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ABSTRACT

STOCHASTIC SHELTER SITE LOCATION UNDER
MULTI-HAZARD SCENARIOS

Eren Özbay

M.S. in Industrial Engineering

Advisor: Bahar Yetiş

Co-Advisor: Özlem Çavuş İyigün

June 2018

In some cases, natural disasters happen successively (e.g. a tsunami following an

earthquake) in close proximity of each other, even if they are not correlated.

This study locates shelter sites and allocates the affected population to the

established set of shelters by considering the aftershock(s) following the initial

earthquake, via a three-stage stochastic mixed-integer programming model. In

each stage, before the uncertainty, which is the number of affected people, in the

corresponding stage is resolved, shelters are established, and after the uncertainty

is resolved, affected population is allocated to the established set of shelters.

To manage the inherent risk related to the uncertainty, conditional value-at-

risk is utilized as a risk measure in allocation of victims to the established

set of shelters. Computational results on the Istanbul dataset are presented

to emphasize the necessity of considering secondary disaster(s), along with a

heuristic method to improve the solution times and qualities. During these

computational analyses, it is observed that the original single-objective model

poses some obstacles in parameter selection. As in humanitarian operations,

choosing parameters may cause conflict of interests and hence may be criticized,

a multi-objective framework is developed with various formulations. Some

generalizations regarding the performance and applicability of the developed

formulations are discussed and finally, another heuristic for the multi-objective

formulation is presented to tackle the curse of dimensionality and improve the

solution times.

Keywords: Shelter Site Location, Secondary Disasters, Multi-Stage Stochastic

Programming, Conditional Value-at-Risk, Multi Objective Programming.
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ÖZET

ÇOKLU AFETLERİN YÖNETİMİ: RASSAL TALEP
ALTINDA ÇADIRKENT YER SEÇİMİ PROBLEMİ

Eren Özbay

Endüstri Mühendisliği, Yüksek Lisans

Tez Danışmanı: Bahar Yetiş

İkinci Tez Danışmanı: Özlem Çavuş İyigün

Haziran 2018

Bazı doğal afetler, birbirleriyle direkt ilişkili olmasalar da, birbirlerinin yakınında

gerçekleşebilir. Buna örnek olarak tsunaminin bir depremden sonra oluşması veya

selden sonra bir yangın çıkması verilebilir. Bu çalışma, artçıların ana depremi

takip ettiği durumlar için üç aşamalı karışık tam sayılı bir program geliştirerek

çadırkentlerin yerleştirilmesi ve afetten etkilenen insanların bu çadırkentlere

atanmasını amaçlamaktadır. Ana deprem ve artçının yarattığı talepler rassal

kabul edilmekte, bu rassallık her aşamada çözümlenmeden önce çadırkentler

yerleştirilmekte, çözümlendikten sonra ise afetzedeler yerleştirilmiş çadırkentlere

atanmaktadırlar. Talebin rassal olmasının çadırkent kapasitelerinin aşımında

yarattığı riski yönetebilmek için koşullu riske maruz değer kullanılmaktadır.

İstanbul veri kümesi kullanılarak elde edilen sonuçlarla önerilen modelin

gerekliliği ve önemi tartışılmış, çözüm sürelerini iyileştirmek için sezgisel bir

yöntem geliştirilmiştir. Bu analizler sırasında tek amaçlı modelin parametre

seçimi konusunda problemler yaratabileceği gözlemlenmiş, bu problemleri çözmek

içinse çok amaçlı bir model geliştirilmiştir. Çok amaçlı modelin performans

ve uygulanabilirliği üzerinde analizler yapılmış, çeşitli varyasyonları incelenerek

çözüm sürelerini azaltmak ve daha büyük veri kümeleri ile çözümler elde

edebilmek için bir sezgisel yöntem daha geliştirilmiştir.

Anahtar sözcükler : Çadırkent Yer Seçimi, İkincil Afetler, Çok Aşamalı Rassal

Modelleme, Koşullu Riske Maruz Değer, Çok Amaçlı Programlama.
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accepting to read and review this thesis. Their remarks and suggestions have

been very helpful and provided new future research directions.

It is indescribable to express my gratitude for my mother Melda Özbay, father
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Chapter 1

Introduction

Humanitarian logistics is concerned with delivering relief materials and providing

services such as sheltering, medical care and much more in cases of disasters of

various kinds. As some disasters might cause people to lose their homes and

compel them to seek safe accommodation alternatives, it is of great importance

to determine the best shelter site combination, which can be considered as one of

the critical applications of location problems in the context of Disaster Operations

Management (DOM).

From the beginning of the 20th century, more than the current population of

the world has been affected by various natural disasters [1], and the literature on

DOM has grown remarkably to manage the consequences and the risks of those

disasters. We can observe in surveys such as Altay and Green [2], Caunhye et

al. [3], Galindo and Batta [4], Hoyos et al. [5] and many more, that the location

studies make up a great part of this literature.

As an extension to this profuse literature, in this thesis, we are concerned

with providing sheltering to the disaster victims. We consider not just the

initial disaster but the disaster(s) that might follow it. As there are numerous

examples on secondary disasters following the initial one, e.g. tsunamis coupled

with nuclear meltdown following an earthquake as in Tōhoku Earthquake in
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2011, we analyze the effects of locating shelter sites following a disaster and

a possible secondary disaster, which is formally called multi-hazard in the related

literature ([6, 7]). As one cannot make any generalizations on the magnitude or

the possible consequences of consecutive disasters, we aim to increase the disaster

preparedness and improve the effectiveness of the response by incorporating multi-

hazard nature of disasters in selecting the best possible combination of shelter

sites to provide disaster victims with services at an acceptable level. Following this

approach, we propose a three-stage stochastic shelter site location program, where

we consider the number of victims that each disaster, initial and the secondary,

creates is random.

Having defined the foundation of our problem, in the following chapter, we

discuss a particular application of the stochastic shelter site location problem in

a specific disaster context, i.e. earthquakes, while motivating it by referring to

the related literature and the past examples of disasters exhibiting the features

of multi-hazard phenomenon and conclude by emphasizing the necessity of

considering secondary disasters in Disaster Operations Management context.

In Chapter 3, we define the problem formally and provide it in full detail, then

present the formulation along with emphasizing its ability to model the real-life

applications of disaster operations and expectations of both the decision maker

(e.g. government authorities) and the disaster victims.

In Chapter 4, we present a novel dataset that contains demand scenarios for

the earthquakes and the aftershocks following them. As no dataset can be found

on multi-hazard disasters, we discuss the details regarding the generation of a

particular dataset of demand scenarios for a district of Istanbul, Turkey.

In Chapter 5, the computational studies performed on the generated dataset

using the proposed model are presented and the features of the solutions and the

effect of parameter selection are discussed. Moreover, a heuristic methodology is

proposed to solve the problem with scenario sets having higher cardinality. The

chapter is concluded with a discussion on how our formulation performs when it

is compared against more traditional approaches.

2



In Chapter 6, we discuss the shortcomings of the single-objective formulation

and its burden on the decision maker as selecting the parameters for it can be quite

challenging in a humanitarian context, and propose a multi-objective formulation

for the stochastic shelter site location problem under multi-hazard scenarios. We

discuss the selection of objectives by referring to the single-objective formulation.

In Chapter 7, we present the computational studies performed on the same

dataset using the setting and formulation proposed in Chapter 6 with an ε-

constraint method tailored for this formulation, and design another heuristic

method to solve the multi-objective formulation with scenario sets having higher

cardinality. We conclude by discussing the performance of the heuristic method

using the instances with smaller cardinalities.

The thesis ends with a conclusion chapter providing an overview and guidelines

for future research directions.
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Chapter 2

Problem Definition and Related

Literature

From the dawn of civilization, disasters, regardless of man-made or natural, had

shaped the human culture of sheltering. But the industrialization, making fast

urbanization possible, resulted in disorganized and densely populated cities, in

which there is no regard for and sheltering from possible disasters. Balcik and

Beamon [8] denote that the number of people affected by disasters between

2000-2004 was 33% more than the preceding five year period and a difference

of seven million people affected in disasters occurred in 2004 and in 2005,

suggesting an increasing trend which requires considerable attention. Fortunately,

this need has drawn sufficient consideration to the humanitarian logistics and

disaster operations management initiatives. Currently, mathematical modeling

and optimization, statistical analysis, simulation and many more tools of them

are heavily used to improve and shape the modern human’s culture of sheltering.

Disasters are split into two main classes: man-made and natural. Both of

these subclasses can be further divided according to their rapidness of onset, as

slow onset and sudden onset. For example, a terrorist attack is a man-made and

sudden onset disaster, while drought is a natural and slow onset disaster. As

we aim to be able to respond to a disaster as soon as it happens, we are more
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concerned with sudden onset disasters - slow onset ones provide enough time for

preparation throughout the occurrence due to our ability to observe and plan

for them. This proposes a more general classification of disaster management

operations.

McLoughlin [9] classifies the Disaster Operations Management (DOM)

literature into four main phases: (i) mitigation, (ii) preparedness, (iii) response,

and (iv) recovery. Phases (i) and (ii) refer to pre-disaster, phases (iii) and

(iv) refer to post-disaster operations. The mitigation phase involves the actions

taken in order to prevent and mitigate the consequences of a possible disaster.

The preparedness phase includes plans for specific cases and provides effective

responses to disasters. After a disaster has occurred, the aim in the response

phase is to provide the affected population with relief goods and primary needs,

such as water, food, medical care, shelter, and etc. Lastly, the aim of the recovery

phase is to recover all the damaged (infra)structure in order to ensure the normal

functioning of the affected population.

So, to be able to respond to drought in the most effective and efficient way, a

Decision Maker (DM) should spend more time on the pre-disaster operations

of DOM to mitigate the possible effects and prepare plans for alternative

consequences of the disaster to make the response and recovery as easy and swift

as possible. On the other hand, a DM in an earthquake setting, in addition

to performing the best in pre-disaster operations, should spend more time on

the post-disaster operations and respond to the disaster in a quick and effective

fashion in order to minimize the casualties.

2.1 Role of Shelter Sites and Their Innate

Stochasticity

Given a disaster which results in people losing their homes and other means of

accommodation, it is of great importance to provide safe, prompt and sustainable
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sheltering. These shelters are not just means of accommodation for the disaster

victims but a place for them to recover from the disaster by being together with

people they greet on a routine basis and hence reduce their vulnerability. In these

facilities, victims are provided food, water, and medical care and can continue

their lives with dignity, expediting the recovery from the disaster significantly.

Considering this problem of selecting shelter sites, given its significance, one

should plan and prepare in a systematic manner for a disaster. This makes the

shelter site location problem one of the fundamental facility location problems in

DOM.

In this thesis, the emphasis is on the people who cannot stay in their

homes after a disaster has occurred and seek accommodation in temporary

shelters. In order to accommodate the disaster victims, one has to devote certain

safe areas, that are preferably close to densely populated regions, to establish

temporary shelters. Usually, this decision of choosing candidate shelter locations

is made before a disaster occurs. Unfortunately, for sudden onset disasters,

e.g. earthquake or tsunami, it is impossible to forecast the number of victims

that a disaster will create, implying it is important to take demand uncertainty

into account and not work with deterministic demand assumptions for resource

planning, i.e. selecting shelters to be established, in the preparedness phase. So,

in reality, a DM decides on the location of the shelters to be established after

a disaster occurs but before the observation of the actual demand, making the

consideration of demand variability a vital part of this process.

As facility location decisions are often costly and irreversible –in our problem,

an established shelter cannot be closed as there will be disaster victims already

staying there– and since the parameters, such as demand, that they abide may

fluctuate, stochastic modeling is very relevant [10]. While reviews by Owen and

Daskin [11] and Current et al. [12] examine both deterministic and stochastic

facility location models, Snyder [10] and Caunhye et al. [3] discuss only stochastic

nature of facility location problems, agreeing that the complexity of location

problems are captured best by stochastic modeling. So, we essentially define our

problem as stochastic shelter site location problem.
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2.2 Considering Multi-Hazards

In some cases of disasters, the size of the displaced population may grow larger

because of the secondary disaster(s) following the initial one. For 1999 Marmara

Earthquake, secondary disasters were a disastrous fire at the Tüpraş petroleum

refinery, tsunamis in the Marmara sea, and a strong aftershock in Düzce [13].

When the nature of consecutive disasters are analyzed, it can be observed that

the initial and secondary disasters might be of same types (e.g. aftershocks

following an earthquake as in Illapel Earthquake, 2015) or of different types (e.g.

tsunamis coupled with nuclear meltdown following an earthquake as in Tōhoku

Earthquake, 2011) while no generalization can be made on the magnitude or the

possible consequences of the corresponding disasters.

In the literature, this phenomenon of having consecutive disasters is called

multi-hazard, which is represented as the combination of various hazards in a

defined area [6, 7]. Projecting this to the shelter site location problem, the

decision of establishing some combination of the candidate shelters becomes more

complicated as the demand uncertainty created by the initial disaster couples

with the demand uncertainty created by the possible secondary disaster(s). So,

we revise the definition of our problem as stochastic shelter site location under

multi-hazard disasters.

2.2.1 Necessity of Differentiating the Stages

In this thesis, we aim to investigate the effect of the secondary disasters on

the stochastic shelter site location problem. We discuss this extension in an

earthquake specific case, implying our initial and secondary disasters are both

earthquakes – secondary earthquake is called an aftershock. Since we do not

consider only one disaster but a sequence of disasters, a suitable modeling

methodology is required. So, to model the innate stochastic nature of the initial

earthquake and the possible aftershocks, we propose a three-stage stochastic

mixed-integer programming (MIP) model that decides on the locations of shelters,
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where we group shelters as the first stage shelters, the shelters that are established

right after the initial shock, and the second stage shelters, the shelters that are

established –if needed– after an aftershock.

As it is in the real setting, we assume that the DM decides on the location of

the shelter sites in the first stage, that is after the initial earthquake but before

the realization of actual demand. In the first stage, the disaster victims also

choose the nearest shelter from open set of shelters and travel there. Note that

the allocation decisions of the disaster victims to open shelters are made implicitly

as the victims travel to the nearest open shelter in any case, hence the allocation

decisions coincide with the location decisions. The DM cannot assign a district

to a farther shelter as victims do not and would not act out of their interests after

any disaster.

Once the disaster victims are located to the shelters after the realization of the

demand in the second stage, first decision in the second stage is whether or not

to establish new shelter(s) to meet the demand that a possible aftershock might

create. Then, in the same stage, similar to the initial shock setting, allocation

decision of victims to the shelter sites are finalized in accordance with the nearest

assignment methodology. Finally, in the third stage, after the uncertainty on the

demand of the aftershock is resolved, the utilization of established shelters are

observed.

2.2.2 Necessity of Mimicking Real Life

In creating a methodology of locating shelter sites for hosting disaster victims,

it is important to consider the features of the network, particularly the capacity

of the shelter sites. 1999 Marmara Earthquake provides an example for the

case where the population hosted in the shelters exceeds the shelter capacities

by as much as 40% [14]. The problems that were observed in 1999 Marmara

Earthquake motivated an international study, JICA-IMM joint work [15], and

numerous papers by authors located in Turkey, such as Görmez et al. [16], Kılcı

et al. [14], and Cavdur et al. [17].
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In order to model the behavior of the disaster victims in a more realistic

manner, we assume that the disaster victims in the same neighborhood will always

travel to the same and the nearest shelter. From a psychological point of view,

it is possible that a certain portion of the disaster victims who choose to reside

in shelter sites after the secondary shock may not choose to travel to the nearest

shelter but a farther shelter that has been established after the initial shock but

before the secondary shock, i.e. some portion of the population affected by the

secondary shock may choose to travel farther to be with their neighbors. Since

this approach would require parametric analysis on the portion of population that

embraces such a choice, we preserve the nearest assignment idea throughout this

study.

When the disaster victims are always assigned to the nearest shelter without

demand division, the shelter capacities may be exceeded. So, we define the risk

in this setting as the capacity of a shelter being exceeded.

2.3 Related Literature

With an enormous literature on facility location, the application of those models

to humanitarian logistics is abundant as reviews by Altay and Green [2], Simpson

and Hancock [18], and Galindo and Batta [4] suggest. Özdamar et al. [19], Kovács

and Spens [20], and Leiras et al. [21] reiterate.

Moreover, as also discussed throughout the definition of our problem, review

papers by Ortuño et al. [22], Liberatore et al. [23], and Grass and Fisher [24]

indicate the essence of the effects that stochasticity creates in humanitarian

logistics. The review by Liberatore et al. [23] defines the risks and uncertainties

associated with disasters in depth, and furthermore, discusses the sources of

uncertainties in disasters and how to model them. Grass and Fisher [24], on

the other hand, survey only two-stage stochastic models in disaster management

in depth and provide details on the general framework. These surveys provide

a basis for the significance of our problem and help us to find the crucial and
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essential research directions to pursue.

The facility location problems in the context of humanitarian logistics may

be classified as: (i) emergency medical location problem, (ii) relief material

(warehouse) location problem, and (iii) shelter site location problem [14]. Existing

literature covers categories (i) and (ii) extensively, leaving category (iii) rather

unexplored. In this work, we focus on category (iii). Next, we survey the literature

further by dividing it into two main parts; deterministic and stochastic studies

in humanitarian logistics, with an emphasis on location problems.

2.3.1 Deterministic Facility Location Problems

The relevant deterministic studies are summarized in Tables 2.1a and 2.1b. The

first column in each table introduces the article; the second column states if

the study is single-objective or multi-objective (denoted as S/M); the third and

fourth columns denote the objective(s) and decision(s) of the study, respectively;

and lastly the fifth column denotes if the proposed model is solved directly with

a commercial solver or the author(s) devise a methodology. In humanitarian

logistics studies various types of costs are considered, so we use following

abbreviations in Tables 2.1a and 2.1b: TC is the relief material transportation

cost; LC is the facility location cost; IC is the inventory holding cost; PC is the

penalty cost of unsatisfied demand; and DC is the cost for destroyed or surplus

material. Note that if a study only uses costs in its objective function, we classify

it as a single-objective study.

Jia et al. [25] propose three heuristics to solve the model they suggest in

their previous study, [34], which determines the locations of medical supply

facilities for large-scale emergencies. Salman and Gül [26] propose a multi-period

extension of this problem which also decides on the capacities of emergency service

facilities for large-scale emergencies. They provide an MIP model and analyze

the performance of it on a case study for Istanbul, Turkey.

Campbell and Jones [27] and Galindo and Batta [29] aim to minimize costs of
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Table 2.1a: Deterministic Location Studies in Humanitarian Logistics, Types (i)
and (ii)

Article
Single/Multi

Objective
Objective(s) Decision(s)

Solution
Method

[25] S Demand coverage Location, allocation Heuristic

[26] M
Travel and waiting

times, LC
Location, capacity MIP solver

[27] S TC
Location,

prepositioning
Heuristic

[28] S Response time
Location,

prepositioning,
routing

MIP solver

[29] S TC, DC
Location,

prepositioning
MIP solver

[30] S TC, PC
Location,

prepositioning,
routing

Two-phase
heuristic

[31] M
Travel time, #

first-aiders, unmet
demand

Location, routing Heuristic

[16] M Distance, # facilities Location, inventory MIP solver

[32] M
Unmet demand,

travel time
Routing Heuristic

[33] M
TC, LC, IC,

satisfied demand
Location, routing MIP solver

locating warehouses and prepositioning relief supplies. While [29] assumes that

the probabilities for potential facilities being destroyed is given, [27] discusses

the trade-off between having relief supplies located closer to the disaster area,

for faster delivery, and the supplies being at risk because of closeness to the

disaster area, and extend their study to networks with already existing set of

prepositioning facilities. Duran et al. [28], on the other hand, minimize the

expected average response time by adding routing of relief supplies.

Lin et al. [32] propose a multi-objective integer program for delivery of

prioritized relief items from a central warehouse in disaster relief operations and

solve it using two different heuristics. Since supplying relief items from a central

depot for longer time horizons is costly, Lin et al. [30] extend [32] by locating
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temporary depots and prepositioning relief supplies in the temporary depots,

decreasing the transportation costs.

Table 2.1b: Deterministic Location Studies in Humanitarian Logistics, Type (iii)

Article
Single/Multi

Objective
Objective(s) Decision(s)

Solution
Method

[14] S Shelter weight Location, allocation MIP solver

[35] S Evacuation time
Location, allocation,

evacuation
2nd order cone
programming

[36] S Evacuation time
Location, allocation,

evacuation
Genetic

algorithm

[37] M
Weighted distance,

maximum cover
Location, allocation MIP solver

[38] M
Distance, risk,

evacuation time
Location, allocation,

evacuation
MIP solver

[39] M
Distance, risk,

evacuation time
Location, allocation,

evacuation
MIP solver

Abounacer et al. [31], Rath and Gutjahr [33], and Görmez et al. [16] provide

multi-objective warehouse location models. [31] and [33] consider routing of relief

supplies but [16] allocates relief supplies directly to demand points. [31] and [33]

develop epsilon-constraint based heuristics to find the Pareto front, while [16]

proposes a bi-level program to manage the multi-objective structure.

Kılcı et al. [14] address the problem of locating shelters for an earthquake

case for Istanbul, Turkey. Using predetermined set of weights for shelters

(weight of a shelter is simply an indicator for its overall service level), they

maximize the minimum weight of the established shelters. Bayram et al. [35]

and Kongsomsaksakul et al. [36] propose models to minimize the total evacuation

time by locating shelters and assigning evacuees to shelters. While [35] assigns

evacuees to the nearest shelter sites, within a given degree of tolerance, [36]

proposes a bi-level program with the upper level deciding on the shelter locations

and the lower level deciding on the assignment of evacuees to shelters.

Lastly, Alçada-Almeida et al. [38] propose a multi-objective location-

evacuation model to locate emergency shelters and identify evacuation routes with

lower and upper limits on shelter utilizations and predefined number of shelters.
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Coutinho-Rodrigues et al. [39] extend [38] by introducing varying objectives and

not limiting the number of shelters to be opened. Chanta and Sangsawang [37]

investigate a bi-objective model which determines the locations of shelters to

serve a region suffering from a flood disaster.

2.3.2 Stochastic Facility Location Problems

Table 2.2a: Stochastic Single-Objective Location Studies in Humanitarian
Logistics, Types (i) and (ii)

Article
# of

stages Objective(s) Decision(s) Uncertainty
Solution
Method

[40] 2 LC, VC, ACe

F: Location, #
vehicles; S:
Allocation

Demand MIP solver

[8] 2
Satisfied
demand

F: Location,
preposition; S:

Demand
satisfaction

Demand, cost,
time

MIP solver

[41] 2 LC, MCe

F: Location,
preposition; S:

Allocation
Demand MIP solver

[42] 2
IC, OP, TCe,

LCe, PCe

F: Location,
preposition; S:

Allocation,
location

Demand,
capacity, time,

cost
Heuristic

[43] 2
LC, MC, PCe,

DCe, TCe

F: Location,
preposition; S:

Allocation

Demand,
inventory,
transport
network

L-Shaped
method

[44] 2 Accessibility
F: Location,
capacity; S:
Allocation

Demand,
accessibility

Integer
L-Shaped
method

Tables 2.2a - 2.2d summarize the relevant stochastic studies. Tables 2.2a and

2.2b include single-objective studies where Tables 2.2c and 2.2d include multi-

objective studies. The first column introduces the article; the second column

states if the model is two-stage or three-stage; the third and fourth columns

denote the objective(s) and decision(s) of the study, respectively, where F stands

for the first stage, S for the second stage, and T for the third stage; the fifth
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column indicates the uncertain parameters; and lastly the sixth column denotes

if the proposed model is solved directly with a commercial solver or the author(s)

devise a methodology.

In addition to the abbreviations used for different types of costs in Tables

2.1a and 2.1b, we also define the following abbreviations: V C is the cost of

locating vehicles; MC is the cost of procuring relief materials; AC is the cost

of transporting disaster victims to shelters; and OP is the operation cost of a

warehouse/relief center. Note that if the corresponding cost is calculated as an

expected cost, we denote it with a subscript, e.g. TCe.

Table 2.2b: Stochastic Single-Objective Location Studies in Humanitarian
Logistics, Type (iii)

Article
# of

stages Objective(s) Decision(s) Uncertainty
Solution
Method

[45] 2
Evacuation

time
F: Location; S:

Evacuation

Demand,
transport
network

MIP solver

[46] 2
LC, TCe, ICe,

PCe, ACe

F: Location,
capacity; S:
Allocation

Evacuees,
costs

L-Shaped
method

Our
S-O

Model
3

Expected-
weighted
shelter

F: Location; S:
Allocation,

Location; T:
Allocation

Demand Heuristic

For the emergency medical location problems (i); Beraldi and Bruni [40]

locate emergency service vehicles in congested emergency systems using reliability

constraints. Mete and Zabinsky [47] extend [40] by prepositioning the supplies

and adding uncertainties in transportation time and costs, adding transportation

time as an additional objective, and discuss the effectiveness of their proposed

methodology using a case study for earthquake scenarios in Seattle area.

For the relief material (warehouse) location problems (ii); Balcik and Beamon

[8], Chang et al. [41], and Döyen et al. [42] propose facility location models

with prepositioning. All assume uncertainties in demand while [8] and [42] have

additional uncertainty assumptions, e.g. in cost, time, and etc. Noyan [43]

extends the facility location model by adding risk-aversion through Conditional
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Table 2.2c: Stochastic Multi-Objective Location Studies in Humanitarian
Logistics, Types (i) and (ii)

Article
# of

stages Objective(s) Decision(s) Uncertainty
Solution
Method

[47] 2
F: OP; S: PCe,

Transport
time

F: Location,
preposition; S:

Allocation

Demand, time,
costs

MIP solver

[48] 2

F: TC, MC; S:
TCe, MCe,
ICe, PCe,
shortage

F: Location,
preposition; S:

Allocation

Demand,
costs,

inventory
MIP solver

[49] 2
F: LC; S:

Response time

F: Location,
preposition; S:

Allocation,
routing

Demand, time MIP solver

[17] 2

F: # facilities;
S: Distance,

unmet
demand

F: # of facilities;
S: Allocation

Demand MIP solver

[50] 2

F: Transport
time, risk, LC,

IC; S:
Transport

time, unmet
demand

F: Location,
capacity,

preposition; S:
Routing

Demand,
transport
network

Not solved

[51] 2

F: LC, VC,
OP; S:

Demand
coverage

F: Budget,
location, #
vehicles; S:
Allocation

Time, costs MIP solver

[52] 2

F: LC, IC,
OP; S: PCe,
DCe, travel

time

F: Location,
preposition; S:

Allocation

Demand, time,
cost, inventory

Heuristic

[53] 3
S: Unmet

demand; T:
Budget

F: Location,
routing; S:
Routing

Demand,
capacity,
transport
network

MIP solver
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Value-at-Risk (CVaR) where Noyan et al. [44] focus on the last mile distribution

to achieve high accessibility and equity.

In multi-objective literature, Bozorgi-Amiri et al. [48], Caunhye et al. [49],

Gunnec and Salman [50], and Tofighi et al. [52] also propose facility location

models with prepositioning. [48] and [52] only consider transportation of relief

supplies, where [49] and [50] also introduce routing decisions. All consider demand

as an uncertain parameter while some address, for example, cost, time, and etc.

to be uncertain. Cavdur et al. [17], Rath et al. [51] –extending Rath and Gutjahr

[33]–, and Rennemo et al. [53] consider multi-objective cases. Only [53] offers a

three-stage model and routing of relief supplies to demand points and focuses on

the last mile distribution.

For the shelter site location problems (iii); Bayram and Yaman [45], Li et

al. [46], and Li et al. [54] propose shelter location models. [46] looks at cases

where the relief supplies are transported from an already existing set of depots

to located shelters along with shelter capacities, where [45] and [54] consider

evacuation of victims from disaster points to shelter sites. Bayram and Yaman

[45], extending [35], assign evacuees to the nearest shelter sites, within a given

degree of tolerance, while [54] deals with the distance traveled by evacuees in the

objective function and allow evacuees to be remain unassigned.

Table 2.2d: Stochastic Multi-Objective Location Studies in Humanitarian
Logistics, Type (iii)

Article
# of

stages Objective(s) Decision(s) Uncertainty
Solution
Method

[54] 2
S: Unmet
demand,

travel time

F: Location; S:
Evacuation

Demand,
shelter,

accessibility,
time

Heuristic

Our
M-O

Model
3

Risk,
minimum

utilization,
expected

shelter, shelter
weight

F: Location; S:
Allocation,

Location; T:
Allocation

Demand Heuristic

Our single-objective model, denoted as S-O, belongs to Table 2.2b and its
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extended version onto the multi-objective framework, denoted as M-O, belongs to

Table 2.2d. In the single-objective formulation, we minimize the expected number

of established shelters over all scenarios while aiming to establish the shelters

with higher weights. In the multi-objective model, we break up the objective in

the single-objective formulation into two objectives and also introduce two new

objective functions, which are observed to be necessary in computational analyses

of the single-objective formulation. In the next section, we discuss the details.

2.4 Extending the Literature

The above literature reveals that shelter location, especially a study that considers

secondary earthquakes, is a research direction still to be explored. To the best of

our knowledge, only Zhang et al. [55] consider secondary disasters directly. But

the method they propose is fairly inefficient as they have to repeat their algorithm

for each disaster scenario (see Su et al. [56]). While [55] allocates relief supplies

to disaster nodes, we locate shelter sites and allocate disaster victims so that they

receive acceptable levels of service in terms of sheltering. We manage the risks in

all possible initial earthquake-aftershock scenario pairs.

Extending the above literature, we propose consideration of demand variability

across different occurrences in choosing the locations of shelter sites while bearing

the additional variability introduced by consecutive disasters - called multi-hazard

in the relevant literature. We mimic the behavior of disaster victims in the sense

that we assume that they will always travel to the shelter nearest to them with

all of their neighbors, without any regard for the capacity limitations.

We model the multi-hazard nature of disasters via a multi-stage stochastic

MIP model in the shelter site location problem. To mimic the behavior of the

disaster victims, we use nearest assignment constraints as proposed in [57]. Since

the capacity of the shelters may be exceeded when the disaster victims travel

to the nearest shelter without any demand division, we define the risk in this

setting as the capacity of a shelter being exceeded. To manage this unavoidable
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risk, we utilize CVaR constraints in sheltering the disaster victims and define our

risk-aversion level to lie between certain limits.

We observe that considering smaller scenario sets, e.g. 100 scenarios, even with

varying problem parameters may result in similar solutions between different

instances and hence conclude that one should consider larger scenario sets to

explain the stochastic nature of disasters and the variety of decisions made

regarding the problem parameters in a more thorough sense. Hence, we propose

a heuristic method to solve the problem for larger scenario sets.

In the multi-objective counterpart of our problem, we consider the same

setting but save the DM from the burden of choosing parameters, as dictating

performance affecting parameters in a humanitarian setting is not plausible in

reality, by defining four new objectives. As it is discussed in coming sections,

to improve the performance of our solutions in the single-objective model, we

incorporate minimum utilization constraints on the shelters and also ask the DM

to choose two parameters for the risk-aversion criterion, one of which requires

some expertise. Our multi-objective model remedies this problem of parameter

selection and provides a set of non-dominated solutions from which the DM can

choose by prioritizing certain objectives.
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Chapter 3

Single-Objective Stochastic

Shelter Site Location under

Multi-Hazard Scenarios

Earthquakes are disasters that are not known a priori. We do not know the time,

effect or magnitude of an earthquake. We do not know if any aftershocks will

follow the initial shock, and if it does, again we do not know the time, effect or

magnitude of it. All of this uncertainty points to stochastic modeling where both

the initial earthquake and the aftershock, namely the multi-hazard, are uncertain.

And when this multi-hazard phenomenon does occur, the population at risk will

be the disaster victims who seek shelter. Some proportion of the population at

risk will seek shelter after the initial earthquake and some others will seek after

the aftershock. To model this, we introduce multi-hazard methodology to shelter

site location problem via a multi-stage stochastic MIP model.
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3.1 Characteristics of the Problem

After an earthquake, disaster victims sharing the same neighborhood (or district)

always travel to the nearest shelter. As in case of a disaster, no victim would

agree to spend more time to reach a shelter than his neighbor, it is not possible to

divide the demand and state that certain victims are to reside in another shelter

(see Section 2.2.2 for a brief discussion). In a multi-hazard setting, this behavior

reflects to both the initial earthquake and the aftershock. The fact that victims

are always acting along with their interests raises a challenge on shelter capacities.

When every district travels to the nearest shelter, the capacity of the established

shelters may be exceeded. As it is apparent in 1999 Marmara Earthquake, having

shelter utilizations as high as 140% reduces the quality of services received by the

disaster victims [14].

In order to control the shelter capacities and to manage the risk of exceeding

the shelter capacities, we utilize CVaR. Presented as an approach to optimize

or hedge a portfolio of financial instruments to reduce risk, CVaR is also used

in humanitarian logistics literature to mitigate possible risks (e.g. Noyan [43]).

CVaR, in our setting, provides the DM a way of controlling the risk-aversion

level, aiding in management of the over-utilization of shelters. As Rockafellar and

Uryasev [58,59] discuss, value-at-risk (VaR), another approach in optimization to

reduce risk, provides poor quality solutions in our setting with respect to CVaR

as VaR disregards the distribution of the tail, i.e. may regard higher and smaller

violations of the shelter utilizations as the same and therefore may perform worse.

Having described the problem setting, we propose a three-stage stochastic

MIP model for locating shelter sites after an earthquake has occurred and an

aftershock may happen. We allow the DM to tune the risk-aversion level and we

incorporate nearest assignment, or nearest allocation, constraints into the model

to reflect the real life choices of the disaster victims. It is assumed that the DM

decides on the location of the shelter sites after an earthquake has happened

and before the actual demand is observed. This is same for the first and second

stages. Again in the first and second stages, as nearest assignment constraints
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are utilized, the assignment of districts to shelter sites are finalized. And finally

after the demand realization in the third stage, the utilization of shelter sites are

observable. Observe that once a shelter is established, it cannot be closed as the

victims residing there will not move to other shelters. Thus, decisions made in

the first stage will remain for the next stages.

3.1.1 Illustration of an Instance

We can illustrate the problem setting using Figures 3.1a–3.1e. The yellow star

represents the epicenter of the initial earthquake, the red squares represent the

shelters, and the blue circles represent the demand points (districts). All the

demand points in Kartal, Istanbul and the epicenter of the initial earthquake can

be observed in Figure 3.1a.

Once an earthquake occurs, the DM establishes the shelters, red squares, before

observing the actual demand, as in Figure 3.1b, in the first stage. In the second

stage, after the demand realization of the earthquake, the disaster victims travel

to the nearest open shelter as in Figure 3.1c. Lines represent the allocation of

the districts to the open shelters, finalized in the first stage. After the disaster

victims travel to the nearest open shelters, an aftershock may hit Kartal and

may require new shelters, additional red squares, to be established as in Figure

3.1d. Note that for this particular instance, three new shelters are established

under some disaster scenarios. In the third stage, after the demand realization

of the aftershock, the disaster victims travel to the nearest open shelter as in

Figure 3.1e, decided in the second stage. Dashed lines represent the allocation of

the districts to the open shelters in the third stage. As under different disaster

scenarios, different shelters can be established in the second stage, third stage

allocation of districts differs from scenario to scenario. This fact can be observed

in Figure 3.1e as districts 4 and 13 have two dashed lines, depending on which

shelter is opened in the second stage.
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Figure 3.1a: Demand points and the
epicenter of the initial earthquake

Figure 3.1b: Open shelters after an
earthquake has occurred

Figure 3.1c: Allocation of demand points
after an earthquake has occurred

Figure 3.1d: Open shelters after the
aftershock, note that some shelters were
already open

Figure 3.1e: Allocation of demand points after the aftershock and
the final result of a problem instance
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3.1.2 Characteristics of the Proposed Formulation

Throughout this thesis, we assume that the demand after the initial earthquake

and the aftershocks is uncertain. To the best of our knowledge, in the

humanitarian logistics studies, there is not any dataset that considers secondary

disasters, although many do consider initial disasters (see e.g. Balcik and Beamon

[8], Gunnec and Salman [50], Kılcı et al. [14], Noyan et al. [44], and Verma and

Gaukler [60]). Therefore, we create a new dataset based on the network provided

by Kılcı et al. [14]. As we assume that 10 different aftershocks can follow a single

earthquake, we create 50 different initial earthquakes and provide a dataset of

500 earthquake and aftershock scenarios, which will be discussed in Chapter 4.

After preliminary tests with the proposed model using our dataset, we seek to

improve the quality of solutions as victims are assigned to farther shelters and

some shelters have utilizations as low as 3% in some instances. To remedy this, we

consider including two additional set of constraints to the formulation: an upper

limit on the distance between disaster victims and the assigned shelters and a

minimum utilization for open shelters. These constraints provide solutions that

are preferable by both the victims and the DM (e.g. government authorities),

respectively.

To be in accordance with the dataset provided by Kılcı et al. [14], we assume

that the set of candidate shelter locations is known in advance, all shelters have

predetermined capacities and have previously assigned weights that denote their

level of performance. [14] defines eligible shelter site locations, identifies the

attributes of these shelter sites using ten different criteria, scales the values of

respective criteria to common units and finally calculates the weights of shelter

sites as a convex combination of the scaled values.

We also assume that the population of each district is concentrated in its

centroid. A significant assumption is on the capacity of the shelters - we assume

that under no circumstances the capacity of a shelter changes, i.e. the risk of

losing convenience of any shelter is non-existent.
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3.2 Mathematical Model

Consider a finite probability space (Ω, Π) where Ω is the sample space, i.e. set

of elementary events (we will refer to them as scenarios hereafter), and Π is a

probability measure on Ω. Let S = {1, . . . , n} be the index set of the scenarios,

then Ω = {ω1, . . . , ωn} and Π(ωs) = ps for s ∈ S. Then we use the following

notation for the sets and parameters:

Sets:

I : set of districts

J : set of candidate shelter sites

S : index set of the scenarios

S2
s : set of scenarios sharing the same history as scenario s ∈ S up to

second stage

Parameters:

wj: weight of candidate shelter site j ∈ J ; wj ∈ (0, 1]

ps: probability of scenario s ∈ S
τj: allowed tolerance of exceeding capacity for shelter site j ∈ J
q1is: number of people affected in district i ∈ I under scenario s ∈ S after

the initial earthquake

q2is: number of people affected in district i ∈ I under scenario s ∈ S after

the aftershock

dij: distance between district i ∈ I and candidate shelter site j ∈ J
α: risk-aversion parameter of CVaR

cj: capacity of shelter site j ∈ J

For each district i ∈ I, the distances dij can be sorted non-decreasingly, thus

providing an ordered sequence for the candidate shelter sites in terms of their

distances to each district. We denote it by ji(r), the r-th closest candidate shelter

site to district i ∈ I, r = 1,. . . ,|J |.
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Then we define the decision variables as:

x1j =

1 if shelter j is established in stage 1

0 otherwise
∀j ∈ J

y1ij =


1 if district i is assigned to shelter j

in stage 1

0 otherwise

∀i ∈ I, j ∈ J

x2js =


1 if shelter j is established in stage 2

under scenario s

0 otherwise

∀j ∈ J, s ∈ S

y2ijs =


1 if district i is assigned to shelter j

under scenario s in stage 2

0 otherwise

∀i ∈ I, j ∈ J, s ∈ S

f 3
js = overall utilization of shelter site j under scenario s ∀j ∈ J, s ∈ S

Recall the construction of this problem using the nearest assignment

constraints. The definition of decision variables follows the same discussion. Since

nearest assignment constraints are utilized, once the shelter sites are located, the

assignment decisions are immediate. Therefore, the assignment decisions will be

the same whether they are made before observing the demand or after observing

the demand. But, to decide on the utilization of a shelter site, it is required to

realize the uncertain demand for the whole planning horizon, which is in turn

realized finally in the third stage. Hence follows the above definition of variables.

Additionally, we define random variablesX2
j and F 3

j . Let x2js be the realizations

of the random variable X2
j where x2js = X2

j (ωs), and let f 3
js be the realizations

of the random variable F 3
j where f 3

js = Fj(ωs), j ∈ J, s ∈ S. Then we have the

following three-stage stochastic MIP model:

P(S) = min
∑
s∈S

∑
j∈J

ps
1

wj
x2js (3.1)
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s.t. ∑
j∈J

y1ij = 1 ∀i ∈ I (3.2)

|J |∑
k=r+1

y1iji(k) + x1ji(r) ≤ 1 ∀i ∈ I, r = 1, . . . , |J | − 1 (3.3)

y1ij ≤ x1j ∀i ∈ I, j ∈ J (3.4)∑
j∈J

y2ijs = 1 ∀i ∈ I, s ∈ S (3.5)

|J |∑
k=r+1

y2iji(k)s + x2ji(r)s ≤ 1 ∀i ∈ I, s ∈ S, r = 1, . . . , |J | − 1

(3.6)

y2ijs ≤ x2js ∀i ∈ I, j ∈ J, s ∈ S (3.7)

x1j ≤ x2js ∀j ∈ J, s ∈ S (3.8)

x2js′ = x2js ∀j ∈ J, s ∈ S, s′ ∈ S2
s (3.9)

CV aRα

(
F 3
j −X2

j

)
≤ τj ∀j ∈ J (3.10)

f 3
js =

∑
i∈I

q1isy
1
ij +

∑
i∈I

q2isy
2
ijs

cj
∀j ∈ J, s ∈ S (3.11)

x1j ∈ {0, 1} ∀j ∈ J (3.12)

y1ij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.13)

x2js ∈ {0, 1} ∀j ∈ J, s ∈ S (3.14)

y2ijs ∈ {0, 1} ∀i ∈ I, j ∈ J, s ∈ S (3.15)

f 3
js ≥ 0 ∀j ∈ J, s ∈ S (3.16)

The objective function (3.1) minimizes the weighted expected number of

established shelters while aiming to establish shelters with higher weights. We

achieve this goal using reciprocates of the shelter weights. Constraints (3.2)

make sure that every district is allocated to only one shelter in the first stage.

Constraints (3.3) are the nearest allocation constraints for the first stage as

presented by Wagner and Falkson [57] where we sort the distances between

districts and shelter sites in a non-decreasing manner. Constraints (3.4) assure
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that a district is assigned to a shelter if this shelter is established in the first

stage. For ease of representation, we denote constraints (3.2)–(3.4) as the “first

stage allocation constraints”, so that constraints (3.5)–(3.7), which are only the

projections of the same decisions, can be denoted as the “second stage allocation

constraints”. Constraints (3.8) are to make sure that if shelter j ∈ J is established

in the first stage, it should be kept open for any scenario at the second stage

(i.e. a located shelter site cannot be closed). Constraints (3.9) are the non-

anticipativity constraints. Constraints (3.10) are the CVaR constraints which

check the utilizations of shelter sites and make sure that the configuration of

established shelters meet the risk-aversion criterion. Constraints (3.11) define the

overall utilization of a shelter in the corresponding scenario. Lastly, constraints

(3.12)–(3.16) are the domain constraints.

3.2.1 Details on the Mathematical Model

For completeness, let us introduce a more precise description of CVaR for

continuous variables, as presented in [58,59]. Given that Z is a random cost:

CVaRα(Z) = E
[
Z | Z ≥ VaRα(Z)

]
,

where

VaRα(Z) = min
η∈R

{
η : P{Z ≤ η} ≥ α

}
,

and α ∈ (0, 1) is a preselected confidence level to tune the risk-aversion. So,

CVaRα(Z) is the conditional expected value exceeding the VaRα(Z) at the

confidence level α.

In our setting, we wish to control the risk of having over-utilized shelters.

To do so, we introduce the discrete random variable F 3
j − X2

j as the cost to be

minimized, where F 3
j −X2

j may also be regarded as the loss function. Referring to

the previous discussion on realizations of these random variables, this difference
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is positive (negative) when the realizations of the utilization of the corresponding

shelter in the corresponding scenario is above (below) 100%. Note that f 3
js > 0

when x2js = 1, due to the minimum utilization constraints, and f 3
js = 0 when

x2js = 0. As our aim is to keep this loss, over-utilization when positive, as small

as possible, we measure the risk of this loss using CVaR. We limit CVaRα(F 3
j −X2

j )

from above with τj, a parameter tuned by the DM as a secondary measure of risk-

aversion – also a bound to control the tail of the loss distribution, and formally

introduce the CVaR constraints (3.10).

We provide a more general version of CVaR, keeping Z as the random cost

vector for ease of representation, and provide the linearized version of constraints

(3.10) by referring to Rockafellar and Uryasev [58]:

CVaRα(Z) = inf
η∈R

{
η +

1

1− α
E([Z − η]+)

}
,

where [a]+ = max
{

0, a
}

, a ∈ R.

To linearize the CVaR constraints (3.10), referring to the above discussion, we

define two new continuous decision variables, zjs and ηj, and replace constraints

(3.10) with constraints (3.17)–(3.20) in P(S):

ηj +
1

1− α
∑
s∈S

pszjs ≤ τj ∀j ∈ J (3.17)

zjs ≥ f 3
js − x2js − ηj ∀j ∈ J, s ∈ S (3.18)

zjs ≥ 0 ∀j ∈ J, s ∈ S (3.19)

nj is free ∀j ∈ J (3.20)

In multi-stage stochastic models, for the scenarios having the same history up

to a given stage, the decisions made at that stage must be the same. This is called

non-anticipativity [61]. In the proposed model, this translates to the scenarios

having the same history up to second stage should share the same decisions at that

stage. In other words, the assignment of districts to shelters and establishment

of new shelters in the second stage cannot differ for scenarios sharing the same

28



initial earthquake, where the scenarios correspond to the whole horizon. To force

this on the proposed model, we utilize non-anticipativity constraints. Note that

these type of constraints are not necessary for the first stage decisions as they do

not depend on scenarios.

To discuss the structure of non-anticipativity constraints in this context, in

Figure 3.2, we first visualize the decision process. Recall that an initial earthquake

triggers x1 decisions and an aftershock triggers x2 decisions. Also observe that

assignment decisions do not depend on demand realizations and the utilization

of shelters are finalized in the third stage.

Decision
on x1

and y1

Realization
of initial

earthquake
demand

Decision
on x2

and y2

Realization
of

aftershock
demand

Decision
on f 3

Figure 3.2: Structure of the Decision Process

By construction of the dataset, we have 10 different aftershocks following

each initial shock. Since second stage shelter location decisions do not depend

on the realization of aftershocks, i.e. second stage shelter location decisions

only depend on the realization of initial earthquake, these decisions should be

kept homogeneous throughout the aftershock scenarios sharing the same initial

earthquake, hence we define set S2
s , which is the set of scenarios sharing the same

history as scenarios s ∈ S up to second stage. Then, constraints (3.9) define

this relation and make sure that the second stage shelter location decisions are

homogeneous with respect to the common history, i.e. the initial earthquake.

Figure 3.3 visualizes this discussion. In accordance with Figure 3.2, location

and allocation decisions in the first stage is followed by location and allocation

decisions in the second stage, after the demand regarding the initial shock is

realized. Finally, after the demand regarding the aftershock is realized, the third

stage decisions, shelter utilizations, are finalized. In accordance with the previous

discussion, the decisions on the second stage shelters should be homogeneous

regardless of the realized aftershock scenario.
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Figure 3.3: Visualization of Non-anticipativity Constraints

Referring to Figure 3.3, we can discuss that non-anticipativity constraints can

also be included for the second stage allocation decisions, namely y2, but we

choose not to in our formulation as this is implied by the nearest assignment

constraints.

3.2.2 Improving the Mathematical Model

As discussed earlier in this chapter, we add constraints to limit the maximum

distance between the districts and the shelters and the minimum utilizations of

open shelters to improve the solution qualities further. Constraints (3.21) and

(3.22) limit the maximum distance between the districts and the shelters, state

that no district can be forced to travel a distance more than ρ:

y1ijdij ≤ ρ ∀i ∈ I, j ∈ J (3.21)

y2ijsdij ≤ ρ ∀i ∈ I, j ∈ J, s ∈ S (3.22)
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Constraints (3.23) and (3.24) limit the minimum utilizations of open shelters,

stating that if at least one district is assigned to a shelter, then that shelter should

be utilized at a level of at least υ:

f 3
js ≥ υy1ij ∀i ∈ I, j ∈ J, s ∈ S (3.23)

f 3
js ≥ υy2ijs ∀i ∈ I, j ∈ J, s ∈ S (3.24)

Then P(S) is:

P(S) = min
∑
s∈S

∑
j∈J

ps
1

wj
x2js (3.1)

s.t. ∑
j∈J

y1ij = 1 ∀i ∈ I (3.2)

|J |∑
k=r+1

y1iji(k) + x1ji(r) ≤ 1 ∀i ∈ I, r = 1, . . . , |J | − 1 (3.3)

y1ij ≤ x1j ∀i ∈ I, j ∈ J (3.4)∑
j∈J

y2ijs = 1 ∀i ∈ I, s ∈ S (3.5)

|J |∑
k=r+1

y2iji(k)s + x2ji(r)s ≤ 1 ∀i ∈ I, s ∈ S, r = 1, . . . , |J | − 1

(3.6)

y2ijs ≤ x2js ∀i ∈ I, j ∈ J, s ∈ S (3.7)

x1j ≤ x2js ∀j ∈ J, s ∈ S (3.8)

x2js′ = x2js ∀j ∈ J, s ∈ S, s′ ∈ S2
s (3.9)

f 3
js =

∑
i∈I

q1isy
1
ij +

∑
i∈I

q2isy
2
ijs

cj
∀j ∈ J, s ∈ S (3.11)

ηj +
1

1− α
∑
s∈S

pszjs ≤ τj ∀j ∈ J (3.17)

zjs ≥ f 3
js − x2js − ηj ∀j ∈ J, s ∈ S (3.18)

y1ijdij ≤ ρ ∀i ∈ I, j ∈ J (3.21)
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y2ijsdij ≤ ρ ∀i ∈ I, j ∈ J, s ∈ S (3.22)

f 3
js ≥ υy1ij ∀i ∈ I, j ∈ J, s ∈ S (3.23)

f 3
js ≥ υy2ijs ∀i ∈ I, j ∈ J, s ∈ S (3.24)

x1j ∈ {0, 1} ∀j ∈ J (3.12)

y1ij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.13)

x2js ∈ {0, 1} ∀j ∈ J, s ∈ S (3.14)

y2ijs ∈ {0, 1} ∀i ∈ I, j ∈ J, s ∈ S (3.15)

f 3
js ≥ 0 ∀j ∈ J, s ∈ S (3.16)

zjs ≥ 0 ∀j ∈ J, s ∈ S (3.19)

nj is free ∀j ∈ J (3.20)
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Chapter 4

Dataset

We model the demand uncertainty in our setting using a dataset consisting

of earthquake and aftershock scenarios. To the best of our knowledge, in the

humanitarian logistics literature, even though there are many studies providing

datasets on initial disasters there is not any study that provides a dataset for

both initial and secondary disasters. Therefore, we devise a new methodology to

create scenarios for a district of Istanbul, Turkey.

Throughout our study, we use the network of Kartal provided by Kılcı et

al. [14] (see Figures 4.1 and 4.2). Kartal has 25 candidate shelter locations

with corresponding capacities provided in Table 4.1 and corresponding weights

in Appendix A.1. Kartal also has 20 districts, which are given along with their

populations in Appendix A.2.

Table 4.1: Shelter capacities

Shelter # 1 2 3 4 5 6 7 8 9
Capacity 24,000 45,000 25,000 60,000 60,000 25,000 30,000 75,000 25,600

Shelter # 10 11 12 13 14 15 16 17 18
Capacity 100,000 30,000 62,500 60,000 50,000 30,625 30,000 75,000 45,000

Shelter # 19 20 21 22 23 24 25
Capacity 60,000 30,000 25,000 25,000 150,000 30,000 60,000

We create the dataset in accordance with the JICA-IMM joint study [15]. We
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Figure 4.1: Kartal’s location in Istanbul

assume that each initial earthquake will be followed by 10 different aftershocks

and all of the initial earthquakes share the same epicenter, varying in magnitude.

We propose 50 distinct initial earthquakes and therefore a total of 500 distinct

disaster scenarios.

Figure 4.2: Blue circles represent the demand points (districts) and red squares
represent the candidate shelter locations in Kartal

We differentiate the earthquakes in this setting according to three features:

epicenter, effect radius and percent affected ratio (PAR). Our methodology

regards these features and, as discussed above, uses the same epicenter for every

initial earthquake. For initial earthquakes, we only decide on the effect radius and

the proportion of the population in a district it affects, namely PAR. We assume
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that with a probability of 20%, the initial earthquake will affect the districts in

3 km radius, with a probability of 40% it will affect the districts in 4 km radius

and again with a probability of 40% it will affect the districts in 5 km radius.

Table 4.2a: Effect radius, occurrence
probability and PAR values of initial
earthquakes

Effect
radius (km)

Occurrence
probability PAR

3

16% U [0.4, 0.5]
50% U [0.5, 0.6]
34% U [0.6, 0.7]

4

16% U [0.5, 0.6]
50% U [0.6, 0.7]
34% U [0.7, 0.8]

5

16% U [0.6, 0.7]
50% U [0.7, 0.8]
34% U [0.8, 0.9]

Table 4.2b: Effect radius, occurrence
probability and PAR values of
aftershocks

Effect
radius (km)

Occurrence
probability PAR

U [3.9, 4.2]

16% U [0.32, 0.40]
50% U [0.40, 0.48]
34% U [0.48, 0.56]

U [5.2, 5.6]

16% U [0.40, 0.48]
50% U [0.48, 0.56]
34% U [0.56, 0.64]

U [6.5, 7.0]

16% U [0.48, 0.56]
50% U [0.56, 0.64]
34% U [0.64, 0.72]

The corresponding PAR values along with their probabilities for the initial

earthquakes can be found in Table 4.2a, where U [a, b] denotes a continuous

uniform distribution in the interval [a, b] used to generate the PAR values, for

which a ≤ b. It is important to note that the districts are affected inversely

proportional to their distances to the epicenter in the cases of both initial

earthquakes and the aftershocks.

The same idea applies to the generation of aftershocks. But since aftershocks,

as in the real setting, may depend on the initial earthquake, we use the features of

the initial earthquake. We assume that the epicenter of the aftershock is within a

circle, which is centered at the epicenter of the initial earthquake and has a radius

equal to the half of the effect radius of the initial earthquake. The aftershock’s

effect radius is greater than the initial earthquake’s effect radius by a factor of

a number generated from U [0.3, 0.4], i.e. we multiply the effect radius of the

initial earthquake by U [1.3, 1.4] and obtain the interval for the effect radius of

the aftershock, and its PAR value is 20% lower than the initial earthquake’s PAR

value. For example, if an initial earthquake has an effect radius of 3 km, as in

the first row of Table 4.2a, the aftershock’s epicenter is within 1.5 km radius of
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the initial earthquake’s epicenter and the aftershock’s features are determined as

presented in the first row of Table 4.2b. The aftershock’s effect radius is 3×U [1.3,

1.4] = U [3.9, 4.2], occurrence probabilities and PAR values are as in the first row

of Table 4.2b.

Figure 4.3: Visualization of the scenario generation methodology

The visualization of this example can be seen in Figure 4.3. The yellow star

is the epicenter of the initial earthquake and its effect radius is 3 km, denoted by

the black (outer) circle. Then the epicenter of the aftershock is within the gray

(inner) circle, which has a radius of 1.5 km.
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Chapter 5

Multi-Stage Single-Objective

MIP Results

In this chapter, we present the computational experiments conducted using the

proposed three-stage single-objective stochastic MIP model with the dataset

described in Chapter 4. The proposed model is coded in JAVA and solved using

IBM CPLEX 12.7.1. All tests were run on a Linux OS with Dual Intel Xeon

E5-2690 v4 14 Core 2.6GHz processors with 128 GB of RAM.

5.1 Parameter Selection

As discussed in previous sections, some of the parameters are left to be finalized

by the DM to obtain solutions of various qualities. Risk-aversion level, namely

α, and allowed tolerance of exceeding capacity for each shelter site, namely τ̄ are

to control overall risk-aversion for the shelter capacities. Note that ∀j ∈ J , τj is

the same and we will use τ̄ to denote values of all τj in this chapter.

Constraint on the minimum utilization of established shelters, namely υ,

provides the DM a means to control of the overall utilization of established
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shelters. The upper limit on the distance between disaster victims and the shelters

is ρ = 4 (km) for all instances throughout this study. The parameter settings

along with respective instance IDs are presented in Table 5.1. Note that τ̄ values

differ by 5%, e.g. Instance ID 3 has τ̄ = 15% and (α, υ) = (0.90, 0.10). Instance

IDs will be used to denote the corresponding parameter sets hereafter.

Table 5.1: Parameter settings for corresponding instance IDs

(α, υ) τ̄ ID

(0.90, 0.10) 0.05, 0.10, . . . , 0.25 1, . . . , 5
(0.90, 0.15) 0.05, 0.10, . . . , 0.25 6, . . . , 10
(0.95, 0.10) 0.05, 0.10, . . . , 0.25 11, . . . , 15
(0.95, 0.15) 0.05, 0.10, . . . , 0.25 16, . . . , 20

5.2 Results with the Original Dataset

For each test instance, we put a 6-hour time limit on CPLEX. The results for the

dataset proposed in Chapter 4 can be found in Table 5.2. Note that the number

of scenarios is 500 in Table 5.2.

In Table 5.2, the first column refers to the instance IDs. The second column

is the solution time of the corresponding instance in hours. If the corresponding

instance cannot be solved to optimality in 6 hours, CPU time is denoted as “>

6”. The third column denotes the optimality gap of the corresponding instance

if it is not solved to optimality in 6 hours. Third and fourth columns refer to the

configuration of the established shelters in first and second stages, respectively.

Note that in the fourth column the shelters established in the second stage are

presented in their entirety, i.e. not all of them are established in every scenario

group but a subset of them are. The fifth column is the best objective value and

is the optimal value of the corresponding test instance if it is solved to optimality.

Last column is the average walk of the disaster victims to their allocated shelters.

As seen in Table 5.2, most of the test instances are not solved to optimality in

6 hours. Two of the test instances, Instances 9 and 19, cannot be solved due to
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Table 5.2: Test instances for 500 scenarios

ID

CPU
(hours)

Gap
(%)

First stage
shelters

Second stage
shelters

Objective
value

Average
walk (m)

1 > 6 15.37 4, 10, 12, 14, 25 5, 15, 17, 21, 22 5.962 2203
2 5.6 opt. 4, 10, 12, 14, 25 15 5.761 2213
3 > 6 23.88 10, 12, 14, 25 1, 2, 4, 5, 15, 16, 24 5.466 2290
4 > 6 0.27 10, 13, 19, 25 5, 16, 24 5.001 2368
5 > 6 25.02 8, 10, 13, 25 16 4.960 2265
6 4.8 opt. 4, 10, 12, 13, 25 5, 15, 17, 22 6.067 2279
7 1.1 opt. 4, 10, 12, 13, 25 5, 15 5.866 2288
8 > 6 18.03 4, 10, 12, 13, 25 5, 15 5.866 2288
9 > 6 * – – – –
10 > 6 0.37 10, 14, 19, 25 3, 5, 16 4.972 2230
11 > 6 10.50 4, 10, 12, 14, 25 5, 15, 17, 21 6.003 2202
12 1.4 opt. 4, 10, 12, 14, 25 15, 17 5.801 2212
13 5 opt. 4, 10, 12, 14, 25 15 5.761 2213
14 > 6 6.81 10, 13, 19, 25 5, 16, 24 5.060 2362
15 > 6 6.58 10, 13, 19, 25 16, 24 4.934 2371
16 2.3 opt. 4, 10, 12, 13, 25 5, 15, 17, 21 6.108 2277
17 0.5 opt. 4, 10, 12, 13, 25 5, 15, 20 5.912 2287
18 0.6 opt. 4, 10, 12, 13, 25 5, 15 5.866 2288
19 > 6 * – – – –
20 > 6 0.88 10, 14, 19, 25 3, 5, 16 5.095 2224

memory errors, denoted by “∗” in the table. Those which are solved to optimality

and used in comparative analyses are summarized in Tables 5.3a–5.3f. We present

details on the locations of established shelters in each stage and their utilizations.

In Tables 5.3a–5.3f, the leftmost column is the open shelter’s number. The

second column states if the corresponding shelter is established in the first or

the second stage – the same note as previous table applies here, not all of the

second stage shelters are established in all scenarios or even together. Third,

fourth and fifth columns denote the minimum, maximum and average utilizations

of corresponding shelter, respectively. Note that the minimum (maximum)

utilization of a shelter is its minimum (maximum) utilization over all scenarios.

Lastly, sixth column denotes the number of scenarios where the corresponding

shelter’s utilization has exceeded 100%.

To see the effects of changing the minimum utilizations, namely ν, on the

solutions, we compare Instances 2 and 7, provided in Tables 5.3a and 5.3b

respectively. In Instance 2; ν = 10% and in Instance 7; ν = 15%. Remaining two
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parameters, namely α and τ̄ , are the same in both instances. As the minimum

utilization increases, for this particular case, configuration of first stage shelters

differs only by one shelter, a bigger shelter is opened instead of a smaller one, and

its effect can be observed as a decrease in the average utilizations of unchanged

set of open shelters. In the second stage, the model chooses to establish another

shelter under some scenarios.

The change in the set of open shelters in the first stage can be explained by

the higher minimum utilization constraint. Utilizations of Shelters 14 and 15 in

Instance 2 are both smaller than 15%. Opening Shelter 13 instead of Shelter 14

in the first stage changes the nearest allocation configuration and provides even

more districts to be allocated to Shelter 15 in the third stage so that its minimum

utilization is at least 15%.

If we compare Instances 2 and 7 with respect to objective values and the

average walks (see Table 5.2), we can say that Instance 2 provides a better quality

solution than Instance 7 as its objective value and average walk are smaller than

those of Instance 7, in addition to the fact that the average utilizations of first

stage shelters are higher, with a trade-off on the solution time as solution time of

Instance 2 is almost half of the solution time of Instance 7.

To see the effects of changing the risk-aversion parameter, namely α, on the

solutions, we compare Instances 7 and 17, provided in Tables 5.3b and 5.3c

respectively. In Instance 7; α = 90% and in Instance 17; α = 95%, and remaining

two parameters, namely ν and τ̄ , are the same for both instances. As the DM

becomes more risk-averse, the number of established shelters in the second stage

increases to lower the higher utilizations of the established shelters in Instance 7,

since we define the risk in our setting as the capacities of shelters being exceeded

too much.

Even though more shelters are established in the second stage, the average

utilizations in Instance 17 are not bigger than the average utilizations in Instance

7. It can be observed that for some shelters, specifically Shelters 12, 13 and 25

in the first stage and Shelters 5 and 15 in the second stage, the statistics on
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the utilizations do not differ in Instance 17 with respect to Instance 7. This is

due to the nearest allocation constraints. In addition to Instance 7, only Shelter

20 is established in Instance 17 in the second stage. For districts allocated to

Shelters 12, 13 and 25 in the second stage and to Shelters 5 and 15 in the third

stage, opening Shelter 20 does not alter the nearest allocation configuration and

therefore has no effect on the utilization statistics of aforementioned shelters.

But some of the districts allocated to Shelters 4 and 10 in the third stage can

be allocated to Shelter 20 and thus can change utilization statistics of Shelters 4

and 10.

To see the effects of changing the allowed tolerance parameter, namely τ̄ , on

the solutions, we compare Instances 17 and 16, provided in Tables 5.3c and 5.3d

respectively. In Instance 17; τ̄ = 10% and in Instance 16; τ̄ = 5%. Remaining

two parameters, namely α and ν, are the same for both instances. As discussed

previously, τ̄ is used as a secondary measure of risk-aversion in this setting. But

in contrast to α, increasing τ̄ decreases risk-aversion. First indicator of this fact

is the decrease in the number of established shelters and the optimal value of

Instance 17. Also, as a result of higher risk-aversion, the utilizations exceed

100% in less scenarios in Instance 16 with respect to Instance 17. Note that the

Figures 3.1a–3.1e in Chapter 3 are the visualizations of Instance 17.

Lastly, as an interesting observation, we present Instances 7 and 18, provided

in Tables 5.3b and 5.3e respectively. In both of the instances ν = 15%. With

respect to α, Instance 18 is more risk-averse than Instance 7 as its α is bigger,

but with respect to τ̄ , Instance 7 is more risk-averse than Instance 18 as its τ̄

is smaller. And both instances have the same solution. The same phenomenon

can also be observed in Instances 2 and 13, presented in Tables 5.3a and 5.3f,

respectively. Instances 2 and 13 also share the same ν = 10% and the same

solutions.
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5.3 Results with Smaller Datasets

As we cannot solve all of the instances to optimality within the time bound with

500 scenarios, we decrease the cardinality of the scenario set and experiment

with smaller sets. Since we propose that 10 different aftershocks may follow an

initial earthquake, to create smaller scenario sets, we first choose a smaller set

of initial earthquakes from the original set of initial earthquakes and include the

corresponding aftershocks to generate the whole scenario set. For example, for a

set of 250 scenarios, we choose 25 initial earthquakes out of 50 initial earthquakes

randomly, and include the aftershocks corresponding to those initial earthquakes.

The same methodology applies to generating a scenario set of cardinality 100.

Table 5.4 presents the test instances for a scenario set of cardinality 250.

Table 5.4: Test instances for 250 scenarios

ID

CPU
(sec)

First stage
shelters

Second stage
shelters

Objective
value

Average
walk (m)

1 4,212 4, 10, 12, 13, 25 5, 17, 21 6.090 2285
2 1,364 4, 10, 12, 13, 25 5, 17 5.786 2299
3 1,086 4, 10, 12, 13, 25 5 5.745 2300
4 4,035 10, 13, 19, 25 2, 5, 16, 24 5.194 2371
5 9,263 10, 13, 19, 25 16 5.015 2380
6 1,863 4, 10, 12, 13, 25 5, 15, 17, 20, 22 6.192 2284
7 684 4, 10, 12, 13, 25 5, 15, 20 5.888 2297
8 960 4, 10, 12, 13, 25 5, 15 5.842 2298
9 9,247 4, 10, 13, 23 3, 5, 11, 15, 16, 17 5.503 2277
10 676 10, 13, 19, 25 16 5.015 2380
11 3,186 4, 10, 12, 13, 25 5, 17, 21 6.149 2281
12 1,112 4, 10, 12, 13, 25 5, 17 5.827 2298
13 880 4, 10, 12, 13, 25 5 5.745 2300
14 3,229 10, 12, 13, 25 2, 4, 5, 16, 24 5.279 2383
15 1,613 10, 13, 19, 25 5, 16 5.057 2377
16 1,429 4, 10, 12, 13, 25 5, 15, 17, 21, 22 6.246 2280
17 602 4, 10, 12, 13, 25 5, 15, 20, 22 5.946 2294
18 739 4, 10, 12, 13, 25 5, 15 5.842 2298
19 2,495 4, 10, 12, 13, 25 5, 15 5.842 2298
20 2,286 10, 13, 19, 25 5, 16 5.057 2377

We observe that as the cardinality of the scenario set decreases, the solution

times decreases drastically and all of the instances can be solved to optimality.

The longest solution time in the test runs with a scenario set of cardinality 250

is around 2.5 hours and the smallest solution time is 10 minutes.
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Table 5.5: Test instances for 100 scenarios

ID

CPU
(sec)

First stage
shelters

Second stage
shelters

Objective
value

Average
walk (m)

1 161 4, 10, 12, 13, 25 5, 22 6.165 2236
2 139 4, 10, 12, 13, 25 5, 17 6.016 2247
3 145 4, 10, 13, 19, 25 21 5.848 2276
4 118 10, 13, 19, 25 5, 16, 24 4.961 2337
5 84 10, 13, 19, 25 16, 24 4.855 2346
6 63 4, 10, 12, 13, 25 5, 15, 21 6.195 2247
7 64 4, 10, 12, 13, 25 15, 20 6.060 2258
8 81 4, 10, 13, 19, 25 21 5.848 2276
9 122 4, 10, 13, 19, 25 17 5.805 2279
10 55 10, 13, 19, 25 5, 16 4.855 2339
11 209 4, 10, 12, 13, 25 5, 21 6.165 2236
12 148 4, 10, 12, 13, 25 5, 17 6.016 2247
13 106 4, 10, 12, 13, 25 5 5.914 2250
14 113 8, 10, 13, 25 4, 5, 16 5.130 2284
15 86 10, 13, 19, 25 16, 24 4.855 2346
16 47 4, 10, 12, 13, 25 5, 15, 21 6.195 2247
17 64 4, 10, 12, 13, 25 15, 21 6.090 2253
18 68 4, 10, 12, 13, 25 15 5.945 2261
19 79 4, 10, 13, 19, 25 17 5.805 2279
20 53 10, 13, 19, 25 5, 16 4.855 2339

In Tables 5.4 and 5.5, for most of the instances, the first stage shelters do not

vary much but the second stage shelters do. With respect to optimal solutions

in Table 5.2, three out of eight instances differ in the configuration of open first

stage shelters.

In Table 5.4, Instances 3 and 13; 5 and 10; 8, 18 and 19; and 15 and 20 share

the same solutions, respectively. In Table 5.5, Instances 2 and 12; 3 and 8; 5 and

15; 6 and 16; 9 and 19; and 10 and 20 share the same solutions, respectively. So

as we decrease the size of the scenario set, varying nature of the earthquakes and

the aftershocks cannot be represented thoroughly, and therefore we prefer to use

larger datasets.
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5.4 A Heuristic Solution Methodology

As discussed previously, the solution times exceed 6-hour limit for most of the

presented test instances with 500 scenarios. For instances solved to optimality

under 6 hours, the average solution time is 2.7 hours where the average gap

for test instances that cannot be solved to optimality under 6 hours is 10.77%,

excluding the two instances that cannot be solved due to memory errors.

Since we need as many different scenarios as possible to represent the varying

nature of earthquakes and aftershocks, we wish to solve the proposed model with

a larger dataset and as we observe in Tables 5.4 and 5.5, the solution times

significantly improve as the cardinality of the scenario set decreases. We utilize

this fact in the construction of the proposed heuristic. We define R to be a

reduced set of the original dataset, which we call as S, such that |R| < |S| and

R ⊂ S.

The proposed heuristic blends different approaches used in stochastic

optimization. In each iteration of the proposed heuristic, we solve P(R) and

obtain a set of first stage variables and call it x1∗. Then we fix the first stage

variables in P(S), namely x1, to x1∗ and check for feasibility. Note that P(R)

can be defined as a group subproblem with adjusted probabilities as Sandıkçı et

al. [62] propose. As in P(S), the probability of each scenario is equal to 1/|S|, in

P(R), the probability of each scenario is equal to 1/|R|.

As we solve group subproblems, we may encounter same set of first stage

variables. If we have already evaluated x1∗, we prefer not to evaluate it again.

For this purpose, Ahmed [63] suggests using no-good cuts to eliminate a solution

from a solution pool. This is another approach we utilize in this heuristic. Since

we check the feasibility of x1∗ to P(S), there is no need to check the same x1∗

again, and we can confidently eliminate it from the solution pool. We perform

this elimination using no-good cut constraint in each iteration by adding it to
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P(R).

∑
j:x1∗j =0

x1j +
∑

j:x1∗j =1

(1− x1j) ≥ 1 (5.1)

We store all no-good cuts, corresponding to x1∗ obtained in each iteration, in a

cut pool C. As we solve P(R), we add all of the no-good cuts, in the form of (5.1),

in the cut pool C as constraints. After we conclude that x1∗ is not feasible for

P(S), we add its no-good cut to the cut pool C. So in each iteration, we obtain a

new and unique set of open first stage shelters from P(R). After we solve P(R)

in each iteration, we fix x1 variables in P(S) to x1∗ and solve it for feasibility

check. The heuristic stops when we find a combination of first stage shelters that

is feasible for the original problem, i.e. x1∗ is feasible for P(S).

In each iteration, the reduced set R, where |R| = κ, is randomly selected from

the set S. A more formal representation of the proposed heuristic is provided in

Algorithm 1. Note that, hereafter, opt [ · ] implies the optimization of problem ·
and gives the optimal value of it.

Algorithm 1 Heuristic for the single-objective formulation

Require: S.
1: Cut pool C ← ∅. Let κ be the cardinality of the reduced set. bool← TRUE.
2: while bool do
3: Create R ⊂ S randomly, with |R| = κ.
4: Solve P(R) regarding C. Let x1∗ be an optimal first stage decision of P(R).
5: Solve P(S) by fixing x1 = x1∗. V := opt [P(S)].
6: if P(S) is feasible then
7: bool← FALSE.
8: end if
9: if bool then

10: Add no-good cut
∑

j:x1∗j =0

x1j +
∑

j:x1∗j =1

(1− x1j) ≥ 1 to C.

11: end if
12: end while
13: return V
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5.4.1 Heuristic Results

In Tables 5.6a – 5.6f, we present the solution time, objective value, optimality

gap and iteration numbers of the tests for instances that are solved to optimality,

referring to Table 5.2. As we choose set R randomly in each iteration, we perform

with six different random seeds for each test instance to obtain different R sets

in each iteration. We use this procedure to discuss the effects of randomness

and perform analyses on the subset selection from the original dataset. Note that

using random seeds in JAVA enables users to recreate the same stream of random

numbers, i.e. we use same stream of random R sets through all test instances as

long as the random number generator is set to the same value in corresponding

tests.

In Tables 5.6a – 5.6f, the first column provides the instance IDs and their

corresponding solution times, optimality gaps, and number of iterations in the

second, third and fourth columns, respectively. Iteration number in a test

corresponds to the number of times the smaller problem is solved – or the number

of no-good cuts in the cut pool C. Note that κ = 100 and we solve for 500 scenario

in the results presented in Tables 5.6a – 5.6f.

An occurring trend in Tables 5.6a – 5.6f is the positive correlation between the

gaps and the solution times for the instances. This is the main reason we present

the results of the proposed heuristic with different random seeds for scenario

subset selection. The combination of scenarios in set R affects the performance

of the proposed heuristic. But again, performing the proposed heuristic for six

different random seeds – for Instances 2, 12 and 13, i.e. instances where none of

the solutions are exact – still has lower solution times with respect to the results

in Table 5.2. So the proposed heuristic can be performed numerous times and

the best solution it provides can be chosen as a near-optimal solution.

In terms of performance among the six different random seeds for scenario

subset selection, third random seed performs well enough for all test instances

summarized in Tables 5.6a – 5.6f since it provides the optimal solutions for the

five of the instances with small gaps among the others, and also has less number
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Table 5.6a: Seed 1

ID

Solution
time (sec) Gap (%)

# of
iterations

2 539 0.1 3
6 653 0 3
7 581 0 3
12 658 0.1 3
13 621 0.1 3
16 621 0 3
17 582 0 3
18 441 0 3

Table 5.6b: Seed 2

ID

Solution
time (sec) Gap (%)

# of
iterations

2 1,657 9 1
6 841 0 4
7 686 0 4
12 802 0.1 4
13 1,929 7 1
16 610 0 4
17 538 0 4
18 551 0 4

Table 5.6c: Seed 3

ID

Solution
time (sec) Gap (%)

# of
iterations

2 413 0.1 2
6 421 0 2
7 276 0 2
12 487 0.1 2
13 445 0.1 2
16 271 0 2
17 260 0 2
18 292 0 2

Table 5.6d: Seed 4

ID

Solution
time (sec) Gap (%)

# of
iterations

2 220 0.1 1
6 482 0 2
7 357 0 3
12 210 0.1 1
13 185 0.1 1
16 295 0 2
17 396 0 3
18 411 0 3

Table 5.6e: Seed 5

ID

Solution
time (sec) Gap (%)

# of
iterations

2 207 0.1 1
6 337 0 1
7 545 0 4
12 204 0.1 1
13 2,151 5 7
16 196 0 1
17 182 0 1
18 587 0 4

Table 5.6f: Seed 6

ID

Solution
time (sec) Gap (%)

# of
iterations

2 195 0.1 1
6 191 0.1 1
7 167 0 1
12 201 0.3 1
13 210 0.1 1
16 173 0 1
17 170 0.1 1
18 139 0 1

of iterations for those instances. So we use the third random seed to solve the

remaining instances, namely the instances that cannot be solved to optimality

under 6 hours. Table 5.7 provides the solution times, gaps – with respect to

the solutions provided in Table 5.2, i.e. best objective value – and number of

iterations for all test instances along with the information on the solutions as in

Table 5.2. A negative gap value states that the proposed heuristic provides a

better solution with respect to the best objective value in Table 5.2 whereas a

positive gap value states that the proposed heuristic provides a worse solution.

Note that the gaps are per thousand and ∗ denotes that the corresponding gap
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Table 5.7: Summary of results for κ = 100 and 500 scenarios with the proposed
heuristic

ID

Solution
time (sec)

Gap
(�)

# of
iter

First stage
shelters

Second stage
shelters

Objective
value

Average
walk (m)

1 708 - 0.6 1 4, 10, 12, 13, 25 5, 7, 21 5.958 2281
2 413 1 2 4, 10, 12, 13, 25 5 5.766 2289
3 906 4 1 4, 10, 13, 23 5, 15, 17 5.488 2253
4 200 0 1 10, 13, 19, 25 4, 5, 16, 24 5.001 2366
5 411 - 13.2 2 10, 13, 19, 25 16, 24 4.895 2370
6 421 0 2 4, 10, 12, 13, 25 5, 15, 17, 21 6.067 2279
7 276 0 2 4, 10, 12, 13, 25 5, 15 5.866 2288
8 372 0 2 4, 10, 12, 13, 25 5, 15 5.866 2288
9 371 * 2 4, 10, 13, 23 3, 5, 11, 15, 17 5.287 2274
10 759 0 4 10, 14, 19, 25 3, 5, 16 4.972 2230
11 339 0.9 1 4, 10, 12, 13, 25 5, 17, 22 6.008 2278
12 487 1 2 4, 10, 12, 13, 25 5, 17 5.807 2288
13 445 1 2 4, 10, 12, 13, 25 5 5.766 2289
14 385 - 0.1 1 10, 13, 19, 25 5, 16, 24 5.060 2364
15 448 0 2 10, 13, 19, 25 16, 24 4.934 2371
16 271 0 2 4, 10, 12, 13, 25 5, 15, 17, 21 6.108 2277
17 260 0 2 4, 10, 12, 13, 25 5, 15, 20 5.912 2287
18 292 0 2 4, 10, 12, 13, 25 5, 15 5.866 2288
19 334 * 2 4, 10, 13, 23 3, 5, 11, 15, 17 5.382 2271
20 506 0.3 3 10, 12, 13, 25 5, 15, 16 5.097 2379

value cannot be calculated as those instances could not be solved before due to

memory errors.

The solutions found in Table 5.7 are similar to those in Table 5.2 and the

proposed heuristic performs better in terms of solution times. The proposed

heuristic also provides us solutions for the instances where CPLEX cannot solve

due to memory errors. Although we do not know the optimal solutions for all of

the instances presented in Table 5.7, comparing with the results of CPLEX after

6 hours, we can say that the proposed heuristic performs well in terms of solution

times as the maximum solution time is 15 minutes, averaging around 7 minutes.

Note that we disregard the time it takes to choose the seed that we will run the

remaining parameter sets with since it is up to the DM to choose the number of

seeds to perform the initial comparison.
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5.5 Value of the Three-Stage Model

To reiterate the value of using our proposed model in cases of consecutive

disasters, we compare it with its common counterpart, where we separate the

initial earthquake and the aftershock in the decision making process, i.e without

relating the aftershocks to initial earthquakes. We model this problem using two

two-stage stochastic MIPs. The first program, namely F1, includes the decisions

for the initial earthquakes, and the second program, namely F2, includes the

decisions for the aftershocks.

5.5.1 Comparison Methodology

We still assume that the locations of shelter sites are decided before any

earthquake occurs. To solve this common counterpart problem, we first solve F1

for all of the initial earthquake scenarios, i.e. we assume that the DM disregards

the probability of having aftershocks while deciding for the locations of the shelter

sites for the initial earthquake. And as we know the set of the aftershocks that

can happen after any initial earthquake, we then solve F2 for each set of possible

aftershocks following each initial earthquake.

Since there are 50 different initial earthquakes and 10 aftershocks following

each initial earthquake in the dataset, we solve F1 considering all of the initial

earthquakes, i.e. solve it once and for 50 different initial earthquakes, and we

solve F2 for all initial earthquake-aftershocks scenario pairs, i.e. solve it 50 times

for 10 aftershocks, each time with a different set of aftershocks.

As the CVaR constraints bind all of the stages together, we cannot directly

use the same τj values for the decomposed common counterpart problems. If we

do so, we may obtain higher violations of the shelter utilizations with respect to

the optimal solutions. Therefore, we decompose the τj values as τ ′j for F1 and as

τ ′′js for F2 in a given test using the optimal solutions in Table 5.2. Note that Tk
=
[
τ ′′k1,. . . ,τ ′′ks

]
, k ∈ J, s ∈ S, where it is defined as the vector of decomposed τk
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values to be used in F2, i.e. τk corresponding to the second stage utilizations.

Referring to the original model and the definitions in Chapter 3, F1(S) is:

min
∑
j∈J

1

wj
x1j

s.t.

(3.2) – (3.4), 3.13, 3.15, 3.17

CV aRα

(
Fj − x1j

)
≤ τ ′j ∀j ∈ J

f 3
js =

∑
i∈I

q1isy
1
ij

cj
∀j ∈ J, s ∈ S

and F2(S) is:

min (3.1)

s.t.

(3.5) – (3.7), 3.9, 3.14, 3.16, 3.17

x1∗j ≤ x2js ∀j ∈ J, s ∈ S

CV aRα

(
Fj −X2

j

)
≤ Tj ∀j ∈ J

f 3
js =

∑
i∈I

q1isy
1∗
ij +

∑
i∈I

q2isy
2
ijs

cj
∀j ∈ J, s ∈ S

As you can see in models F1 and F2, we do not need the “second stage

allocation constraint” for y1ij in F2 since we feed the solution provided from F1 to

F2. Note that we denote x1j and y1ij as x1∗j and y1∗ij in F2, respectively, to indicate

that they are given. Also note that, we first solve F1 for each of the initial

earthquakes and then solve F2(s̄i) for the corresponding set of aftershocks, where

s̄i is the set of possible aftershocks that may follow the i-th initial earthquake,

|s̄i| = 10, i = 1, . . . , 50.
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5.5.2 Results of the Comparison

The solutions obtained using the previous section’s methodology are presented in

Table 5.8.

Table 5.8: Comparison of objective values and walks of the proposed model and
its common counterpart

ID

Optimal value
Average objective Maximum walk Average walk

# of Infea-
sibilities

2
5.761 3,571 2,213

08.679 3,903 2,251

6
6.067 3,903 2,279

38.699 3,903 2,228

7
5.866 3,903 2,288

08.741 3,903 2,245

12
5.801 3,571 2,212

08.778 3,903 2,250

13
5.761 3,571 2,213

07.919 3,903 2,272

16
6.108 3,903 2,277

58.348 3,903 2,228

17
5.912 3,903 2,287

18.396 3,903 2,251

18
5.866 3,903 2,288

17.746 3,903 2,273

The first column in Table 5.8 refers to the ID of the corresponding test

instance. In the first row of the second column, we present optimal value of

the corresponding test instance, and in the second row of the second column we

present the average objective value of 50 common counterpart problems. Recall

that we solve F2 for 50 different aftershock sets for each test instance since

we have 50 different initial earthquakes in the original dataset. In the third

and fourth columns, we present the maximum and average walk values of the

proposed model and the common counterpart problems, respectively. Note that

third column denotes the maximum of the maximum walk values of 50 common

counterpart problems. In the last column, we denote the cases of infeasibility,

out of 50 scenarios.
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As it can be observed in Table 5.8, there are some cases of infeasibilities caused

by decomposing τj to τ ′j and τ ′′js, i.e. decomposing stages, where in the proposed

model we observe and manage all of the stages simultaneously and can meet the

risk-aversion level for all of the planning horizon. In other words, we fail to achieve

the level of risk-aversion obtained with our proposed model using the common

counterpart model even though more shelters are established in the overall.

In all of the instances, the proposed model dominates the common counterpart

model in terms of the objective value but almost always is dominated in terms of

the average walks. This is mainly due to the large number of shelters established

in the common counterpart model. Regardless, we can easily state that the

proposed model performs better than the common counterpart model as the

excess amount of established shelters does not seem to improve the average walk

values considerably.

We present details of the comparison using Instance 16 as an example in

Table 5.9. In the first column in Table 5.9, we average the number of shelters

established over all scenarios. In the second column, we present the maximum of

the maximum utilizations of shelters. In the third column, we average the average

shelter utilizations. And lastly, in the fourth column we present the number of

scenarios where the utilization of a shelter is above 100%.

Table 5.9: Comparison of the proposed model with the common counterpart
model for Instance 16

Average # of
overall shelters

Maximum
util (%)

Average
util (%)

# of scenarios
above 100% util

Proposed model 5.34 112.66 58.05 130

Common 7.93 120.63 54.67 146
counterpart model

As it is apparent from Table 5.9, it is more costly for the DM to not incorporate

the aftershocks in the decision making process. In terms of the objective function

and the number of established shelters, proposed model outperforms the common

counterpart model. The proposed model has a higher average utilization with
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smaller maximum utilization and smaller number of cases where a shelter is

utilized more than 100%. All these statistics emphasize that the proposed model

performs better than the common counterpart model.
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Chapter 6

Multi-Objective Stochastic

Shelter Site Location under

Multi-Hazard Scenarios

Fairness and efficient utilization of resources are of primary concern in

humanitarian operations, and using a single-objective might not always be

sufficient to guarantee a decision satisfying both requirements. On one hand,

the DM might prefer solutions that are optimal in the systematic sense, on the

other hand, the victims of the disaster might prefer solutions that are optimal

in the individual sense, usually two concepts in conflict. To remedy this, multi-

objective programming is extensively used in the humanitarian logistics literature,

as discussed in Chapter 2.

6.1 Characteristics of the Multi-Objective

Problem

For the stochastic shelter site location problem, we preserve the same problem

setting while introducing additional objectives and decisions to provide the DM

55



with a set of non-dominated solutions from which a decision can be made

regarding the priorities and expected performances.

For this setting, suppose that L-many different objective functions are

considered, Zl(x), l = 1, . . . , L, where x is the solution vector and Zl(.) is the l-th

objective function. Then, this problem can be modeled as:

min Z(x) =
[
Z1(x), . . . , ZL(x)

]
s.t. x ∈ X

where X is the feasible set of the problem.

As in general, there is not a single solution that optimizes all objectives

simultaneously, so the notion of optimality is replaced with the notion of Pareto

optimality (or Pareto efficiency) and the goal of such a problem becomes

determining the efficient (or non-dominated) solutions [64,65].

6.1.1 Drawbacks of the Single-Objective

There is more than one type of concern in extending this formulation to a multi-

objective framework. In the single-objective version, the DM needs to specify

two parameters for the risk-aversion level and one parameter for the minimum

utilization level beforehand, which moderately depend on the disaster and its

effect. Hence, especially in a humanitarian context, it is hard to select those

parameters. Nonetheless, to analyze the system, we can perform numerous

parameter analyses but still, in reality, we cannot forecast the demand a disaster

might create, making such analyses fairly redundant in this context.

To remove the responsibility of parameter selection from the DM, we propose

a multi-objective framework and leave only one parameter selection to the DM,

namely the risk-aversion parameter α. As this value is taken as either 90%,

95%, or 98% in the related risk-averse decision making literature, the DM only

needs to make a choice between these options. In our computational tests in this
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framework, and recall that also in the single-objective framework, we use and

compare with α = 0.90 and α = 0.95.

6.1.2 Considered Objectives

We define four objectives as:

Z1(x) = CVaRα

(∑
j∈J

[
Fj −X2

j

]
+

)
Z2(x) = u

Z3(x) = Wmax +Wmin

Z4(x) =
∑
s∈S

∑
j∈J

psx
2
js

where Z1(x) is the risk of exceeding shelter capacities, Z2(x) is the minimum

utilization over all open shelters, Z3(x) is the sum of maximum and minimum

weights of the opened shelters, and Z4(x) is the expected number of established

shelters. So, naturally, Z1(x) and Z4(x) are the objectives to be minimized,

whereas Z2(x) and Z3(x) are the objectives to be maximized. Note that x is a

feasible solution for our problem.

The four objectives introduced above can be grouped according to their

intended audience: objectives Z2(x) and Z4(x) are intended for the DM. Second

objective is valuable as the DM might want to have smallest utilization of

open shelters bigger than a specified level, hence this statistic is regarded as

an objective and a measure of efficiency in the solutions. Fourth objective is

again valuable to the DM as it is desirable to have smaller number of shelters,

both for means of serving and cost of establishing them, assuming homogeneous

establishment costs.

In the objective Z2(x), we consider the minimum utilization of established

shelters rather than the average utilization as looking at the average may not be

able to save the DM from lower utilization values, see discussion in Section 3.1

57



regarding the minimum utilization constraints.

Furthermore, objectives Z1(x) and Z3(x) are intended for the victims. First

and third objectives are valuable to the victims as they would like to reside in

shelters that are not too crowded and have more from the certain established

standards, i.e. they prefer shelters to have larger weights. Recall that the weight

of a shelter is an indicator of its performance level.

In the objective Z3(x), we consider the sum of the maximum and minimum

weights of the established shelters rather than averaging the weights. This way,

it is computationally more preferable and performs well enough in practice, i.e.

if we were to consider the average weights of the established shelters, the number

of candidate solutions that particular objective can take would be finite but very

large – we will later discuss that having such a smaller set is preferable in this

context. We also make an important distinction in considering the maximum and

minimum weights of the established shelters. In practice, the DM naturally would

like to have the best configuration of the first stage shelters since the second stage

shelters may not be established in some of the scenarios. So, we implement this

requirement in our model by considering the maximum weight only for the first

stage shelters and the minimum weight for shelters established in either stage, i.e.

we are aiming to have a better configuration of the first stage shelters by doing

so.

6.2 Mathematical Model

We can reformulate our problem with the improvements proposed above as

follows, starting with the decision variables – we present them in their entirety:

x1j =

1 if shelter j is established in stage 1

0 otherwise
∀j ∈ J
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y1ij =


1 if district i is assigned to shelter j

in stage 1

0 otherwise

∀i ∈ I, j ∈ J

x2js =


1 if shelter j is established in stage 2

under scenario s

0 otherwise

∀j ∈ J, s ∈ S

y2ijs =


1 if district i is assigned to shelter j

under scenario s in stage 2

0 otherwise

∀i ∈ I, j ∈ J, s ∈ S

f 3
js = overall utilization of shelter site j under scenario s ∀j ∈ J, s ∈ S

bj =

1 if shelter j has the maximum weight

0 otherwise
∀j ∈ J

u = minimum utilization rate

Wmin = minimum of the weights of the shelters

established in the second stage

Wmax = maximum of the weights of the shelters

established in the first stage

Then we have the following model, where for some parts we refer to the single-

objective formulation – again we present them in their entirety for completeness:

P(S) =

min CVaRα

(∑
j∈J

[
F 3
j −X2

j

]
+

)
(O1)

max u (O2)

max Wmax +Wmin (O3)

min
∑
s∈S

∑
j∈J

psx
2
js (O4)

s.t.
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∑
j∈J

y1ij = 1 ∀i ∈ I (3.2)

|J |∑
k=r+1

y1iji(k) + x1ji(r) ≤ 1 ∀i ∈ I, r = 1, . . . , |J | − 1 (3.3)

y1ij ≤ x1j ∀i ∈ I, j ∈ J (3.4)∑
j∈J

y2ijs = 1 ∀i ∈ I, s ∈ S (3.5)

|J |∑
k=r+1

y2iji(k)s + x2ji(r)s ≤ 1 ∀i ∈ I, s ∈ S, r = 1, . . . , |J | − 1 (3.6)

y2ijs ≤ x2js ∀i ∈ I, j ∈ J, s ∈ S (3.7)

x1j ≤ x2js ∀j ∈ J, s ∈ S (3.8)

x2js′ = x2js ∀j ∈ J, s ∈ S, s′ ∈ S2
s (3.9)

f 3
js =

∑
i∈I

q1isy
1
ij +

∑
i∈I

q2isy
2
ijs

cj
∀j ∈ J, s ∈ S (3.11)

f 3
js ≥ ux2js ∀j ∈ J, s ∈ S (6.1)

Wmin ≤ wjx
2
js +

(
1− x2js

)
∀j ∈ J, s ∈ S (6.2)

Wmax ≥ wjx
1
j ∀j ∈ J (6.3)

wjx
1
j ≥ bjWmax ∀j ∈ J (6.4)∑

j∈J

bj ≥ 1 (6.5)

x1j ∈ {0, 1} ∀j ∈ J (3.12)

y1ij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.13)

x2js ∈ {0, 1} ∀j ∈ J, s ∈ S (3.14)

y2ijs ∈ {0, 1} ∀i ∈ I, j ∈ J, s ∈ S (3.15)

f 3
js ≥ 0 ∀j ∈ J, s ∈ S (3.16)

bj ∈ {0, 1} ∀j ∈ J (6.6)

Wmax,Wmin, u ≥ 0 (6.7)

Going over the objectives first, the objective function (O1) minimizes the

over-utilization of shelters with a previously decided the risk-aversion level of
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α. The second objective function (O2) maximizes the minimum utilization over

all shelters. The third objective function (O3) maximizes the sum of maximum

and minimum weights of established shelters and the fourth objective function

(O4) minimizes the expected number of established shelters. Recall that we define

Wmax as the maximum of the weights of the shelters established in the first stage

and Wmin as the minimum of the weights of the shelters established in the second

stage to increase the overall performance of opened shelters, i.e. let the shelter

with the highest weight to be used for two stages of assignment and let the shelter

with the lowest weight to be used only for one stage of assignment, hence lower

the cases of inefficiency.

As in the single-objective counterpart, recall that constraints (3.2)–(3.4) are

the “first stage allocation constraints”, and constraints (3.5)–(3.7) are the “second

stage allocation constraints”. Constraints (3.8) make sure that if shelter j ∈ J is

established in the first stage, it should be kept open for any scenario at the second

stage. Constraints (3.9) are the non-anticipativity constraints. Constraints (3.11)

define the overall utilization rate of a shelter in the corresponding scenario.

Different from the single-objective counterpart, constraints (6.1) find the

minimum utilization value over all established shelter – its linearization is

explained next. Constraints (6.2) calculate the minimum weight of the shelters

established in the second stage. Constraints (6.3)–(6.5) calculate the maximum

weight of the shelters established in the first stage, they make sure that at least

one of the open shelter have the maximum weight amongst the others – bj = 1 if

j-th shelter has the largest weight among other open shelter, note that more than

one shelter can have the corresponding bj = 1, given they all have the highest

weight and are opened. Linearization of constraints (6.4) is also explained in

detail in coming parts. Finally, the remaining are the domain constraints.

6.2.1 Details on the Mathematical Model

Recall that we define random variables X2
j and F 3

j and let x2js be the realizations

of the random variable X2
j where x2js = X2

j (ωs), and f 3
js be the realizations of
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the random variable F 3
j where f 3

js = Fj(ωs), j ∈ J, s ∈ S. Then, referring to the

formal introduction and linearization of CVaR in Chapter 3, we directly linearize

the CVaR objective (O1) by defining three new continuous decisions variables,

Kjs, zs and η, replace objective function (O1) with O1′ and add the constraints

(6.8)–(6.12) in P(S):

η +
1

1− α
∑
s∈S

pszs (O1′)

zs ≥
∑
j∈J

Kjs − η ∀s ∈ S (6.8)

Kjs ≥ f 3
js − x2js ∀j ∈ J, s ∈ S (6.9)

zs ≥ 0 ∀s ∈ S (6.10)

Kjs ≥ 0 ∀j ∈ J, s ∈ S (6.11)

η is free (6.12)

6.2.2 Linearizing and Improving the Mathematical Model

We again add constraints to limit the maximum distance between the districts

and the shelters to improve the solution qualities further. Constraints (3.21) and

(3.22) limit the maximum distance between the districts and the shelters, stating

that no victim in any district can be forced to travel a distance more than ρ.

To linearize constraints (6.1), we define Ujs such that it is equal to the

multiplication u ·x2js, ∀j ∈ J, s ∈ S. We will see that constraints (6.13) and (6.14)

are enough to linearize constraints (6.1). Consider a fixed j and s. If x2js = 0,

then f 3
js = 0, as no one is assigned to j-th shelter in scenario s, implying Ujs = 0.

Ujs = 0 would imply u ≤ 1 in constraints (6.14), which becomes redundant since

u, in practice, will be closer to 0 than it is closer to 1. On the other hand, if

x2js = 1, than f 3
js > 0 –otherwise we would have u = 0 by constraints (6.13) and

(6.14)– and Ujs ≤ f 3
js, with u ≤ Ujs, finally giving us u = min

j∈J, s∈S: x2js=1
{Ujs} since
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u is to be maximized.

f 3
js ≥ Ujs ∀j ∈ J, s ∈ S (6.13)

Ujs ≥ x2js + u− 1 ∀j ∈ J, s ∈ S (6.14)

Ujs ≥ 0 ∀j ∈ J, s ∈ S (6.15)

To linearize constraints (6.4), we define Tj such that it is equal to the

multiplication bj ·Wmax, ∀j ∈ J . Following linearization works as shelter weight

values are all between 0 and 1:

wjx
1
j ≥ Tj ∀j ∈ J (6.16)

Tj ≤ bj ∀j ∈ J (6.17)

Tj ≤ Wmax ∀j ∈ J (6.18)

Tj ≥ Wmax + bj − 1 ∀j ∈ J (6.19)

Tj ≥ 0 ∀j ∈ J (6.20)

Then, P(S) is:

P(S) =

min η +
1

1− α
∑
s∈S

pszs (O1′)

max u (O2)

max Wmax +Wmin (O3)

min
∑
s∈S

∑
j∈J

psx
2
js (O4)

s.t.∑
j∈J

y1ij = 1 ∀i ∈ I (3.2)

|J |∑
k=r+1

y1iji(k) + x1ji(r) ≤ 1 ∀i ∈ I, r = 1, . . . , |J | − 1 (3.3)

y1ij ≤ x1j ∀i ∈ I, j ∈ J (3.4)
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∑
j∈J

y2ijs = 1 ∀i ∈ I, s ∈ S (3.5)

|J |∑
k=r+1

y2iji(k)s + x2ji(r)s ≤ 1 ∀i ∈ I, s ∈ S, r = 1, . . . , |J | − 1 (3.6)

y2ijs ≤ x2js ∀i ∈ I, j ∈ J, s ∈ S (3.7)

x1j ≤ x2js ∀j ∈ J, s ∈ S (3.8)

x2js′ = x2js ∀j ∈ J, s ∈ S, s′ ∈ S2
s (3.9)

f 3
js =

∑
i∈I

q1isy
1
ij +

∑
i∈I

q2isy
2
ijs

cj
∀j ∈ J, s ∈ S (3.11)

y1ijdij ≤ ρ ∀i ∈ I, j ∈ J (3.21)

y2ijsdij ≤ ρ ∀i ∈ I, j ∈ J, s ∈ S (3.22)

zs ≥
∑
j∈J

Kjs − η ∀s ∈ S (6.8)

Kjs ≥ f 3
js − x2js ∀j ∈ J, s ∈ S (6.9)

f 3
js ≥ Ujs ∀j ∈ J, s ∈ S (6.13)

Ujs ≥ x2js + u− 1 ∀j ∈ J, s ∈ S (6.14)

Wmin ≤ wjx
2
js +

(
1− x2js

)
∀j ∈ J, s ∈ S (6.2)

Wmax ≥ wjx
1
j ∀j ∈ J (6.3)∑

j∈J

bj ≥ 1 (6.5)

wjx
1
j ≥ Tj ∀j ∈ J (6.16)

Tj ≤ bj ∀j ∈ J (6.17)

Tj ≤ Wmax ∀j ∈ J (6.18)

Tj ≥ Wmax + bj − 1 ∀j ∈ J (6.19)

x1j ∈ {0, 1} ∀j ∈ J (3.12)

y1ij ∈ {0, 1} ∀i ∈ I, j ∈ J (3.13)

x2js ∈ {0, 1} ∀j ∈ J, s ∈ S (3.14)

y2ijs ∈ {0, 1} ∀i ∈ I, j ∈ J, s ∈ S (3.15)

f 3
js ≥ 0 ∀j ∈ J, s ∈ S (3.16)

bj ∈ {0, 1} ∀j ∈ J (6.6)
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Wmax,Wmin, u ≥ 0 (6.7)

zs ≥ 0 ∀s ∈ S (6.10)

Kjs ≥ 0 ∀j ∈ J, s ∈ S (6.11)

η is free (6.12)

Ujs ≥ 0 ∀j ∈ J, s ∈ S (6.15)

Tj ≥ 0 ∀j ∈ J (6.20)

We refer to this set of constraints as X for convenience in coming parts.
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Chapter 7

Multi-Stage Multi-Objective

MIP Results

For multi-objective problems, as discussed in the previous chapter, generally

there is not a single solution that optimizes all of the objectives simultaneously.

When the concept of optimality is replaced with the concept of Pareto optimality,

the Pareto optimal (or efficient, non-dominated) solutions make up the Pareto-

frontier of the problem. In order to obtain these non-dominated solutions,

an appropriate scalarization method (among weighting methods, constraint

methods, reference point methods, or direction based methods) should be

adopted. In this thesis, we adopt the ε-constraint method [64–66].

7.1 The ε-Constraint Method

Referring to the previous chapter, a generic model for our case might be as follows:

min O1′(x)

s.t.

O2(x) ≥ ε2
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O3(x) ≥ ε3

O4(x) ≤ ε4

x ∈ X

In this setting, systematically updating each ε value as required and solving

the updated model iteratively, one can obtain non-dominated solutions. Note

that X is the constraint set defined in the previous chapter. But in practice, such

an approach does not guarantee that all of the Pareto efficient solutions will be

generated. It is highly dependent on the choice of ε values, the relation of the

objective functions among themselves and the step sizes for each of them [64,66].

7.1.1 Implementation for a 2-Objective Framework

Before going over a more suitable method, we revise the current practice in case

of two objective functions. Consider the first two objective functions of our

formulation. To find the Pareto-frontier of such a 2-objective formulation, one

can solve a set of mathematical programs in a lexicographic and iterative fashion

[64,67]. For a demonstration, let P1(ε2), P2(ε1) be defined in the following fashion:

min O1′(x) max O2(x)

s.t. s.t.

O2(x) ≥ ε2 O1′(x) ≤ ε1

x ∈ X x ∈ X

Using these predefined problems, P1(ε2) and P2(ε1), in a simple algorithmic

manner, as discussed in Algorithm 2, the set of Pareto efficient solutions can be

obtained. Before starting the algorithm, the ParetoSet is initialized as an empty

set, which stores the Pareto optimal solutions. ε values for each subproblem and

their respective step sizes are also initialized. We solve each subproblem with the

updated ε values until no solution can be produced from the first subproblem. In
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that case, we note that one cannot find any more solutions which belong to X
and satisfy constraints O2(x) ≥ ε2 with the most recent value of ε2. This implies

that the boundary of the Pareto-frontier is hit.

Algorithm 2 Obtain the set of Pareto-efficient solutions for a Bi-Objective
Problem

1: ParetoSet← ∅. ε2 ← 0. k2 ← stepsize (small enough).
2: while P1(x, ε2) is feasible do
3: f ∗1 := opt [P1(ε2)]
4: ε1 ← f ∗1
5: f ∗2 := opt [P2(ε1)]
6: X := {f ∗1 , f ∗2}
7: ParetoSet← ParetoSet ∪X
8: ε2 ← f ∗2 + k2
9: end while

10: return ParetoSet

As our proposed formulation contains 4 distinct objective functions, we cannot

utilize Algorithm 2 by adding two more subproblems, say P3(·) and P4(·), and

have a total of three ε-constraints for each objective function in each subproblem,

as we may possibly lose the Pareto efficiency guarantee. In order to remedy this

problem, we consider a different approach.

7.1.2 Implementation for a 3-Objective Framework

Abounacer et al. [31] study the simultaneous minimization of the total

transportation time of relief items (Z1(x)), the number of required first-aiders

(Z2(x)) and the non-covered demand among all affected areas (Z3(x)). The

authors propose an exact algorithm which utilizes ε-constraint method to

determine all the efficient solutions.

The proposed method is based on the fact that all the possible values of Z2(x)

are known and one can exhaust all possible values of Z2(x) by fixing Z2(x) to an

integer value between the predefined levels and solving for Z1(x) and Z3(x) as if

the problem was a bi-objective one. For each fixed value of Z2(x), Algorithm 2

is followed until infeasibility. An important note here is that the authors do not
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find exactly the Pareto efficient solutions but a candidate set for that, from which

the Pareto efficient solutions can be extracted, using Algorithm 3. Say that all

of the solutions generated by Algorithm 2 is kept in a feasible set denoted as FS.

As all of the objectives are minimization objectives, once the authors search over

all of the solutions in FS, they can find all of the solutions that are dominated.

Then, those solutions can be eliminated from the ParetoSet, providing the Pareto

efficient set of solutions. Here, assume that FSkj denotes the k-th objective value

of j-th solution, k = 1, 2, 3 and j = 1, . . . , |FS|.

Algorithm 3 Obtain the Pareto Front for a 3-Objective Formulation

Require: Feasible Set (denoted by FS ) obtained from the ε-constraint method
1: ParetoSet← FS
2: for i = 1 : |FS| do
3: for j = 1 : |FS| & j 6= i do
4: if FS1

j ≤ FS1
i & FS2

j ≤ FS2
i & FS3

j ≤ FS3
i then

5: (FSi) is dominated. ParetoSet← ParetoSet \ {FSi}
6: else
7: (FSi) is a non-dominated solution.
8: end if
9: end for

10: end for
11: return ParetoSet

7.1.3 Implementation for a 4-Objective Framework

The methodology in the previous section can be tailored for our formulation as

third and fourth objective functions are defined over a finite scale, i.e. the weight

of each shelter is known and unique sums of two-combinations of those shelters

can be computed, and the expected shelter number can be considered as being

extracted from an ordered discrete set since the difference between that set’s two

consecutive entries depend on the number of scenarios. Hence, the methodology

proposed in Abounacer et al. [31] can be modified for our 4-objective formulation.

The two single-objective problems that we need to consider are B1(ε2, ε3, ε4)
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and B2(ε1, ε3, ε4) as given below, respectively:

min O1′(x) max O2(x)

s.t. s.t.

O2(x) ≥ ε2 O1′(x) ≤ ε1

O3(x) = ε3 O3(x) = ε3

O4(x) = ε4 O4(x) = ε4

x ∈ X x ∈ X

As in case of the algorithm by Abounacer et al. [31], the algorithm we propose

may also generate weakly dominated solutions through iterations. So, we tailor

their algorithm to our case and use a version of Algorithm 3 for 4-objectives,

which we present formally in Algorithm 4.

Algorithm 4 Obtain the set of candidate Pareto-efficient solutions

Require: S and W
1: CandidateParetoSet← ∅. k2 ← 10−3.
2: k ← 1
3: while k ≤ |S| do
4: ε4 ← S(k)
5: m← 1
6: while m ≤ |W| do
7: ε3 ←W(m)
8: ε2 ← 0
9: while B1(ε2, ε3, ε4) is feasible do

10: f ∗1 := opt [B1(ε2, ε3, ε4)]
11: ε1 ← f ∗1
12: f ∗2 := opt [B2(ε1, ε3, ε4)]
13: X := {f ∗1 , f ∗2 , ε3, ε4}
14: CandidateParetoSet← CandidateParetoSet ∪X
15: ε2 ← f ∗2 + k2
16: end while
17: m← m+ 1
18: end while
19: k ← k + 1
20: end while
21: return CandidateParetoSet
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In Algorithm 4, we generate two sets for the possible values of third and fourth

objectives, sets W and S, respectively. In each iteration, we pick an element from

the Cartesian set W×S, fix the values of last two objectives to the picked element

and perform bi-objective method as proposed in Section 7.1.1. Since we cannot

deduce that we should stop the search for a fixed expected shelter value once an

infeasibility is found at line 8, we exhaust all of the elements in the set W × S.

Since the set W×S has high cardinality, especially when the number of scenarios

is big, computational times of this method is rather high.

7.1.4 Improved Implementation for a 4-Objective

Framework

To improve our solution times for the 4-objective formulation, we introduce a

dummy binary variable aj, j ∈ W, where W is the index set of the possible

weight values set W. Here note that the set W is recreated using combinations of

shelters and sorting those values. As there are 25 candidate shelter locations in

the network, we say that at least one of the open shelters will have the minimum

weight and at least one of them will have the maximum weight in a non-empty

set of open shelters. Hence, we generate the combinations of 25 shelters taken 2

shelter at a time and sum the corresponding shelters’ weights. Then, we eliminate

the repetitions and sort the values in decreasing order, finally obtaining the set

W. Exploring on this, we define following three constraints:

Wmax +Wmin =
∑
j∈W

ajWj (7.1)

∑
j∈W

aj = 1 (7.2)

aj ∈ {0, 1} ∀j ∈W (7.3)

This version is presented in Algorithm 5, where we discuss the methodology

used throughout the computational analyses of the multi-objective framework.
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Algorithm 5 Obtain the set of candidate Pareto-efficient solutions - Enhanced
version

Require: S and W
1: CandidateParetoSet← ∅. k2 = 10−3.
2: k ← 1
3: while k ≤ |S| do
4: i← 1, w ← 1
5: while i ≥ 1 do
6: if w = 1 then
7: f ∗3 := opt [B5(S(k))]. Let i such that W(i) = f ∗3
8: w ← 0
9: end if

10: ε2 ← 0
11: while B3(S(k), f ∗3 , ε2) is feasible do
12: f ∗1 := opt [B3(S(k), f ∗3 , ε2)]
13: ε1 ← f ∗1
14: f ∗2 := opt [B4(S(k), f ∗3 , ε1)]
15: ε2 ← f ∗2
16: X := {f ∗1 , f ∗2 , f ∗3 , S(k)}
17: CandidateParetoSet← CandidateParetoSet ∪X
18: ε2 ← ε2 + k2
19: end while
20: i← i− 1, f ∗3 ←W(i)
21: end while
22: k ← k + 1
23: end while
24: return CandidateParetoSet

We first initialize the set of candidate Pareto solutions, ParetoSet, and the

step size k2. We set k2 low enough such that no non-dominated solution is missed.

We then start the solution generation methodology. We continue in the following

fashion until we exhaust all possible values in the set S, i.e. set of possible values

for the fourth objective function:

� Find the maximum possible value for the third objective using the model

B5(x̄) and note its objective value and index in the set W. Set ε2 to 0

so that when the problem B3 is solved for the first time, the constraint

regarding the second objective function is redundant.

� Solve the model B3(x̄, ȳ, z̄), note the corresponding solution, update ε1
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and solve the model B4(x̄, ȳ, z̄). Continue until the model B3(x̄, ȳ, z̄) is

infeasible.

� When infeasibility is hit in the model B3(x̄, ȳ, z̄), choose the next smaller

weight value from the set W and note its index. Continue until the set W
is exhausted.

Finally, we formally define the problems B3(x̄, ȳ, z̄), B4(x̄, ȳ, z̄) and B5(x̄)

below, respectively:

min O1′(x) max O2(x) max O3(x)

s.t. s.t. s.t.

O4(x) = x̄ O4(x) = x̄ O4(x) = x̄

O3(x) = ȳ O3(x) = ȳ (7.1)− (7.3)

O2(x) ≥ z̄ O1(x) ≤ z̄ x ∈ X

x ∈ X x ∈ X

After we obtain the set of candidate Pareto solutions, we use Algorithm 6

to extract the non-dominated solutions. We note here that Algorithm 6 takes

negligible time to run, i.e. a fraction of a second.

Algorithm 6 Obtain the Pareto Front for a 4-Objective Formulation

Require: Feasible Set (denoted by FS ) obtained from the ε-constraint method
1: ParetoSet← FS
2: for i = 1 : |FS| do
3: for j = 1 : |FS| & j 6= i do
4: if FS1

j ≤ FS1
i & FS2

j ≥ FS2
i & FS3

j ≥ FS3
i & FS4

j ≤ FS4
i then

5: (FSi) is dominated. ParetoSet← ParetoSet \ {FSi}
6: else
7: (FSi) is a non-dominated solution.
8: end if
9: end for

10: end for
11: return ParetoSet
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7.2 Computational Results

In this section, we present the computational experiments conducted using

the proposed methodology for the multi-objective counterpart of the stochastic

shelter site location problem. We again use the same dataset as described in

Chapter 4, code the methodology in JAVA and solve using IBM CPLEX 12.7.1

with the same processing power in Chapter 5.

Although we choose to extend the original problem to its multi-objective

counterpart to save the DM from the burden of parameter selection, we vary

our tests not only by the value of α but provide an upper limit on the overall

utilization of a shelter, which is posed through the following constraint:

f 3
js ≤Mu ∀j ∈ J, s ∈ S

where Mu is the upper limit on the utilization of a shelter. For the rest of the

chapter, we take Mu = 1.35, i.e. a 135% utilization limit.

In our context, we are concerned with keeping the over-utilization value as

small as possible and in the single-objective counterpart we provide upper bounds

to the risk measure to do so. Since in the multi-objective framework such a way

is not applicable, we directly limit the over-utilization of the shelters but do not

provide a parametric analysis. We are more concerned with the distribution of

the over-utilization and hence keep the CVaR objective as it is.

When α = 0.90, for 250 scenarios, we generate 592 solutions using Algorithm

5, 172 of which are non-dominated. The average solution time for each of 592

solutions is 55 seconds and the average time it takes to find a non-dominated

solution is 189 seconds.

When α= 0.95 and the scenario set is the same, we generate again 592 solutions

using Algorithm 5, but this time only 79 of those solutions are non-dominated.

The average solution time of each of 592 solutions are 53 seconds and the average

solution time of the non-dominated solutions is 400 seconds. As it is not possible
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to visualize the Pareto front of four objectives in three dimensions, we only provide

the respective set of solutions in Appendices A.3 and A.4 in table form. Note

that we are unable to solve the problem with 500 scenarios and hence provide a

heuristic solution methodology in the following section to solve larger instances.

7.3 A Heuristic Solution Methodology for the

Multi-Objective Problem

We provide a heuristic method to a generalized version of our problem. We

consider a case where the DM might be unable to assign weights to shelters

or may be interested in not only locating shelters but a more generally defined

facility. In this case, we can disregard the shelter weights and obtain a 3-objective

formulation. So, under such problem structure we can solve the problem for 250

scenarios, by disregarding the third objective function. But as in the 4-objective

formulation, we cannot solve this problem for 500 scenarios. So, we propose a

heuristic methodology that exploits the structure of the problem in a similar sense

to the heuristic proposed for the single-objective framework (see Section 5.4).

We use the fact that the problem is much easier when the first stage shelters

are fixed. Actually when we only use the second objective, namely the minimum

utilization objective (O2), and disregard the other two objectives, the problem

decomposes by scenario groups given that the first stage shelters are fixed – note

that the objective (O3) is the objective that is not considered anymore and we

have a 3-objective formulation where constraints (6.2), (6.3), (6.5), (6.6), and

(6.16)–(6.20) are eliminated from the constraint set X .

The mathematical model for objective (O2) with fixed first stage shelters is:

max (O2)

s.t.

x1∗j ≤ x2js ∀j ∈ J, s ∈ S

75



f 3
js =

∑
i∈I

q1isy
1∗
ij +

∑
i∈I

q2isy
2
ijs

cj
∀j ∈ J, s ∈ S

plus the set of constraints (3.5)–(3.7), (3.9), (3.14)–(3.16), (3.22), (6.13)–(6.15).

We call this model as P̂1(S ). Note that S is the original dataset with 500 scenarios.

We propose to solve P̂1(S ) by decomposing it by scenario groups, i.e. solve a

series of P̂1(Si) where |Si| = 10 by construction, i = 1, . . . , 50 (see Section 5.4

for a similar discussion regarding the heuristic method for the single objective

formulation and Sections 3.2 and 3.2.1 for the non-anticipativity constraints). In

the application, we solve only one of the P̂1(Si) to get the first stage variables

– this is the first step of our construction. After we obtain an initial set of x1∗,

we fix it and solve each P̂1(Si) to get the minimum utilization value u∗, i.e. the

value of objective (O2) corresponding to the given set of x1∗.

Then, we solve for the fourth objective, i.e. we aim to minimize the number

of expected shelters given a constraint on the minimum utilization value – call

this model as P̂2(S ). We state that the minimum utilization value cannot be less

than u∗ and obtain the corresponding objective value, say e∗s. Finally, fixing x1∗,

u∗ and e∗s, we solve for the first objective, namely the CVaR objective, to get

the corresponding risk value, say c∗r – call this model as P̂3(S ). An important

observation here is that, for a fixed x1∗, the solution vector (c∗r, u
∗, e∗s) is a non-

dominated solution as we get the solution with the best minimum utilization

value. After we obtain this initial solution vector, we perform random search in

the region to find more neighboring solutions.

We formally introduce the heuristic method using Algorithm 7. To start it,

we need the initial and maximum number of first stage shelters (einit, emax),

maximum number of inner and outer iterations (iterinmax, iter
out
max), and maximum

number of inner and outer infeasibilities (inf inmax, inf
out
max).

We then initialize the cut pool C and set of feasible and candidate non-

dominated solutions FS as empty sets, stopping condition SC as false. Also

we say that the number of first stage shelters ES is equal to einit, and outer
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Algorithm 7 Heuristic for the multi-objective formulation

Require: einit, emax, iter
out
max, iter

in
max, inf

out
max, inf

in
max.

1: Cut pool C ← ∅. SC ← FALSE. FS ← ∅. ES ← einit. inf ← 0.
iterout ← 0.

2: while ES ≤ emax do
3: while iterout ≤ iteroutmax & inf ≤ infmax do
4: iterout ← iterout + 1.
5: Randomly choose one scenario out of 50 scenarios, say k.
6: Solve P̂1(Sk) regarding C, having ES-many first stage shelters.

7: Let x1∗ be an optimal first stage decision of P̂1(Sk).

8: Add no-good cuts
∑

j:x1∗j =0

x1j +
∑

j:x1∗j =1

(1− x1j) ≥ 1 to C.

9: while !SC do
10: u∗ := MINUT

(
x1∗, (S1, . . ., S50)

)
.

11: e∗s := EXSHE
(
x1∗, u∗, S

)
.

12: if e∗s < +∞ then
13: c∗r := RISK

(
x1∗, u∗, e∗s, S

)
.

14: fs← (c∗r, u
∗, e∗s)

15: else
16: fs← (+∞,+∞,+∞)
17: end if
18: if fs is a finite vector then
19: FS ← FS ∪ (c∗r, u

∗, e∗s).
20: else
21: inf ← inf + 1.
22: break
23: end if
24: iterin ← 1. inf in ← 0.
25: while iterin ≤ iterinmax & !SC & inf in ≤ inf inmax do
26: Perform Algorithm 9. Obtain (c∗r, u

∗, e∗s), SCr and inf in.
27: if SCr then
28: FS ← FS ∪ (c∗r, u

∗, e∗s).
29: end if
30: iterin ← iterin + 1.
31: SC ← !SCr.
32: end while
33: end while
34: SC ← FALSE.
35: end while
36: C ← ∅. ES ← ES + 1.
37: end while
38: return FS
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Algorithm 8 Functions used in construction procedure for the multi-objective
formulation

function MINUT(x1∗, (S1, . . ., S50))
u∗ := 1. k ← 1.
while k ≤ 50 do

uint := opt [P̂1(Sk)]
k ← k + 1
if uint < u∗ then

u∗ ← uint
end if

end while
return u∗

end function
function EXSHE(x1∗, u∗, S )

e∗s := opt [P̂2(S )]
return e∗s

end function
function RISK(x1∗, u∗, e∗s, S )

c∗r := opt [P̂3(S )]
return c∗r

end function

infeasibility and outer iteration counters –inf and iterout– are equal to zero.

We then, given the conditions are satisfied, randomly choose one scenario group

and solve the corresponding problem to get first stage shelters x1∗ regarding the

cut pool C and making sure that we have ES-many first stage shelters. We then

refer to functions in Algorithm 8 to obtain the initial solution.

The functions in Algorithm 8, given the set of scenarios and the first stage

decisions x1∗, guide us to solve P̂1(S ) with fixed x1∗ to get u∗, then solve P̂2(S )

with fixed x1∗ and u∗ to get e∗s. Given that P̂2(S ) is feasible, we solve P̂3(S ) with

fixed x1∗, u∗, and e∗s to get c∗r and report (c∗r, u
∗, e∗s) – or report (+∞,+∞,+∞)

to indicate infeasibility in the construction step.

If we find a solution using the functions in Algorithm 8, we then refer to

Algorithm 9 for random search in the neighborhood of the found solution. The

important theme in this algorithm is that we do not terminate it the first time

78



Algorithm 9 Random search for the multi-objective formulation

Require: u∗init, e
init∗
s , ES, S, x1∗, iterin, inf in.

1: if iterin == 1 then
2: es ← ES + 1. u← 0.01.
3: else
4: Define disjoint intervals (int1, . . ., int4).
5: Generate random number r ∈ [0, 1].
6: if r ∈ int1 then
7: es ← es − constant1 ∗ inf in.
8: else if r ∈ int2 then
9: es ← es − constant2 ∗ inf in.

10: else if r ∈ int3 then
11: u← u+ constant3 ∗ inf in.
12: else if r ∈ int4 then
13: u← u+ constant4 ∗ inf in.
14: end if
15: end if
16: while es > einit∗s | u < u∗init do
17: c∗r := RISK

(
x1∗, u, es, S

)
. Note the corresponding u∗ and e∗s.

18: if c∗r < +∞ then
19: SCr ← TRUE.
20: fs← (c∗r, u

∗ e∗s).
21: else
22: SCr ← FALSE.
23: inf in ← inf in + 1.
24: end if
25: end while
26: return fs, SCr and inf in.

we observe an infeasibility.

If we encounter an infeasibility in Algorithm 9, we initialize the values of the

second and fourth objectives according to the infeasibility count until then – we

do not want to return to our starting point but want to jump to another neighbor

for continuing search. Note that we solve P̂3(S ) with fixed x1∗, u, and es to get

(c∗r, u
∗ e∗s) given that the u and es values are not better than the initial solution,

u∗init and einit∗s , obtained through Algorithm 8.
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Table 7.1a: Exact results for 250
scenarios and α = 0.90

(O1) (O2) (O4)

0.0923 0.0836 6.00
0.0959 0.1618 6.00
0.1099 0.0836 4.96
0.3198 0.1618 5.00
0.3258 0.0857 4.00
0.3560 0.2061 5.24
0.3927 0.2473 5.76
0.4017 0.2473 5.72
0.4054 0.2061 4.36
0.4226 0.2473 5.56
0.4277 0.2473 5.52
0.4325 0.2473 5.40
0.4457 0.2473 5.32
0.4714 0.2473 4.52
0.4745 0.2473 4.44
0.4892 0.2061 4.28
0.5111 0.2061 4.24
0.5174 0.2473 4.40
0.6124 0.2473 4.36
0.6859 0.2473 4.32

Table 7.1b: Exact results for 250
scenarios and α = 0.95

(O1) (O2) (O4)

0.0975 0.0836 6.00
0.0996 0.0369 5.92
0.1357 0.0836 4.84
0.2829 0.1618 6.08
0.3497 0.1618 5.00
0.3591 0.0857 4.00
0.3731 0.2061 5.24
0.4373 0.2473 5.72
0.4396 0.2473 5.44
0.4475 0.2061 4.36
0.4886 0.2473 5.32
0.4898 0.2473 5.08
0.4913 0.2473 4.44
0.5133 0.2061 4.28
0.5332 0.2061 4.24
0.5435 0.2473 4.40
0.6865 0.2473 4.36
0.7359 0.2473 4.32

7.3.1 Heuristic Results

Before going over the results for the proposed heuristic with 500 scenarios, we

discuss its performance by comparing the results obtained with 250 scenarios. In

Tables 7.1a and 7.1b, we present the exact Pareto solutions with 250 scenarios

where α = 0.90 and α = 0.95, respectively. In Figures 7.1 and 7.2, we graph the

Tables 7.1a and 7.1b, respectively.
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Figure 7.1: Exact results for 250 scenarios and α = 0.90

80



0.2 0.4 0.60.1
0.2

4

5

6

CVaRMin Util

E
x
p

ec
te

d
S

h
el

te
r

3D View

0.1 0.2 0.3 0.4 0.5 0.6 0.7

4

4.5

5

5.5

6

CVaR

E
x
p

ec
te

d
S

h
el

te
r

Front View

0.05 0.1 0.15 0.2

4

4.5

5

5.5

6

Min Util

E
x
p

ec
te

d
S
h

el
te

r

Side View

Figure 7.2: Exact results for 250 scenarios and α = 0.95

In Tables 7.2a and 7.2b, we present the solutions found using the proposed

heuristic method and in Figures 7.3 and 7.4, we graph the Tables 7.2a and 7.2b,

respectively. One can observe from the figures that the non-dominated solutions

for α = 0.95 have spread more evenly with respect to the non-dominated solutions

for α = 0.90. Also observe that the in Figures 7.1 and 7.2 there seems to be more

accumulation points with respect to Figures 7.3 and 7.4. So the heuristic method

that we have proposed seems to be able to save the DM from choosing solutions

that are relatively close to each other.

Table 7.2a: Heuristic results for 250
scenarios and α = 0.90

(O1) (O2) (O4)

0.0923 0.0836 6.00
0.0959 0.1618 6.00
0.1099 0.0836 4.96
0.3198 0.1618 5.00
0.3258 0.0857 4.00
0.3560 0.2061 5.24
0.4054 0.2061 4.36
0.4745 0.2473 4.44
0.5111 0.2061 4.24
0.6859 0.2473 4.32

Table 7.2b: Heuristic results for 250
scenarios and α = 0.95

(O1) (O2) (O4)

0.0975 0.0836 6.00
0.0996 0.0369 5.92
0.1357 0.0836 4.84
0.2829 0.1618 6.08
0.3497 0.1618 5.00
0.3591 0.0857 4.00
0.3731 0.2061 5.24
0.4475 0.2061 4.36
0.4913 0.2473 4.44
0.5332 0.2061 4.24
0.7359 0.2473 4.32

The average time it takes to generate one solution in Table 7.1a is 1072 seconds,

in Table 7.1b is 1053 seconds, in Table 7.2a is 1056 seconds and in Table 7.2b

is 576 seconds. When we compare the solutions found by the heuristic with the

exact Pareto, we observe that we always find one of the Pareto-efficient solutions

– this also indicates that the approach we embrace and the method of exploitation
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Figure 7.3: Heuristic results for 250 scenarios and α = 0.90
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Figure 7.4: Heuristic results for 250 scenarios and α = 0.95

is highly suitable to the problem. In the instances where α = 0.90, we find exactly

half of the solutions, but the solution times are fairly similar to the exact results.

And in the instances where α = 0.95, we generate 61% of the actual Pareto front,

which is impressive considering the average time it takes to generate one such

solution.

Then, we can look at the performance of the heuristic with 500 scenarios, again

for α = 0.90 and α = 0.95. In Table 7.3a, we present the heuristic results for

α = 0.90 and in Table 7.3b for α = 0.95. In Table 7.3a, we have 11 candidate

non-dominated solutions, which we hope to be on the Pareto front and in Table

7.3b, we have 12 candidate non-dominated solutions. In Figures 7.5 and 7.6, we

graph the Tables 7.3a and 7.3b, respectively.

To obtain each solution in Table 7.3a, we spend 3842 seconds, and to

obtain each solution in Table 7.3b, we spend 2021 seconds. As expected, the

computational times increase when larger cardinality dataset is considered.
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Table 7.3a: Heuristic results for 500
scenarios and α = 0.90

(O1) (O2) (O4)

0.0673 0.0549 5.00
0.0688 0.0872 6.00
0.0821 0.1494 6.00
0.2090 0.0877 4.92
0.2719 0.1618 6.04
0.2872 0.0857 4.00
0.2937 0.1494 5.00
0.3409 0.1494 4.28
0.4602 0.1792 4.32
0.5001 0.1494 4.18
0.6751 0.1792 4.22

Table 7.3b: Heuristic results for 500
scenarios and α = 0.95

(O1) (O2) (O4)

0.0911 0.0817 6.00
0.0916 0.0836 5.98
0.1010 0.1494 6.00
0.1075 0.0340 5.00
0.1092 0.0682 4.98
0.2884 0.1618 6.04
0.3269 0.0857 4.00
0.3284 0.1494 5.00
0.4076 0.1494 4.28
0.4817 0.1792 4.32
0.5279 0.1494 4.18
0.7314 0.1792 4.22
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Figure 7.5: Heuristic results for 500 scenarios and α = 0.90

7.3.2 Performance of the Heuristic Method

As we do not know the actual Pareto front for 500 scenarios, to have an

idea regarding the performance of the heuristic, we present two widely used

performance metrics in the literature.

Spacing (SP ) metric is proposed by Schott [68] to measure the distribution

of solution vectors over the Pareto front of a single set. It is computed with the
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Figure 7.6: Heuristic results for 500 scenarios and α = 0.95

standard deviation of the pairwise distances:

SP =

√√√√ 1

n− 1
·

n∑
i=1

(
di − d

)2
where

di = min
j 6=i

m∑
k=1

| Oi
k −O

j
k | i = 1, 2, . . . , n

and n is the number of non-dominated solutions and m is the number of

objectives. In our problem, Oi = (c∗r, u
∗, e∗s) is the i-th solution obtained from

the heuristic method and d is the mean of all di. It is desirable for SP to be small

as it suggests that the solutions are distributed evenly on the solution space.

A secondary metric we use, the maximum spread (MS), proposed by Zitzler

[69], is the maximum extension covered by the non-dominated solution set,

defined as:

MS =

√√√√ n∑
i=1

max
(
|| Oi − Ōi ||)

where n is the number of non-dominated solutions and || Oi−Ōi || is the euclidean

distance between two non-dominated solutions, Oi and Ōi. So, the distance of

each non-dominated solution to the other solutions in the non-dominated set is

calculated and their maximum values are summed up. Higher values of MS
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indicate that the solutions can reach further edges of the Pareto front, implying

a better performance of the heuristic method.

For the spacing metric, our heuristic performs rather well. When we have 500

scenarios with α = 0.90, we have SP = 0.0877, and with α = 0.95, we have SP

= 0.1295.

For the numbers to make sense, let’s see the spacing values for the 250

scenarios. When α = 0.90, SP = 0.1271 and when α = 0.95, SP = 0.1370

for the exact case. When α = 0.90, SP = 0.1371 and when α = 0.95, SP =

0.1340 for the heuristic method.

For the maximum spread metric, the performance seems to be rather poor.

When we have 500 scenarios with α = 0.90, we have MS = 4.7400, and with α

= 0.95, we have MS = 5.0483.

Again, we provide the maximum spread values for the instances with 250

scenarios for the numbers to make sense. When α = 0.90, MS = 6.2998 and

when α = 0.95, MS = 6.0234 for the exact case. When α = 0.90, MS = 4.4827

and when α = 0.95, MS = 4.7636 for the heuristic method.

So, in means of the spacing metric, the heuristic method seems to perform

certainly well, implying that the obtained solutions are distributed evenly

throughout the solution space. But, in means of the maximum spread metric,

our method is not strong enough, implying that the proposed methodology lacks

randomness, which is treated in detail in the Algorithm 9. There, we perform

random search for a fixed set of first stage decision variables considering the fact

that the problem is easier to solve then. The heuristic may be improved by

considering local search by changing the x1∗ vector, even though the construction

part of the heuristic works well in means of generating a highly variable set of

x1∗ combinations.

This analysis implies that the heuristic is open to improvement and more

random elements can be included to increase the chances of reaching to further

edges of the Pareto front. Nonetheless, according to the spacing metric’s results,
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the generated solutions are spread evenly, implying that it is easier for the DM to

choose among them, i.e. there are no accumulation points and hence the solutions

are easier to differentiate.
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Chapter 8

Conclusion and Future Research

Directions

In this study, we introduce a new modeling methodology to disaster operations

management literature. We incorporate secondary disasters, e.g. aftershocks, to

the shelter location decisions after an earthquake has occurred and the demand is

uncertain for both of the disasters. We devise a three-stage stochastic MIP model

to mimic the real setting of an earthquake. In the first stage, before observing the

actual demand of the initial earthquake, we locate shelters. After the earthquake

demand is realized in the second stage, the disaster victims travel to the nearest

open shelter. Note that we do not assign victims to the shelters, they choose

the closest open shelter and travel there without demand division. After the

victims are located in the shelters, an aftershock might hit the area and create

more disaster victims that require sheltering. Again, before observing the actual

demand of the aftershock, we locate shelters in the second stage. Then, in the

third stage, after the aftershock demand is realized, the aftershock victims travel

to the nearest open shelter.

We create a set of earthquake and aftershock scenarios for Kartal, Istanbul.

We use the network of Kartal introduced in Kılcı et al. [14]. We assume that 10

different aftershocks will follow each initial earthquake and create a scenario set
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of cardinality 500, with 50 different initial earthquakes.

As the solution times of the model with CPLEX are high, we propose a

heuristic methodology. We improve the solution times drastically with the

heuristic method while having small deviations from the optimal values of the

instances for which we know the optimal solutions.

Comparing our proposed model with a common counterpart model, where we

decompose the initial earthquake and the aftershock and conduct the decision

making without relating the aftershocks to initial earthquakes, we show that it is

important to consider secondary disasters while locating shelter sites for disaster

operations management.

Considering the problems regarding the parameter selection in humanitarian

operations, we extend our formulation to a multi-objective framework. We

consider the risk of exceeding the shelter capacities, minimum utilization value of

overall shelters, weight of established shelters and expected number of established

shelters as the objectives.

To have the problem more suitable for different contexts of the facility location

problem, we disregard the weight objective and propose a heuristic methodology

to solve the 3-objective formulation for datasets having higher cardinality. In our

tests, we observe that the proposed heuristic finds evenly distributed solutions,

which is important as the decision maker can easily differentiate between the

Pareto-efficient solutions, but performs relatively weak in the sense of covering

the further edges of the Pareto front.

As an extension, it is worth searching for better heuristic methods as shelter

location problem in the multi-objective context is an important problem in

humanitarian logistics. One can also explore the risk of losing a shelter, i.e.

having its capacity decreased or having it destroyed, and can search for solutions

that minimizes the risk of such occurrences.
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Appendix A

Data

A.1 Shelter Weights

Shelter # Weight

1 0.865

2 0.795

3 0.781

4 0.948

5 0.948

6 0.674

7 0.674

8 0.801

9 0.847

10 0.850

11 0.694

12 0.847

13 0.809

14 0.803

15 0.827

16 0.982
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Shelter # Weight

17 0.982

18 0.829

19 0.847

20 0.865

21 0.689

22 0.689

23 0.739

24 0.948

25 0.948

A.2 Population of Districts

Shelter # Population

1 14,242

2 30,003

3 10,302

4 22,978

5 22,380

6 17,390

7 25,261

8 29,124

9 14,366

10 13,744

11 14,827

12 11,720

13 13,718

14 43,433

15 27,568

16 28,591

17 37,144

18 8,093
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Shelter # Population

19 30,147

20 11,649

A.3 4-Objective Results with α = 0.90

CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.5816 0.1373 1.757 4.24

0.5111 0.2061 1.637 4.24

0.5496 0.1373 1.757 4.28

0.4892 0.2061 1.637 4.28

0.5051 0.1373 1.757 4.32

0.7670 0.2473 1.637 4.32

0.7584 0.2473 1.622 4.32

0.4801 0.1373 1.757 4.36

0.6157 0.2473 1.637 4.36

0.4359 0.1373 1.757 4.40

0.5538 0.2473 1.637 4.40

0.5418 0.2473 1.622 4.40

0.3892 0.1540 1.757 4.44

0.3865 0.1663 1.729 4.44

0.5268 0.2473 1.642 4.44

0.3844 0.1540 1.757 4.48

0.3833 0.1540 1.749 4.48

0.3844 0.1663 1.729 4.48

0.5066 0.2473 1.642 4.48

0.4745 0.2473 1.637 4.48

0.3815 0.1540 1.757 4.52

0.3803 0.1540 1.751 4.52

0.3801 0.1540 1.749 4.52

0.5054 0.2473 1.642 4.52

0.4743 0.2473 1.637 4.52
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.3791 0.1540 1.757 4.56

0.3781 0.1540 1.751 4.56

0.3778 0.1540 1.749 4.56

0.5025 0.2473 1.642 4.56

0.3751 0.1540 1.757 4.60

0.3747 0.1540 1.749 4.60

0.3768 0.1663 1.729 4.60

0.4994 0.2473 1.642 4.60

0.3736 0.1540 1.757 4.64

0.3721 0.1540 1.749 4.64

0.4981 0.2473 1.642 4.64

0.3678 0.1540 1.749 4.68

0.3747 0.1663 1.729 4.68

0.4966 0.2473 1.642 4.68

0.4626 0.2473 1.637 4.68

0.3662 0.1540 1.757 4.72

0.3662 0.1663 1.729 4.72

0.4965 0.2473 1.642 4.72

0.3623 0.1540 1.757 4.76

0.3543 0.1540 1.757 4.80

0.3543 0.1663 1.729 4.80

0.4940 0.2473 1.642 4.80

0.3503 0.1540 1.757 4.84

0.3503 0.1663 1.729 4.84

0.4930 0.2473 1.642 4.84

0.3495 0.1540 1.749 4.88

0.4808 0.2473 1.642 4.88

0.3495 0.1540 1.757 4.92

0.3495 0.1663 1.729 4.92

0.4803 0.2473 1.642 4.96

0.7420 0.1818 1.791 5.00

0.4881 0.1993 1.757 5.00
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.6725 0.1818 1.791 5.04

0.4335 0.1993 1.757 5.04

0.5968 0.1818 1.791 5.08

0.4244 0.1993 1.757 5.08

0.3746 0.1993 1.729 5.08

0.4488 0.2473 1.622 5.08

0.5898 0.1818 1.791 5.12

0.4137 0.1993 1.757 5.12

0.3633 0.1993 1.729 5.12

0.4460 0.2473 1.622 5.12

0.5867 0.1818 1.791 5.16

0.5821 0.1818 1.763 5.16

0.4080 0.1993 1.757 5.16

0.3503 0.1993 1.729 5.16

0.5825 0.1818 1.791 5.20

0.5770 0.1818 1.763 5.20

0.4023 0.1993 1.757 5.20

0.5764 0.1818 1.791 5.24

0.5680 0.1818 1.763 5.24

0.3977 0.1993 1.757 5.24

0.3972 0.1993 1.749 5.24

0.4557 0.2473 1.637 5.24

0.5707 0.1818 1.783 5.28

0.5573 0.1818 1.763 5.28

0.3802 0.1993 1.757 5.28

0.5430 0.1818 1.791 5.32

0.3790 0.1993 1.757 5.32

0.4537 0.2473 1.637 5.32

0.5427 0.1818 1.785 5.36

0.5181 0.1818 1.763 5.36

0.3774 0.1993 1.757 5.36

0.3127 0.1993 1.729 5.36
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.5423 0.1818 1.791 5.40

0.5410 0.1818 1.785 5.40

0.5393 0.1818 1.783 5.40

0.5161 0.1818 1.763 5.40

0.3757 0.1993 1.757 5.40

0.3754 0.1993 1.749 5.40

0.3099 0.1993 1.729 5.40

0.4340 0.2473 1.637 5.40

0.5403 0.1818 1.791 5.44

0.5377 0.1818 1.783 5.44

0.5156 0.1818 1.763 5.44

0.3750 0.1993 1.751 5.44

0.3743 0.1993 1.749 5.44

0.3028 0.1818 1.671 5.44

0.5389 0.1818 1.785 5.48

0.5358 0.1818 1.783 5.48

0.5143 0.1818 1.763 5.48

0.3739 0.1993 1.757 5.48

0.3067 0.1993 1.729 5.48

0.4256 0.2473 1.637 5.48

0.4217 0.2473 1.622 5.48

0.5381 0.1818 1.791 5.52

0.5346 0.1818 1.783 5.52

0.5121 0.1818 1.763 5.52

0.3715 0.1993 1.757 5.52

0.3698 0.1993 1.749 5.52

0.2958 0.1818 1.671 5.52

0.4190 0.2473 1.637 5.52

0.5377 0.1818 1.791 5.56

0.3693 0.1993 1.757 5.56

0.3668 0.1993 1.749 5.56

0.3055 0.1993 1.729 5.56
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.2947 0.1818 1.671 5.56

0.4177 0.2473 1.637 5.56

0.5367 0.1818 1.791 5.60

0.3659 0.1993 1.757 5.60

0.3657 0.1993 1.749 5.60

0.2993 0.1993 1.729 5.60

0.2918 0.1818 1.671 5.60

0.4142 0.2473 1.622 5.60

0.5322 0.1818 1.783 5.64

0.3625 0.1993 1.749 5.64

0.2897 0.1818 1.671 5.64

0.4093 0.2473 1.637 5.64

0.5099 0.1818 1.763 5.68

0.3606 0.1993 1.757 5.68

0.2973 0.1993 1.729 5.68

0.4008 0.2473 1.637 5.68

0.5071 0.1791 1.763 5.72

0.3601 0.1993 1.757 5.72

0.3598 0.1993 1.749 5.72

0.2931 0.1993 1.729 5.72

0.3963 0.2473 1.637 5.72

0.3589 0.1993 1.757 5.76

0.2922 0.1993 1.729 5.76

0.2889 0.1818 1.671 5.76

0.3927 0.2473 1.637 5.76

0.5078 0.1818 1.763 5.80

0.2914 0.1993 1.729 5.80

0.2838 0.1818 1.671 5.88

0.3176 0.2061 1.642 5.92

0.5317 0.1791 1.783 5.96

0.2746 0.1818 1.671 5.96

0.1947 0.1993 1.642 5.96
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.5075 0.1818 1.763 6.00

0.4951 0.1818 1.785 6.08

0.4636 0.1818 1.783 6.08

0.4570 0.1818 1.783 6.12

0.4552 0.1818 1.791 6.16

0.4547 0.1818 1.783 6.16

0.4522 0.1818 1.785 6.20

0.4508 0.1818 1.783 6.20

0.4380 0.1818 1.791 6.28

0.4222 0.1818 1.791 6.32

0.4186 0.1818 1.763 6.32

0.4018 0.1818 1.763 6.36

0.4220 0.1818 1.791 6.40

0.3976 0.1818 1.763 6.40

0.2259 0.1818 1.671 6.40

0.3974 0.1818 1.763 6.44

0.2077 0.1818 1.671 6.44

0.1955 0.1818 1.671 6.48

0.1835 0.1818 1.671 6.52

A.4 4-Objective Results with α = 0.95

CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.6071 0.1373 1.757 4.24

0.5379 0.2061 1.637 4.24

0.5770 0.1373 1.757 4.28

0.5133 0.2061 1.637 4.28

0.5331 0.1373 1.757 4.32

0.8006 0.2473 1.637 4.32

0.7359 0.2473 1.622 4.32
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.5073 0.1373 1.757 4.36

0.6876 0.2473 1.637 4.36

0.4466 0.1373 1.757 4.40

0.5435 0.2473 1.637 4.40

0.4053 0.1540 1.757 4.44

0.4036 0.1540 1.749 4.44

0.4036 0.1663 1.729 4.44

0.5430 0.2473 1.642 4.44

0.4913 0.2473 1.637 4.44

0.4041 0.1540 1.757 4.48

0.4024 0.1540 1.751 4.48

0.5372 0.2473 1.642 4.48

0.4912 0.2473 1.637 4.48

0.4024 0.1540 1.757 4.52

0.4027 0.1663 1.729 4.52

0.4023 0.1540 1.757 4.56

0.4023 0.1663 1.729 4.60

0.4886 0.2473 1.637 4.64

0.7952 0.1818 1.791 5.00

0.5287 0.1993 1.757 5.00

0.7420 0.1818 1.791 5.04

0.4934 0.1993 1.757 5.04

0.4921 0.1993 1.729 5.04

0.6068 0.1818 1.791 5.08

0.4866 0.1993 1.757 5.08

0.3902 0.1993 1.729 5.08

0.6005 0.1818 1.791 5.12

0.4820 0.1993 1.757 5.12

0.5998 0.1818 1.791 5.16

0.4798 0.1993 1.757 5.16

0.3641 0.1993 1.729 5.16

0.5989 0.1818 1.791 5.20
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.5936 0.1818 1.763 5.20

0.4779 0.1993 1.757 5.20

0.5974 0.1818 1.785 5.24

0.5898 0.1818 1.763 5.24

0.4774 0.1993 1.749 5.24

0.3548 0.1993 1.729 5.24

0.5973 0.1818 1.785 5.28

0.5839 0.1818 1.763 5.28

0.4771 0.1993 1.757 5.28

0.3525 0.1993 1.729 5.28

0.5973 0.1818 1.791 5.32

0.3501 0.1993 1.729 5.32

0.5817 0.1818 1.763 5.36

0.3256 0.1818 1.671 5.40

0.5795 0.1818 1.763 5.44

0.3119 0.1818 1.671 5.44

0.4433 0.2473 1.637 5.44

0.4396 0.2473 1.622 5.44

0.3049 0.1818 1.671 5.48

0.4392 0.2473 1.637 5.52

0.4373 0.2473 1.622 5.52

0.4373 0.2473 1.637 5.68

0.3664 0.2061 1.642 5.92

0.2400 0.1993 1.642 5.96

0.3013 0.1818 1.671 6.00

0.4775 0.1818 1.791 6.08

0.4739 0.1818 1.783 6.08

0.4737 0.1818 1.791 6.12

0.4675 0.1818 1.791 6.16

0.4575 0.1818 1.763 6.20

0.4664 0.1818 1.791 6.24

0.4521 0.1818 1.763 6.24
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CVaR
Minimum
Utilization

Shelter
Weight

Expected
Shelter Amount

0.4656 0.1818 1.791 6.28

0.4511 0.1818 1.763 6.28

0.4449 0.1818 1.763 6.32

0.4434 0.1818 1.763 6.36

0.2513 0.1818 1.671 6.40

0.2400 0.1818 1.671 6.44

0.2182 0.1818 1.671 6.48

0.1970 0.1818 1.671 6.52
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