
з ш у і й т і ш OF т ш т г ш і г \ m т п

l ï S ï i i Î?I0I^Ö3M

i »••■■r *, vr γ · г‘і '

SUBMITTED TO THS DEPt.HTb

BLECTKOMÏCS Hÿi Ч
MHD THE INSTITOTE Щ Ш

¡r·', ·!~< -r·. 'f ·'·■■ T̂>· P>JT ’Г··
IN PAHTI AL FüLFlLiPíSi'^T О? '1 ',Ν, V.·;

?ОН THE DEGLEB О?
* /Г Ό L i * ·· \ ,·. '^-**Í4 ‘ŵ'~ — .

/ЗЗІ

SIMULATION OF DIGICIPHER^^^^, AN HDTV
SYSTEM PROPOSAL

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

ELECTRONICS ENGINEERING

AND THE INSTITUTE OF ENGINEERING AND SCIENCES

OF BILKENT UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By
Levent Oktem

November 1991

'0 3 2

I certif} ̂that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Levent Onural(Principal Advisor)

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

A s^c. Prof. Dr. Eraal Ankan

I certify that I have read this thesis and that in my opinion it is fully adequate,
in scope and in quality, as a thesis for the degree of Master of Science.

Assoc. Prof. Dr. Erjjs Çetin

Approved for the Institute of Engineering and Sciences:

Prof. Dr. Mehmet
Director of Institute of Engineering and Sciences

ABSTRACT

SIMULATION OF DIGICIPHER^^^^ AN HDTV SYSTEM
PROPOSAL

Levent Oktem
M.S. in Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Levent Onural

November 1991

In this thesis, the digital video encoder-decoder parts of an American
HDTV system proposal, DigiCipher^ '̂ ̂ is simulated in an image sequencer,
based on the system description sheets. Numerical and subjective performances
are tested, by observing and making calculations on the decoder outputs of the
system simulation. The performance tests show that the image quality does not
have HDTV quality. Considering the very good picture qualit}' ̂ in the demon­
strations of the designer company (General Instruments), it is suspected that
the description sheets do not mention all of the data compression methods used
in the system.

Keyiuords : HDTV, Data Compression, Digital Video Encoder-Decoder

m

ÖZET

YÜKSEK TANIMLAMALI TELEVİZYON SİSTEM
ÖNERİLERİNDEN DIGICIPHER’IN SİMÜLASYONU

Levent Öktem
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Levent Onural
Kasım 1991

Bu çalışmada, Amerikan yüksek tanımlamalı televizyon (YTTV) sistem
önerilerinden DigiCiplıer^^^’in sa5usal video kodlayıcı- kod çözücü bölümünün
bilgisayar simülasyonu, sistem hakkında tasarımcı firma tarafından çıkarılan
tanımlama raporuna dayanılarak yapılmı.ştır. Kod çözücü çıktıları üzerinde
gözlem ve hesaplamalar 3mlu3da nümerik ve öznel performans testleri u3'’gu-
lanmıştır. Performans testleri, görüntü kalitesinin YTTV kalitesinde olmadığını
göstermiştir. Tasarımcı firmanın (General Instruments) yaptığı demonstrasy-
onlardaki görüntü kalitesinin çok iyi olduğu gözönüne alındığında, tanımlama
raporunda sistemde kullanılan tüm bilgi sıkıştırma yöntemlerinden bahsedilmediği
kuşkusu uyanmaktadır.

Anahtar kelimeler : YTTV, Video kodlayıcı-kod çözücü, Bilgi sıkıştırma.

IV

ACKNOWLEDGMENT

I would like to thank to Assoc. Prof. Levent Onural for giving me the
opportunity to study at Tampere Universitj'· of Technology, Finland, for one
year, where I made this study; and for guiding me in the stage of writing the
thesis.

I am indebted to Prof. Yrjo Neuvo for his supervision of my studies in
Finland.

I want to express my special thanks to Vesa Lunden and Ro}'̂ Mickos for
their helps in different stages of my work;and to Mehmet Gencer, with whom
I started this study.

I would also like to thank to F. Levent Degertekin, to Zafer Gedik, to
Satılmış Topçu and to Özlem Albayrak for their helps in the stage of typing
this thesis.

Contents

1 INTRODUC03ION 1

1.1 H D T V ... 1

1.2 HDTV Efforts in USA, Japan and E u r o p e 3

1.3 DigiCipher™ System O verview .. 3

2 Digital Video Encoder of DigiCipher^^ 10

2.1 Chrominance Preprocessor.. 11

2.2 Discrete Cosine Transform (D C T)... 12

2.3 Coefficient Quantization (Normalization)...................................... 14

2.4 Huffman Coding .. 18

2.5 Motion Estimation-Compensation... 22

3 Simulations 25

3.1 Ecjuipment..., .. 25

3.2 P rocedu re .. 25

3.2.1 Assumption List ... 25

3.2.2 Image Sequen ces... 27

3.2.3 Relation Between System Blocks and Program Functions 28

4 Results 42

vi

CONTENTS

4 Results

4.1 Visual Performance

4.2 Numerical Results

5 Conclusions

42

42

44

v n

49

List of Figures

1.1 Comparison of HDTV and conventional TV 2

1.2 American and European routes to H D T V 4

1.3 Overall S5’stem Block Diagram... 5

1.4 Encoder Block Diagram 7

1.5 Decoder Block Diagram 8

2.1 Digital Video Encoder block d iagram ... 11

2.2 Chrominance Decimation... 12

2.3 Adaptation of Quantization L e v e l... 16

2.4 Huffman tree for the given exam ple.. 19

2.5 Region in the current f r a m e ... 23

2.6 Region in the previous fram e... 23

3.1 The block diagram of the simulation system, DVSR VTE-100 26

3.2 Zig-zag scan p a t te r n ... 28

3.3 Monitoring the reconstructed fra m e .. 29

3.4 Visual performance detection ... 41

3.5 Color superposition.. 41

4.1 Simulation output for the sequence Costgirls............................... 43

viii

LIST OF FIGURES IX

4.2 Quantization level versus picture number for Costgirls

4.3 Quantization level versus picture number for Car

4.4 Quantization level versus picture number for Cross

45

46

47

List of Tables

1.1 System Param eters.. 9

2.1 Example spatially-correlated block 13

2.2 DCT coefEcients of the block in table 2 .1 14

2.3 A convenient distribution for number of b i t s 15

2.4 Data in table 2.2 quantized with the bit allocation as in table 2.3 15

2.5 Table for determining number of bits to be allocated 17

2.6 Number of bits used for each code word of two-dimensional Huff­
man code book 20

4.1 Numerical results of the sim ulation ... 44

Chapter 1

INTRODUCTION

1.1 H D TV

HDTV is a new TV standard which has much higher resolution than the current
systems (roughly twice more horizontal and vertical resolution).

It has a wide-screen aspect ratio, 16:9, where the aspect ratio for the con­
ventional systems is 4:3.

In conventional systems, the viewing distance is about seven times the
picture height. From closer distances, the patterning due to limited resolution
becomes visible. In HDTV, since the resolution is higher, a closer viewing
distance, about three times the picture height, is allowed. This corresponds
to a horizontal viewing angle of 30° , where for the conventional systems this
angle is 10°. This is depicted in Figure 1.1.

The higher c[uality image is accompanied by new audio capabilities. Sound
is digital, and its quality is comparable with CD sound quality. Multichannel
and surround sound capabilities are also available.

The video bandwidth of an uncompressed HDTV signal is almost four times
as much as a conventional color TV signal. For compatibility with the band­
width of already allocated channels, the HDTV signal must be intensively
compressed by advanced signal processing methods. Since the video data is
the one which takes most of the bandwidth, the greatest elforts of compression
are focussed on the video data ([1] , [2] and

CHAPTER 1. INTRODUCTION

H
HDTV
16:9

Figure 1.1: Comparison of HDTV and conventional TV

1.2 H D TV Efforts in USA, Japan and Europe

There has been big efforts in USA, Japan and Europe to develop an HDTV
standard. Both in Euroj^e and in the United States, the change into HDTV
is planned to be gradual. When the incompatibility of the Japanese system
was realized in the middle 1980’s, the Europeans and the Americans started
to develop their own standards. One of the important objectives of developing
a new standard is the compatibility with already existing systems. Since the
already existing systems in Europe, USA and JajDan are not compatible with
each other, it seems that there will be three different standards for HDTV.

There are tv,'o fundamental differences in the European approach and Amer­
ican approach to the HDTV system design: First difference is that Europeans
have organized a cooperation among man)'· firms and institutes for the sys­
tem design, where Americans preferred competition between different design­
ers, among which they will choose the best design. Second difference is that
Europeans try to achieve a big quality improvement with little technological
improvement, followed by a gradual improvement in technology. Americans
try to achieve a big technological improvement first, thinking that it will be
easier to improve the quality with the new technology (Figure 1.2).

CHAPTER. 1. INTRODUCTION 3

1.3 DigiCipher™ System Overview

This section is summarized from the description sheets of DigiCipher^^^ ([4])

The DigiCipher^'^ HDTV system is an integrated system that can provide
high definition digital video, CD-quality digital audio, data and text services
over a single VHF or UHF channel.

Figure 1.3 shows the overall system block diagram. At the HDTV station,
the encoder accepts one high definition video and four audio signals a.nd trans­
mits one 16-QAM modulated data stream.. The control computer can supply
program rehited information such as program name, etc. At consumer’s home.
The DigiCipher^^^ HDTV receiver receives the 16-QAM data stream and pro­
vides video, audio, data, and text to the subscriber. On screen display can be
used to display program related information.

Figure 1.4 shows the block diagram of the encoder. The digital video
encoder accepts YUV inputs with 16:9 aspect ratio and 1050-line interlaced

CHAPTER 1. INTRODUCTION

Quality

Figure 1.2: American and European routes to HDTV

CHAPTER 1. INTROD UCTION

s

o

Q
X

1 2
 ̂ § i 5 O = 5 CuX ·< Q H

<
&IL

$

Figure 1.3: Overall System Block Diagram

CHAPTER 1. INTRODUCTION

(1050/2:1) at 59.94 field rate. The YUV signals are obtained from analog
RGB inputs RGB-to-YUV matrix, low pass filtering, and A /D conversion.
The sampling frequency is 51.80 MHz for Y, U, and V. The digital video en­
coder implements the compression algorithm cind generates video data stream.
The data/text processor accepts four data channels at 9600 baud and gener­
ates a data stream. The control channel processor interfaces with the control
computer and generates control data sti'eam.

The multiplexer combines the various data streams into one data stream at
15.8 Mbps. The Forward Error Correction (FEC) encoder adds error correction
overhead bits and provides 19.42 Mbps of data to the 16-QAM modulator. The
symbol rate of the 16-QAM signal is 4.86 Megasymbols/sec.

Figure 1.5 shows the block diagram of the decoder. The 16-QAM demodula­
tor receives IF signal from the VHF/UHF tuner and provides the demodulated
data at 19.42 Mbps. The demodulator has an adaptive equalizer to combat
multipath distortions common in VHF or UHF terrestrial transmission. The
FEC decoder corrects almost all random or burst errors and provides the error-
free data to the Sync/Data selector. The Sync/Data selector maintains overall
synchronization and provides video, audio, data/text, and control data streams
to appropriate processing blocks.

The control channel processor decodes the program related inrormation.
The user microprocessor receives commands from the remote control unit
(RCU) and controls various functions of the decoder including the channel
selection.

Table 1.1 shows the summary of system parameters.

As mentioned earlier, greatest efforts of compression are focussed on the
video data, and this compression is done by the encoder. Hence, the video
encoder is the most important part of the decoder. In this study, the video en­
coder is computer-simulated using an image sequencer. Next chapter describes
the video encoder in detail.

CHAPTER 1. INTROD UCTION

Figure 1.4; Encoder Block Diagram

cm AFTER 1. INTRODUCTION O
Q 3

Figure 1.5: Decoder Block Diagram

CHAPTER 1. INTRODUCTION

Param eters Value

V ID E O

Aspect Ratio 16.-9

Raster Format 1050/2:1 Interlaced

Frame Rate 29.97 Hz

Bandwidth

Luminance 22 M Hz

Chrominance 5.5 MHz

Horizontal Resolution

Static 660 Lines per Picture Height.

Dynamic 660 Lines per Picture H eight

Horizontal Line Time

Active 27.18 psec

Blanking 4.63 psec

Sam pling Frequency 51.8 MHz

Active Pixels

Luminance 960(V) X 1408(H)

Chrominance 480(V) X 352(H)

A U D IO

Bandwidth 15 kHz

Sam pBng Frequency 44.05 kHz

Dynam ic Range 85 dB

D A T A

Video Data 13.83 Mbps

Audio Data 1.76 Mbps

Async Data and Text 126 Kbps

Control Data 126 Kbps

Total Data Rate 15.84 Mbps

T R A N S M IS S IO N

F E C Rate 130/154

Data Transmission Rate 19.43 Mbps

16-Q AM Symbol Rate 4.86 MHz

Table 1.1: System Para.meters

Chapter 2

Digital Video Encoder of DigiCipherTM

The video encoder of DigiCipher ·̂'^ ̂ is a DCT-hybrid coder. Figure 2.1 shows
the block diagram of the video encoder.

The ‘refreshing’ mentioned in Figure 2.1 means that the prediction frame is
periodically forced to zero. This is for making sure that the decoder will have
the same memory content with encoder shortly after tuning to the channel or
after any transmission errors. In other words, if the refreshing period is, say,
20 frames, then the first frame is PCM coded instead of DPCM. The next 19
frames are DPCM coded, i.e. the difference between the actual frame and the
motion compensated previous frame is coded. Then, the 21®̂ frame is again
PCM coded. Not the difference with prediction, but the actual frame is input
to the DCT-coder. This is the same thing with having a ‘zero prediction’ b}̂
default.

The reason for using refreshing is this: When the receiver is just tuned
to the channel, it has a different ‘previous frame’ in its memory than the
encoder has. In DPCM mode, the receiver tries to reconstruct the frame by
adding the received difference to the motion compensated previous frame. If
the encoder always transmits the differences, the receiver will never obtain
the actual frame. But in PCM mode, no previous frame is needed, hence the
receiver can reconstruct the actual frame even though it does not have the
correct ‘previous frame’ .

The compression process can be broken down into five different subpro­
cesses:

1. Chrominance Preprocessor

10

CHAPTER 2. DIGITAL VIDEO ENCODER OE DIGICIPHERT^^ 11

Figure 2.1: Digital Video Encoder block diagram

2. Discrete Cosine Transform

3. Coefficient Quantization (Normalization)

4. Huffman (Variable Length) Coding

5. Motion Estimation and Compensation

2.1 Chrominance Preprocessor

TOMJLT1PLEXB=1

Human eye is less sensitive to color changes (both temporal and spatial) than
the light intensity changes ([5]). To make use of this fact, The YUV color
space is used. The Y component (luminance) is the light intensity, U and
V (chrominance) are the color data. The relation between RGB and YUV
representations is

Y = 0.30R + 0.59(9+ 0.11P

U = 0 .493(5 - V)

U = 0 .877(5- V),

(2.1)

(2.2)

(2.3)

The digital RGB data from the camera is converted to YUV using (2.1) -
(2.3) before being input to the encoder. In the chrominance preprocessor of the

CHAPT'ER 2. DIGITAL VIDEO ENCODER OE DIGICIPHEIi^^^ 12

0 0 0 0 0 0

0 0 0 0 0
r

0

0 0 0 0 . 0 0

0 0 0 0 0 0
Figure 2.2: Chrominance Decimation

encoder, U and V components are decimated b}'· a factor of four horizontally,
and two verticalljc Decimation is done by averaging the eight pixels (Figure
2.2). So for one frame there are 352(horizontal) by 480(vertical) points for
U, 352(h) by 480(v) points for V, and 1408(h) by 960(v) points for Y after
chrominance decimation. Each U and V point represents the color data of 8
luminance points.

On the decoder, U and V components axe interpolated back to full resolu­
tion.

2.2 Discrete Cosine Transform (DCT)

The Discrete Cosine Transform (DCT) transforms a block of pixels into a
new block of transform coefficients ([6]). Recovery at the decoder is done by
cipplying the inverse transform. If represents pixel intensity as a function
of horizontal position, and F{u, v) represents the value of each coefficient after
transformation, then the equations for the forward and inverse transfonns are

n/ \ 4C'(u)C'(u) (2z + l)ii7T (2j + l)u7r ^

N-1 Â -1
i=0 j=0 2N 2N

f i h i) = ^ C'(u)C(u)F’('ti,'y)co5
(2'^'+l)^^\o,.(2j + l).u^ (2.5)

= 0 V=zO
2N 2N

CmAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPIIElV'^^ 13

54
58
65
74
74
77
79

59
63
70
72
73
76
77

64
65
71
75
74
76
75

68
67
68
76
74
76
75

70
68
72
75
73
74
73

81 80 80 78 76 74 73 70

70
67
73
75
73
73
72

70
68
74
73
73
72
72

70
69
72
72
71
70
69

Table 2.1: Examj^le spatially-correlated block

where

I 1 for ti) = 1 , 2 , 7V — 1

and N is the dimension of the square block. N is chosen to be 8 because
efficiency of the method does not improve very much be^mrid this size, while
complexity grows substantially.

The advantage of this method is that most of the signal energy is com­
pacted into a small number of transform coefficients ([3]). DCT is a very
common method for compression, since it makes a very efficient use of the spa­
tial correlation among pixel values of a tj'pical image. In DigiCipher^^^, the
difference between the actual pixel value and the pixel value from the motion
compensated previous frame (instead of the actual pixel value) is transform
coded.

The compaction of DCT Ccin be best described by an example. Table 2.1
shows a block of data with high spatial correlation.

After DCT, the given block is transformed to the coefficient block in table
2.2.

It can be seen from table 2.1 and table 2.2 that most of the signal energy is
compacted into a few coefficients (the ones on the upper left part of table 2.2)
via Discrete Cosine Transform. In this example, it is not quite clear }̂ et how this
energy compaction results in more efficient coding. This will be demonstrated
in the following parts, using the same Scimple data.

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPIIER^'^’ 14

143.44
- 6.88
-2.34
-1.53
1.19
0.78
1.04

-0.14
-5.55
-0.77
-0.57
-0.14
-0.14
-0.29

-1.75
- 1.20
-0.56
-0.38
-0.61
- 0.10
-0.16

-0.15
-0.83
-0.39
-0.05
0.05
0.37
0.01

-0.44
-0.24
0.01
0.45
0.31
0.08

-0.48
-0.47 -0.59 0.44 0.13 -0.50 -0.17 -0.20 0.18

0.25
- 0.66
- 0.21
0.26
0.34
0.16

- 0.22

-0.15
-0.05
-0.28
-0.06
0.32
0.12
0.06

0.18
0.05

-0.03
-0.27
-0.04
-0.04
0.20

Table 2.2: DCT coefficients of the block in table 2.1

2.3 Coefficient Quantization (Normalization)

Coefficient quantization introduces small changes into image to improve coding
efficiency. It rounds DCT coefficients to a limited number of bits. ([7])

In the description sheets of DigiCipher^·^, the method of rounding is de­
scribed as .. by shifting a coefficient from left to right, spilling the least signif­
icant hits off the end of its register.” Though this statement claims truncation
instead of rounding, it is assumed that the quantizer rounds the coefficient to
the nearest quantization step; because in the description sheets, there is an
example about quantization, and in that example the coefficients are rounded
to the nearest integer. (There is cin obvious contradiction in the description
sheets about the choice between rounding and truncation.)

Human eye is more sensitive to the lower spatial frequencies ([5]). Consider­
ing this fact, finer quantization is done for the DCT coefficients corresponding
to lower spatial frequencies. Low frequency coefficients are the ones at the
upper left part of each DCT block.

Table 2.3 shows a convenient distribution of the number of bits used for
quantizing each coefficient. Sign bit is not included in the given number of
bits.

If the data in table 2.2 is to be quantized according to the distribution in
table 2.3, the result is as in table 2.4.

Here, the dynamic range is assumed to be -512 to 512. Hence, quantiza­
tion to 9 bits (excluding sign bit) corresponds to rounding to nearest integer.
Similarly, quantization to 8 bit means rounding to nearest even number. But
the quantizer output is the quantization step index, not the value of that step.

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPHEPT^ 15

9 9 8 7 6 5 4 3
9 8 7 6 5 4 3 3
8 7 6 5 4 3 3 3
7 6 5 4 3 3 3 3
6 5 4 3 3 3 3 3
5 4 3 3 3 3 3 3
4 3 3 3 3 3 3 3
3 3 3 3 3 3 3 3

Table 2.3: A convenient distribution for number of bits

143 0 -1 0 0 0 0 0
-7 -3 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 2.4: Data in table 2.2 quantized with the bit allocation as in table 2.3

CHAPTER 2. DIGITAL VIDEO ENCODER OE DIGICIPHER^^^ 16

Varying

Rate
Figure 2.3: Adaptation of Quantization Level

Constant
Rate

This is some kind of implicit normalization. For example, in table 2.2, the
coefficient at third row, first column is -2.34. The bit alloccition map in table
2.3 suggests that it should be quantized to 8 bits. So, it will be rounded to
nearest even number, that is -2. The quantization step is -2, but its index is
-1. Hence, the quantizer output for -2.88 for quantizing to 8 bits is -1.

For maintaining a constant bit rate on the average, adaptive quantization is
done. The total number of bits used is adjusted according to the buffer fullness
(Figure 2.3)

In the best case, the encoder allocates 9 bits (not including the sign bit)
for each coefficient. This is when the system is operating at maximum level
on a performance scale ranging from 0 to 9 (the “quantization level”). If the
targeted bit rate is exceeded, then the quantization level is decremented to 8
before encoding the next block.

Table 2.5 is used to determine the number bits assigned to each coefficient
of an 8 by 8 block as a function of the quantization level. If the number in

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPHER™ 17

7 6 5 4 3 2 1 0
6 0 4 3 2 1 0 0
5 4 3 2]. 0 0 0
4 3 2 1 0 0 0 0
3 2 1 0 0 0 0 0
2 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Table 2.5: Table for determining number of bits to be allocated

table 2.5 corresponding to a specific coeiTcient is n, then the number of bits
allocated for that coefficient is rn.inimum(9,n + qlevel).

The bit allocation map in table 2.3 simplj' ̂ the map for quantization level
3.

As an example, let us determine the number of bits used to quantize the
coefficient in the third row, fifth column for a cpiantization level of 4. From
table 2.5, we find that n is 1. We compare 9 with n + qlevel = 1 + 4 = 5.
Since mmfmum(9,5) = 5, the system uses 5 bits to quantize T'(3,5) when the
quantization level is 5.

Then, let us determine the number of bits used to quantize the same co­
efficient when quantization level is 9. Now, n + qlevel yields 1 + 9 = 10.
Since minimum{9,5) = 9, the system uses 9 bits to quantize ^’(3,5) when the
quantization level is 9.

The most objectionable artifact of excessive quantization is claimed to be
the blocking effect ([10]). This artifact is caused by processing each block
seperately. The amplitude of coefficients more or less change from block to
block. So, the error introduced by quantization of a particular coefficient is
different for two neighboring blocks.

Example: Let block A and block B be two neighboring blocks. For block
A, 1^(0,!) = 7.1. For block B, T(0,1) = 8.9. Let the quantization level be
2, so F (0 ,1) is to be rounded to the nearest even number. In this case, the
quantization error of i^(0,1) is 0.9 lor block A, cuid -0.9 for block B. There is
a difference of 1.8.

These cpiantization errors ai'e distributed rather evenl}·' within the blocks,
since each coefficient corresponds to a particular spatial frequency within the

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPimV'^‘M 18

block. This makes the quantization error jump on the block border more
visible. Hence, the border between neighboring blocks becomes visible by eye.

2.4 HufFman Coding

In order to make use of the compression done by the DCT transform coding
and quantization, an algorithm for assigning variable number of bits to these
coefficients is required.

In DigiCipher ·̂ '̂ ,̂ Huffman Coding is used. It is a statistical coding proce­
dure which assigns shorter code words to events with higher probability. It is
optimal when the events have probabilities which are negative powers of two
([8]).

Example: Generation of Huffman codes for a simple finite-alphabet coder.

Assume that there are four events to be coded. Let these events be sym­
bolized by letters a, b, c, and d. The probability of occurence of a is 0.5, of
b is 0.25, of c and d are 0.125. Figure 2.4· shows the HufFman tree. To form
this tree, the events are put to the bottom as leaves of the tree. Then the
two events with least probabilities are connected together to form a node. The
total probability of the two events are assigned as the probability of the node.
On later iterations, this node is considered as an event, instead of considering
the two leaves connected to this node as two seperate events. Iterations cire
continued until the root, the node with probability 1, is reached.

For assigning the code words, the path to be taken from the root to each
leave is considered. Each move to a left node is a 0, and each move to a right
node is a 1. So, the code words assigned to the events in this example are as
follows;

a : 0

b : 10

c : n o

d : 111

Here is a typical observation of 16 events: aacadadbbcbaaaba. The given
Huffman coder codes this event as 0011001110111101011010000100.

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPHER™ 19

{a,b,c,cl) (1)

{c.d) (0.25)

Figure 2.4: Huffman tree for the given example

Note that there is no code word which is identical with the first bits of a
longer code word. This is to ensure that the decoder will have no ambiguities
in interpreting the bits sent by the encoder. The decoder has the same code
book with the encoder.

In order to apply Huffman coding to this application, the 8 by 8 coefficients
are serialized into a sequence of 64, and amplitude/runlength coded. Scanning
the sequence of 64, an event is defined to occur each time a nonzero coefficient
is encountered. A code word is then assigned indicating the amplitude of the
coefficient and the number of zeros preceding it (runlength). A special code
word is reserved for informing the end of the block.

The encoder compares the length of the code words and the number of bits
required to directly code the coefficients. AVhen it is more efficient, it codes
the coefficients directly. When direct coding is applied, a special code word is
sent to inform the decoder about this.

DigiCipher^^ uses a Huffman code book which had been formed using the
event probabilities obtained by making experiments on many image sequences.
In description sheets of DigiCipher™, a table of bit lengths for each Huffman
code word is given (Table 2.6). The bit length does not include the sign bit. If
the amplitude or runlength is larger than 15, a special code word is generated
to inform the decoder about this, and then the amplitude and runlength are
sent uncoded.

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPHER^ '̂^ 20

AMPLITUDE

R UNLENGTH 1 8 10 11 12 13 14 15j 16

0
1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

2

4

4

5

6
7

7

8
9

9

10

11

11

11

12

13

3

5

7

8

9

10

11

12

14

15

16

18

17

17
20

20

5

7

8
10

12

13

14

16

17

19

20

28

28

28

28

28

5

8

10

11

14

16

17

18

21

28

28

22

22

22

22

22

6

9

11

13

15

18

18

19

28

28

28

28

28

28

28

28

7

10

12

14

17

19

19

22

28

28

28

28

28

28

28

28

8

10

13

15

18

22
19

20

28

28

28

28

28

28

28

28

8

11

14

16

18

21

17

28

28

28

28

28

28

28

28

28

9

12

15

17

20,

21

20
28

28

28

28

28

28

28

28

28

9

12

16

18

21

29

21
28

28

28

28

28

28

28

28

28

9

13

16

18
20
29

28

28

28

28

28

28

28

28

28

28

10

14

16

19

22

29

28

28

28

28

28

28

28

28

28

28

10

14

18

19

28

29

28

28

28

28

28

28

28

28

28

28

11

15

18

19

29

29

28

28

28

28

28

28

28

28

28

28

11

15

19

21

29

29

28

28

28

28

28

28

28

28

28

11

16

19

21

29

29

28

28

28

28

28

28

28

28

28

28 28

Table 2.6: Number of bits used for each code word of two-dimensional Huffman
code book

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPHER™ 21

The efficiency of this coding process is heavily dependent on the order
in which the coefficients are scanned. By scanning from high amplitude to
low amplitude, it is possible to reduce the number of runs of zero coefficients
typically to a single run at the end of the block. Any long run at the end of
the block would be represented efficiently by the end-of-hlock code word.

Example: Huffman coding of the block in table 2-4

The serialization of the block to a one dimensional array of length 64
yields [143,0, —7, —1, —3, —1 ,0 ,0 ,. . . , 0]. According to the above definitions,
the events are as follows:

Event Amplitude Runlength

1 143 0
2 7 1
3 1 0
4 3 0
5 1 0

Calculation of number of bits used to code the block:

For event 1: 4 (For informing direct coding mode) + 9 (For coding ampli­
tude) -f 6 (For coding runlength) = 19.

For event 2: 10 (From table 2.6).

For event 3: 2 (From table 2.6).

For event f : 5 (From table 2.6).

For event 5: 2 (From table 2.6).

For end-of-block code: 3 (Assumed).

For signs of non-zero coefficients: 5 (Since there are 5 non-zero coefficients).

Total: 19 -f-10 -|-2-t-5-t-2-l-3“|-5 = 46.

So, 64 coefficients has been coded with 46 bits. If direct coding was to be
applied, 339 bits (sum of the numbers in table 2.3 sign bits) should have
been used.

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPHERF '̂^ ■20

2.5 Motion Estimation-Compensation

Motion compensation is a method for improving the prediction of the current
frame using the previous frame. It is often the case that some part of the
current picture is ver}̂ highly correlated with some part of the previous frame.
The aim of motion estimation is finding out ‘which part of the previous frame
is most correlated with the specific part of the current frame’ .

There'are several methods of motion estimation-compensation. For the
object oriented method, for example, the ‘specific part’ mentioned above is an
object. This is intuitively best method in finding out maximum correlations,
but it is very difficult to design a veiy fast object-recognizing s)''stem, and
it needs tremendous amount of computation and complex circuitry. A much
easier method is block matching. Block matching is the most popular method
used nowadays. DigiCipher^^ also uses this method.

In DigiCipher ·̂ '̂ ,̂ the current luminance iranie is divided into blocks of
32(horizontally) by 16(vertically). Because of chrominance decimation, the
block size is 8 by 8 for chrominance frajues. So in a frame, there are 44 l.)y 60
blocks for each of Y, U , and V components. For each block, its neighborhood at
the previous frame is searched for finding a section of 32 by 16 which miniiTiizes
the difference with the block being handled. The spatial distance between
the upper left corner of the difference-minimizing section is generated as the
motion vector. The difference-minimizing section is used as the prediction for
the block, and the motion vectors (one for each block) are transmitted so that
the decoder will be able to have the same prediction.

Example: Motion estimation-compensation by block matching

The block size used in this example is 4 by 2 instead of 32 by 16, since it is
the same idea, but it is much easier to demonstrate the idea by a small size.

Figure 2.5 shows a region in the current frame, and figure 2.6 shows the
region with the same spatial location in the previous frame. The block on
which motion estimation-compensation is being done in this example has been
marked in figure 2.5.

Now, the region in the previous frame is searched to find a section which
minimizes £ absolute errors. If there were no motion estimation—compensation,
the section to be used as prediction would be the one having the same spatial
location as the block that is being operated on. In this case, the difference

CHAPTER 2. DIGITAL VIDEO ENCODER OE DIGICIFHER^ A:/ 23

130 128 137 133 127 123 120 118 117 118 120 122
131 127 136 136 130 126 122 119 116 117 122 121
129 126 135 143 79 81 83 116 114 119 121 120
134 130 136 140 73 76 115 117 115 120 122 120
133 129 134 137 130 123 119 115 116 119 120 120
137 133 135 137 135 128 123 119 118 119 118 117

Figure 2.5: Region in the cun-ent frame

130 128 137 133 127 123 120 118 117 118 120 122
131 127 136 136 130 126 122 119 116 117 122 121
129 126 135 143 137 130 127 116 114 119 121 120
134 130 84 85 90 128 115 117 115 120 122 120
133 129 80 73 123 125 122 115 116 119 120 120
137 133 135 137 135 128 123 119 118 119 118 117

Figure 2.6: Region in the previous frame

block would be

-58 -49 -44 0
-17 -52 0 0

Then,

E absolute errors = a6s(—58) + a6s(—49) + a6s(—44) + a6s(0) + a6s(—17) +
abs{—52) + 065(0) + abs{0) = 220.

When motion estimation-compensation comes into ciction, tlie prediction
can be improved. The section marked in figure 2.6 yields minimum mean
absolute error in the region, hence it is a better prediction.

When the error-minimizing section is used as prediction, the difference block
IS

-5 -4 -7 -12

-7 3 -8 -8

CHAPTER 2. DIGITAL VIDEO ENCODER OF DIGICIPHER' '̂ '̂^ 24

Then,

S absolute errors — abs{—5) + o6.s(—4) + abs(—7) + abs{—12) + abs{—7) +
abs{3) + abs{—8) + abs{—S) = 54.

The motion estimatoi’ finds out which section minimizes the error, and
generates its relative location to the block being processed as motion vector.
In this example, the motion vector is [2 (horizontal) , -1 (vertical)].
convention, positive horizontal component denotes a motion towards right,
and positive vertical component denotes a motion downwards. So the block
has moved to its current location by moving two pixels right and one pixel up.

Chapter 3

Simulations

3.1 Equipment

The simulations were done in a DVSR VTE-100 image sequencer. Figure 3.1
shows the block diagram of the image sequencer. The host computer was a
SUN-3.80 Workstation. The simulation program was written in C program­
ming language. The functions which supply the interaction with the image
sequencer were available in the program library.

3.2 Procedure

A highlj'· modular C program was written to simulate the system. Assumption
list was rather long, so the program was written in a highty modifiable way.

3.2.1 Assumption List

Here are the assumptions made when the system was simulated:

— Zero order interpolation is done for missing chrominance components.
In other words, each chrominance component is repeated eight times (4 times
horizontally and 2 times vertically) to get equal number of chroma points as
luminance points.

— Motion vectors have integer components. This assumption is stated here
explicitly, because in some systems (e.g. MPEG [9]) the motion vectors may

25

CHAPTER 3. SIMULATIONS 26

Analog/
Digital
Video
Input

Address processor VME-bus control system
PDOS

bit sice 32 bit Motorala 68020 68021
address space 512 Gb 20 Mb Hard disk, foppy

Input VIE DVSR 100 Output
processor processor

High speed ram

Y 128 Mb - 1.7 Gb Y
YUV YUV
RGB RGB
156 MHz 156 MHz

DMA

Host:

SUN 160

dm a 4Mb/s
»/stem control

Syst3m Control

1
j j l Background disk H System console

■ 650 Mb H Amiga 500

■ lOMb/s H Raster
■ programming
1 tools

Analog/
Digital
Video
Output

Figure 3.1: The block diagram of the simulation system, DVSR VTE-100

have non-integer components which are integer multiples of 0.5. A non-integer
component denotes that the sections corresponding to motion vectors with
nearest two integer components have been averaged to obtain the prediction.
For example, the motion vector [2,1.5] means that the sections from the pre­
vious frame corresponding to the motion vectors [2,1] and [2,2] are averaged
to get the prediction. Similarly, [3.5,4.5] means that the sections correspond­
ing to the motion vectors [3,4], [3,5], [4,4] and [4,5] are averaged to get the
prediction.

— Maximum motion vector lengths are 25 horizontally and 15 vertically.
In other words, each block are searched for an error-minimizing section in a
region of dimensions 82(horizontally) b}'̂ 46(vertically). This is not a critical
assumption, and it was made for computational convenience.

— Minimization cost function is mean absolute error. This was assumed
because it is widely used in the motion estimators. This probably is not a
critical assumption.

— Only luminance signal is taken into account for motion estimation. The
generated motion vectors are used for both luminance and chrominance motion
compensation. The motion vectors are scaled for chrominance blocks so that

CHAPTER 3. SIMULATIONS 27

the chrominance decimation would be taken into account. This may be a crit­
ical assumption, i.e. doing it this way or another way may have big differences
in performance. This was assumed because it is logical, and there is nothing
in the description sheets which implies another method.

— Refreshing period is 19 frames. This is also a critical assumption. This
assumption is made because the refreshing period in some other s3'sterns is in
that order, and this assumption allowed the selection of test sequences to be
made from a richer library of image sequences. (It is difficult to find large
variety of long sequences due to limited memoiy of the sequencer).

— Quantization level update is once a frame. The experiment results show
that the assumed update period is not too long. If it were too long, the
quantization level would fluctuate fasti}'· from frame to frame, but it did not
happen out to be the case.

— Dynamic range of transform coefficients is -512 to 512. This is a critical
assumption, and it was made to guarantee avoiding overflow in PCM mode
frame (The first frame after refreshing). It would be clever to use a different
dynamic range in PCM mode, but there was no sign of this in the description
sheets, hence constant dynamic range was assumed.

— The length of Huffman code word of each amplitude/runlength pair was
given in a table in the description sheets. This table (Table 2.6) was used to
calculate the number of bits needed to encode each block. Special code words,
whose lengths have not been given in the description sheets, were assigned
arbitrary lengths. Assigning arbitrary lengths to special code words is not
critical for system performance, unless too long codes are assigned.

— Zig-zag scan is applied during the serialization of the 8 by 8 block of
quantized coefficients into a .sequence of 64 (Figure 3.2). This is a very impor­
tant assumption, since the scanning pattern affects the coding efficiency very
much. The DCT coefficients corresponding to lower spaticil frequencies are ex­
pected to have higher amplitudes for t}'’pical image sequences. The assumed
scanning pattern scans the coefficients from the coefficients of low frequencies
to coefficients of high frequencies. (It is the same as the scanning pattern used
in MPEG [9].)

CHAPTER 3. SIMULATIONS 28

7

Figure 3.2: Zig-zag scan pattern

3.2.2 Image Sequences

Three image sequences with different characteristics were used. One of them
(Costgirls) is a slowly moving sequence. It shows three little girls playing with
toys in a room. The second sequence (Car) is a fasti}'· moving sequence. In
this sequence, the camera is panning a car which enters a parking area. The
last image sequence is a computer-generated sequence (Cross) with still parts,
lastly moving parts,, suddenly iippearing objects, high special details, etc.

The length of each sequence is 19, and their size is 352 by 288. The actual
system has a size of 1408 by 960. So, some of the system parameters (such as
transmission rate, buffer size) was scaled by the ratio of these sizes, 0.075.

3.2.3 Relation Between System Blocks and Program
Functions

The FIFO buffer was simulated by a counter variable. The variable length en­
coding is not actually done. Only the number of bits needed for variable length
encoding is calculated, and added to the counter. This is done because there
was no need to make the actual coding. The adaptation of the quantization
level depends only on the queue length, not the content of the queue. Hence,
there is no reason to make the actual coding.

One question rises now: How can we observe what the decoder receives
(assuming no transmission errors) if we do not actually create the bits which

CHAPTER 3. SIMULATIONS 29

TO
MULTIPLE)®

Figure 3.3: Monitoring the reconstructed frame

the decoder needs to construct the image? Before answering this question, it
is useful to point out a basic principle of DPCM coding: The encoder and the
decoder should have the same prediction so that there will be no cumulative
errors. This implies that the predictor in the decoder and encoder should have
the same input. In this system, the inputs to the predictor are the motion
vectors and the previous frame. So, inside the encoder, the previous frame
which the decoder is supposed to have exists as an input to the predictor. This
input is an output from a frame delay. Then, the input to this frame delay is
exactly the same frame as the current frame which the decoder has, i.e. the
reconstructed frame.

Summarizing the above paragraph, to monitor the reconstructed signal in
the receiver with no transmission errors, the frame in the encoder which is to
be fed to the predictor for the next prediction was examined (Marked in Figure
3.3).

The frame delay was implemented automatically by the program structure.
There was a loop in the program in which all the operations for a frame was
done. This loop ran from the first frame to the last frame, and each time a new
frame was read from the sequencer, it automatical!}' ̂ implemented the frame
delay.

CHAPTER 3. SIMULATIONS 30

Other blocks were seperate functions. Inputs and outputs to them are
explicitly defiiK.'d a.s function paranHitcrs for program readability.

Here are the functions in the simulation program corresponding to a system
block:

ChrorninanceHreprocessor(UJ)uffer, VMtffer, UMecimated, V.decimated)

This function decimates the chroma samples. U_buffer and V_buffer are the
arra.ys of U and V components as read from the image sequencer. The image
sequences in the sequencer are in CCIR 601 format. In this format, the number
of each chrominance samples per active line is half of the number of luminance
samples per active line. The number of active lines are equal for luminance
and chrominance comiDonents. The sizes of each array are

U_buffer[Y_SIZE][X_SIZE/2]
V_buffer[Y_SIZE][X_SIZE/2]
U_decimated[Y_SIZE/2][X_SIZE/4]
V.decimated[Y_SIZE/2][X.SIZE/4]

where Y_SIZE is the number of active lines (288) and X.SIZE is the number
of samples per active line for luminance (352).

In other words, the function ChrominanceJPreprocessorQ decimates the
chrominance samples by a factor of four horizontally and two vertically. The
main loop for this function is

for(i=0;i<Y_SIZE;i++)
for(j =0;j <X_SIZE;j ++)

U_decimated[i] [j] = (U_buffer[i*2] [j*2] + U_buffer[i*2] [j*2+l]
+ U_buffer[i*2+1] [j*2] + U.buffer[i*2+l][j*2+l])/4;

V.decimated[i][j] = (V.buffer[i*2][j*2] + V.buffer[i*2][j*2+l]
+ V.buffer[i*2+1]Cj*2] + V.buffer[i*2+l][j*2+l])/4;

>

Motion^Estimate(Y^Currenl, YHrevious,Motion^Vectors)

Y_Current is the arraj'̂ of luminance samples of the current frame, and
YJPrevious is the array of luminance samples of the previous frame. Mo­
tion-Vectors is the array of motion vectors. The motion vectors are generated

CHAPTER 3. SIMULATIONS 31

in this function using full search, as described in Chaptei· 2. The sizes of the
arrays are

Y_Current[Y_SIZE][X_SIZE]
Y_Previous[Y_SIZE][X_SIZE]
Motion_Vectors[NUM_0F_BL0CKS_X][NUM_OF_BLDCKS_Y][2]

The hist dimension of the array Mo/mn.Tec/o-rs denotes the two components
for each motion vector, namely x-component and y-component. The main loop
for this function is

for(i=0;i<NUM_0F_BL0CKS_Y;i++)
for(j =0;j <NUM_0F_BL0CKS_X;j++)

min = 1000000;
for(k=-MAX_M0VE_Y;k<=MAX_M0VE_Y;k++)

for(l=-MAX_M0VE_X;K=MAX_M0VE_X;l++)
if((Error=MAE(i,j ,k ,1,Y_Current,Y_Previous))<min)

min = Error;
Motion_Vectors[i][j][0] = k;
Motion_Vectors[i] [j] [1] = 1;

>

The function MAE(i,j,k,l,Y.Currtnt,Y^Previous) calculates the mean pix-
elwise absolute error between the 32 b}'· 16 block from the current frame
which has its upper left corner at (i,j) and the block from the previous frame
which has its upper left corner at (i-k,j-l). When the indices exceed the
frame bounds, the pixel from the previous frame which is supposed to be lo­
cated at the bound-exceeding coordinate is taken to be zero. For example, if
2 = 0, J = 0, k = 3 ,1 = 2, then

Y.Current[i][j] = YJJurrent[3][T\

Y jCurreni[i — ¿][y — /] = Y-Current[—3][—2] = 0

Flence, the absolute difference between these two pixels is taken to be
Y.Curi'ent[0][0]. Note that the indices of Y-Current never exceed the frame
bounds.

CHAPTER 3. SIMULATIONS 32

Motion^Compensate(Motion. Vectors, Y.Previous, U-Previous, V.Previous,
Prediction^of^ Y, Predictiori-of.U, Prediction^of. V)

This function uses the motion vectors and the previous frame to generiite
the prediction. For the generation of the prediction of U and V, x-component
of the motion vectors are divided 4, and j^-component of the motion vectors
are divided b}'· 2. The results are rounded to the nearest integer. The divisions
are for scaling the motion vectors bĵ the decimation ratio of the chrominance
preprocessing. When the motion-compensated coordinate for a pixel exceeds
the frame bounds, the prediction for the value of that pixel is assigned to zero.
The main loop of this function is

for(i=0;i<NUM_0F_BL0CKS_Y;i++)
for(j =0;j <NUM_0F_BL0CKS_X;j ++)
{

MY = Motion_Vectors [i] [j][0];
MX = Motion_Vectors[i][j][1];
for(m=0 ;m<1 6 ;m++)

for(n=0;m<32;n++)
is_off_bound = ((i*16+m-MY)<0) || ((i*16+m-MY)>Y_SIZE)

II ((j*32+n-MX)<0) II ((j*32+n-MX)>X_SIZE);
if(is_off_bound)
Prediction_of_Y[i*16+m][j*32+n] = 0;

else
Prediction_of_Y[i*16+m][j*32+n]

= Y_Previous[i*16+m-MY][j*32+n-MX];
if(! ((my.2) II (my.4)))
{

if(is_off_bound)

Prediction_of_U[(i*16+m)/2]E(j*32+n)/4] = 0;
Prediction_of_V[(i*16+m)/2][(j*32+n)/4] = 0;

}
else
{

Prediction_of_U[(i*16+m)/2][(j *32+n)/4]
= U_Previous[(i*16+m-MY)/2] C(j=«32+n-MX)/4] ;

Predict ion_of_V[(i*16+m)/2][(j *32+n)/4]
= V_Previous[(i*16+in-MY)/2] [(j*32+n-MX)/4] ;

}

CHAPTER 3. SIMULATIONS 33

DCT(Prediction^Error, Transform, DCTJable)

This function takes an 8 by 8 block of prediction errors, i.e. {Current —
Prediction) as input, takes its DCT transform according to Equation 2.4, and
writes to the 8 bj'· 8 real number cirra}̂ Transform. In fact, Prediction.Error
array has the dimensions of a full frame size, but the DCT function operates
in an 8 by 8 sub-block of this array each time it is invoked. The location of
the sub-block within the frame is adjusted by adding a proper offset to the
beginning address of the PredictionJError array to be passed to the DCT
function as parameter. For e.xample, if we want to take the DCT of an 8 by 8
sub-block of the array Prediction-ErrorA.·^, and the coordincite of the upper
left corner of the sub-block is (72, 96), then the function call will be

DCT(&Prediction_Error_Y[72][96], Transform, DCT_table);

Instead of calculating the cosines each time, the function uses a table which
holds 32 samples of a full cosine wave. The cosines to be used in DCT() are
calculated by doing modular arithmetic on the table indices. For example.
cosí =DCT_table[((2*i-fl)*u)%32].

This is done only for increasing the calculation speed of the simulation
program. There are Â arious fast implementations of DCT, but they are not
implemented in this program, since they cire more complex, and computation
time was not a strict limitation. (The simulation of encoding of a sequence
of length 19 takes about seven hours of computing time Avith the SUN 3.80
workstation.)

IDCT(Quantized-Transform, Prediction-Error, DCT-table)

This function is simply the iiiA'̂ erse of the function DCT(). It takes an 8
by 8 array of qiuintized transform coefficients from the output of the denor-
malizer as input) takes the inverse DCT according to Equation 2.5, rounds to
the nearest integer, and writes to the proper 8 by 8 sub-block of the array
PredictionJSrror. The size of Prediction-Error array is full frame size, and
the location of the sub-block is adjusted by adding a proper offset to the be­
ginning address of the aiTciy Prediction-Error to be passed to the IDCT()
function as parameter. For example.

CH APTm 3. SIMULATIONS 34

IDCT(Quantized_Transform,&Prediction_Error_Y[72][96], DCT_table)

stores the results of thé inverse DCT operation to the 8 by 8 sub-block of
the array Precliction_Error_Y, the coordinates of the ui^per left corner being
(72,96).

The array Prediction-Error is used to reconstruct the image by adding
with the Prediction arra}^

Quantize(Transform, Normalized-Transform, qlevel, qtable)

This function reads an 8 by 8 real number arraj ̂of transform coefficients, i.e.
the output array of the function DCT(), quantizes the coefficients according to
the quantization level {qlevel) and using the bit allocation map {qtable) (Table
2.5), and writes the result to the 8 by 8 integer array N orrnalizedTPransJorm.
The array N ormaliz edUTr ans form holds the cpiantization level indices rather
than the quantized levels. For example, if the value of a coefficient is 2.2, and
it is supposed to be rounded to the nearest even integer, then the quantized
level is 2, but the quantization level index is 1, and this 1 is stored to the arraj'·
Normalized-Transform. In other words, normalization is also carried out in
this function. (This also explains why the name '' Normalized fl'r ans form ' is
given to the output array instead of the name QuantizedTPransf orm '). The
main loop of this function is

for(i=0;i<8;i++)
for(j=0;j<8;j++)

Normalized_Tansform[i][j] = (int)(0.5+Transform[i][j]
/ two_to_the_power(max(0,qtable[i][j]-qlevel)));

Denornialize(Normalized-Transform, Quanlized-Transform, qlevcl, qtable)

This function prepares the input to the function IDCT(). The 8 by 8 inte­
ger array Quantized.Transform is the output of this function. Denormalize()
denormalizes the normalized transform coefficients so that the}' will represent
the quantized levels rather than the qua.ntiza.tion level indices, qlevel is the
quantization level which had been used in quantizing the original transform
coefficients, and qtable is the bit allocation map (Table 2.5). The main loop of
this function is

for(i=0;i<8;i++)
for(j=0;j<8;j++)

CHAPTER 3. SIMULATIONS 35

Normalized_Transform[i][j] = Mormalized_Transform[i][j]
* two_to_the_power(max(0,qtable[i][j]-qlevel)) ;

Huffman(Normalized-Transform, qlevel, codebook)

This function calculates the number of bits needed to code the 8 by 8 integer
array NormalizedJTransform by the variable length coding method, qlevel
is the cj[uantization level that has been used in calculating the number of bits
needed to directly code a coefficient. If the amplitude or runlengtli of a. certain
coefficient exceeds 16, then the coefficient is directly coded.

codebook is the two-dimensional array which holds the number of bits used
to Huffman-code an event if the event has an amplitude less than or equal to
16 and runlength less than 16 (Table 2.6).

First, the 8 by 8 block is serialized to a one-dimensional array of length 64,
serializedW, according to the scanning pattern given in figure 3.2.

Then, the number of non-zero coefficients and their locations are calculated
by the loop

for(count=0,i=0;i<64;i++)
if(serializedCi])

location C++count]=i;

After this loop has been terminated, count holds the number of non-zero co­
efficients and the array location[i] holds their locartions in the array serialized^.
Then, the calculation of the number of bits needed to code the block is done
by

no_of_bits=0;
if(count>0)
for(i=l;i<=count;i++)
{

if((abs(serialized[location[i]])>16)
II ((location[i]-location[i-1]) > 16))

sum += uncoded(location[i],qlevel)+RUNLENGTH_BITS+UNCODED;
else

sum += codebook[abs(serialized[location[i]])-l]
[locationCi]-locationCi-1]-1];

}

CHAPTER 3. SIMULATIONS 36

Here, uncoded(x,y) is a function which calculates the number of bits needed
to directly code a coefficient with location x witihin the array serializedl]
when the quantization level is y. RUNLENGT'HABITS is the number of bits
needed to directly code the runlength, and it is taken to be 6. UNCODED is
the number of bits needed for the special code word for informing that direct
coding will be done, and it is taken to be 4.

After the above loop has been termina,ted, we have to add the number of bits
needed to inform the end of the block. The length of end-ol-block code word
is taken to be 5. We cdso have to add the bits for the signs of the coeilicients.
Note that we have to send the sign of non-zero coefficients only, hence we need
as much bits as the number of non-zero coefficients. (This was not specified in
the description sheets, but it seems that this is an efficient way of transmitting
the sign bits). So, these additions are done by

sum += END_0F_BL0CK + count;

and then the resulting sum is sent as the output of the function. In the descrip­
tion sheets of DigiCipher^^^ ,̂ it was mentioned that the sj'-stem would check
the cases when directly coding the block would be more efficient than Huffman
coding, and in these cases the block would be coded directly. So, the number
of bits needed to code a block NormalizedTTransf orm\\ by the encoder is
calcuhited by

minimum(dirbit[qlevel],Huffman(Normalized_Transform,qlevel,codebook))

where dirbit\\ is a one-dimensional array of length 10, and it holds the number
of bits needed to directly code the block for each quantization level.

Interpolate(U-decimated, V.decimated, UHujfer, V-buffer)

This function is not a sub-block of the encoder. It is a part of the decoder.
It is used in the simulation program as a final stage after all other processing
of a frame, so that we can obtain a picture which would be identical to the
picture that would have been reconstructed in the decoder.

The simulation is started by initializing the system parameters. The re­
constructed previous frame, which is to be used in the prediction after motion
compensation, is initialized to a constant value of 128 for all pixels. This cor­
responds to the refreshing. Since the sequences used in the simulation have a
length of 19 frames each, only one refreshing is supposed to be done during

CHAPTER 3. SIMULATIONS 37

the simulation of the encoding of a sequence. For getting meaningful results,
the simulation must be done for a time period in which the encoder and de­
coder are synchronized. This is possible by starting the simulation with a
refreshing. Summarizing this paragraph, the simulation of the 19-frame-long
sequence starts with a refreshing, and there is no other refreshing throughout
the simulation.

After the initialization, the program proceeds as

for(picture_no=l;picture_no<=19;++picture_no)
{

read_from_sequencGr(picture_no,Y ,Y_Current);
read_froin_sequencer (picture_no, U , U_Current) ;
read_from_sequencer(picture_no,V,V_Current);

Chrominance_Preprocessor(U_buffer,V_buffer,U_Current,V_Current);

Motion_Estimate(Y_Current,Y_Previous);
Motion_Compensate(Motion_Vectors,Y_Previous,U_Previous,V_Previous,

Prediction_of_Y, Prediction_of_U, Prediction_of_V);

/* Calculation of prediction error starts */

for(i=0;i<Y_SIZE;i++)
for(j=0;j<X_SIZE;j++)

Prediction_Error_Y[i][j]=Y_Current[i][j]-Prediction_of_Y[i][j];

for(i=0;i<Y_SIZE/2;i++)
for(j=0;j<X_SIZE/4;j++)
{

Prediction_Error_U[i][j]=U_Current[i][j]-Prediction_of_U[i][j];
Prediction_Error_V[i][j]=V_Current[i][j]-Prediction.of_V[i][j];

}
/* Calculation of prediction error ends.*/

/* The procedure of

DCT -> quantization -> calculation of # of bits needed to
I encode the block

\ l /

CHAPTER 3. SIMULATIONS 38

denormalization -> IDCT (Reconstruction of
Prediction Errors)

for each 8x8 block of the frame is started */

for(i=0;i<Y_SIZE; i+=8) / * increment by DCT block size = 8 * /

for(j=0;j<X_SIZE; j+=8) / * increment by DCT block size = 8 * /

DCT(&Prediction_Error_Y[i]Cj], Transform, DCT_table);
Quantize(Transform,Normalized_Transform,qlevel,qtable);
queue_length += minimum(dirbit [qlevel],Huffman(

Normalized_Transform,qlevel,codebook));
Denormalize(Normalized_Transform,Quantized_Transform,qlevel,

qtable);
IDCT(Quantized_Transform,&Prediction_Error_Y[i][j],

DCT_table);
/ * IDCT writes the reconstructed prediction error over the

original value * /

}

for(i=0;i<Y_SIZE/2; i+=8)
for(j=0;j<X_SIZE/4; j+=8)

DCT_UV(&Prediction_Error_U[i][j], Transform, DCT_table);

/ * DCT_UV() is a very little modified version of DCT(). The only
difference is the full frame size. The full frame size has to
be known for calculation of the relative positions of each
pixel of the 8x8 block in the full frame array. The full
frame size for chrominance is X_SIZE/4 by Y_SIZE/2, i.e.
88x144; where full frame size for luminance is X_SIZE by
Y_SIZE, i.e. 352x288. * /

Quantize(Transform,Normalized_Transform,qlevel,qtable);
queue.length += minimum(dirbit[qlevel],Huffman(

Normalized_Transform,qlevel,codebook));
Denormalize(Norraalized.Transform,Quantized_Transform,qlevel,

qtable);
IDCT_UV(Quantized_Transform,¿Prediction_Error_U[i][j],

DCT.table);
/ * IDCT_UV() is the modified version of IDCT(), the only

CHAPTER 3. SIMULATIONS 39

difference being the full fraine size. */

DCT_UV(&Prediction_Error_V[i] [j] , Transforin, DCT_table) ;
Quantize(Transform,Normalized_Transform,qlevel,qtable);
queue_length += minimum(dirbit[qlevel],Huffman(

Normalized_Transform,qlevel,codebook));
Denormalize(Normalized_Transform,Quantized_Transform,qlevel,

qtable);
IDCT_UV(Quantized_Transform,&Prediction_Error_V[i][j],

DCT_table);

for(i=0; i<Y_SIZE; ++i)
for(j=0; j<X_SIZE; ++j)

Y_Previous[i][j] = saturation_arithmetic_addition(
Prediction_of_Y[i][j],Prediction_Error_Y[i][j]);

for(i=0; i<Y_SIZE/2; ++i)
for(j=0; j<X_SIZE/4; ++j)

U_Previous[i][j] = saturation.arithmetic_addition(
Prediction_of_U[i][j],Prediction_Error_U[i][j]);

V.Previous[i][j] = saturation_arithmetic_addition(
Prediction.of_V[i][j],Prediction_Error_V[i][j]);

>

write_to_sequencer(picture_no, Y, Y.Previous);
Interpolate(U_Previous, V.Previous, U.buffer, V_buffer);
write_to_sequencer(picture_no, U, U.buffer);
writ9 _to_sequencer(picture_no, V, V.buffer);

/ * The decrementation of queue length by the amount of bits that
have been transmitted during a frame period. * /

if (queue.length > TRANSMISSION_RATE/FRAME_RATE)
queue.length -= TRANSMISSION.RATE/FRAME.RATE;

else
queue.length =0; / * underflow protection */

/ * Quantization level update * /

CHAPTER 3. SIMULATIONS 40

qlevel = 9 - ((queue_length*10)/BUFFER.SIZE);

/ * Buffer Overfloii Check * /

if (qlevel < 0)

printf('BUFFER OVERFLOW!0 ;
exit(0) ;

}
}

3.2.4 .Visual Performance Detection

The screen was divided into four (Figure 3.4). The original image was recorded
to the upper left part, the prediction to upper right, the reconstructed image
to lower left, and the absolute differences to lower right part. The difference
between original and reconstructed images, and the difference between original
and prediction images were superposed, each having different colors. This is
a veiy convenient way to observe the correlation between the prediction error,
which is the signal to be compressed for transmission, and the reconstruction
error, which is the error introduced by quantization. Absolute value of two
differences were iidded to get Llie luminance of each diffeience pi.xel. Each
difference pixel was painted by thresholding. If the. prediction error was above
a threshold, and the reconstruction error below threshold, the difference was
painted to blue. If the reconstruction error was above the threshold, and
the prediction error below, the difference was painted to red. If both errors
exceeded the threshold, the difference was painted to magenta as a result of
color superposition (Figure 3.5).

CHAPTER 3. SIMULATIONS 41

O riginal Prediction

R econstructed D ifferences

Figure 3.4; Visucil performance detection

Figure 3.5: Color superposition

Chapter 4

Results

4.1 Visual Performance

An HDTV quality picture with no visible artifacts was expected. It was ob­
served that there were visible artifacts in the picture for quantization levels
less than 4.

Figure 4.1 shows the program output as described in section 3.2.4. The
first picture has a quantization level of 8, and there are almost no quantization
errors introduced. This can be understood from the bottom-right part. There
cuc seldom magenta dots, cind no red dots. (In fact, e.xisteuce of red dots
would suggest system design or programming errors, because it corresponds
to the events that there is a considerable quantization error while the data to
be quantized is small.) The overall luminance level is low, which means low
prediction error. The visual performance of the system is acceptably good in
this case. There is no visible difference between the original and the recovered
frames.

The second picture has a quantization level of 2, and there are consider­
ably high amount of quantization errors. This can be seen easil}'̂ by observing
the reconstructed picture, in which there are visible artifacts, and by observ­
ing the bottom right part. The amount of magenta dots is quite high. The
picture quality is even worse than the picture quality of a PAL system. The
reconstructed image is sandy which is especially disturbing in low spatial-detail
regions. Sandiness means the existence of a texture similar to the surface of
a pile of thick sand. This sandiness is much stronger than the blocking effect,
which was claimed b}'̂ the proposers to be the ‘most objectionable artifact’ .
In fact, blocking effect is not observed in the reconstructed image, possibly

42

CHAPTER 4. RESULTS 43

Quantization level 8

Quantization level 2

Figure 4.1: Simulation output for the sequence Costgirls

CHAPTER 4. RESULTS 44

SEQUENCE
Costgirls
Car
Cross

SNR
Y

142.5
55.4

U
397.6
726.4

V
368.5
961.6

23.4 69.3 48.66 15.1 54.4 8.43

Prediction Gain
Y

41.3
18.4

U
175.2
299.0

V
148.1
316.8

Table 4.1: Numerical results of the simulation

because it was shielded by the higher noise of sandiness.

The simulation results show that this system failed in the visua.l perfor­
mance test. 17 people with no professional experience in the field were asked
to evaluate the reconstructed picture cjuality. More precisely, they were asked
to evaluate the similarity between the original and reconstructed pictures. All
of them gave the same answer: “Good lor first pictures (ciuantization level =
8), bad for second pictures (quantization level = 2).” .

4.2 Numerical Results

Table 4.1 shows the simulation results for three different sequences. In the
table,

SNR = Ti(OriginalJPixel)'^
H{Original^Pixel—Recon struct ed^Pixel)'^

and

Prediction.Gain = E{Original^ixel)^
'£,[Original^Pixel—Prediction's or Jihe^pixel)'^

Figure 4.2 shows the quantization level versus picture number for the se­
quence Costgirls. Initial quantization level is 3, initial buffer fullness is 0%,
and final buffer fullness is 81.4%.

Figure 4.3 shows the quantization level versus picture number for the se­
quence Car. Initial quantization level is 1, initial buffer fullness is 81.4%, and
final buffer fullness is 91.4%.

Figure 4.4 shows the quantization level versus picture number for the se­
quence Cross. Initial quantization level is 0, initial buffer fullness is 91.4%, and
final buffer fullness is 74.6%.

CHAPTER 4. RESULTS 45

Picture no

Figure 4.2: Quantization level versus picture number for Costgirls

CHAPTER 4. RESULTS 46

Picture no

Figure 4.3: Quantization level versus picture number for Car

CHAPTER 4. RESULTS 47

Picture no

Figure 4.4: Quantization level versus picture number for Cross

CHAPTER 4. RESULTS -18

The simuhition results show that the steady state of quantization level oc­
curs at low levels of quantization. The overall picture quality is not satisfactory,
both in visual performance test and in SNR calculations. Though there is not
a specified standard for acceptible SNR level of an HDTV quality picture, we
can say that the calculated SNR figures are not very high. On the average, the
noise amplitude is about one ninth of the signal level.

The prediction gain values, however, can be considered satisfactory (Note
that the previous frame is used for prediction, and the previous frame does not
have a high SNR). On the average, the prediction would save about 2.5 bits for
the coding of an 8-bit word, if it was the only compression stage of the system
(This result is obtained by taking the 2-bcised logiirithm of the square root of
the average prediction gain figures).

In fact, the visual performance test is more than the numericcil results,
because this system is designed to supply images for consumers, and what the
consumer will see as an HDTV picture is more important for him than some
numbers which do not make sense for him.

Chapter 5

Conclusions

In this study, the digital video encoder part of DigiCipher^ '̂' ̂ HDTV'’ system
proposal was simulated.

There can be some improvements to this study. Though we have some
conclusions now, they depend on some assumptions. There was a long list of
assumptions, some of them being critical. In making assumptions, the general
trend was followed. It can be interesting to repeat the simulations with several
different sets of assumptions. The comparison of the results can show how
important those assumptions are. It can also give some ideas which can be
useful in designing similar image coding systems.

Another improvement can be the testing of how typical the test secjuences
are. Here, typical means the similaritj^ between the statistical distribution of
the amplitude-runlength events in the coding of the DCT blocks of the test
sequences and that of the training sequences used by the system designers of
DigiCipher ·̂''"· .̂ The method for comparing the statistical distributions can be
as follows: The lengths of the Huffman code words can be calculated by making
statistical experiments on the image sequences used. These calculated lengths
can be compared with the Huffman code word lengths given in the description
sheets. The similarity between the lengths have a very close relation with the
similarity between the statistical distributions. Another step may be using
the calculated code word lengths instead of the ones given in the table for the
simulation. This can give an idea about how good the S3'̂ stem works for typical
images.

Here are the conclusions based on the obtained results:

The results were disappointing in terms of picture quality. Both artifacts

49

CHAPTER 5. CONCL USIONS 50

observed in the recovered images and the poor signal-to-noise ratio of the recon­
structed images suggest that the picture quality is even poorer than the picture
qualit}' ̂ of conventional TV systems. The most disturbing artifact which was
observed is that the picture is sandy (The concept of sandiness is described
in section 4.1). The blocking effect, which is the most objectionable artifact
of systems involving blockvdse DCT, was not even observed, possibly because
there was much higher artifacts. One other reason may be the small DCT block
size. It is not very likely that the blocking effect is avoided by a convenient
quantization bit allocation, since the bit allocation method is rather simple.

The interesting point is that the picture quality in the demonstrations done
by General Instruments is quite good. The main reason for the two contra­
dicting results is the lack of clarity in the description of the system. It is not
very surprising that the description sheets are not very clear, since there is
competition. The new successful methods have to be hidden for getting an
advantage in the competition. So it is possible that in DigiCipher^^ some
effective data compression techniques are applied, but they are not mentioned
in the description sheets.

This is not the only simulation of DigiCipheC ·̂^ ̂ system which was made
by people working for other institutes or companies. The results of these
simulations are not as optimistic as the demonstrations of General Instruments.
This strengthens the idea of hidden techniques.

The quantizer block seems to be the black box of the video encoder. Among
the sub-blocks of the video encoder, the quantizer block is the one which has
been defined poorest in the description sheets. Furthermore, even the defined
methods do not sound professional. There has been extensive study about
bit allocation methods of the quantizers in last years ([7]). .A.ccording to the
description sheets, it seems that these studies are not taken into considera­
tion during the design of the quantizer block. If we consider how big and
important this project is, this is not very convincing. Considering that the
motion-compensated prediction works well according to the simulation results,
and that DCT and Huffman coding are well-known data compression methods,
it is not illogical to say that the quantizer -as defined in the description sheets-
is guilty for the failure of the system in these simulations.

References

[1] A. K. Jain “Image Data Compression: A Review” Proc. IEEE 69, no. 3
(March 1981): 349-389

[2] A. K. Jain, P. M. Farrelle, and U. R. Algazi “Image Data Compression”
in Digital Image Processing Techniques, M. P. Ekstrom, eel. New York:
Academic Press, 1984

[3] L. D. Davisson and R. M. Gray (eds.) Data Compression. Benchmark Pa­
pers in Electrical Engineering and Computer Science, Sroudsberg, Penn.:
Douden Hunchinson and Ro, Inc. 1976

[4] DigiCipher^^'^ HDTV System, General Instruments, June 22, 1990

[5] Otto E. Mikkela, Human Vision and Image Quality, EURASIP Digital
Video Signal Processing and HDTV course in Tampere Universit}'· of Tech­
nology, May 27-29, 1991

[6] Ahmed,N. , T.Natarajan, and K. R. Rao: Discrete cosine transform, IEEE
Trans., vol. c. 23, pp. 90-93, January, 1974

[7] H. Peng, H. Peterson, J. Morgan, and W Pennebaker, “Qua.ntizing RGB
Color Image Components in the DCT domain” , Proc. of the 1990 Image
Processing and Visualization ITL, May 1990

[8] D. A. Huffman, “A Method for the Construction of Minimum redundancy
codes” , Proc. ERE, pi?. 1098-1101, September 1952

[9] ISO-IEC JTC1/SC2/WG11, Systems Chapter of ISO 11172 (MPEG) CD,
1990

[10] N. S. Jayant and P. Noll. Digital Coding of Waveforms. Englewood Cliffs,
N. J.: Prentice-Hall, 1984

51

