Optical-coordinate transformation methods
and optical-interconnection architectures
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The analogy between optical one-to-one point transformations and optical one-to-one interconnections is
discussed. Methods for performing both operations are reviewed and compared. The multifacet and
multistage architectures have the flexibility to implement any arbitrary one-to-one transformation or
interconnection pattern. The former would be preferred for low-cost and low-resolution applications,
whereas the latter would be preferred for high-cost and high-performance applications.
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1. Introduction

There is a direct analogy between optical one-to-one
point transformations and optical one-to-one intercon-
nections. In a one-to-one optical point transforma-
tion, it is desirable to map the light amplitude or
irradiance at each point (x, y) in the input plane to a
unique point («, v) in the output plane. In a one-to-
one optical interconnection system, it is desirable to
guide the light emanating from each input channel
(which may be a source situated on an electronic
processor) to a unique output channel (which may be
adetector). Although it is more common to speak of
optical transformations for continuous input fields,
because any optical system has a finite resolution,
both the transformation and interconnection prob-
lems boil down to mapping an array of N independent
input cells into N output cells. Nevertheless, some
important differences must be noted. In optical-
interconnection applications, the input cells are usu-
ally mapped to output cells of equal area, whereas in
optical transformations the cells may be of varying
size. Another difference is that in optical transforma-
tions neighborhood relationships are usually con-
served, whereas in optical-interconnection applica-
tions this need not be the case.
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In general, the transformation or interconnection
pattern does not exhibit a special space-invariance
property, so that a conventional imaging system
(which is naturally space invariant) is not sufficient,
and pupil splitting in either the Fourier or the
coordinate plane is necessary. This in turn reduces
the number of pixels, N, that the system can handle
for a given space—bandwidth product SW.

In this paper, we will briefly review several sug-
gested methods for realizing optical transformations
and interconnections. For both cases that we have
mentioned, it will be seen that the conceptually
simple multifacet architecture is able to realize any
arbitrary transformation (or interconnection pat-
tern), with a scaling behavior no worse than many
suggested alternatives. For high-performance, high-
cost applications, the multistage architecture that is
also able to realize any arbitrary transformation (or
interconnection pattern) has superior scaling behav-
ior and would be preferred.

2. Optical-Coordinate Transformations

Coordinate transformations expand the range of oper-
ations that can be performed by optical systems.
Duvernoy! suggested the use of map transformations
for the analysis of handwriting. Sawchuk? showed
the relationship between space-variant filtering and
map transformations. Casasent and Psaltis® pro-
posed a map transformation—optical correlator com-
bination to achieve systems with unconventional
invariant parameters. They proposed a scale- and
rotation-invariant correlator, and two real-time imple-
mentations of this idea were suggested and experimen-
tally tested.%® Recently a similar correlator, this
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time for scale- and projection-invariant pattern recog-
nition, was proposed.® Hiusler and Streibl,” and
later Lohmann and Streibl,? suggested the use of
map-transforming systems for correction of geometri-
cal distortions in TV optical image processing sys-
tems.

In this section we compare the main approaches for
optical-coordinate transformations. Because it is
usually desirable to keep the cost of such systems low,
we consider systems that consist of one, or at most
two, stages. A multistage system is discussed in
Subsection 3.C. We compare how many pixels, N,
the various systems can handle, and we also discuss
additional parameters such as the possible transfor-
mation types, encoding methods.

We review the main optical-coordinate transfor-
mation methods, all of which are based on the
arrangement presented in Fig. 1 or its equivalent.
A two-dimensional input pattern is illuminated with
collimated coherent light. A phase-modulating opti-
cal element (OE) is placed in contact with the input
mask. This OE can be a diffractive element (such as
a hologram) or a refractive element. At the output
plane we find the input pattern represented in the
new coordinates. The distance between the input
and the output planes isz. In some configurations a
Fourier-transform lens is required (see Fig. 1). In
these cases the focal length of the lens is f = z/2.
We assume that the diameter of both the input and
the outputis D.

A. Bryngdahl's Method

The first method for performing coordinate transfor-
mations was introduced by Bryngdahl (Fig. 1 with the
dashedlens).? His OE design is based on two approx-
imations: the saddle-point approximation and the
paraxial approximation (z > D).3 The saddle-point
approximation requires that we reduce z as much as
possible, whereas the paraxial approximation re-
quires that we increase z. This implies that this
system could work well only with a large f~number
(f#). From the geometric-shadow condition (which
is fully equivalent to the saddle-point-integration
condition), it can be shown3 that the number of pixels
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Fig. 1. General optical system for coordinate transformation.

The dashed lens appears only in some of the mapping methods.
In these cases, the focal length of the lensisf=2z/2.
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that this system can handle is

N = b 1
This value of N is much less than the space—
bandwidth product of the optical system, given by

D \2
SW = ()\ f#) > N, (2)
where a diffraction-limited system has been assumed.
As explained above, f# > 1 in Relations (1) and (2).

Another restriction of this method is that it is
suitable only for certain types of transformation that
can be derived from analytic functions. Unfortunate-
ly, many coordinate transformations that are of
interest in optical processing, for instance, the Carte-
sian polar transformation, do not satisfy this condi-
tion.

Because in most cases the OE function cannot be
realized with direct optical (interferometric) methods,
it is fabricated only with computer-generated holo-
gram techniques such as computer-generated inter-
ferograms.!® Thus in most cases performance is
limited by the actual realization of the hologram.
Another important parameter is the OE efficiency,
which cannot be high with computer-generated holo-
grams unless one is willing to use expensive OE
manufacturing techniques. The first row of Table 1
summarizes the properties of Bryngdahl’s method.

B. Multiple Holographic OE'’s

To generalize Bryngdahl’s method to nonanalytic
transformations, Stuff and Cederquist!! recently sug-
gested the use of a configuration with multiple OE’s.
The basic idea was to use the configuration of Fig. 1
(with the lens) twice in cascade. They showed that,
subject to some requirements that can be met in
most, perhaps all, practical cases, any one-to-one
transformation can be performed with at most two
OE’s. Using this approach, they demonstrated the
polar coordinate transformation.

Again the saddle-point and paraxial approxima-
tions were made.!! As a result the performance of
this system (which is shown in the second row of
Table 1) is similar to that of Bryngdahl’s method.
The diffraction efficiency of the system is lower
because it contains two diffractive elements in cas-
cade.

Table 1. Comparison of the Main Optical Coordinate
Transformation Methods

Transformations
Method N(D) N(SW)y Possible Remarks
Bryngdahl D/Mf# JSW,  Onlyanalytic  f# > 1
Multiple OE’s D/Mf# JSW, Almost every f#>1
k-vector ~D/Nn  JSW, Only analytic z=D
Muitifacet =~D/\N SW, Almost every z=D

aSW), space-bandwidth product that is related to the f# > 1
case; SWy, SW with f# = 1 (z =fD). Note that SW, > SW,
because of the additional condition on the f#.



C. k-Vector Method

Recently Davidson et al.1? suggested a new method for
designing OE’s for coordinate transformations that
uses the optical setup of Fig. 1 without the dashed
lens. The new method is based on analytic ray
tracing and a geometric-shadow approximation that
can be confirmed by the saddle-point approximation.
The main advantage of this design is that the paraxial
approximation is not necessary, so that the distance z
between the input and output planes can be opti-
mized to maximize N. It has been shown that the
optical value of z is

z= 2D, (3)

which leads to
N=——=—- (4)

It can be seen that this value of N is greater than
that given by Eq. (1), because f# > 1. We are again
restricted to analytic functions because the phase
function of the OE is expected to be continuous.

D. Multifacet OE’s

The most straightforward method of implementing
optical map transformations is the multifacet ap-
proach.1® In this approach, an input light distribu-
tion can be mapped to a fully arbitrarily prescribed
output light distribution. The idea is to divide the
OE into many small facets, one per input pixel.
Each facet is a grating or microprism that diffracts or
deflects the light toward the output pixel according to
the transformation law. This method is similar to
the k-vector method. Whereas the k-vector method
is continuous, the multifacet approach is discrete.
The multifacet approach has no restrictions about
the transformation type, and every one-to-one trans-
formation law can be achieved. In fact, this method
can in principle also be extended to many-to-one or
one-to-many transformation laws.

One of the main advantages of this technique is the
high diffraction efficiency that it can provide when
diffractive OE’s are used. The recording of the
holographic OE is done either by use of computer-
generated holograms or by use of direct optical record-
ing. Inthe second alternative, volume phase materi-
als such as dichromated gelatin can be used to achieve
nearly 100% diffraction efficiency. The number of
pixels that the system can handle, N, is the same as
that for the k-vector method as presented in the
bottom row of Table 1.

E. Discussion

From Table 1 we conclude that there is no reason to
use the continuous-phase methods (Bryngdahl, multi-
ple OE’s, and & vector). The multifacet approach
combines flexibility and light efficiency with a value of
N that is as good as the value obtained with the
k-vector method and better than the values obtained

with the other methods, and thus it should be pre-
ferred if we restrict ourselves to systems with at most
one or two stages.

3. Optical-Interconnection Architectures

A large number of architectures for optical intercon-
nection of electronic processing elements or optical
switch arrays have been proposed. Those listed in
Table 2 are representative of broad classes of essen-
tially equivalent architectures. Methods similar to
those occupying the first three rows of Table 1 are not
considered, as they were found to be inferior in Sec. 2.

We require that the architecture have the flexibility
of being able to be customized such that any arbitrary
pattern of one-to-one connections between N input
and N output channels is possible. There are N!
such patterns. (For readers familiar with Refs. 14
and 15, this corresponds to setting the parameter
g = 1 in those papers. For other readers, we note
that for special connection patterns exhibiting some
form of locality or regularity, improvements over the
values of Table 2 are possible.)

A. Matrix-Vector-Product Architectures

The first row of Table 2 is for optical-interconnection
architectures based on so-called matrix-vector prod-
ucts. These architectures are based on the well-
known optical matrix-vector multiplier® that is used
to perform the operation

a=§M% (5)

on a linear input array I; of N elements to produce the
result again in the form of a linear output array O; of
Nelements. TheN X N matrix by which the input is
multiplied, M;;, is encoded as the transmittance func-
tion of an N X N optical mask. To implement
one-to-one interconnections, we simply set M;; = 1, if
input i is to be connected to output j, and M; = 0
otherwise. Thus any arbitrary interconnection pat-
tern can be realized. For a one-to-one interconnec-
tion pattern, only one element of the matrix will be
nonzero in any row or column. If we assume lenses
with an f-number f#, the distance from the input
array to the mask must be at least = Nf#\. The
same distance is required from the mask to the
output array; hence the linear longitude extent given
in Table 2.

Table 2. Comparison of Optical Interconnection Architectures

Method N(SW)  Linear Extent*  Light Efficiency’
Matrix vector ySW  =2Nf#\ 1/N
Multifacet VvSW =N\ 1
Multistage SW/4 36N'/2logs Nf#2\ 1

°The linear axial extent of the system is important because it
determines the propagation delay through the system. It is
assumed that the source or detector sizes are not the limiting
factor.

5For an ideal system, ignoring coupling, radiation, attenuation
losses, etc.
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Because only N of the N2 mask elements are
transparent, the light efficiency of this architecture is
at best 1/N. This architecture has the potential to
implement a full crossbar network with arbitrary
fan-in and fan-out, but here we are interested only in
one-to-one networks. It can also be dynamically
reconfigured if a spatial light modulator with on—off
transmittance is available.

B. Multifacet Architectures

The second row of Table 2 is for multifacet architec-
tures (once again, we may refer to Fig. 1). Many
essentially equivalent architectures have been sug-
gested (for instance see Refs. 14 and 17-23). Here
we assume that the number of facets is equal to the
number of input and output channels. (In a system
exhibiting some degree of space invariance, a smaller
number of facets may be sufficient.’?) The light
emanating from each source is directed toward the
target detector with a dedicated facet element, which
can be a hologram, a prism, etc. Thus any arbitrary
pattern of interconnections can be implemented with
equal ease. The number of input—output channels
that one can have with these architectures is approxi-
mately equal to (SW)/2, as in the fourth row of Table
1. Because the axial extent of the optical system
must at least be comparable with the diameter of the
input plane D, the linear extent is given by N [see
Relation (4)]. We see that this architecture is prefer-
able to the matrix-vector-product architecture be-
cause the latter has poor light efficiency.

This architecture also allows a certain degree of
fan-out and fan-in by using multiple gratings.
Dynamic reconfiguration would require a variable-
grating spatial light modulator or an array of active
deflectors.

C. Multistage Architectures

The final line is for multistage architectures. It is
well known that an arbitrary pattern of one-to-one
interconnections can be realized in 3 logs N — 1 = 3

f f 2of
A\r\ ﬂf

log; N stages, each involving a regular pattern of
interconnections followed by an array of local ex-
change-bypass modules.192427 Because each stage
involves a regular pattern of interconnections only, it
can be implemented with near space-invariant optical
imaging (i.e., the pupil plane is subdivided into only a
small number of facets, say, 2 or 4).1° The space—
bandwidth product needed is proportional to N, and
the length of each stage is thus proportional to N1/2,
The perfect shuffle is a particular instance of the
regular interconnections mentioned above. Figure 2
shows a single stage of a perfect-shuffle-based multi-
stage system. It is a compact version of the one
described in Ref. 25. The interface between consecu-
tive stages could be accomplished with a telescope
array device,?8 which can also perform the (passive)
local exchange-bypass operations. The space—band-
width product required is 4N because the pupil plane
is divided into four parts. The length of each stage is

12Nf#INY/2, (6)
so that the length of the system is
36\ f#2N'/2 log, N. (7

This architecture is not as flexible as the matrix-
vector architecture in terms of fan-in and fan-out, but
it is nevertheless capable of realizing arbitrary one-to-
one permutations. It can be dynamically reconfig-
ured if the exchange-bypass modules are active
switches, rather than passive couplers. This archi-
tecture is asymptotically superior to the multifacet
architecture. In fact the cost and the axial linear
extent achievable with this system are only a logarith-
mic factor worse than the fundamental limit given in
Ref. 14,

None of the above architectures imposes any restric-
tions on the f#. If good quality lenses are used, it is
possible to have f# ~ 1.

Another architecture that is not included in Table 2

2f

of

Y

A

el
r e

Fig. 2. Optical perfect-shuffle stage.
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is the three-dimensional multifacet architecture,!®
which approaches the fundamental limit within ap-
proximately an order of magnitude, independent of
N. Thus, for a large N, this architecture would be
superior to those considered above. However, be-
cause this architecture cannot be easily manufac-
tured, it was not included in the above comparison.

4. Discussion and Conclusion

The multifacet and multistage architectures are flexi-
ble techniques for implementing optical-coordinate
transformations and optical interconnections. Fig-
ure 3 illustrates the costs of the multifacet and
muliistage architectures as a function of N. The
cost is defined as the cost of a single stage multiplied
by the number of stages. We assume that the cost of
a single stage is proportional to its SW. For the
multifacet architecture that has only one stage the
cost is

C.SW = C,N?, (8)

where C, is a constant with dimensions of cost. For
the multistage architecture the cost of a single stage
is

CZSW = 024.N. (9)

In general we expect that C; > C; because of the
more complicated optical configuration for the multi-

stage architecture. The exact C; and C; parameters
depend on specification of the particular implementa-
tion, and thus the ratio C,/C; is left as a parameter.
In Fig. 2, three different ratios of C,/C; have been
used: I1,5,and 25. Simple interpolation could lead
to the plot of other C,/C, ratios. It can be seen that
until N ~ 5000 (i.e., a two-dimensional array of
~T0 x T0 pixels), the multifacet architecture would
be preferred because of its simplicity and lower cost.
For high-performance optical computing and switch-
ing systems with large N’s, the multistage architec-
ture is to be preferred.

It is often thought that there is a fundamental
trade-off between efficient use of the space-band-
width product and flexibility in implementing arbi-
trary space-variant connection patterns. In particu-
lar it is usually implied that SW « N2 is needed to
realize an arbitrary permutation between N input
and output points. We have seen that for both
optical-interconnection and transformation applica-
tions, an SW of 4N is sufficient, which is only a factor
of 4 worse than the fundamental limit. The price
that was paid is that x log N stages were needed.
Nevertheless, for a large N, the cost and linear extent
of a multistage system will still be less than for the
multifacet system.

Even the logarithmic factor is not a fundamental
necessity, as the existence examples in Ref. 14 show.
However, a practical system that requires an SW that
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Fig. 3. Cost versus number of pixels for the multifacet architecture (solid eurve), and the multistage architecture {the dashed, dotted, and

dashed~dotted curves correspond to Co/C = 1, 5, and 25, respectively).
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is not much greater than N and for which the linear
extent is « N1/2 without the logarithmic factor has yet
to be demonstrated.
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