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Abstract

Let Bu (n, r ) denote the set of unlabeled bipartite graphs whose edges connect a set of n vertices with a set of r vertices.
In this paper, we provide exact formulas for |Bu (2, r )| and |Bu (3, r )| using Polya’s Counting Theorem. Extending these results
to n ≥ 4 involves solving a set of complex recurrences and remains open. In particular, the number of recurrences that must
be solved to compute |Bu (n, r )| is given by the number of partitions of n that is known to increase exponentially with n by
Ramanujan–Hardy–Rademacher’s asymptotic formula.
c⃝ 2017 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

This paper focuses on the number of unlabeled bipartite graphs. While a few results have been reported on counting
series of unlabeled bipartite graphs [1–4], no closed-form expression is known for the exact number of such graphs
in the literature. It was established in [5] that this problem is equivalent to the enumeration of binary matrices that
remain distinct under row and column permutations. The problem is formally stated as follows. Let (I, O, E) denote
a graph with two disjoint sets of vertices, I and a set of vertices, O , where each edge in E connects a vertex in I with
a vertex in O . We let n = |I |, r = |O|, and refer to such a graph as an (n, r )-bipartite graph. Let G1 = (I, O, E1)
and G2 = (I, O, E2) be two (n, r )-bipartite graphs, and α : I → I and β : O → O be both bijections. The bijection
pair (α, β) is an isomorphism between G1 and G2 provided that (α(v1), β(v2)) ∈ E2 if and only if (v1, v2) ∈ E1,
∀v1 ∈ I, ∀v2 ∈ O . The set of 2nr (n, r )-bipartite graphs is partitioned into equivalence classes under such bijection
pairs. Let Bu(n, r ) denote any set of (n, r )-bipartite graphs, formed by including exactly one such graph from each of
the equivalence classes. Determining |Bu(n, r )| amounts to an enumeration of non-isomorphic (n, r )-bipartite graphs
that will henceforth be referred to as unlabeled (n, r )-bipartite graphs. In [5], Harrison used Pólya’s counting theorem
to obtain an expression for the number of distinct n×r binary matrices. He further established that this expression also
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enumerates the number of unlabeled (n, r )-bipartite graphs. However, Harrison’s expression involves a nested sum
whose argument includes factorial, exponentiation and greatest common divisor operations, and it cannot be simplified
into a closed-form expression even when n is fixed to small numbers such as 2 and 3. Clearly, |Bu(1, r )| = r + 1.
Deriving closed-form formulas for n = 2 and n = 3 is the focus of the present work.

2. A closed-form formula for |Bu(2, r)|

We use Polya’s counting theorem (See [6]), in particular Harrison’s cycle index formulation in [5] to compute
|Bu(2, r )|. Let Sn denote the symmetric group of permutations of degree n acting on set N = {1, 2, . . . , n}. Suppose
that the n! permutations in Sn are indexed by 1, 2, . . . , n! in some arbitrary, but fixed manner. The cycle index
polynomial of Sn is defined as follows ([7],see p.35, Eqn. 2.2.1):

ZSn (x1, x2, . . . , xn) =
1
n!

n!∑
m=1

n∏
k=1

x
pm,k
k (1)

where pm,k denotes the number of cycles of length k in the disjoint cycle representation of the m th permutation in Sn ,
and

∑n
k=1kpm,k = n, ∀m = 1, 2, . . . , n!.

Let Sn × Sr denote the direct product of symmetric groups Sn and Sr acting on N = {1, 2, . . . , n} and R =

{1, 2, . . . , r}, respectively, where n and r are positive integers such that n < r. It can be inferred from Harrison ([8],
Lemma 4.1 and Theorem 4.2) that the cycle index polynomial of Sn × Sr is given by

ZSn×Sr (x1, x2, . . . , xnr ) = ZSn (x1, x2, . . . , xn) ⊠ ZSr (x1, x2, . . . , xr ), (2)

where ⊠ is a particular polynomial multiplication that distributes over ordinary addition, and in which the
multiplication Xm

⨀
X t of two product terms, Xm = x

pm,1
1 x

pm,2
2 · · · x pm,n

n and X t = x
qt,1
1 x

qt,2
2 · · · xqt,r

r in ZSn and
ZSr , respectively, is defined as1

Xm

⨀
X t =

n∏
k=1

r∏
j=1

x
pm,k qt, j gcd(k, j)
lcm(k, j) . (3)

Harrison further proved that [5]

|Bu(n, r )| = ZSn×Sr (2, 2, .., 2  
nr

) (4)

when2 n ̸= r .
We need one more fact that can be found in Harary ([7], p. 36) in order to compute |Bu(2, r )|:

ZSr (x1, x2, . . . . . . , xr ) =
1
r

r∑
i=1

xi ZSr−i (x1, x2, . . . . . . , xr−i ) (5)

where ZS0 () = 1.
We now calculate |Bu(2, r )| as follows.3

|Bu (2, r)| = ZS2×Sr (2, 2, . . . , 2), (6)

=
[
ZS2 (x1, x2) ⊠ ZSr (x1, x2, . . . , xr )

]
(2, 2, . . . , 2), (7)

=

[(
1
2

(
x2

1 + x2
))

⊠ ZSr (x1, x2, . . . , xr )
]

(2, 2, . . . , 2), (8)

=
1
2

[
x2

1 ⊠ ZSr (x1, x2, . . . , xr ) + x2 ⊠ ZSr (x1, x2, . . . , xr )
]

(2, 2, . . . , 2), (9)

1 The lcm(a, b) and gcd(a, b) denote least common multiple and greatest common divisor of a and b.
2 As noted in [5], n = r case involves a different cycle index polynomial and will be omitted here as well.
3 Note that the zero powers of x1, x2, are not shown in the cycle index polynomial ZS2 . We will use the same convention for all other cycle

index polynomials throughout the paper.
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=
1
2

{[
x2

1 ⊠
1
r !

r !∑
t=1

r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2) +

[
x2 ⊠

1
r !

r !∑
t=1

r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2),

}
, (10)

=
1
2

{[ 1
r !

r !∑
t=1

x2
1

⨀ r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2) +

[ 1
r !

r !∑
t=1

x2

⨀ r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2)

}
, (11)

=
1
2

{[ 1
r !

r !∑
t=1

r∏
j=1

x
2qt, j gcd(1, j)
lcm(1, j)

]
(2, 2, . . . , 2) +

[ 1
r !

r !∑
t=1

r∏
j=1

x
qt, j gcd(2, j)
lcm(2, j)

]
(2, 2, . . . , 2).

}
, (12)

=
1
2

{[ 1
r !

r !∑
t=1

r∏
j=1

x
2qt, j
j

]
(2, 2, . . . , 2) +

[ 1
r !

r !∑
t=1

r∏
j=1

x
qt, j gcd(2, j)
lcm(2, j)

]
(2, 2, . . . , 2)

}
, (13)

=
1
2

{[ 1
r !

r !∑
t=1

r∏
j=1

22qt, j
]

+

[ 1
r !

r !∑
t=1

r∏
j=1

2qt, j gcd(2, j)
]}

, (14)

=
1
2

{[ 1
r !

r !∑
t=1

r∏
j=1

(22)qt, j
]

+

[ 1
r !

r !∑
t=1

∏
odd j

2qt, j
∏

even j

(22)qt, j
]}

, (15)

=
1
2

{[
ZSr (22, 22, . . . , 22)

]
+

[
ZSr (2, 22, 2, 22, . . .)

]}
. (16)

Thus, we have reduced the computation of |Bu(2, r )| to computing the two terms in (16). These computations are
carried out in the next two lemmas.

Lemma 1. ZSr (22, 22, . . . , 22) =
(r+3

r

)
.

Proof. Using (5), we have

r ZSr (22, 22, . . . , 22) =

r∑
i=1

22 ZSr−i (2
2, 22, . . . , 22), (17)

(r − 1)ZSr−1 (22, 22, . . . , 22) =

r−1∑
i=1

22 ZSr−1−i (2
2, 22, . . . , 22). (18)

Subtracting the second equation from the first one and simplifying it gives

r ZSr (22, 22, . . . , 22) − (r − 1)ZSr−1 (22, 22, . . . , 22) = 4ZSr−1 (22, 22, . . . , 22), (19)

ZSr (22, 22, . . . , 22) = (
r + 3

r
)ZSr−1 (22, 22, . . . , 22). (20)

Expanding the last equation recursively, we obtain

ZSr (22, 22, . . . , 22) = (
r + 3

r
)(

r + 2
r − 1

)ZSr−2 (22, 22, . . . , 22), (21)

= (
r + 3

r
)(

r + 2
r − 1

)(
r + 1
r − 2

) . . . (
4
1

)ZS0 (). (22)

Noting that ZS0 () = 1 proves the statement, i.e.,

ZSr (22, 22, . . . , 22) =

(
r + 3

r

)
. □

Lemma 2.

ZSr (2, 22, 2, 22, . . .) =
2r2

+ 8r + 7 + (−1)r

8
. (23)
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Proof. By (5),

r ZSr (2, 22, . . .) =

r−β1∑
odd i

2ZSr−i (2, 22, . . .) +

r−β2∑
even i

22 ZSr−i (2, 22, . . .), (24)

where β1 = 1, β2 = 0 if r is even and β1 = 0, β2 = 1 if r is odd. Similarly, for r − 2,

(r − 2)ZSr−2 (2, 22, . . .) =

r−2−β1∑
odd i

2ZSr−2−i (2, 22, . . .) +

r−2−β2∑
even i

22 ZSr−2−i (2, 22, . . .). (25)

Subtracting the second equation from the first one and rearranging the terms give

r ZSr (2, 22, . . .) = 2ZSr−1 (2, 22, . . .) + (r + 2)ZSr−2 (2, 22, . . .). (26)

We now use induction and this recurrence to prove that (23) holds.

Basis r = 0. Substituting r = 0 in (23) gives 1 as it should since ZS0 () = 1.
r = 1. Substituting r = 1 in (23) gives

ZS1 (2) =
2(1)2

+ 8(1) + 7 + (−1)1

8
= 2, (27)

and this agrees with (5), i.e., ZS1 (2) =
1
1

(
2ZS0 ()

)
= 2.

Induction Step: Suppose that (23) holds for r − 2 and r − 1. Then by (26), we have

r ZSr (2, 22, . . .) = 2ZSr−1 (2, 22, . . .) + (r + 2)ZSr−2 (2, 22, . . .),

= 2
2(r − 1)2

+ 8(r − 1) + 7 + (−1)r−1

8
+ (r + 2)

2(r − 2)2
+ 8(r − 2) + 7 + (−1)r−2

8
, (28)

= r
2r2

+ 8r + 7 + (−1)r

8
, (29)

that agrees with (23). □

Finally, by combining Lemmas 1 and 2, we have

Theorem 1.

|Bu(2, r )| =
2r3

+ 15r2
+ 34r + 22.5 + 1.5(−1)r

24
. □ (30)

3. A closed-form formula for |Bu(3, r)|

We proceed as in the computation of |Bu(2, r )|.

|Bu (3, r)| = ZS3×Sr (2, 2, . . . . . . , 2), (31)

=
[
ZS3 (x1, x2, x3) ⊠ ZSr (x1, x2, . . . . . . , xr )

]
(2, 2, . . . , 2), (32)

=

[(
1
6

(
x3

1 + 3x1x2 + 2x3
))

⊠ ZSr (x1, x2, . . . . . . , xr )
]

(2, 2, . . . , 2), (33)

=
1
6

[
x3

1 ⊠ ZSr (x1, x2, . . . . . . , xr )
]

(2, 2, . . . , 2) +

1
6

[
3x1x2 ⊠ ZSr (x1, x2, . . . . . . , xr )

]
(2, 2, . . . , 2) +

1
6

[
2x3 ⊠ ZSr (x1, x2, . . . . . . , xr )

]
(2, 2, . . . , 2), (34)

=
1
6

{[
x3

1 ⊠
1
r !

r !∑
t=1

r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2) +

[
3x1x2 ⊠

1
r !

r !∑
t=1

r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2) +
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[
2x3 ⊠

1
r !

r !∑
t=1

r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2)

}
, (35)

=
1
6

{[ 1
r !

r !∑
t=1

x3
1

⨀ r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2) +

[ 3
r !

r !∑
t=1

x1x2

⨀ r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2) +

[ 2
r !

r !∑
t=1

x3

⨀ r∏
j=1

x
qt, j
j

]
(2, 2, . . . , 2)

}
, (36)

=
1
6

{[ 1
r !

r !∑
t=1

r∏
j=1

x
3qt, j gcd(1, j)
lcm(1, j)

]
(2, 2, . . . , 2) +

[ 3
r !

r !∑
t=1

r∏
j=1

x
qt, j gcd(1, j)
lcm(1, j) x

qt, j gcd(2, j)
lcm(2, j)

]
(2, 2, . . . , 2) +

[ 2
r !

r !∑
t=1

r∏
j=1

x
qt, j gcd(3, j)
lcm(3, j)

]
(2, 2, . . . , 2)

}
, (37)

=
1
6

{[ 1
r !

r !∑
t=1

r∏
j=1

x
3qt, j
j

]
(2, 2, . . . , 2) +

[ 3
r !

r !∑
t=1

r∏
j=1

x
qt, j
j x

qt, j gcd(2, j)
lcm(2, j)

]
(2, 2, . . . , 2) +

[ 2
r !

r !∑
t=1

r∏
j=1

x
qt, j gcd(3, j)
lcm(3, j)

]
(2, 2, . . . , 2)

}
, (38)

=
1
6

{[ 1
r !

r !∑
t=1

r∏
j=1

23qt, j
]

+

[ 3
r !

r !∑
t=1

r∏
j=1

2qt, j 2qt, j gcd(2, j)
]

+

[ 2
r !

r !∑
t=1

r∏
j=1

2qt, j gcd(3, j)
]}

, (39)

=
1
6

{[ 1
r !

r !∑
t=1

r∏
j=1

(23)qt, j
]

+ 3
[ 1

r !

r !∑
t=1

∏
odd j

(22)qt, j
∏

even j

(23)qt, j
]

+2
[ 1

r !

r !∑
t=1

∏
j mod 3=0

(23)qt, j
∏

j mod 3̸=0

2qt, j
]}

, (40)

=
1
6

{[
ZSr (23, 23, . . . , 23)

]
+ 3

[
ZSr (22, 23, 22, 23, . . .)

]
+ 2

[
ZSr (2, 2, 23, 2, 2, 23, . . .)

]}
. (41)

Thus, we have reduced the computation of |Bu(3, r )| to computing the three terms in (41). These computations are
carried out in the next three lemmas.

Lemma 3. ZSr (23, 23, . . . , 23) =
(r+7

r

)
.

Proof. Using (5), we have

r ZSr (23, 23, . . . , 23) =

r∑
i=1

23 ZSr−i (2
3, 23, . . . , 23), (42)

(r − 1)ZSr−1 (23, 23, . . . , 23) =

r−1∑
i=1

23 ZSr−1−i (2
3, 23, . . . , 23). (43)

Subtracting the second equation from the first one and simplifying it give

r ZSr (23, 23, . . . , 23) − (r − 1)ZSr−1 (23, 23, . . . , 23) = 8ZSr−1 (23, 23, . . . , 23), (44)

ZSr (23, 23, . . . , 23) = (
r + 7

r
)ZSr−1 (23, 23, . . . , 23). (45)



Please cite this article in press as: A. Atmaca, A. Yavuz Oruç, On the size of two families of unlabeled bipartite graphs, AKCE International Journal of Graphs and Combinatorics
(2017), https://doi.org/10.1016/j.akcej.2017.11.008.

6 A. Atmaca, A. Yavuz Oruç / AKCE International Journal of Graphs and Combinatorics ( ) –

Expanding the last equation recursively, we obtain

ZSr (23, 23, . . . , 23) = (
r + 7

r
)(

r + 6
r − 1

)ZSr−2 (23, 23, . . . , 23), (46)

= (
r + 7

r
)(

r + 6
r − 1

)(
r + 5
r − 2

) . . . (
8
1

)ZS0 (). (47)

Noting that ZS0 () = 1 proves the statement, i.e.,

ZSr (23, 23, . . . , 23) =

(
r + 7

r

)
=

(
r + 7

7

)
. □

Lemma 4.

ZSr (22, 23, 22, 23, . . .) =
(r + 4)

(
2r4

+ 32r3
+ 172r2

+ 352r + 15(−1)r
+ 225

)
960

. (48)

Proof. We consider two cases:

Case 1: r mod 2 = 0.

By (5),

r ZSr (22, 23, 22, 23, . . .) =

r−1∑
odd i

22 ZSr−i (2
2, 23, 22, 23, . . .) +

r∑
even i

23 ZSr−i (2
2, 23, 22, 23, . . .), (49)

and

(r − 2)ZSr−2 (22, 23, 22, 23, . . .) =

r−3∑
odd i

22 ZSr−2−i (2
2, 23, 22, 23, . . .) +

r−2∑
even i

23 ZSr−2−i (2
2, 23, 22, 23, . . .). (50)

Subtracting the second equation from the first one and rearranging the terms give

r ZSr (22, 23, 22, 23, . . .) = 4ZSr−1 (22, 23, 22, 23, . . .) + (r + 6)ZSr−2 (22, 23, 22, 23, . . .). (51)

Case 2: r mod 2 = 1.

Again by (5),

r ZSr (22, 23, 22, 23, . . .) =

r∑
odd i

22 ZSr−i (2
2, 23, 22, 23, . . .) +

r−1∑
even i

23 ZSr−i (2
2, 23, 22, 23, . . .), (52)

(r − 2)ZSr−2 (22, 23, 22, 23, . . .) =

r−2∑
odd i

22 ZSr−2−i (2
2, 23, 22, 23, . . .) +

r−3∑
even i

23 ZSr−2−i (2
2, 23, 22, 23, . . .). (53)

Subtracting the second equation from the first one, and rearranging the terms give

r ZSr (22, 23, 22, 23, . . .) = 4ZSr−1 (22, 23, 22, 23, . . .) + (r + 6)ZSr−2 (22, 23, . . .). (54)

Hence, we obtain the same recurrence for both even and odd r . We now use induction and this recurrence to prove
that (48) holds.

Basis r = 0. Substituting r = 0 in (48) gives 1 as it should since ZS0 () = 1.
r = 1. Substituting r = 1 in (48) gives

ZS1 (22) =
(1 + 4)

(
2(1)4

+ 32(1)3
+ 172(1)2

+ 352(1) + 15(−1)1
+ 225

)
960

= 4, (55)

and this agrees with (5), i.e., ZS1 (22) =
1
1

(
22 ZS0 ()

)
= 22

= 4.

Induction Step:
Suppose that (48) holds for r − 2 and r − 1. Then by (54), we have

r ZSr (22, 23, 22, 23, . . .)
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= 4ZSr−1 (22, 23, 22, 23, . . .) + (r + 6)ZSr−2 (22, 23, 22, 23, . . .), (56)

=
4(r + 3)

(
2(r − 1)4

+ 32(r − 1)3
+ 172(r − 1)2

+ 352(r − 1) + 15(−1)(r−1)
+ 225

)
960

+
(r + 6)(r + 2)

(
2(r − 2)4

+ 32(r − 2)3
+ 172(r − 2)2

+ 352(r − 2) + 15(−1)(r−2)
+ 225

)
960

, (57)

=
8r5

+ 120r4
+ 640r3

+ 1440r2
+ [1212 − 60(−1)r ]r − 180(−1)r

+ 180
960

+

2r6
+ 32r5

+ 180r4
+ 400r3

+ [193 + 15(−1)r ]r2
+ [120(−1)r

− 312]r + 180(−1)r
− 180

960
, (58)

=
2r6

+ 40r5
+ 300r4

+ 1040r3
+ [1633 + 15(−1)r ]r2

+ [900 + 60(−1)r ]r
960

, (59)

= r
(r + 4)

(
2r4

+ 32r3
+ 172r2

+ 352r + 15(−1)r
+ 225

)
960

, (60)

that agrees with (48). □

Lemma 5.

ZSr (2, 2, 23, 2, 2, 23, . . .) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(r3
+ 12r2

+ 45r + 54)
54

if r mod 3 = 0

(r3
+ 12r2

+ 45r + 50)
54

if r mod 3 = 1

(r3
+ 12r2

+ 39r + 28)
54

if r mod 3 = 2

(61)

Proof. We consider three cases:

Case 1: r mod 3 = 0. Using (5), we have

r ZSr (2, 2, 23, . . .) =

r∑
i mod 3=0

23 ZSr−i (2, 2, 23, . . .) +

r−2∑
i mod 3=1

2ZSr−i (2, 2, 23, . . .)

+

r−1∑
i mod 3=2

2ZSr−i (2, 2, 23, . . .), (62)

(r − 3)ZSr−3 (2, 2, 23, . . .) =

r−3∑
i mod 3=0

23 ZSr−3−i (2, 2, 23, . . .) +

r−5∑
i mod 3=1

2ZSr−3−i (2, 2, 23, . . .)

+

r−4∑
i mod 3=2

2ZSr−3−i (2, 2, 23, . . .). (63)

Subtracting (63) from (62) we get

r ZSr (2, 2, 23, . . .) − (r − 3)ZSr−3 (2, 2, 23, . . .) = 2ZSr−1 (2, 2, 23, . . .)

+ 2ZSr−2 (2, 2, 23, . . .) + 8ZSr−3 (2, 2, 23, . . .), (64)

r ZSr (2, 2, 23, . . .) = 2ZSr−1 (2, 2, 23, . . .) + 2ZSr−2 (2, 2, 23, . . .) + (r + 5)ZSr−3 (2, 2, 23, . . .). (65)

Cases 2, 3: r mod 3 = 1, r mod 3 = 2. We omit the derivations for these two cases as it is not difficult to show that
these two cases also lead to the recurrence in (65).

Now we use the recurrences given in (5) and (65) to prove (61) by induction on r .
Basis (r = 0). Substituting r = 0 in (61) gives 1 as it should since ZS0 () = 1.
(r = 1). Substituting r = 1 in (61) gives 2 as it should since ZS1 (2) =

1
1

(
2ZS0 ()

)
= 2 by (5).
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(r = 2). Substituting r = 2 in (61) gives 3 as it should since
ZS2 (2, 2) =

1
2

(
2ZS1 (2) + 2ZS0 ()

)
=

4+2
2 = 3 by (5).

(r = 3). Substituting r = 3 in (61) gives 6 as it should since
ZS3 (2, 2, 23) =

1
3

(
2ZS2 (2, 2) + 2ZS1 (2) + 23 ZS0 ()

)
=

6+4+8
3 = 6 by (5).

Induction Step: Suppose that (61) holds for r − 1, r − 2, and r − 3 and r mod 3 = 0. Then by (65),

r ZSr (2, 2, 23, . . .)

= 2ZSr−1 (2, 2, 23, . . .) + 2ZSr−2 (2, 2, 23, . . .) + (r + 5)ZSr−3 (2, 2, 23, . . .), (66)

=
2[(r − 1)3

+ 12(r − 1)2
+ 39(r − 1) + 28]

54
+

2[(r − 2)3
+ 12(r − 2)2

+ 45(r − 2) + 50]
54

+
(r + 5)[(r − 3)3

+ 12(r − 3)2
+ 45(r − 3) + 54]

54
, (67)

=
2r3

+ 18r2
+ 36r + 2r3

+ 12r2
+ 18r

54
+

r4
+ 8r3

+ 15r2

54
, (68)

=
r4

+ 12r3
+ 45r2

+ 54r
54

, (69)

=
r (r3

+ 12r2
+ 45r + 54)

54
, (70)

as stated in (61). The other two cases are shown to hold similarly and omitted. □

Combining Lemmas 3–5 we have

Theorem 2.

|Bu (3, r)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6

[(
r + 7

7

)
+

3 (r + 4)
(
2r4

+ 32r3
+ 172r2

+ 352r + 15(−1)r
+ 225

)
960

+
2(r3

+ 12r2
+ 45r + 54)

54

]
if r mod 3 = 0,

1
6

[(
r + 7

7

)
+

3 (r + 4)
(
2r4

+ 32r3
+ 172r2

+ 352r + 15(−1)r
+ 225

)
960

+
2(r3

+ 12r2
+ 45r + 50)

54

]
if r mod 3 = 1,

1
6

[(
r + 7

7

)
+

3 (r + 4)
(
2r4

+ 32r3
+ 172r2

+ 352r + 15(−1)r
+ 225

)
960

+
2(r3

+ 12r2
+ 39r + 28)

54

]
if r mod 3 = 2. □

Remark 1. The computation method described here can be extended to |Bu(n, r )| for n ≥ 4, but the solutions of
resulting recurrences become significantly more complex to obtain closed form formulas. More significantly, the
number of recurrences that must be solved is given by the number of partitions of n that is known to increase
exponentially with n by Ramanujan–Hardy–Rademacher’s asymptotic formula. We also note that for any integer

n ≥ 2, the solution of one of these recurrences results in

(
r+2n

−1
r

)
n!

, and this establishes a lower bound for
|Bu(n, r )|, ∀ r ≥ 2. □

Remark 2. It is noted that |Bu(2, 2i − 2)| coincides with the i th hexagonal pyramidal number (see the integer
sequence, A002412 in [9]), when i = 1, 2, 3, . . .. □
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