937 (15) 0.9995 (4) IRS 

WF 56 0.7400 (32) 0.7448 (38) 0.9936 (10) DRS  0.7400 (32) 0.7684 (31) 0.9631 (38) DRS 

WF 57 0.9063 (13) 0.9173 (12) 0.9880 (18) DRS  0.9063 (13) 0.9212 (12) 0.9838 (29) DRS 

WF 58 0.6627 (48) 0.6949 (47) 0.9536 (34) DRS  0.6627 (48) 0.7267 (36) 0.9118 (51) DRS 

WF 59 0.9801 (4) 0.9864 (3) 0.9936 (11) IRS  0.9801 (4) 0.9836 (3) 0.9965 (10) IRS 

WF 60 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 

WF 61 0.6462 (52) 0.6530 (52) 0.9895 (17) IRS  0.6462 (52) 0.6637 (47) 0.9735 (34) IRS 

WF 62 0.9596 (8) 0.9605 (7) 0.9990 (2) IRS  0.9596 (8) 0.9597 (7) 0.9999 (2) IRS 

WF 63 0.5945 (59) 0.5966 (56) 0.9965 (4) DRS  0.5945 (59) 0.6210 (53) 0.9574 (42) DRS 

WF 64 0.6924 (41) 0.7301 (43) 0.9484 (36) DRS  0.6924 (41) 0.7669 (32) 0.9029 (53) DRS 

WF 65 0.8113 (21) 0.9299 (11) 0.8724 (55) DRS  0.8113 (21) 0.9548 (8) 0.8496 (59) DRS 

WF 66 0.7190 (36) 0.8175 (24) 0.8796 (53) DRS  0.7190 (36) 0.8539 (18) 0.8420 (61) DRS 

WF 67 0.6824 (45) 0.6964 (46) 0.9799 (27) DRS  0.6824 (45) 0.7076 (41) 0.9644 (37) DRS 

WF 68 1.0000 (1) 1.0000 (1) 1.0000 (1) CRS  1.0000 (1) 1.0000 (1) 1.0000 (1) CRS 

WF 69 0.6930 (40) 0.7573 (35) 0.9151 (47) DRS  0.6930 (40) 0.7986 (25) 0.8678 (69) DRS 

WF 70 0.6146 (57) 0.8034 (26) 0.7651 (61) IRS  0.6146 (57) 0.6345 (51) 0.9688 (35) IRS 

WF 71 0.5064 (64) 0.5179 (58) 0.9778 (30) IRS  0.5064 (64) 0.5534 (57) 0.9150 (50) IRS 

WF 72 0.9017 (14) 0.9065 (13) 0.9947 (8) IRS  0.9017 (14) 0.9030 (14) 0.9987 (7) IRS 

WF 73 0.9099 (12) 1.0000 (1) 0.9099 (49) DRS  0.9099 (12) 1.0000 (1) 0.9099 (52) DRS 

Mean 0.770705 0.829084 0.930128 - 
 

0.770705 0.809212 0.954345 - 

Min 0.214428 0.455817 0.274855 - 
 

0.214428 0.217879 0.644234 - 

Median 0.757918 0.824475 0.977751 - 
 

0.757918 0.800986 0.984162 - 

Max 1 1 1 - 
 

1 1 1 - 

S.D. 0.161004 0.139567 0.11225 -  0.161004 0.162352 0.06786 - 

Note: Numbers in the parentheses represents rankings of the DMUs 

 

The BCC model, under the VRS assumption, is more flexible and inclusive than the 

CCR model, thereby the former model’s efficiency scores are higher than the latter for 

the same DMUs. Confirming this fact, the results in Table 6 indicate that the average 
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input- and output-oriented BCC scores are 8% and 5% higher than the average of the 

corresponding CCR scores. Regarding BCC models, Table 6 reveals that the scores of 

the input-oriented model with the average of 0.8291, range from 0.455 to 1, while the 

output-oriented model’s scores vary from 0.2179 to 1 presenting the mean of 0.8092. 

15 wind farms reach the maximum relative efficiency score in the input-oriented BCC 

model and 14 in the output-oriented model. Moreover, for the input-oriented BCC 

model, 38% of the wind farms exceed the efficiency score of 0.9 while, 55% of the 

wind farms attain the scores greater than 0.8. Regarding the output-oriented BCC 

model, the efficiency scores of 37% of the wind farms exceed 0.9 and 50% of them 

exceed the score of 0.8.  

 

Table 6 also provides the scale efficiency scores for the input- and output-oriented 

models. The scale efficiency scores of the DMUs are calculated by the ratio of the 

efficiency scores obtained from the corresponding CCR and BCC models. 8 wind 

farms reach the maximum scale efficiency scores, indicating that any change in their 

current operating characteristics would decrease their efficiency levels. The scale 

efficiency results are relatively high presenting the average of 0.930 for input-oriented 

model and 0.954 for the output-oriented model. Moreover, there are 56 wind farms 

with the scale efficiency higher than 0.9 in input-oriented models and 62 wind farms 

in the output-oriented model which all together confirm the compatibility of the 

efficiency scores obtained from four different models. 

 

The RTS results of the input- and output-oriented CCR models shown in Figure 11 

indicate 8 wind farms reach maximum efficiency for the input-oriented model and 9 

wind farm for the output-oriented model. However, WF51 (Mut RES) reaches 
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maximum scale efficiency in the output-oriented model, because its CCR and BCC 

scores are both equal to 0.971. 

 

 

Figure 11. Returns to Scale (RTS) results of the 73 Turkish wind farms 

 

The RTS results also indicate 30 wind farms should increase their operational level by 

installing new wind turbines in order to improve their efficiency level according to 

both input- and output-oriented models. However, 35 wind farms have decreasing 

returns to scale situation which means managerial decision ought to be taken to 

decrease the operational levels of those wind farms in order to drive the wind farms 

toward efficiency frontiers. 

Table 7 presents slack values of the inputs and the outputs obtained from the input-

oriented CCR and the output-oriented CCR models respectively. The slacks emerge 

when the piecewise linear DEA frontier run parallel to the axes (Coelli, 1996). The 

slack values imply that inefficient units in order to be located on the allocative 

efficiency frontier should decrease their inputs by the amount presented by the 

corresponding slacks (Omid, Ghojabeige, Delshad, Ahmadi, 2011). However, since 
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wind power density as the fuel of wind power plants is provided by nature and does 

not impose any cost on DMUs, non-zero slacks related to third input variable could be 

neglected. The slack results, regarding inputs, indicate 63 (86%) wind farms for the 

installed capacity variable, 69 (94%) wind farms for the number of turbines variable, 

and 52 (71%) wind farms for the wind power density variable, show the slack value of 

zero which mean efficiency level of the corresponding wind farms are strongly 

dependent on any changes in the amount these inputs (Wu, Hu, Xiao, Mao, 2016). 

The slack values of the first input variable (installed capacity) display the highest 

amount for WF27 (Fatma RES) which generated 149,324 MWh of electricity with 80 

MW of installed capacity. However, due to its low availability (21%), this wind farm 

could have generated the same amount of electricity with total 67 MW of installed 

capacity. WF22 (Datça RES) has the highest slack value for the second input variable 

(number of turbines). This wind farm utilizes a combination of 36 units of 800 kW 

and 900 kW turbines which have been operating for ten years. However, the slack 

value suggests that the same level of production can be obtained by installing 25 

modern turbines with larger capacity. WF71 (Uşak RES) which has the second-

highest slack value for the second input variable (number of turbines) also 

experiences the same problem. This wind farm which obtained a low DEA score of 

0.5 includes 36 Chinese turbines with 1.5 MW capacity can generate the same amount 

of electricity with 29 large-capacity western turbines and also operate more 

efficiently. Regarding the slack values of output variables, we observed that almost all 

DMUs presented zero slacks for electricity generation. This outcome confirm that 

efficiency level of Turkish wind farms is extremely dependent on the amount of the 

electricity generation which also affect the availability  
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Table 7. Slack of input and output variables in CCR models 

 Input-oriented CCR model  Output-oriented CCR model 

DMUs Installed 

capacity 

Number of 

turbines 

Wind power 

density 

 Electricity 

generated 
Availability  

WF01 0.20 0.00 0.00 10960.70 0.00 

WF02 0.00 0.00 54.01  0.00 10.53 

WF03 0.00 0.00 38.42  0.00 37.56 

WF04 0.00 0.00 0.00  0.00 5.82 

WF05 0.00 0.00 0.00  0.00 0.00 

WF06 0.00 0.00 0.00  0.00 0.00 

WF07 2.19 0.00 0.00  0.00 77.32 

WF08 0.00 0.00 47.71 
 0.00 4.58 

WF09 0.00 0.00 551.99  0.00 3.98 

WF10 0.00 0.00 380.72  0.00 107.17 

WF11 0.00 0.00 0.00  0.00 44.86 

WF12 0.00 0.00 0.00  0.00 64.54 

WF13 0.32 0.00 36.18  0.00 0.00 

WF14 6.72 0.00 0.00  0.00 20.91 

WF15 0.00 0.00 196.86  0.00 11.34 

WF16 0.00 0.00 369.45  0.00 31.63 

WF17 0.00 0.00 70.28  0.00 121.16 

WF18 0.00 0.00 0.00  0.00 0.00 

WF19 0.00 0.00 317.70  0.00 89.24 

WF20 0.00 0.00 0.00 
 0.00 0.00 

WF21 3.21 0.00 0.00 
 0.00 0.00 

WF22 0.00 10.51 5.34  0.00 39.03 

WF23 0.60 0.00 0.00  0.00 167.37 

WF24 0.00 0.00 0.00  0.00 32.17 

WF25 0.00 0.00 0.00  0.00 54.41 

WF26 0.00 2.26 0.00  0.00 0.00 

WF27 12.89 0.00 0.00  0.00 33.22 

WF28 0.00 0.00 0.00  4780.86 0.00 

WF29 0.00 0.00 0.00  0.00 154.13 

WF30 0.00 0.00 0.00  0.00 0.00 
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Table 7 (cont’d)       

WF31 0.00 0.00 0.00  0.00 0.00 

WF32 0.00 0.00 56.90  0.00 34.63 

WF33 0.00 0.00 0.00 
 0.00 6.56 

WF34 0.00 0.00 0.00 
 0.00 26.23 

WF35 0.00 0.00 0.00  0.00 6.22 

WF36 0.00 0.00 94.15  0.00 252.02 

WF37 0.00 0.00 0.00  0.00 24.78 

WF38 0.00 0.00 0.00  0.00 0.00 

WF39 0.00 0.00 0.00  0.00 0.00 

WF40 0.00 0.00 0.00  0.00 0.00 

WF41 0.00 0.00 0.00  0.00 0.00 

WF42 0.00 0.00 0.00  0.00 0.00 

WF43 0.00 0.00 0.00  0.00 24.88 

WF44 0.82 0.00 0.00  0.00 0.00 

WF45 0.00 0.00 0.00  0.00 2.09 

WF46 1.90 0.00 0.00 
 0.00 0.00 

WF47 5.10 0.00 0.00  0.00 0.08 

WF48 0.00 0.00 0.00  0.00 1.69 

WF49 0.00 0.00 470.21  0.00 0.00 

WF50 0.00 0.00 332.00  0.00 37.56 

WF51 9.60 0.00 0.00  0.00 7.61 

WF52 0.00 0.00 98.29  0.00 0.00 

WF53 1.29 0.00 0.00  0.00 0.00 

WF54 0.00 0.00 0.00  0.00 17.28 

WF55 0.03 0.00 33.04  0.00 0.00 

WF56 0.00 0.00 0.00  0.00 27.17 

WF57 0.00 0.00 0.00  0.00 16.73 

WF58 0.00 0.00 0.00  0.00 96.08 

WF59 1.10 0.00 0.00 
 0.00 0.00 

WF60 0.00 0.00 0.00  0.00 0.00 

WF61 0.00 0.00 0.00  0.00 17.89 

WF62 0.15 0.00 6.02  0.00 0.00 
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Table 7 (cont’d) 

WF63 0.00 0.00 10.01  0.00 34.73 

WF64 0.00 0.00 0.00 
 0.00 67.03 

WF65 0.00 0.00 0.00  0.00 56.88 

WF66 2.93 0.00 0.00  0.00 70.33 

WF67 0.00 0.00 29.75  0.00 41.19 

WF68 0.00 0.00 0.00  0.00 0.00 

WF69 0.00 2.85 0.00  0.00 79.80 

WF70 2.13 0.00 0.00  0.00 0.00 

WF71 0.00 5.85 0.00  0.00 36.49 

WF72 0.49 0.00 99.49  0.00 0.00 

WF73 0.00 0.00 0.00  0.00 110.99 

Mean 0.71 0.29 45.19  215.63 22.12 

Min 0.00 0.00 0.00  0.00 0.00 

Median 0.00 0.00 0.00  0.00 5.78 

Max 12.89 10.51 551.99  10960.70 194.78 

S.D. 2.14 1.45 115.16  1392.43 34.69 

 

3.6.2. Sensitivity Analysis Results 

 

The relative productive efficiency scores obtained by the data envelopment analysis 

are determined by the number of DMUs, inputs, and outputs. Thus, any alteration in 

the data set, or any error can affect the scores significantly. One method to overcome 

this defect of the DEA approach is to assess the sensitivity of the results to specific 

inputs or outputs by discarding them from the original model. This study proposes 5 

new models to examine the sensitivity and stability of both input- and output-oriented 

CCR models results. Table 8 presents the characteristics of new models regarding 

their combination of input and output variables and Table 9 repeats the CCR 

efficiency scores of the six alternative models. 
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Table 8 Specification of the Six Models for Sensitivity Analysis. 

Variables Denotation M1 M2 M3 M4 M5 M6 

Installed capacity X1       

Number of wind turbines X2       

Wind power density X3       

Electricity generated Y1       

Availability Y2       

Note: The inputs and outputs included in the models are marked with . 

 

Table 9 CCR efficiency scores of six model proposed for sensitivity analysis 

DMUs Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Mean Min Max S.D. 

WF01 0.987 0.987 0.964 0.804 0.987 0.642 0.895 0.642 0.987 0.143 

WF02 0.549 0.403 0.520 0.549 0.368 0.549 0.490 0.368 0.549 0.082 

WF03 0.749 0.548 0.710 0.749 0.345 0.749 0.642 0.345 0.749 0.165 

WF04 0.632 0.630 0.628 0.611 0.462 0.632 0.599 0.462 0.632 0.068 

WF05 0.916 0.719 0.869 0.909 0.856 0.871 0.857 0.719 0.916 0.072 

WF06 0.775 0.716 0.729 0.773 0.718 0.764 0.746 0.716 0.775 0.028 

WF07 0.865 0.865 0.824 0.821 0.207 0.865 0.741 0.207 0.865 0.262 

WF08 0.717 0.591 0.664 0.717 0.524 0.717 0.655 0.524 0.717 0.081 

WF09 0.734 0.732 0.639 0.734 0.370 0.734 0.657 0.370 0.734 0.146 

WF10 0.773 0.631 0.714 0.773 0.175 0.773 0.640 0.175 0.773 0.234 

WF11 0.699 0.592 0.640 0.693 0.241 0.699 0.594 0.241 0.699 0.178 

WF12 0.897 0.861 0.773 0.880 0.157 0.897 0.744 0.157 0.897 0.292 

WF13 0.702 0.702 0.621 0.702 0.688 0.604 0.670 0.604 0.702 0.045 

WF14 0.679 0.679 0.530 0.591 0.212 0.679 0.562 0.212 0.679 0.182 

WF15 0.772 0.521 0.746 0.772 0.520 0.772 0.684 0.520 0.772 0.127 

WF16 0.688 0.538 0.641 0.688 0.318 0.688 0.593 0.318 0.688 0.147 

WF17 0.788 0.772 0.691 0.788 0.120 0.788 0.658 0.120 0.788 0.266 

WF18 0.663 0.533 0.623 0.661 0.601 0.652 0.622 0.533 0.663 0.050 

WF19 0.910 0.882 0.816 0.910 0.224 0.910 0.776 0.224 0.910 0.273 

WF20 0.760 0.760 0.681 0.760 0.591 0.760 0.719 0.591 0.760 0.070 

WF21 0.734 0.734 0.600 0.636 0.419 0.728 0.642 0.419 0.734 0.123 

WF22 0.601 0.238 0.601 0.601 0.323 0.601 0.494 0.238 0.601 0.167 

WF23 0.644 0.644 0.644 0.610 0.108 0.644 0.549 0.108 0.644 0.216 

WF24 0.738 0.691 0.661 0.722 0.273 0.738 0.637 0.273 0.738 0.181 

WF25 0.786 0.761 0.715 0.765 0.216 0.786 0.671 0.216 0.786 0.225 

WF26 0.778 0.723 0.778 0.655 0.679 0.702 0.719 0.655 0.778 0.051 

WF27 0.691 0.691 0.683 0.540 0.290 0.691 0.598 0.290 0.691 0.162 

WF28 0.996 0.835 0.993 0.905 0.996 0.805 0.921 0.805 0.996 0.087 

WF29 0.560 0.540 0.560 0.544 0.104 0.560 0.478 0.104 0.560 0.184 

WF30 0.690 0.662 0.621 0.678 0.487 0.685 0.637 0.487 0.690 0.078 

WF31 1.000 1.000 0.842 1.000 0.316 1.000 0.860 0.316 1.000 0.274 
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Table 9 (cont’d)         

WF32 0.653 0.646 0.560 0.653 0.154 0.653 0.553 0.154 0.653 0.199 

WF33 0.654 0.611 0.594 0.642 0.399 0.654 0.592 0.399 0.654 0.098 

WF34 0.833 0.819 0.711 0.828 0.204 0.833 0.705 0.204 0.833 0.250 

WF35 0.616 0.566 0.563 0.606 0.394 0.616 0.560 0.394 0.616 0.085 

WF36 0.773 0.619 0.716 0.773 0.091 0.773 0.624 0.091 0.773 0.268 

WF37 0.814 0.706 0.746 0.811 0.388 0.814 0.713 0.388 0.814 0.165 

WF38 0.848 0.634 0.824 0.825 0.821 0.750 0.784 0.634 0.848 0.080 

WF39 1.000 0.988 1.000 1.000 1.000 0.825 0.969 0.825 1.000 0.071 

WF40 1.000 1.000 0.897 1.000 0.778 1.000 0.946 0.778 1.000 0.092 

WF41 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 

WF42 1.000 1.000 1.000 0.968 0.859 1.000 0.971 0.859 1.000 0.056 

WF43 0.758 0.400 0.758 0.733 0.462 0.758 0.645 0.400 0.758 0.167 

WF44 0.969 0.969 0.893 0.914 0.963 0.883 0.932 0.883 0.969 0.040 

WF45 0.633 0.604 0.610 0.622 0.491 0.633 0.599 0.491 0.633 0.054 

WF46 0.214 0.214 0.145 0.178 0.145 0.208 0.184 0.145 0.214 0.033 

WF47 0.971 0.971 0.805 0.834 0.551 0.971 0.850 0.551 0.971 0.164 

WF48 0.678 0.673 0.669 0.656 0.520 0.678 0.646 0.520 0.678 0.062 

WF49 0.914 0.914 0.796 0.914 0.800 0.857 0.866 0.796 0.914 0.057 

WF50 0.587 0.426 0.557 0.587 0.258 0.587 0.500 0.258 0.587 0.134 

WF51 0.977 0.977 0.739 0.828 0.415 0.977 0.819 0.415 0.977 0.221 

WF52 1.000 0.588 1.000 0.971 1.000 0.791 0.892 0.588 1.000 0.169 

WF53 0.546 0.546 0.502 0.484 0.534 0.491 0.517 0.484 0.546 0.028 

WF54 0.434 0.417 0.376 0.419 0.142 0.434 0.370 0.142 0.434 0.114 

WF55 0.893 0.893 0.767 0.893 0.399 0.893 0.790 0.399 0.893 0.198 

WF56 0.740 0.658 0.682 0.725 0.331 0.740 0.646 0.331 0.740 0.158 

WF57 0.906 0.833 0.818 0.901 0.462 0.906 0.805 0.462 0.906 0.172 

WF58 0.663 0.526 0.615 0.660 0.161 0.663 0.548 0.161 0.663 0.197 

WF59 0.980 0.980 0.768 0.856 0.764 0.893 0.874 0.764 0.980 0.096 

WF60 1.000 1.000 0.992 1.000 1.000 0.873 0.977 0.873 1.000 0.051 

WF61 0.646 0.588 0.620 0.631 0.342 0.646 0.579 0.342 0.646 0.118 

WF62 0.960 0.960 0.807 0.960 0.310 0.959 0.826 0.310 0.960 0.260 

WF63 0.594 0.451 0.568 0.594 0.295 0.594 0.516 0.295 0.594 0.122 

WF64 0.692 0.646 0.620 0.677 0.173 0.692 0.584 0.173 0.692 0.203 

WF65 0.811 0.801 0.697 0.778 0.140 0.811 0.673 0.140 0.811 0.265 

WF66 0.719 0.719 0.679 0.674 0.189 0.719 0.616 0.189 0.719 0.211 

WF67 0.682 0.666 0.612 0.682 0.265 0.682 0.598 0.265 0.682 0.165 

WF68 1.000 1.000 1.000 0.715 1.000 1.000 0.953 0.715 1.000 0.116 

WF69 0.693 0.492 0.693 0.667 0.225 0.693 0.577 0.225 0.693 0.190 

WF70 0.615 0.615 0.541 0.543 0.476 0.607 0.566 0.476 0.615 0.056 

WF71 0.506 0.312 0.506 0.464 0.225 0.506 0.420 0.225 0.506 0.122 

WF72 0.902 0.902 0.769 0.902 0.500 0.895 0.812 0.500 0.902 0.161 

WF73 0.910 0.770 0.828 0.901 0.174 0.910 0.749 0.174 0.910 0.287 

Mean 0.771 0.702 0.709 0.740 0.448 0.747 0.686 0.416 0.771 0.143 

Min 0.214 0.214 0.145 0.178 0.091 0.208 0.184 0.091 0.214 0.000 

Median 0.758 0.691 0.693 0.733 0.388 0.740 0.655 0.388 0.758 0.146 

Max 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.292 

S.D. 0.161 0.194 0.155 0.158 0.275 0.148 0.158 0.231 0.161 0.076 
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The relative productive efficiency scores of the six models calculated by the CCR 

efficiency equation are shown in Table 9. The results indicate scores of the Model 1 

which is the original model with 3 input variables and 2 output variables are higher 

than the scores obtained from any of the proposed models. The first model is more 

comprehensive and the drop in the dimensionality in the proposed models is the 

reason behind that their scores are not higher than the original model. 

 

Spearman’s correlation analysis has been applied to the CCR scores obtained from 6 

different models to examine the relationship between them. The analysis provides 

coefficient values ranging from +1 to -1 for the observations. Coefficients closer to +1 

value indicate the stronger correlation between the observations vice versa. As shown 

in Table 10, the Spearman’s correlation coefficients range from 0.2893 to 0.9522 

which indicate positive interrelationship between the six models at 1% significance 

level confirming the stability of the proposed models. M5 has the least coefficient and 

correlation with the original models which means eliminating electricity generation 

variable affect the DEA scores significantly. As it also noticed in Spearman’s 

analysis, omitting first output variable (electricity generation) results in a notable 

reduction of efficiency scores. 

 

when a specific input or output is eliminated from the original model. The graph 

reveals when installed capacity and electricity generation is omitted from the original 

model efficiency scores drop considerably. Sensitivity analysis results in this section 

confirmed that installed capacity and electricity generation of wind farms are the 

indispensable factors of DEA models when evaluating the productive efficiency of 
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wind farms. Figure 12 shows the illustration of the variations in the CCR efficiency 

scores. 

 

Table 10 Spearman’s correlation analysis results  

 M1 M2 M3 M4 M5 

M2 0.8464 (0.0000)     

M3 0.9522 (0.0000) 0.7427 (0.0000)    

M4 0.9410 (0.0000) 0.7654 (0.0000) 0.8997 (0.0000)   

M5 0.4800 (0.0000) 0.3703 (0.0000) 0.5016 (0.0000) 0.4084 (0.0003)  

M6 0.9214 (0.0000) 0.8077 (0.0000) 0.8634 (0.0000) 0.9022 (0.0000) 0.2893 (0.0131) 

 

 

 

Figure 12. Sensitivity of six CCR models to specific input/output 
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3.6.3. Tobit Regression Results 

In this section, by using an econometric analysis and with a Tobit estimation 

technique the determinants of the CCR efficiency scores are investigated. Here the 

objective is to examine the factors that contribute to the changes in the efficiency 

scores. The independent factors that may contribute to the variation in efficiency 

scores of different wind farms are chosen to be the age of the wind farms and 

elevation of the site that the farm is constructed. . Table 11 presents the Tobit results 

of the model. The coefficients for age and elevation variables are not statistically 

significant at even 15%, hence it is not clear whether these variables have any effect 

on the efficiency of the Turkish wind farms. This might be due to the fact that most of 

the wind farms are built recently and the average age for the wind farms in the data 

set is just 5 years and wear and tear of the turbines have not affected the performance 

of the wind farms yet.  As for the elevation variable, most of the wind farms in Turkey 

are built on coastal areas (semi-offshore) of Ege and Marmara, with relatively high 

wind velocity despite the low elevation of the field. Thus, even at low elevation the 

wind farms are still efficient. It is possible that there is a positive correlation with 

wind velocity in the inner areas, however the number of wind farms from such areas 

are fewer in this study. 

 

Second we examine the effect of the location on the performance level of the wind 

farms. In this regard, a dummy variable has been defined for five different regions in 

Turkey. The Akdeniz region is the one that is not explicitly included in the regression 

and hence all the comparisons are made according to this region.  The Tobit results 

presented in Table 11 indicate in Karadeniz (Region_3) the wind farms have 

significantly higher efficiency values. The rest of the regions do not have statistically 
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significantly different efficiency values when compared to the Akdeniz region. Even 

though the coefficient estimates are statistically significant for the Karadeniz region, 

in terms of the number of wind farms this is not a region which is highly populated 

with wind farms. Hence a more detailed study  more wind farm projects could be 

initiated in this region after comprehensive topographic study to find the best 

locations for new wind farms across the regions.  

 

Finally, Table 11 also presents the coefficients of the dummy variables for the brand 

of turbines. The results reveal that the contribution of the brands to efficiency are not 

uniform across different brands.  The brand that does not have an explicit dummy 

variable included into the regression, is Enercon which is produced by Germany. 

When one examines the results of the Tobit estimation, we see that, using Brand 6 

(Vestas) turbines provides higher efficiency in the wind farms with a 14% higher 

productive efficiency scores. This difference is statistically significant at 5% 

significance level. However, this result is not robust to different specifications. 

Another results that we see in the Tobit estimations, is that turbine Brand 7 (Sinovel) 

which includes Chinese and Indian turbines has statistically lower efficiency scores. 

We observe that wind farms which uses these Turbine brands show about 11 %-14 % 

less productive efficiency and furthermore this results are robust in all specifications. 

These illustrates that there may be several factors that influence the productive 

efficiency of wind farms. These may extend from the location to the chose brand of 

turbines, and these factors should be taken into consideration in energy investments in 

the wind farms.  
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Table 11. Tobit regression results 

 (1) (3) (5) (7) (9) (11) (13) (15) 

VARIABLES 1 2 3 5 6 7 8 9 

         

Age -0.00541 -0.00616 -0.00600  -0.00690   -0.00977 

 (0.0056) (0.0061) (0.0062)  (0.0062)   (0.0060) 

Site Elevation  -0.00002 -0.00009  -0.00018   -0.00048 

  (0.0000) (0.0002)  (0.0003)   (0.0003) 

Air Density   -0.58180  -0.84583   -3.04846 

   (1.8820)  (2.8237)   (2.5610) 

Region 2 (Ege)    -0.04979 -0.08606  -0.01990 -0.03873 

    (0.0534) (0.0652)  (0.0665) (0.0747) 

Region 3 (Karadeniz)    0.21924* 0.25603**  0.22130* 0.30307** 

    (0.1128) (0.1186)  (0.1259) (0.1325) 

Region 4 (Marmara)    -0.04412 -0.07156  -0.07087 -0.07230 

    (0.0518) (0.0867)  (0.0579) (0.0865) 

Region 5 (İç Anadolu)    -0.02071 0.03613  0.00193 0.13850 

    (0.1077) (0.1446)  (0.1276) (0.1546) 

Turbine Brand 2 (Gamesa)      0.06131 0.02016 0.05858 

      (0.0685) (0.0824) (0.0803) 

Turbine Brand 3 (GE)      0.07723 0.08588 0.11725 

      (0.0652) (0.0693) (0.0711) 

Turbine Brand 4 (Nordex)      0.04577 0.04273 0.06278 

      (0.0714) (0.0656) (0.0699) 

Turbine Brand 5 (Siemens)      0.03905 0.06393 0.08903 

      (0.0495) (0.0619) (0.0629) 

Turbine Brand (Vestas)      0.07826 0.08758 0.14004** 

      (0.0562) (0.0622) (0.0659) 

Turbine Brand (Sinovel)       -0.11375* -0.13064** -0.12626** 

      (0.0623) (0.0610) (0.0597) 

Constant 0.80691*** 0.82283*** 1.52713 0.81320*** 1.94614 0.74531*** 0.77712*** 4.56457 

 (0.0412) (0.0582) (2.2811) (0.0407) (3.3691) (0.0373) (0.0687) (3.0388) 

         

Observations 73 73 73 73 73 73 73 73 

F test 0.333 0.605 0.764 0.166 0.0966 0.0918 0.0198 0.00518 

Pseudo R-squared -0.0324 -0.0414 -0.0444 -0.192 -0.331 -0.376 -0.620 -0.951 

Robust standard errors in parentheses 

*** p<0.01, ** p<0.05, * p<0.1 
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3.7. Explanation of Limitations 

 

This study encounters two major limitations; First, limitation of the DEA 

methodology including its deterministic character, sensitivity to output and input 

specifications, and its limited possibilities for contrasting hypotheses. Outlier(s) 

and/or measurement error(s) may cause critical changes in the relative efficiency 

scores of DMU(s). The second restraint challenges the credibility of data collection of 

average wind speed to data in the calculation of wind power density of the wind 

farms. Since average wind speeds in the exact location of the wind farms were not 

available the data has been obtained from the nearest meteorological station which 

may be located in a considerable distance from the wind farms. This may also cause 

miscalculations in computing efficiency score of the wind farms. Third, due to data 

limitation we could only include 73 wind farms out of 140 in the analysis. This study 

will be extended to include more wind farms. 
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CHAPTER IV 

 

CONCLUSIONS AND POLICY RECOMMENDETIONS 

 

Turkey’s total installed wind power capacity of 6,516.2 MW generated 17903.8 GWh 

of electricity in 2017 which accounted for 6% of the country’s total electricity 

generation. The capacity factor of wind energy in Turkey was 31% which is 

preferable. however, since the country is over-dependent on natural gas and coal for 

generating electricity, it is vital to drive the electricity generation specifically with 

renewable sources of energy to the optimum points. Regarding the development of 

new onshore and offshore Turkish wind farms in upcoming years, this study 

attempted to evaluate the performance of a representative sample of these wind farms. 

Thus, for the first time, this study conducts a quantitative assessment to evaluate the 

productive efficiency of 73 Turkish wind farms in two stages. 

Data envelopment analysis in the first stage relatively evaluates the performance of 

the wind farms regarding their performance in electricity generation and following the 

efficiency results Tobit regression examines the effect of distinct variables on the 

efficiency level of those wind farms. Input- and output-oriented CCR and BCC 

models as the most prominent DEA models in the literature has been applied to three 
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input variables and two output variables. These variables as the vital elements of this 

study include installed power capacity, number of wind turbines, and wind power 

density for input variables while, output variables consist of generated electricity and 

availability. The DEA results explain that approximately 40% of the wind farms 

generated electricity at a sufficient level since 30 wind farms obtained the scores 

above 0.8 in CCR models. Regarding both the input- and output-oriented CCR models 

8 wind farms operated at maximum efficiency level while in input- and output-

oriented BCC models 15 and 14 wind farms obtained the highest efficiency scores. 

Moreover, results of the input- and output-oriented models unanimously reveal that 

42% of the wind farms have the potential to enhance their efficiency by expanding 

their operational level, However, DEA results detected overinvestment in 46% of the 

wind farms which can be interpreted as the result of inappropriate use of government 

incentives for the sector. Since the average slacks of three input variables and first 

output variable (electricity generation) is approximately, one can conclude that high 

significance of these variables which any variations in them would directly reflect on 

the performance level of the wind farms. 

The sensitivity analysis is utilized to confirm the robustness level of DEA results and 

to examine the impacts of different input and output variables on the results. Thus, we 

introduced 5 new models by omitting each of input and output variables from the 

original model and acquired CCR efficiency score for the new models. Moreover, we 

used Spearman’s rank-order correlation to measure the strength of association 

between new models which confirmed the stability and positive correlation between 

the proposed new models. As a result, not surprisingly, installed capacity and 

generated electricity proved to be the most significant factors to affect the efficiency 

of Turkish wind farms. In the second stage of this study, we utilized different Tobit 
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regression models to investigate the impact of specific characteristics of the wind 

farms on their relative productive efficiency levels. First Tobit model revealed that 

age and elevation do not have any significant role in the efficiency of Turkish wind 

farms. To justify these results, first Turkish wind farms are relatively new and the 

effect of depreciation might occur later, secondly, the atlas of Turkish wind farms 

demonstrate that most of the wind power plants are built on the coastal plains of 

Marmara and Ege which are wind-rich and while have low elevations. Finally, the 

third Tobit model discloses that the Danish and the American turbines made the most 

contribution to the performance of the Turkish wind farms. 

Based on the above outcomes, some policy recommendations to the Turkish wind 

power sector are given as follows;  

First, the evaluated wind farms should adjust their installed capacity based on the 

results obtained from this study and the capacity of their local power grid. Wind farms 

classified as IRS should increase their number of the turbines to harness wind power 

more efficiently. On the other hand, DRS labeled wind farms should modify their 

capacity regarding the actual intensity of wind power density in their locations. 

Second, those wind farms with outdated and low capacity turbines should replace 

them with modern and modern and larger turbines. Moreover, although installing 

Chinese and Indian wind turbines requires lower investment, in the long-term due to 

inefficient electricity generation, it would lead to a lower return on investment. 

Third, it is necessary that private or governmental entities like Turkish Wind Energy 

Association (TWEA) evaluate the performance of Turkey’s wind farms annually or 

even monthly utilizing DEA method or other benchmarking methods like SFA or 

combination of two methods to give a precise insight for companies operating in the 

sector as well as for the future investment in the Turkish wind energy sector. 
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Finally, enhanced governmental incentives should be introduced in order to not only 

contribute to the sustainable development of Turkish wind power sector but also to 

prevent the project from overinvestment, and productive use of this renewable energy 

in electricity generation in Turkey. 
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