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Dynamics of dissipation local vibrations to the surrounding substrate is a key issue in friction between
sliding surfaces as well as in boundary lubrication. We consider a model system consisting of an excited
nano-particle which is weakly coupled with a substrate. Using three different methods, we solve the dynamics
of energy dissipation for different types of coupling between the nanoparticle and the substrate, where different
types of dimensionality and phonon densities of states were also considered for the substrate. In this paper, we
present a microscopic analysis of transient properties of energy dissipation via phonon discharge toward the
substrate. Finally, important conclusions of our theoretical analysis are verified by a realistic study, where the
phonon modes and interaction parameters involved in the energy dissipation from an excited benzene molecule
to the graphene are calculated by using first-principles methods. The methods used are applicable also to
dissipative processes in the contexts of infrared Raman spectroscopy and atomic force microscopy of mol-
ecules on surfaces.
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I. INTRODUCTION

Friction between two surfaces in relative motion involves
many interesting and complex phenomena induced by the
long- and short-range forces, such as adhesion, wetting, atom
exchange, bond breaking and bond formation, and elastic
and plastic deformation.1–14 In general, nonequilibrium
phonons are generated in the expense of damped mechanical
energy.15–20 Dissipation of this excess energy is one of the
important issues in dry-sliding friction and lubrication.10,21–23

Normally, the dissipation of mechanical energy is resulted in
heating of parts in relative motion. Sometimes, it gives rise
to wear and failure due to overheating. In general, significant
amounts of resources �energy and material� are lost in the
course of friction. One of the prime goals of tribology is to
minimize energy dissipation through lubrication. Recently,
several works have attempted to develop surfaces with su-
perlow friction coefficients.24

In the past, the energy dissipation during sliding has been
usually investigated in the macroscopic scale by using
simple Tomlinson’s model.3 Hence, the dissipated energy and
friction force have been revealed indirectly from stick-slip
motion. The objective of the present work is to develop a
microscopic �or atomic scale� understanding of phononic en-
ergy dissipation during sliding friction, especially to shed
some light on the dynamics of discharge of excited phonons
on a nanoparticle �representing a lubricant molecule or an
asperity� into the substrate. This problem has many aspects
and the solution will depend on a variety of physical param-
eters which can be grouped into major categories, such as
internal degrees of freedom of the nanoparticle, density of
substrate phonon modes, the type and strength of coupling
between the nanoparticle and the substrate, and finally the
initial temperatures. One way of studying this problem could
be carrying out state-of-the-art molecular dynamics simula-
tions which yields sample specific results only. However, to
explore the general features of the phononic dissipation, we

propose an Hamiltonian treatment of the problem. Since the
number of physical ingredients determining the dynamics is
considerably large, our strategy will be to focus on them
separately to reveal their role in energy dissipation.

In this work, we present our analysis concerning the de-
pendence of phononic dissipation on internal degrees of free-
dom of the nanoparticle and the substrate by using two types
of coupling between the finite and extended systems. We
consider three different theoretical methods; namely, the
equation of motion �EoM� technique which involves Laplace
transforms for the solution of the coupled differential equa-
tions for phonon operators, the Fano-Anderson �FA� method
which is useful for diagonalizing quadratic Hamiltonians,
and Green’s function �GF� method by which we can incor-
porate the effect of multimodes into the study. The first two
methods have limited applicability for specific cases only
and will be presented for completeness. The GF method,
being the most general method, will be extensively dis-
cussed. We also note that the GF method allows solutions
beyond linear response where the EoM and FA methods
yield solutions within the linear response regime.

The organization of the paper is as follows. In Sec. II, we
describe the physical model. The theoretical methods to be
used and their limitations are presented in Sec. III. The ap-
plications of theoretical methods to different types of cou-
pling and substrates having different densities of states will
be presented and discussed in Sec. IV. These are mainly the
dependence of the decay rate on the coupling constant, the
interaction-specific dependence of decay rate on the nanopar-
ticle mode frequencies, and the effect of neighboring modes
on the decay rate of each other. Finally, we present a specific
and realistic example, where the dissipation of vibrational
modes of benzene molecule �C6H6� to a graphene substrate
is analyzed by using density functional theory �DFT� calcu-
lations. We summarize our conclusions in Sec. V.
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II. MODEL

We first consider a nanoparticle representing a lubricant
molecule or an asperity, which is weakly coupled to a sub-
strate �Fig. 1�. The vibrational modes of the nanoparticle are
excited initially and the excess phonons discharge to the
bulk. The total Hamiltonian of the system can be written as

H = HM + HS + HMS �1�

where HM and HS are the free phononic Hamiltonians of the
nanoparticle �or molecule� and the substrate �or bath�, re-
spectively; the interaction between them is represented by
HMS. We also define H=H0+HMS. We assume that the har-
monic approximation is good enough for HM and HS, and
their phonon spectra are known, i.e.,

HM = �
j

�� jaj
+aj , �2�

HS = �
k

��kbk
+bk. �3�

Here, � j are the frequencies of the nanoparticle modes with
aj and aj

+ being the corresponding annihilation and creation
operators; �k are the frequencies of the substrate vibration
modes of wave vectors k and bk and bk

+ are the correspond-
ing phonon annihilation and creation operators. We have
omitted the constant terms as they do not contribute to the
dynamics of the system. Here, we consider a single phonon
branch without loosing generality, but the formalism can be
extended to include multiple branches. The interaction
Hamiltonian HMS is also assumed to be quadratic in phonon
operators,

HMS = �
k,j

��Wkjbk
+aj + H.c.� , �4�

with Wkj being the coupling coefficient which is a function
of �k and � j and has the dimesion of angular frequency. We
disregard the double annihilation and double creation of
phonons in the present work.

Here, we consider two types of coupling. The first one is
the Lorentzian coupling in which the coupling coefficient
Wkj is a Lorentzian with its peak located at � j and has a
width � j. As long as the coupling between the nanoparticle
and the substrate is weak, Wkj will be a peaked function of
�k and a separate peak will be present around each � j. De-

pending on the strength of the interaction, the sharpness of
the peaks and the overlap between the neighboring peaks
will differ. If the coupling is weak enough, we may neglect
the overlaps, namely,

Wkl
* Wkj → �Wkl�2�l,j . �5�

For Lorentzian coupling, we assume that the coupling terms
of different modes of the nanoparticle do not overlap, and
hence, we can treat each nanoparticle mode separately.

For the second type of coupling, we consider the coupling
coefficients which scale inversely as the square root of the
product of the frequencies of the coupled modes, i.e.,

Wkj = ���k� j�−1/2. �6�

The coefficient � stands for the strength of the coupling and
will depend on the interaction between the nanoparticle and
the substrate. In both coupling types, Wkj is a function of �k
and � j, explicit dependence on the wave vectors is not in-
cluded for the sake of simplicity. The effect of initial tem-
peratures of the parties, besides from the effect of tempera-
ture difference, is another major topic in its own and we
leave that discussion to another paper. In the present paper,
we consider the initial temperatures to be zero and limit our
attention to the near-equilibrium case in the weak coupling
regime. Strong coupling regime and nonequilibrium cases
will also be treated separately.

III. THEORETICAL METHODS

A. Equation of motion technique

The time dependent occupancies of the nanoparticle
modes can be obtained using Heisenberg’s equation of mo-

tion, namely, Ȧ�t�= i�H ,A�t�� /�. The equations of motion for
the phonon annihilation operators are

ȧl�t� = − i�lal�t� − i�
k

Wkl
* bk�t� , �7�

ḃk�t� = − i�kbk�t� − i�
j

Wkjaj�t� , �8�

that is, we have coupled differential equations for each op-
erator. Performing Laplace transformation to both equations,
a pair of coupled algebraic equations is obtained which can
be decoupled algebraically, and by inverse transformation,
the time dependent operator al�t� is obtained as

al�t� =
al�0�
2�i

�
B

estds

s + i�l + Il�s�
−

1

2�
�

B

estJl�s�ds

s + i�l + Il�s�
. �9�

where the integrals are to be evaluated along the Bromwich
contour, with Il�s� and Jl�s� being the substrate and interac-
tion specific functions �see Appendix A�.

The first and second terms in Eq. �9� stand for the contri-
butions from the initial excitation of the nanoparticle and the
initial temperature of the substrate, respectively. The second
term does not contribute to the time dependent occupations
of the nanoparticle mode, since the initial temperature of the
substrate is considered to be zero.

FIG. 1. �Color online� A nanoparticle with discrete density of
phonon modes is coupled to a substrate having continuous density
of modes.
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B. Fano-Anderson method

Since the Hamiltonian is quadratic in operators, its solu-
tion is equivalent to diagonalizing a matrix. Exact diagonal-
ization of such quadratic Hamiltonians was shown to be pos-
sible by Fano25 and Anderson26 independently, and the
procedure is widely used in atomic physics, solid state phys-
ics, quantum optics, etc. Here, we will apply their method to
the problem of phononic dissipation.

Solution of the Hamiltonian is equivalent to finding the
dressed operators ���q� such that the Hamiltonian is diago-
nal in terms of the dressed operators, H
=�q��q�+��q����q�.

As described in AppendixB, one can write the time de-
pendent occupancy of jth mode as

�nj�t�	 = �nj�0�	
� d�qg��q�����q,� j��2e−i�qt
2

+� d�kg��k��nk�0�	

	
� d�qg��q��*��q,� j�
*��q,�k�e−i�qt
2

,

�10�

where ���q ,� j� are the expansion coefficients for the mo-
lecular operator aj in terms of the dressed operators ���q�
and 
��q ,�k� are that of the substrate operator bk �see Ap-
pendixB�.

Due to the finite range of substrate density of states
�DOS� g��k�, the integrals involved in the FA method are
bounded. The method allows us to perform calculations for
any g��k� and for any type of coupling with a single nano-
particle mode. The time dependent occupation is again sepa-
rable as contributions from the initial temperature of the
nanoparticle and that of the substrate. However, it should be
noted that the FA method is applicable for any coupling type
and any density of states for the substrate as long as we
consider a single nanoparticle mode.

C. Green’s function method

The effect of neighboring modes of nanoparticle having
multimodes cannot be resolved within the above methods.
That is, EoM and FA methods are restricted to the linear
response regime. We use a more generalized method by
which one can consider effects of neighboring modes. For
this purpose, we employ Green’s functions. Initially, the sub-
strate temperature is zero and the phonon modes of the nano-
particle are empty except for the excitations which do not
necessarily obey Bose-Einstein distribution. That is, the ini-
tial occupation of a nanoparticle mode is not a function of
temperature. Therefore, we make use of zero temperature
Green’s functions instead of Matsubara formalism,

d�j,t − t�� = − i�Ttâj�t�âj
+�t��	 , �11�

D�k,t − t�� = − i�Ttb̂k�t�b̂k
+�t��	 , �12�

where Tt is the time-ordering operator, and the operators in
Heisenberg picture are distinguished by a hat.

Since each term in the interaction Hamiltonian includes
odd number of nanoparticle operators, only the even order
terms contribute in the expansion. The first contribution due
to the interaction is the second order term,

d�0��� j�2�
k

Wjk
2 D�0���k� = d�0��� j�2��2��� j� , �13�

with ��2��� j� being the second order self-energy.
First, we wish to limit our attention to the case of a nano-

particle having a single mode. In obtaining the solution for a
single mode, we will relate it to the FA result for the sake of
illustration and then we will generalize our solution for the
case of a nanoparticle having multiple modes. In doing so,
we will be able to take the interplay between neighboring
modes during dissipation into account.

For a single nanoparticle mode, the higher order terms can
be expressed in terms of the second order self-energy and the
free GF as

d�� j,�q� = d�0��� j,�q�„1 + d�0���2� + �d�0���2��2 + ¯ … .

�14�

For weak coupling, the above series can be written as

d�� j,�q� =
d�0��� j,�q�

1 − d�0��� j,�q���2��� j,�q�
, �15�

hence, the retarded GF becomes

dR�� j,�q� =
1

�q − � j − ��2��� j,�q�
. �16�

The real and imaginary parts of the second order self-
energy can be separated,

��2��� j,�q� = P� d�kg��k�Wjk
2

�q − �k
− i�g��q�Wjq

2 , �17�

where P is for principal part of the integral, and the spectral
function is obtained by

A�j,�q� =
− 2 Im ��2��j,�q�

„�q − � j − Re ��2��j,�q�…2 + „Im ��2��j,�q�…2 .

�18�

The real part of the second order self-energy ��2� is equal
to the shift in the jth mode of the nanoparticle, � j, obtained
previously using the FA method, and the square of the imagi-
nary part of ��2� is ��g��q�Wqj�2. That is, the FA expansion
coefficient � finds its expression in terms of the spectral
function as

����q,� j��2 =
A�j,�q�
2�g��q�

. �19�

The time dependent GF can be written in terms of the spec-
tral function and the time dependent occupancy of the jth
mode is obtained as
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�nj�t�	 = �nj�0�	
� d�q

2�
A�j,�q�e−i�qt
2

. �20�

In order to incorporate the effect of neighboring modes,
we follow the diagrammatic technique. As long as the
Hamiltonian is quadratic, the primitive vertex, from which
all diagrams are to be constructed, will consist of two pho-
non lines. That is, each interaction point is the intersection of
two phonon lines. Since the interaction Hamiltonian relates a
nanoparticle mode to a substrate mode only, each vertex con-
tains one nanoparticle phonon line and a substrate phonon
line. So the diagram of any order can be constructed �see Fig.
2�b��. Having obtained the diagrammatic expansion for any
order 2n, under certain conditions about the coupling type,
the �2n�th order self-energy term can be expressed in terms
of the second order term and the free GF of the nanoparticle
modes. If the fraction Wk1j1

/Wk1j2
is independent of k1, the

self-energy for the multimode case can be found exactly
where the fourth and sixth order contributions can be written
as

��4��j,�q� =
1

Wqj
2 ��

j1

d�0��j1,�q�Wqj1
2 
„��2��j,�q�…2,

�21�

��6��j,�q� =
1

Wqj
4 ��

j1

d�0��j1,�q�Wqj1
2 
2

„��2��j,�q�…3.

�22�

By mathematical induction, the �2n�th term is found as

��2n��j,�q� =
1

Wqj
2�n−1� ��

j1

d�0��j1,�q�Wqj1
2 
n−1

„��2��j,�q�…n,

�23�

and hence,

��j,�q� =
��2��j,�q�

1 −
��2��j,�q�

Wjq
2 �

j��j

Wj�q
2 d�0��j�,�q�

. �24�

Once the self-energy is found, the spectral function, therefore
the time dependent occupancy of the nanoparticle modes can
be calculated.

A few remarks about the above expression for the self-
energy follow. First, it is exact in the sense that it includes
contributions from diagrams to all orders. Second ��j ,�q� is
not a quadratic function of coupling Wkj anymore, as it was
in the single mode approximation case. Rather, the decay rate
of jth mode collects contributions from all other modes also.
Third, the spectral function is not of Lorentzian shape any-
more; extra peaks and dips in the spectral function are in
question which will be analyzed numerically in the following
section.

IV. RESULTS AND DISCUSSIONS

In this section, we will apply the above methods using
Lorentzian and square-root coupling to analyze the depen-
dence of the decay rate on the properties of nanoparticles and
substrates having one-dimensional �1D� and two-
dimensional �2D� Debye DOSs. The analytical results ob-
tained using EoM technique and numerical results obtained
using FA and GF methods are discussed separately. An ap-
plication for a real physical system using DFT and the GF
method will also be presented.

�i� As an application of the EoM method, we consider the
nanoparticle that has a single mode coupled to a 1D or 2D
Debye substrate. The substrate is initially at zero tempera-
ture. Assuming Lorentzian coupling, namely,

Wkj
2 =

�2�

2�

1

��k − � j�2 + �2/4
, �25�

we have for Ij�s� �see Appendix A�

Ij =
�2�cD

2�i
�

0

�max d�k�k
d−1

��k − is���k − � j − i
�

2
���k − � j + i

�

2
� ,

�26�

where d is the dimension of the substrate, cD is the corre-
sponding Debye constant for DOS, and gd���=cD�d−1. � j

and � are real and positive, and by definition of Laplace
transformation, Re�s�
0. In the weak coupling regime, the
width of the Lorentzian will be much smaller than � j and
�max,

28 so we can approximate the above integral by extend-
ing the limits of integration to �−� ,��, in which case the
integral can be evaluated analytically on the complex �k
plane with the result Ij�s�=�2cD�� j − i� /2�d−1 / �s+ i� j

+� /2�. Performing the inverse transformation, one finds

�nj�t�	 = �nj�0�	
e−�t/2

4���2
��� + ��e�t/2 − �� − ��e−�t/2�2,

�27�

where �2=�2 /4−4�2cD�� j − i� /2�d−1.

. . .

. . .

(a)

(b)

t

t

t1

t1

t2

t2

t3

t3 t4

t2n−2 t2n−1

t2n−1

t2n

t2n

t′

t′

jj

jjj

j1 jn−1k1

k1 k2

kn

kn

FIG. 2. Diagrams of order 2n. Solid lines are the phonon lines of
the nanoparticle where the dashed lines are that of the substrate. �a�
Diagram for the case of single nanoparticle mode j. ki stand for the
substrate modes. �b� Diagram of order 2n when there exists multiple
modes �ji� for the nanoparticle.
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It is noted that the domain of applicability of the EoM
technique is quite limited due to the fact that the inverse
Laplace transformation is not always possible neither ana-
lytically nor numerically. Nevertheless, in certain cases, the
EoM method enables us to get analytical results within some
approximations. Figure 3 shows the decay of a single nano-
particle mode to a 2D-Debye substrate obtained by the EoM
method. The oscillatory behavior is due to the splitting of the
molecular spectrum into two.

�ii� Next, using FA and GF methods, we discuss the criti-
cal features in the dissipation of single mode energies of
nanoparticle to 1D and 2D substrates. In the weak coupling
regime, the width of the spectral function A�j ,�q� will be
small compared to �q, provided that � j is not close to zero,
which is already satisfied for nanoparticles. In this limit, the
imaginary part of the self-energy can be interpreted as twice
the decay rate, � j =Im ��j ,�q� /2. Therefore, the dependence
of decay rate on the interaction type and strength as well as
on the frequency of the nanoparticle can be obtained from
the spectral function.

For the case of Lorentzian coupling, the interaction
strength � is linear with Wkj, which shows that the decay rate
increases with �2. If the coupling is only a function of the
distance between interacting atoms of the substrate and the
nanoparticle, the coupling has the form of Eq. �6� with �
being proportional to a spring constant kint connecting the
interacting atoms. Since the spectral function scales with �2,
decay rate increases with kint

2 for inverse-square-root cou-
pling case. The kint

2 law was previously obtained using elastic
continuum model for phononic dissipation in physisorption
systems.27

The dependence on the nanoparticle mode frequency is a
key issue we wish to emphasize in phononic energy dissipa-
tion. In Lorentzian coupling case, the decay rate is deter-
mined by the width of the Lorentzian rather than the fre-
quency. On the other hand, for inverse-square-root coupling
�see Eq. �6��, it is inversely proportional to the nanoparticle
mode frequency � j. It is evident from Eqs. �B12� and �18�
that phonons in mode � j decay faster as the substrate DOS at
the center of the peak, � j −Re��j ,�q�, increases. A crucial

consequence of dependence on substrate DOS is that if the
DOS at the peak of the spectral function tends to zero, the
spectral function �and ����q ,� j��2� has the form of a � func-
tion. In the language of dressed modes, this corresponds to a
localized mode, i.e., it does not decay at all. Such localized
states are also known to occur in, e.g., solid state physics26

and atomic physics.25 For weak coupling, the real part of the
self-energy is small, so the peak of the spectral function is
not altered significantly from its original position � j. In other
words, lying outside the continuum of substrate modes, it is
unlikely to be shifted into the range where it can decay or
vice versa. Decay of such localized modes is possible, on the
other hand, by including the anharmonic terms in the Hamil-
tonian. Localized modes of the harmonic approximation now
will gain finite width due to multiphonon interactions. In
general, three-phonon interactions are weak, four-phonon
processes are even weaker, and the first nonzero contribution
from three-phonon processes arises at the second-order term
of the diagramatic expansion. Another mechanism for decay
of localized harmonic modes can be due to double annihila-
tion and creation terms in the interaction Hamiltonian which
are neglected in this study �see Eq. �4��. Namely, though
localized modes are not truly localized considering anhar-
monic terms or double annihilation/creation terms, their de-
cay rates will be small. Another important effect about DOS
dependence takes place when the spectral peak coincides
with a van Hove singularity of the substrate DOS, by which
the decay rate is enhanced abruptly.

�iii� We also investigate the effect of a neighboring mode
within square-root coupling in 1D and 2D Debye substrate
densities of states using GF method. We consider four nano-
particle modes, �1=0.7�max, �2=0.65�max, �3=0.55�max,
and �4=0.45�max. The effect is analyzed pairwise, namely,
we consider ��1 ,�2�, ��1 ,�3�, and ��1 ,�4� as the nanopar-
ticle modes, keeping other parameters unchanged. That is,
we keep �1 constant while changing the second mode and
investigate dependence of decay of �1 mode on the separa-
tion from the second nanoparticle mode. For both 1D-Debye
�Figs. 4�a�–4�c�� and 2D-Debye �Figs. 4�d�–4�f��, cases, we
observe that the decay of excited modes gain a retardation as
the mode frequencies get closer. A second behavior is the
enhancement of fluctuations during decay as the mode fre-
quencies get closer. Both behaviors can be understood in
terms of the spectral functions. In Fig. 5�a�, spectral func-
tions of �1 and �3 modes are plotted for single mode �dashed
curves� and multimode �solid curves� obtained using GF cal-
culations. It is seen that the overlap is negligible and the
spectra are not changed considerably. When the modes are
closer �Fig. 5�b��, the single-mode spectra �dashed curves�
have finite overlap; correspondingly, the multimode spectral
functions affect each other. The Lorentzian shape is distorted
and the peak of �2 mode is enhanced. These result in retar-
dation and fluctuations during decay. More precisely, the fi-
nite overlap of spectra allows the nanoparticle to gain
phonons back which are previously discharged to the sub-
strate. This phonon exchange process continues during the
dissipation and gives rise to retardations and fluctuations ob-
served in Fig. 4.

�iv� In order to provide a comparison of the results ob-
tained from the quantum treatment with those obtained by
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FIG. 3. �Color online� Decay of a single nanoparticle mode j
coupled to a 2D-Debye substrate. The coupling is Lorentzian. Oc-
cupation �nj�t�	 at time t is given relative to the initial occupation
�nj�0�	.
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classical treatment, we carry out calculations using classical
molecular dynamics method. We use a simple but effective
approach, where we consider the nanoparticle �substrate� as a
cluster �lattice� of masses and harmonic springs in the first
nearest neighbor approximation, and with the lattice having

different dimensionalities. The interaction is described by a
harmonic spring between an atom of the nanoparticle and a
substrate atom. Using the dynamical matrix, the eigenmodes
of the isolated nanoparticle are determined and the initial
energy is loaded to the desired modes by giving the initial
velocities to the atoms in correspondence with the modes. In
the presence of the interaction between the nanoparticle and
the substrate, the differential equations and hence the motion
of atoms are determined in discrete time steps which are on
the order of femtoseconds. Since the classical version of the
problem, which is stated above, is not an exact analog to the
quantum one and due to quantum versus classical natures of
the two, we compare and contrast the basic features of the
results emerging from them.

In agreement with the earlier prediction based on the elas-
tic continuum model27 and with the result previously ob-
tained using the single mode, the dependence of decay rate
on the interaction strength obeys kint

2 law for weak coupling.
Likewise, the dependence on vibrational mode frequency
verifies the previously obtained result, namely, while keeping
the coupling strength constant, higher frequency modes de-
cay slower. We should note that the substrate DOS in the
neighborhood of the nanoparticle mode frequency also af-
fects the decay rates. Using a 1D substrate and choosing the
nanoparticle modes away from the maximum frequency of
the substrate, the effect of substrate DOS is minimized. Al-
though the density of substrate phonon modes is higher for
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FIG. 4. �Color online� Effect of neighboring modes. �a�–�c� are for 1D-Debye DOS and �d�–�f� are for 2D-Debye DOS with nanoparticle
vibration frequencies �1=0.7�max, �2=0.65�max, �3=0.55�max, and �4=0.45�max. �a� and �d�, �b� and �e�, and �c� and �f� show dissipation
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mode condition is relaxed.

SEVINÇLI et al. PHYSICAL REVIEW B 76, 205430 �2007�

205430-6



higher frequencies, the decay rate decreases due to nanopar-
ticle mode frequency dependence.

Another property of the dissipation process becomes ap-
parent when the dynamics is analyzed for a nanoparticle hav-
ing one and two vibrational modes. We consider a diatomic
molecule and a linear triatomic molecule, which have one
and two vibrational modes along the molecular axis, where
the interaction is also along the molecular axis. The effect of
neighboring mode can be be analyzed by setting one of the
modes of the triatomic molecule at the same frequency with
the frequency of the diatomic one. Exciting only the com-
mon frequency of both diatomic and triatomic molecules, we
compare the decay rates, keeping the interaction and sub-
strate parameters fixed. In the weak coupling regime, it is
observed that the decay rate of the common mode does not
change appreciably. Moreover, exciting both vibrational
modes of the triatomic molecule does not effect the decay
rate of the common mode to a great extend. This property
becomes more apparent when the coupling strength is weak-
ened. Since the vibrational modes of a triatomic molecule
along the molecular axis are well separated, this result is
expected in the light of GF solution of the quantum Hamil-
tonian. The mode localization effect is also tested using clas-
sical MD simulations. Unlike the quantum solution, a mo-
lecular mode whose frequency lies above the maximum
frequency of the substrate has a small but yet finite decay
rate.

�v� Finally, we present a specific and more realistic study
of energy dissipation from the excited modes of a benzene
�C6H6� molecule coupled to graphene using GF method.
Here, the multimode frequencies of C6H6, the continuous
phonon spectrum of graphene, and the coupling between
them are calculated by using first-principles ultrasoft
pseudopotential29 plane-wave method30,31 within DFT.32 The
exchange correlation potential has been approximated by
generalized gradient approximation33 using PW91 func-
tional.

These calculations allow an accurate quantum mechanical
treatment. All atomic positions are optimized by the conju-
gate gradient method and the system is considered to be at
equilibrium when Hellman-Feynman forces are below
10 meV /Å. A large supercell is used for the free C6H6 mol-
ecule so that the distance to the nearest atom of the neigh-
boring C6H6 molecule is above 10 Å. A plane-wave basis set
with kinetic energy cutoff �2�k+G�2 /2m=350 eV has been
used. Each atom is shifted by 0.01 Å in each direction from
their equilibrium positions, and the resulting forces on each
atom are used to construct the dynamical matrix such that

K��
�
 =

1

2

F��
�
+ − F��

�
− + F��

�+ − F��


�−

2d
, �28�

where F��
�
± denotes the force on atom � along 
 when �th

atom is moved along � in positive or negative direction; d is
the displacement imposed on a specific atom. The dynamical
matrix is defined in terms of these forces as Dij
=D3��−1�+�,3�−1+
=K��

�
. In solving the dynamical matrix, the
vibration frequencies and the corresponding normal coordi-
nates are determined.

The interaction between the C6H6 molecule and the un-
derlying graphene is calculated by relaxing the geometry in a
supercell of the same size used for free C6H6; the final ge-
ometry is schematically shown in Fig. 6. The equilibrium
distance between the molecule and graphene is 3.75 Å; that
is, the interaction is weak. For the sake of simplicity, we
assume that the interaction between the molecule and the
substrate is achieved by the C atoms lying on top of each
other, and varying the benzene-graphene distance vertically,
we obtain a total energy versus distance curve to which we
perform a quadratic fit to calculate this effective interaction
constant. The interaction constant between C atoms lying on
top of each other is found to be 13.55 eV /Å2.

Since the interaction is weak and the C6H6-graphene dis-
tance is large, the dissipation will occur mostly through the
out-of-plane motions of C6H6 atoms due to their coupling to
the transverse modes of graphene. Using the normal coordi-
nates of these vibrational modes, the contribution of each
atom to the interaction can be determined. When a single
atom of the molecule is interacting with the substrate, the
coupling coefficient goes like Wkj =c�int

2 /��k� j, where � j
stands for the frequency of jth mode of the molecule and c is
the normal coordinate of the interacting atom in jth mode.
When there are more than one atoms interacting with the
substrate �as is the case for C6H6 graphene�, we sum over
those interacting degrees of freedom to find the effective
coefficient c which scales the coupling strength. The out-of-
plane vibrational modes of benzene and the scaling coeffi-
cients are given in Table I. It is worth mentioning that C6H6
has doubly degenerate modes which is due to hexagonal
symmetry of the molecule, i.e., �1,2�, �5,6�, and �7,8� of
Table I form degenerate pairs for free C6H6. The coefficients
of the degenerate modes are identical due to symmetry
grounds.

The spectral function A�j ,�q� for each mode is calculated
using the GF method. Since only the lowest six of the out-
of-plane mode frequencies lie within the range of transverse
substrate phonons, they gain a finite width while the remain-
ing three modes stay localized. The spectra of the lowest
lying modes and the DOS of transverse substrate phonons

FIG. 6. �Color online� Relaxed geometry of benzene on
graphene. Blue �gray� lines show the graphene structure.
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are shown in Fig. 7. The coupling strengths of degenerate
modes are equal; therefore, their spectral functions are iden-
tical. Dependence of the shift and broadening of the spectral
function on the coupling coefficient manifests itself as the
narrow spectral peak of the third mode when compared to

that of the first two modes. Although the third and fourth
modes are close to each other, the dissipation of the fourth
one is much faster than that of the third mode. The broaden-
ing of the fifth and sixth modes would be much larger if their
shifted peaks were matched the singularity of the DOS near
26 THz. However, they gain a shift which pushes the peak
far from singularity. We observe that there might appear
more than one peaks in the spectrum of a single mode. This
is due to two reasons, the contributions from the singularities
in the substrate DOS and the interaction stimulated anharmo-
nicities within the molecule. Although the molecule is treated
in the harmonic approximation, interaction Hamiltonian
gives rise to an indirect coupling between different vibra-
tional modes of the free molecule.

We note that the results for the specific case of benzene
molecule weakly interacting with graphene are in agreement
with the results obtained in part �iii�. More specifically, de-
pendence of spectral width on coupling strength, effect of
van Hove singularities, and the interplay between neighbor-
ing modes are illustrated in this specific example.

V. CONCLUSION

The phononic dissipation from a nanostructure weakly
coupled to a substrate has been analyzed using three different
methods. The EoM technique is able to yield analytical re-
sults, but has a limited range of applicability because of the
fact that inverse Laplace transformation is not always pos-
sible. On the other hand, FA diagonalization is possible for
any type of substrate density of states and any type of cou-
pling, but is restricted to considerations of single nanopar-
ticle mode only. Using GFs, the effect of neighboring nano-
particle modes can also be investigated. It is found that the
stronger the coupling is, the faster is the rate of dissipation.
Since the width of the spectrum of a single nanoparticle
mode scales with the value of the substrate DOS at the
shifted frequency of the nanoparticle mode, we observe that
a single nanoparticle mode coupled to a 2D-Debye substrate
decays faster than the one coupled to a 1D-Debye substrate.
This situation can be reversed for those frequencies for
which 1D-DOS is higher than the 2D-DOS, namely, for low
frequencies �larger nanoparticles�. That is, at frequencies at
which 1D-DOS has higher values than 2D-DOS, decay rate
of a mode coupled to the 1D substrate will be higher than
that of the mode coupled to 2D substrate, provided that the
remaining factors are kept identical. The presence of neigh-
boring nanoparticle modes affect each other’s decay rate
when their spectral functions have an appreciable overlap.
Transitions between nanoparticle modes take place via the
substrate modes; therefore, retardation as well as fluctuations
become important when the modes are close enough. Fur-
thermore, using the results obtained from a first-principles
study, interplay between molecular modes depending on the
substrate DOS is demonstrated.
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�a.6� and DOS of transverse phonons of the graphene substrate �b�.
The red �dashed� lines indicate the vibrational frequencies of the
free benzene molecule.
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APPENDIX A: DETAILS OF EQUATION OF MOTION
TECHNIQUE

The Laplace transformed form of equations of motion are
�see Eqs. �7� and �8��

āl�s��s + i�l� = al�0� − i�
k

Wkl
* b̄k�s� , �A1�

b̄k�s��s + i�k� = bk�0� − i�
j

Wkjāj�s� , �A2�

where s is the Laplace frequency. Solving for āl�s�, one ob-
tains

āl�s� =
al�0�

s + i�l
− i�

k

Wkl
* bk�0�

�s + i�k��s + i�l�

− �
kj

Wkl
* Wkjāj�s�

�s + i�k��s + i�l�
. �A3�

Considering the couplings to be nonoverlapping �see Eq.
�5��, we are left with the relation

āl�s� =
al�0�

s + i�l + �
k

�Wkl�2

s + i�k

− i

�
k

Wkl
* bk�0�

s + i�k

s + i�l + �
k

�Wkl�2

s + i�k

.

�A4�

Having obtained āl�s� in terms of al�0� and bk�0�, the inverse
Laplace transform will yield al�t�; thus, we can obtain the
time dependent occupancy of the lth mode.

We convert the summations into integrals over the sub-
strate modes and denote them as

Il�s� = �
k

�Wkl�2

s + i�k
=� d�kg��k��Wkl�2

s + i�k
, �A5�

Jl�s� = �
k

Wkl
* bk�0�

s + i�k
=� d�kg��k�Wkl

* bk�0�
s + i�k

, �A6�

where g��k� is the phonon density of states for the substrate,
Il and Jl depend on s, and Jl is an operator. We can write Eq.
�A4� as

āl�s� =
al�0�

s + i�l + Il�s�
− i

Jl�s�
s + i�l + Il�s�

. �A7�

The inverse transform of āl�s� is

al�t� =
al�0�
2�i

�
B

estds

s + i�l + Il�s�
−

1

2�
�

B

estJl�s�ds

s + i�l + Il�s�
.

�A8�

APPENDIX B: DETAILS OF FANO-ANDERSON METHOD

Since the bare phonon operators aj and bk form a com-
plete set of operators for the combined system, the dressed
operators ���q� can be expanded in terms of the bare opera-
tors as

���q� = �
j

���q,� j�aj + �
k


��q,�k�bk, �B1�

and they satisfy the eigenoperator equation ����q� ,H�
=��q���q�. Conversely, we find the bare operators by the
following expressions in terms of the dressed operators:

aj = �
q

�*��q,� j����q� , �B2�

bk = �
q


*��q,�k����q� . �B3�

Substituting Eq. �B1� into the eigenoperator relation, one
ends up with a pair of equations,

���q,� j���q − � j� = �
k


��q,�k�Wkj , �B4�


��q,�k���q − �k� = �
j

���q,� j�Wkj
* , �B5�

which can be solved self-consistently to obtain �q. Using Eq.
�B5�, 
 can be expressed in terms of � as


��q,�k� = � P

�q − �k
+ ���q − �k�z��q�
�

j

���q,� j�Wkj
* ,

�B6�

where P stands for the principal part, and the �-function term
accounts for the contribution from the singularity. Inserting
Eq. �B6� into Eq. �B4�, the following relation for ���q ,� j�
and z��q� is obtained:

���q,� j���q − � j� = �
kl

P

�q − �k
���q,�l�WkjWkl

* + �
kl

���q

− �k�z��q����q,�l�WkjWkl
* . �B7�

If we consider the nanoparticle to have a single mode, the
relation between � and z can be written in a much simpler
form and the dissipation of each mode can be treated sepa-
rately. From this point on, we will use the subscript j where
necessary denoting that we are working on the dynamics of
the jth mode of the nanoparticle.

Relying on the above reasoning, zj��q� can be expressed
as

zj��q� =
�q − � j − � j��q�

g��q��Wqj�2
, �B8�

� j��q� being the shift in the jth nanoparticle mode,
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� j��q� = P� d�kg��k��Wkj�2

�q − �k
. �B9�

In order to obtain the expansion coefficients � and 
,
phononic commutation relation for ���q� is employed.

����q�,�+��q��� = �q,q� =
���q − �q��

g��q�
. �B10�

Using the expansion in terms of bare operators �Eq. �B1��
and Poincare’s theorem, i.e.,

P

�q − �k

P

�q� − �k
=

P

�q� − �q
� P

�q − �k
−

P

�q� − �k
�

+ �2���q − �k����q� − �k� , �B11�

the modulus square of ���q ,� j� is found as

����q,� j��2 =
�Wqj�2

��q − � j − � j��q��2 + �2g2��q��Wqj�4
.

�B12�

Since the Hamiltonian is diagonal with annihilation and
creation operators ���q� and �+��q� and eigenfrequencies
�q, the time dependence of the dressed annihilation operator
is

���q,t� = ���q,� j�aje
−i�qt + �

k

��q,�k�bke−i�qt.

�B13�

Correspondingly, the time dependence of the nanoparticle
annihilation operator reads �see Eq. �B2��

aj�t� =� d�qg��q��*��q,� j����q�e−i�qt. �B14�
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