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1. Introduction
One of the primary aims of genomics studies is to 
characterize genetic variations and associate them with 
phenotypes including genetic diseases. Recently there has 
been substantial progress in detecting various types of 
genetic variations (Shendure et al., 2017). Genome-wide 
association analyses have already identified thousands 
of genetic loci linked with human phenotypes, diseases, 
complex traits, and disorders. While many different 
types of genetic variations such as single-nucleotide 
polymorphisms (SNPs), copy number variation (CNV), 
and structural variation (SV) have been identified by these 
studies, microsatellite polymorphism remains largely 
understudied (Gymrek et al., 2016). For example, The 1000 
Genomes Project (The 1000 Genomes Project Consortium, 
2015), which aimed to establish the most detailed genetic 
variation catalog for humans, analyzed 2504 individuals 
from 26 populations and only reported SNPs, indels, 
and a limited number of types of structural variation (i.e. 
deletions, small inversions, mobile element insertions, 
and tandem duplications) in detail. The consortium has 
released only two microsatellite polymorphism call sets, 

identified using two algorithms, namely lobSTR (Gymrek 
et al., 2012) and RepeatSeq (Highnam et al., 2013). The 
1000 Genomes Project and other large research efforts 
had limited effect on shedding light on microsatellite 
polymorphism.

The major obstacle in this endeavor is the complex 
nature of microsatellites. Being a rich primary source of 
genetic variation, single nucleotide changes are probably 
the simplest type and easiest to assay. On the other 
hand, microsatellites are composed of a few nucleotides 
that are repeated several times. This structure causes a 
high mutation rate, which can reach 1/500 mutations 
per locus per generation. This is 200× higher than the 
rate of CNVs and 200,000× higher than the rate of de 
novo single-nucleotide variants. Their hypervariability 
and ubiquity throughout the genome makes them 
difficult to characterize. Despite being harder to identify, 
microsatellites are still highly utilized in human genetics 
applications, including forensics (Gill, 2002) and medical 
genetics (Willems et al., 2014), since they serve as a major 
source of genetic polymorphism among individuals, as 
detailed below:
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● Forensics: Microsatellite analysis is the de facto 
standard for constructing national public forensic DNA 
databases (Gill, 2002). Microsatellites usually have a small 
number of alleles, which increase the information entropy 
of a single microsatellite region. This means that a limited 
number of microsatellites can sufficiently identify a single 
individual. During the late 1990s, the FBI Laboratory 
established the CODIS set. Despite only containing 13 
microsatellite loci, the CODIS set is recognized as the 
standard for human identification.

● Medical genetics: Microsatellite mutations have 
been associated with more than 40 single-gene disorders 
(Willems et al., 2014), such as Huntington’s disease and 
amyotrophic lateral sclerosis/frontotemporal dementia 
(ALS/FTD). In the case of ALS, the condition is triggered 
by the abnormal expansion of short repeat units (Doi et al., 
2014). In addition to single-gene disorders, microsatellites 
also contribute to the heritability of various complex traits. 
1.1. Motivation
Microsatellite polymorphisms are associated with 
several genetic disorders. Among those, dentatorubral-
pallidoluysian atrophy (DRPLA) is a rare brain disorder 
that mainly impacts the mental and emotional state and 
intellectual ability in the patient, and causes uncontrollable 
muscle movements. It is associated with the expansion of 
the CAG microsatellite (over 49–88 copies) in the atrophin 
1 (ATN1) gene (Mongelli et al., 2018). Similarly, the 
mutated androgen receptor (AR) gene with an expanded 
CAG microsatellite (40 to 62 copies) in the coding region 
is shown to be responsible for the pathogenesis of spinal-
bulbar muscular atrophy (SBMA), in which loss of motor 
neurons affects the voluntary muscle movement in the face, 
mouth, and throat (Kozlowski et al., 2010). Therefore, it is 
of clinical importance to accurately and quickly analyze 
microsatellite polymorphisms.

There are several other genetic diseases linked 
with microsatellite polymorphisms that cover ≈3% of 
the sequenced human genome, making microsatellite 
detection research even more significant (Usdin, 2008). 
These patterns are also a major cause of ambiguity in 
genome assembly and sequence alignment, which may 
cause inaccurate interpretations. Hence, microsatellite 
polymorphisms, due to their repetitive nature, have always 
been a challenge for genome assembly and sequence 
alignment (Treangen and Salzberg, 2012). Because of this, 
microsatellite polymorphisms are relatively unexplored 
and are lacking in large-scale analyses, when other types 
of variations (e.g., SNPs, CNVs, insertions, and deletions) 
have been comprehensively cataloged in extensive 
studies (Willems et al., 2014; The 1000 Genomes Project 
Consortium, 2015).

1.2. Identification of microsatellite polymorphisms
Microsatellites in the genome of an organism may be 
identified using two different approaches: (i) analyzing de 
novo assemblies, and (ii) using resequencing data and a 
reference genome.

The first approach starts by building a de novo assembly 
of the genome to be analyzed. To achieve this, any genome 
assembly algorithm can be used (see Section 1.3 below 
for a discussion on assembly algorithms). After the reads 
are assembled into longer contiguous DNA segments 
called contigs, the microsatellites can be identified using a 
tandem repeat discovery algorithm. The most commonly 
used algorithm for this purpose is Tandem Repeats Finder 
(Benson, 1999), which is still employed for new versions 
of the human genome. Tandem Repeats Finder is a greedy 
algorithm that scans the genome using different window 
sizes and tries to find whether two or more adjacent 
windows contain highly similar sequences. Other tools 
that can be applied include REPuter (Kurtz et al., 2001) 
and Look4TRs (Velasco et al., 2018). REPuter also uses a 
greedy strategy: it first finds maximal exact repeats, and 
then tries to extend the repeats to include mismatch and 
indels. On the other hand, Look4TRs is a more involved 
algorithm and it uses self-supervised hidden Markov 
models to find microsatellites.

The first approach we outlined above relies on highly 
accurate assemblies, which makes it useful for newly 
constructed high-quality reference genomes. However, 
when there is already a reference genome available, such 
as the human genome, constructing de novo assemblies 
for additional individuals is both costly and generates 
fragmented low-quality assemblies due to repeats 
(Treangen and Salzberg, 2012).

Because of the problems of accurate de novo assembly 
construction, the second approach is used when analyzing 
microsatellite polymorphisms. This approach involves 
first aligning the reads to a reference genome using a read 
aligner such as BWA, and then searching for inconsistencies 
between the read and the aligned portion of the reference. 
We provide more details about this approach below.

Although generic indel calling tools can be used to 
detect microsatellite polymorphisms, they do not perform 
as well as specialized tools such as lobSTR (Gymrek et 
al., 2012) and RepeatSeq (Highnam et al., 2013), both 
of which are microsatellite polymorphism callers using 
high-throughput sequencing (HTS) data and split-read 
signature (Alkan et al., 2011). However, there are only a 
limited number of tools available that have been developed 
specifically for detecting microsatellite polymorphisms 
and to the best of our knowledge, none of them utilize local 
genome assembly methods during variant calling phase 
(Cao et al., 2015). Most microsatellite polymorphism 
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callers try to identify variation by comparing a read 
sequence with a reference sequence. Since they expect 
reads to be longer than the regions that encompass 
microsatellites, this approach significantly limits the 
detectable microsatellite length. Using local genome 
assembly information enables us to be able to identify 
longer microsatellite polymorphisms. There is still need for 
improvement in microsatellite characterization in newly 
sequenced individual genomes using HTS, especially 
identification of de novo expansions and contractions, 
which is crucial for many applications in biology, such as 
medical genetics, forensics, and population genetics. Here 
we aim to improve the accuracy of microsatellite copy 
number detection by using local genome assembly.
1.3. Assembly algorithms
There are many (>30) assembly tools that use different 
algorithms and data structures to optimize their resource 
requirements. A nonexhaustive chronological list of 
sequence assembly tools for large genomes using short 
reads includes ABySS (Simpson et al., 2009), SGA (Simpson 
and Durbin, 2012), SOAPdenovo (Luo et al., 2012), Minia 
(Chikhi and Rizk, 2013), DISCOVAR (Weisenfeld et al., 
2014), and BCALM2 (Chikhi et al., 2016). ABySS was the 
first tool to assemble a whole human genome from short 
reads by distributing a de Bruijn graph across a cluster of 
nodes (Simpson et al., 2009). 

A more recent tool, Minia, also uses de Bruijn graphs 
but reduces memory requirements by using a Bloom 
filter (Bloom, 1970), which is a space-efficient hash-
based data structure to test existence of an element in a 
set. Peak memory usage for Minia is 5.7 GB, whereas the 
memory consumption of ABySS goes up to 336 GB for 
de novo human genome assembly. However, this a trade-
off; lower memory usage incurs run-time costs: execution 
times for ABySS and Minia are 23 h and 15 h, respectively. 
On the other hand, a recent study (Cherukuri and Janga, 
2016) showed that overlap-layout-consensus (OLC)-
based methods are able to assemble the human genome 
sequence with an order of magnitude better in terms of 
contiguity to the de Bruijn graph approach. Therefore, 
genome assembly accuracy depends on the strategy used 
to generate the assembly.
1.4. Challenge
Most microsatellite regions are difficult to characterize 
using short Illumina reads, which are generally up to 150 
base pairs in length. Although sequencing technologies 
that produce longer reads, such as PacBio and Oxford 
Nanopore, are becoming popular, they still generate reads 
with high indel error rates at higher costs. Furthermore, 
if the microsatellite region is longer than the read length, 
aligners cannot map the reads uniquely. Another crucial 
challenge is that microsatellite sequencing data include 

polymerase chain reaction (PCR) stutter artifacts (Litt et 
al., 1993), which incorrectly generate reads that include 
incorrect copy numbers of microsatellites compared 
to the underlying DNA sequence. Although there has 
been considerable effort in understanding the nature of 
sequencing errors, variant calling pipelines still suffer 
from them.
1.5. Contributions
In this study we used local assembly methods to 
characterize microsatellites. To summarize:

● We developed a pipeline using existing tools that 
starts from raw reads to genotype microsatellites. We 
integrated local assembly as a new step in this pipeline.

● We demonstrated that using local sequence assembly 
on microsatellite regions may help variant callers increase 
sensitivity.

● We evaluated assembly methods that make use of 
graph data structures, namely de Bruijn graph and OLC-
based approaches.

● We analyzed the significance of read coverage in 
microsatellite detection.

2. Materials and methods
The main aim of this work is to use sequence assembly 
methods for regions that are known to harbor 
microsatellites based on the reference genome and build 
a complete pipeline that starts from the reads generated 
from a sample to genotype microsatellite polymorphisms. 
In light of the information about genome assembly tools 
outlined above, we have selected three different assemblers 
to be integrated into our pipeline: SGA (Simpson and 
Durbin, 2012) (an OLC-based de novo assembler), Minia 
(a de Bruijn based de novo assembler), and Pamir (Kavak 
et al., 2017) (an OLC-based local assembler). Here we 
aimed to include one tool from each possible assembly 
strategy (de Bruijn, OLC-de novo, and OLC-local). Pamir 
is the only OLC-based local assembly tool and SGA is 
the only OLC-based de novo assembler developed for 
Illumina. Although there are many de Bruijn graph-based 
assemblers, we selected Minia because of its low memory 
footprint. Briefly, our method is composed of the following 
steps (Figure 1):

1. Align reads to the reference genome. 
2. Extract reads that map to close proximity to, and 

within, known microsatellite regions.
3. Preprocess reads before assembly.
4. Assemble extracted sequences using SGA, Minia, or 

Pamir.
5. Predict genotypes (i.e. heterozygous vs. homozygous).
Below, we first describe how we generate the simulated 

datasets to test our methods, and then we give details on 
the microsatellite polymorphism characterization pipeline.
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2.1. Simulations
To test our pipeline and the effect of different assemblers, 
we simulated microsatellite polymorphismsusing the 
human reference genome (GRCh38). In this manuscript 
we compare our local assembly-based pipeline using 
three different assemblers (Pamir, Minia, and SGA) with 
an alternative standalone microsatellite polymorphism 
assessment tool (lobSTR). Note that there are no gold 
standard truth sets for microsatellite polymorphisms 
generated from the genomes of biological samples; 
therefore, we opted for a simulation-based strategy to 
evaluate pipeline efficacy. We based our simulations 
on human chromosome 20 (NCBI Accession ID: 
CM000682.2) since it is the shortest chromosome in the 
current human genome reference assembly.

We first downloaded microsatellite annotations for 
chromosome 20 of GRCh38 generated using Tandem 
Repeats Finder (TRF) (Benson, 1999). We then filtered for 
annotations where (i) repeat matches are perfect (i.e. there 
are no changes in repeat units), and (ii) both copy number 
and repeat unit lengths are greater than 3. We therefore 
obtained 1963 microsatellite regions for chromosome 
20, which we then used for a random polymorphism 
simulation based on previously observed copy numbers of 
microsatellites from a genome-wide study (Willems et al., 
2017). 

In order to test for reproducibility, we repeated the 
microsatellite annotation analysis using Look4TRs 

(Velasco et al., 2018) as an alternative tandem repeat finder. 
We used Look4TRs to characterize microsatellites within 
the same human chromosome 20 sequence, and after 
applying the same filters as described above, we obtained 
the same set of microsatellite regions that we generated 
using TRF. Therefore, our results are the same with this set 
of annotations.

Using these regions, we simulated multiple versions 
of polymorphisms to generate synthetically expanded 
microsatellites. The simulation accepts microsatellite 
regions (TRF output) and the reference genome as 
input and produces two versions of the reference (i.e. 
corresponding to maternal and paternal DNA) together 
with metadata about expanded regions (e.g., coordinates, 
new copy number, and genotype). Our workflow in 
this step for each microsatellite region is as follows: (i) 
randomly choose between homozygous or heterozygous 
genotype, (ii) randomly pick an expansion factor N 
between 1 and 30, (iii) identify the microsatellite region 
in the reference genome, and (iv) inflate the sequence by 
inserting N more repeat units. If the genotype is simulated 
to be homozygous, both alleles have the same expansion 
(i.e. same sequence). If it is heterozygous, one allele might 
be the same as the reference genome while the other one 
has a random expansion, or they both can have different 
random expansions. 

It is common to use synthetic reads in testing 
bioinformatics pipelines. For this purpose, after simulating 
the polymorphisms, we generated short Illumina 
sequences using Mitty (https://github.com/sbg/Mitty). For 
all our simulation experiments, we used the built-in error 
model for the IlluminaHiSeq X platform and generated 
reads with varying depths of coverage. In this simulation, 
we set theread-length parameter to 150 bp and the average 
fragment size to 350 bp.
2.2. Microsatellite detection pipeline
2.2.1. Read mapping
We first align the reads to the reference human genome 
using a standard read mapper, namely BWA-MEM (Li 
et al., 2014). Following the standard procedures of HTS 
read alignment (The 1000 Genomes Project Consortium, 
2015), we convert the output to the BAM format and then 
sort and remove PCR duplicates using SAMtools (Li et al., 
2009).
2.2.2. Preparing data for assembly
In this step, we collect the reads needed in the assembly 
process. We first extract reads that map to the known 
microsatellite regions using the HTSlib library to process 
HTS data (http://www.htslib.org). For each such read, we 
also check whether the mapping supports a perfect match 
to the reference or shows a microsatellite polymorphism. 
We collect this information from the Concise Idiosyncratic 

Align Reads

Extract Reads in
Microsatellite Regions

Assembly
Preprocessing

de Bruijn Graph
Minia

OLC
SGA/Pamir

Genotyping

Figure 1. Microsatellite characterization pipeline using local 
assembly.
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Gapped Alignment Report (CIGAR) string as reported by 
BWA-MEM. Then, for each microsatellite region, if the 
region includes at least 50% of mapped reads that are the 
same as the reference, we conclude that this region has 
at least one reference allele and remove these reads from 
consideration to reduce the computational load. Finally, 
we output the reads and their map locations in FASTQ and 
SAM formats ready for the assembly step.
2.2.3. Assembly
As we discussed above, we use SGA (Simpson and Durbin, 
2012), Minia (Chikhi et al., 2016), and Pamir (Kavak et 
al., 2017) as alternative assemblers in this project. We 
assemble the FASTQ files generated in the previous step 
using each tool with default options.
2.2.4. Genotyping
In this step we predict the genotype of the microsatellite 
polymorphism for the analyzed sample; i.e. we calculate 
whether the sample is homozygous for the reference allele, 
heterozygous, or homozygous for the alternative allele. Here 
we apply a simple calculation for the genotype support. 
Note that if we observe a sufficiently high number of reads 
supporting the reference allele in the preprocessing step, 
we mark this region to include at least one reference allele. 
For other cases, our genotyping method is as follows. In 
the case of homozygosity (either reference or alternative), 
the assembler in the previous step generates only one 
contiguous sequence (contig). Similarly, it generates two 
contigs in the case of heterozygosity. However, it is also 
possible for the assembler to report more contigs due to 
sequence errors and microsatellite sequence complexity. 
In such cases, we realign the reads to all contigs for the 
microsatellite region in question using BWA-MEM. We 
then select the two contigs with the highest amount of read 
support. If one of the contigs has very low support (<30 of 
the reads), we then predict the variation to be homozygous 
for the higher-support contig. Otherwise we report the 
variation to be heterozygous.

3. Results
We tested our pipeline using a simulated dataset (Section 
2) and compared its performance with lobSTR (Gymrek et 
al., 2012). We performed three experiments for:

1. Evaluating methods based on their performance on 
separate genotypes.

2. Analyzing how sequence coverage impacts assembly-
based callers.

3. Assessing the importance of preprocessing and 
including flanking regions.
3.1. Genotyping performance
In this experiment we used the simulated events based on 
1963 microsatellite regions in GRCh38 (see Section 2), 
and reads simulated at a depth of coverage of 60×. Each 
region was inflated by a random amount of copy numbers 
(between 1 and 30) and assigned a random genotype 
(970 homozygous, 993 heterozygous). In all heterozygous 
events, alleles from each parent have different copy 
numbers and both of them are alternate (i.e. different from 
reference) alleles.

We report true positive rates (TPRs) of our pipeline 
using each different assembler in addition to lobSTR as 
a distribution over microsatellite region size (i.e. copy 
number × microsatellite unit length) in Table 1. We also 
group the events into bins based on microsatellite region 
size. In the simulation experiments, the shortest and 
longest microsatellite regions were 20 bp and 220 bp, 
respectively. 

Briefly, our pipeline with SGA was the most successful 
at calling homozygous microsatellites, followed by lobSTR 
(Figure 2). Additionally, we observed that the SGA-based 
pipeline shows similar accuracy across the widest range of 
microsatellite region length.

Figures 3 and 4 depict the true positive ratios of full 
and partial hit rates of heterozygous events.

For a heterozygous microsatellite polymorphism, if 
a caller is able to determine the copy number for both 
alleles, we considered that prediction as a hit. On the other 

Table 1. True positive rates for all events.

Homozygous Heterozygous Total
Tool Hit Sim. Hit TPR Hit PHit Sim. Hit TPR PHit TPR Hit PHit Sim. Hit TPR PHit TPR
Minia 130 970 0.134 0 0 993 0 0 130 130 1,963 0.066 0.066
SGA 514 970 0.530 108 642 993 0.109 0.647 622 1,156 1,963 0.317 0.589
Pamir 187 970 0.193 25 419 993 0.025 0.422 212 606 1,963 0.108 0.309
lobSTR 339 970 0349 79 79 993 0.080 0.080 418 418 1,963 0.213 0.213

Sim.: Simulated; TPR: true positive rate (true positives / simulated); PHit: partial hit (i.e. the caller can correctly 
genotype one of the alleles for heterozygous events).



DEMİR and ALKAN / Turk J Biol

269

20 30 40 50 90 15
0

16
0

14
0

19
0

20
0

21
0

17
0

12
0

11
060 10

070 80 13
0

18
0

22
0

Microsatellite region length (bp)

20%

40%

60%

80%

100%

Tr
ue

 P
os

iti
ve

 R
at

e Minia
SGA
Pamir
lobSTR

20 30 40 50 90 15
0

16
0

14
0

19
0

20
0

21
0

17
0

12
0

11
060 10

070 80 13
0

18
0

22
0

30

60

90

120

150

Microsatellite region length (bp)

N
um

be
r o

f e
ve

nt
s

20 30 40 50 90 15
0

16
0

14
0

19
0

20
0

21
0

17
0

12
0

11
060 10

070 80 13
0

18
0

22
0

Microsatellite region length (bp)

20%

40%

60%

80%

100%

Tr
ue

 P
os

iti
ve

 R
at

e

Minia

SGA

Pamir

lobSTR

Figure 4. True positive rates for partially detected heterozygous events vs. region length.

Figure 3. Results for heterozygous events. True positive rates vs. region length (left), and number of heterozygous events vs. region 
length (right).
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Figure 2. Results for homozygous events. True positive rates vs. region length (left), and number of homozygous events vs. region 
length (right).
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hand, if it calls only one of the alleles correctly, we consider 
it a partial hit. Once again, SGA has proven to be the most 
powerful in detecting at least one of the alleles correctly. 
However, especially in shorter microsatellite regions, 
lobSTR performed significantly better, but its accuracy is 
affected negatively in regions longer than 65 bp.

In general, considering lobSTR’s 0.349 true positive 
rate in homozygous events versus 0.080 in heterozygous 
cases, it shows a substantial disadvantage in calling 
heterozygous microsatellite polymorphisms. Our pipeline 
with Minia and Pamir assemblers performed poorly in all 
cases (Figure 5) with similar true positive rates (0.066 and 
0.108, respectively). Although all approaches have at least 
4× lower TPR in heterozygous microsatellites compared to 
homozygous, Minia (a de Bruijn graph-based tool) failed 
to detect even one heterozygous variant.

We have also examined each tool’s ability to accurately 
predict genotype (i.e. reporting as heterozygous or 
homozygous) of microsatellite regions without taking the 
reported copy numbers into account (Table 2). lobSTR 
reported only 76 of 993 heterozygous events correctly as 
heterozygous, while Pamir is the best-performing with 628 
correct predictions. On the other hand, SGA is better at 
annotating homozygous regions. Based on these results, 
we conclude that assembly-based methods are superior to 

lobSTR, which shows that characterizing different alleles is 
more accurate with local assembly.
3.2. Coverage tests
Next, we aimed to assess the impact of depth of coverage 
on the accuracy of microsatellite polymorphism detection. 
We simulated sequence data from the altered genome 
with various depths of coverage (40×, 60×, and 80×). 
True positive rates for each caller with different depths are 
shown in Figure 6.

As expected, higher coverage helps improve the 
performance of all methods (Table 3). However, the gain in 
recall is different between 40× to 60× and 60× to 80×. This 
result suggests that improvement in prediction accuracy 
saturates at around 80× depth coverage. For example, SGA 
was able to call 1.39× more events with 60× coverage when 
compared to 40× coverage; however, the gain in TPR is 
only 1.12× when the coverage increases from 60× to 80×.

We also observed that SGA and lobSTR demonstrated 
good recall rates at low coverage compared to others. 
Pamir’s recall rate tripled with 60× coverage, compared 
to 40×, where lobSTR results did not change drastically 
across different depths of coverage. Therefore, higher 
depth of coverage data is more important for assembly-
based methods.
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Table 2. Summary of genotype calls in all events.

Homozygous (n = 970) Heterozygous (n = 993)
Tool Correct call Correct call ratio Correct call Correct call ratio
Minia 474 49% 560 56%
SGA 725 75% 517 52%
Pamir 432 45% 628 63%
lobSTR 359 37% 76 8%

Figure 5. Results for all events. True positive rates vs. region length (left), and number of heterozygous events vs. region length 
(right).
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De Bruijn graph-based Minia once again showed the 
poorest performance, and it could only characterize short 
(<70 bp) microsatellite regions. This is expected due to 
the assembly collisions in repetitive regions (Zerbino and 
Birney, 2008).
3.3. Effects of preprocessing
As the final experiment, we tested a single tool with 
different configurations. We selected SGA for this purpose 
as it showed the best performance in accuracy. Here we 
aimed to assess the possibility of tuning SGA to further 
improve its sensitivity. We used the same sets of data and 
microsatellite regions to test:

● SGA pipeline with preprocessing, same as in previous 
experiments.

● SGA pipeline without the preprocessing step.
● SGA pipeline with both flanking regions of each 

microsatellite region.
We report the true positive rates for these settings in 

Figure 7. We observe that including flanking regions in 
fact lowered the accuracy of microsatellite polymorphism 
characterization. This is probably due to increased 
sequence complexity in longer microsatellite regions. On 
the other hand, SGA showed the best performance with 
preprocessed assembly.

4. Discussion
In this paper we addressed the problem of characterizing 
microsatellites, important sources of genetic variation that 
are not fully addressed in large scale genome projects. To 
help improve microsatellite polymorphism discovery with 
short read data we proposed an end-to-end solution for 
using local assembly, and compared it against a mapping-
based solution. We concluded that our proposed pipeline 
with the SGA (Simpson and Durbin, 2012) assembler 
produced better results than several other assembly tools 
and a state-of-the-art microsatellite caller in estimating 

Table 3. True positive rates for 40×, 60×, and 80× coverage.

40× 60× 80×
Tool True TPR True TPR True TPR
Minia 142 7.2% 194 9.9% 224 11.4%
SGA 568 29% 793 40.4% 892 45.5%
Pamir 92 4.7% 289 14.7% 331 16.9%
lobSTR 487 24.8% 589 30% 615 31.3%

TPR: True positive rate.
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Figure 6. True positive rates of Minia, SGA, Pamir, and lobSTR with different depths of coverage binned in various microsatellite 
region lengths.
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copy numbers. However, since SGA uses a relatively 
computationally costly OLC approach, it is slower than the 
alternatives we analyzed in this study. On the other hand, 
lobSTR and Pamir run times are comparable, and they 
are also considerably faster than Minia. Given the lack of 
accurate microsatellite characterization, we believe that 
the correctness and comprehensiveness of detecting these 
variants is more valuable than time complexity.

State-of-the-art microsatellite callers that do not make 
use of local assembly expect microsatellite regions to be 
covered entirely together with flanking regions. All of our 
experiments demonstrated that for reads of length 150 
bp, the “discoverable” microsatellite region size is ≤70 
using mapping based callers. We showed that OLC-based 
assembly methods benefit from longer reads, more so than 
mapping or de Bruijn graph-based approaches (Miller 
et al., 2010). We observed from depth of coverage tests 
that higher sequence coverage improves the sensitivity 
of all approaches. However, the gain in the number of 
microsatellite regions correctly predicted does not scale 
linearly, which indicates a potential upper bound of 
sensitivity for HTS analysis.

There are two main directions that we can take to 
further improve assembly-based microsatellite calling 
pipelines. First, to lower the false negative rate, we can 
include one-end anchored reads (Kavak et al., 2017), 
which are defined as the paired-end reads where only 
one end can be mapped to the reference genome. In this 

study, we only used reads that map to a microsatellite 
region. Since most microsatellite regions are shorter than 
the fragment length, and the microsatellite regions are 
repetitive with high sequence identity, a case where both 
paired-ends do not map to the reference genome due to 
an expansion is unlikely. Hence, one-end anchored reads 
will be helpful in discovering microsatellite variations. 
Second, to achieve an accurate copy number estimation we 
can improve alignment quality of sequence reads. This not 
only applies to assembly-based pipelines but also applies 
to tools depending on the alignment step, such as lobSTR. 
A recent study proposes a dynamic programming-based 
algorithm for the realignment step, where repeat patterns 
in microsatellite regions are given as prior knowledge, and 
these patterns are used multiple times in the realignment 
process in order to achieve more accurate alignments of 
microsatellite-containing reads (Kojima et al., 2016). Since 
the assembly-based pipeline that we propose also uses 
alignments after contig generation, better realignment 
would help obtain more accurate calls.
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Figure 7. True positive rates of our pipeline using SGA with different setups binned in various microsatellite region lengths.
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