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Abstract. Possibility of formation of strongly correlated states of the bosonic excita­
tions in solids similar to the squeezed states of photons is considered . The possibility of
observation of these states in optical spectroscopy is discussed.

1. Introduction

By definition, the Quantum Optics is considered as a branch of physics studying the quan­
tum statistical properties of the optical fields, in other words, the quantum state of light
and the picture of its quantum fluctuations. Since the experimental information of the
quantum statistical properties of light is provided by the correlation measurements , the
quantum correlation functions are the principal objects of this branch of modern physics.
Some specific effects with no classical analogies such as antibunching, sub-Poissonian statis­
tics of photons and squeezing of quantum fluctuations are stipulated by the nonlinear
processes.

We note that within the framework of quantum field theory the photons are described
by the Bose-operators which obey the commutation relations of the Weyl-Heisenberg al­
gebra. In solid state physics we know a number of quasi-particles or collective excitations
such as phonons, polaritons , excitons, Cooper pairs (approximately) which are also bosons .
In many physically important cases they take part in various kinds of nonlinear processes
or interactions. Therefore, in analogy to the photons, it is quite natural to expect some
unconventional quantum statistical properties of the Bose-type excitations in solids which
could be important for deeper understanding of a number of physical phenomena.

Unfortunately, we usually cannot measure directly the high-order correlation functions
for the collective excitations in solids. However, in many important cases the light can
be scattered by these excitations. In this case, the photon states are correlated with the
degrees of freedom of the excitations inside the solid. Therefore, the scattered light is
naturally expected to reflect the quantum statistical properties of the excitations. In turn,
the correlation measurements for the scattered light could give information about the
quantum statistics of the excitations.

Therefore, there are two important questions. 1) What kind of the statistical properties
we can expect for the bosonic excitations in solids? 2) How to observe these properties
with the aid of optical correlation measurements? For all that, it is usually necessary to
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take into account that boson excitations in condensed matter ought to be considered at
thermal equilibrium.

The main purpose of this paper is to discuss briefly the present state of the problems
mentioned above.

2. Squeezed States

The definition of the squeezed states of bosons [1, 2, 3] is based on the Bogoliubov's
canonical transformation. This transformation has been introduced in connection with
the problem of superfluidity of liquid 4H e [4]. The original form of this transformation is

(1)

where the operators a±k, atk describe the over-condensate excitations (k '" 0) at low
temperatures when almost all atoms of the 4H e are in the Bose-Einstein condensate state.
The unitary operator U has the form

(2)

with

(3)

and diagonalizes the Hamiltonian of over-condensate excitations

H = ~ :E[fk(4ak + a~ka-k) + Akata~k + Aka-kak].
2 k;eO

Hence, the operators ak, at describe the simultaneous creation and annihilation of the
bosons with opposite momenta. Here

(4)

(5)

and Ek = Jf% - IAkl2 represents the spectrum of pair over-condensate excitations

1
H = 2 :E Ek(atak +a~ka-k)

k;eO

One can see that Uk in the Eq.. (2) formally coincides with the operator corresponding
to the so-called two-mode coherent state in quantum optics [5, 6, 7]. The vacuum state of
the system described by the Hamiltonian (4) is

Iq;) = II l1f7k),
k;eO

where 10)±k denotes the vacuum state defined by the ground state stability condition
a±k!O)±k =0. Then

(atak)~ == nk = IVkI2 ,

((atak)2)~ = IVkI2(u% +IVkI2) =nk(2nk+1)
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where ("')4> denotes the expectation value with respect to the state (5). The number
variance is

(6)

while in the case of ordinary vacuum state V( atak) = O. It means that there are very
strong quantum fluctuations of the number of 4H e atoms in the over-condensate state of
a superfluid system [8, 9]. It should be stressed that this result is valid also for the total
number of particles since

V4>(N) = I.>%IVkI2.
k;oW

l=O,l, ...

(7)

Let us note that using the terminology of quantum optics (see, e.g. [10] ) one can say now
that the vacuum state (5) of the system (3) and (4) corresponds to a super-Poissonian
number distribution as far as

V4>(N) > N.

Although the investigation of the squeezing phenomenon is not the aim of this paper , let
us note that there is no squeezing in the mode k since

V4>([ak +at]/2) = (2u% - 1)/4> 1/4

although at

Jr 5Jr
"6 + lJr < arg Aj, < "6 + lJr,

squeezing is present in the mixture of two modes with the opposite k.
The investigation of the quantum number fluctuations in the superfluid liquid 4H e

is not a subject of the optical spectroscopy and can be done with the aid of neutron
scattering [8, 9]. Therefore, let us consider now a different example of manifestation of
squeezed states in condensed matter physics which is the polariton in an ionic crystal.
This system is usually described by the Hamiltonian [11, 12]

H = :E[wk(atak + a~ka-k) + f!L(btbk +b~kLk)]
k~O

- :E Dk[(at - a_k)(bk + b~k) + (a~k - ak)(Lk +bt)] ·
k~O

Here the operators a describe photons with the frequency Wk = kc, the operators b describe
the transversal optical (TO) phonons, f!L = f!Ty'€O€oo is the frequency of longitudinal
vibrations of ions and

€O - €oo 0
11 = > .

€O

One can see that the operator structure of the Hamiltonian (7) is somewhat different
in comparison with (3) since it contains the supplementary terms a:IkbH and b:Ika±k. The
Bogoliubov's canonical transformations in this case have the form

(8)
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The explicit form of the coefficients in (8) is

where

and

(9)

are the two branches of the polariton spectrum [11, 12] (see Fig. 1). In the polariton

ilL
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o k

Figure 1. Two branches of the polariton excitations versus k .

(diagonal) representation, the Hamiltonian (7) has the following form

(11)



where
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Eo = - LLEkilvlil2.
k l,i
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(12)

The eigenstates of the Hamiltonian (11) which are the Fock number states of polaritons
are squeezed states in terms of the photon and phonon degrees of freedom. It means, that
its st ructure corresponds to the simultaneous creation of pairs of photons and phonons
and also of a photon and phonon simultaneously. The corresponding squeezing operator
has the form [9]

Sk ..::;= exp((kat2 +TJkbt2_+(atb!k - h.c)

where (k , TJk, and (k are known but quite complicated functions of the coefficients u and
v. One can see that Sk represents some generalization of the two-mode squeezing operator
(2).

Let us examine statistical properties of phonons in the system (7) . As in standard
quantum optics, these properties can be characterized by the degree of coherence [10]

d 2) _ (bt2bZ)
e - (btbk)2

Without going into straightforward calculations let us examine the temperature depen­
dence of (12) given in Fig. 2 (also see [13]). Taking into account that in the case of Gaussian
distribution of phonons G(2) = 2 at 0 = 0, one can see from the Fig. 2 that there is a
super-Gaussian distribution of phonons in the polariton system. It means that at low

2

o e

Figure 2. Temperature dependence of the degree of coherence (12) at fixed k ,

temperature, there are quite strong quantum number fluctuations of TO phonons in an
ionic crystal. Increase of temperature amplifies the thermal number fluctuations and make
the quantum fluctuations unobservable. The estimation of the threshold of observation of
the quantum number fluctuations gives for a typical ionic crystal Tth ::; 30]( [13] which is
not too low temperature for the experimental study. A similar behavior can be observed
also in the photon sub-system [14] .

Thus, the above considered examples show that realization of a squeezed state in
material systems (quantum liquid, solid state etc.) leads to a quite strong quantum number
fluctuations of bosons which can be observed at relatively low temperatures .
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Let us discuss briefly some other sources of squeezed states in solids. Since the origin
of th e emergence of squeezed stat es is the simultaneous creation or ann ihilation of two
(or more) bosons, t he simplest process in a real cryst al which leads to a squeezed state is
connected with t he t hird-order phonon anharmonicity, In t his case, we have for exam ple
the scattering of two phonons int o one or decay of one phonon into two phonons (see Fig.
3). T hese processes are realized under t he condition of t he conservation of energy but it
is not necessary to have conservation of quasi -momentum [l1 J.

k k

~~
k' k'

Figure 3. Scattering of two phonons into one and decay of a phonon into two phonons. The pro cesses
obey t he energy conservat ion O(q) = O(k) + O(k') and one of the relations q= k + k' or q= k + k' +9
where 9 is th e vector of recipro cal lattice.

Anot her example is provided by the photon-phonon interaction responsible for th e
processes of emission and absorpt ion of elect romagnet ic waves by a crystal. The energy of
interaction in t he dipole approximat ion in this case has th e form

where

H int = - L dfOl .t(f )
I

(13)

is t he elect ric dipole moment of t he primitive cell of the crystal , index Q marks the bran ch
of t he phonon oscillations of t he frequency nOl , band b+ are the phonon operators , and

£- (f ) - -J27r h
" - ( ) h.t( +) iql- t N E L.J e O' q v wq aqO' - a_qO' e

q.a

is th e elect ric field on the site f. Here E is the permittivity of the crystal, e describes
th e pho ton polarization , and the operators a and a+ describe the photons with the fre­
quency wq corresponding to the region of transparency of the crystal. One can see that
th e Hamiltonian (13) formall y coincides with the polariton model (7).

Besides t he phonons, th e processes related to the excitons in semiconductors and molec­
ular crystals can be also considered as the sources of squeezed states. For example, in the
case of a molecular crystal th e exciton-photon interaction can lead to the formation of th e
exciton-polarit ons [15]. The int eraction energy corresponding to t he above pro cess is

e " - - e
2
S " 2HEP =-- L.J A(f) . PI +-22 L.J A (f )

mC I mc I
(14)
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where A(1) describes the vector potential of electromagnetic field in the site f and Pf is
the total momentum of all S optically active electrons of a neutral molecule in the lattice
site f. Going over to the quantization in the reciprocal space (the second quantization
representation) , one can rewrite (14) in the form

(15)

where n~ is the squared plasma frequency and D is the coupling constant [15]. Since
the exciton operators B+, B obey the boson commutation relations we again have the
Hamiltonian of the form of (7) . The exciton-phonon interaction can be also described in
a similar way [15] . '

Let us mention here an important and interesting problem of the exciton-polaritons in a
semiconducting micro-cavity formed by a multiple-quantum-well structure placed between
the distributed Bragg reflectors (DBR) [16, 17, 18, 19]. In this case, the two branches of
the polariton formed by coupled modes of the radiation field and collective excitations of
semiconductor provide a two-level system. Unlike the Jaynes-Cummings model [20,21,22],
the occupation number of any level of that two-level system can take an arbitrary integer
value due to the bosonic nature of the polariton. Nevertheless, the vacuum-field induced
Rabi oscillations can be observed in such a system [16, 17]. Let us stress that the study
of Rabi oscillations in various physical systems is now an active field of research due to
its importance in the investigation of spontaneous emission rate in a cavity and plays a
crucial role in the development of new light emitting devices with special properties, as
for instance narrow line-width, low-threshold pump-rate, and low noise level [23]. In the
case of exciton-polariton system, the properties of radiation are determined by the specific
correlation between the processes of simultaneous creation and annihilation of the photons
and excitons described in terms of states quite similar to (5) [19].

Another example of great interest is provided by the competition of direct and indirect
radiative transitions in the GaAsjAlAs superlattices and multiple-quantum-well structures
[24,25] . The band structure of this system is represented in Fig. 4. In this superlattice, the
lowest electronic states of the conducting band are located in the AlAs layers, whereas
the lowest electronic states of the valence band are confined in the GaAs layers. After
photoexcitation due to the quite short laser pulse close to the resonance with the transition
10) ...... 11) electrons scatter from the r states in the GaAs to the lower lying X states located
in the AlAs. This r-x transfer is either dominated by the LO-phonon emission [24] or
is due to the interface scattering [25]. After that , the level 12) is populated and indirect
(phonon-assisted) transition can occur (type II transition in Fig. 4) . This transition leads
to an additional peak in the luminescence spectrum [24, 25] which is shifted downwards
from the type I peak by the energy >- 0.05eV corresponding to the phonon energy. In
this case, we again have the simultaneous creation of a photon and phonon. Thus, we can
expect also here some kind of squeezed state.

The above examples provide the case when the squeezed states result from the inter­
actions of bosons (phonon-photon, phonon-phonon, exciton-phonon, etc.) . However, they
can also occur as a result of interaction between bosons and some other particles such as
electrons, protons of the hydrogen bonds and so on. An important example is provided by
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Figure 4. Band structure of a GaAs/AlAs superlattice. Solid lines correspond to the photons while the
dotted line corresponds to a phonon.

the phonon squeezing via correlations in the superconducting electron-phonon interaction
[26,27,28]. Similar process takes place in a polaron system [29,30] .

Thus, it is shown in this section that many different mechanisms can lead to the forma­
tion of squeezed states (or states with correlated processes of creation and annihilation) of
the boson-type excitations in solids. It is manifested in the change of quantum statistical
properties of these excitations, first of all in the increase of quantum number fluctuations
with respect to non-squeezed states.

Let us now turn our attention to the problem of how to measure the quantum statistical
properties of the boson excitations in solids.

3 . Quantum Spectroscopy of Solids

It was shown in the previous section that the type of bose statistics can be qualitatively
determined by the normalized correlation function (12) . This means that it is necessary to
measure the number correlation or, using the terminology of quantum optics , the intensity
correlation. For the photons emitted by some source this can be done with the aid of the
Hanbury-Brown a nd Twiss correlation interferometer [10] . In this device, the photon beam
is splitted into two equivalent beams which are then detected by two independent photo­
detectors . To determine the photon correlations photon counters and digital correlations
are used. Unfortunately, it is almost impossible to use the similar scheme of correlation
measurements for phonons , excitons and other boson excitations in solids.

At the same time, these excitations can interact with photons in the process of emission
or scattering of light by solids. In this case, it is reasonable to think that the quantum
statistical properties of photons should contain some information about the quantum sta­
tistical properties of bosons in solids.

A simple illustrative example of this process is provided by the photoluminescence in
the system shown in Fig. 4 and briefly discussed in the previous section . In fact, the process
of photoluminescence in the type II transition is characterized by a correlation between
creation of photons and phonons and thus strongly depend on the type of statistics of the
initial phonon state.
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In many cases, bosonic excitations in solids are Raman active [31]. The process of
Raman scattering with generation of the Stokes and anti-Stokes photons is shown in Fig.
5. If we suppose the monochromatic coherent laser field and scattering on an optical

L

Figure 5. Scheme of the Raman scattering with generation of Stokes (A) and anti -Stokes (AS) components.
The Raman active excitations of a medium are shown by the dotted lines.

phonon, the Hamiltonian of the process in question is

H =wLataL + f!b+b +L(WSk4kaSk +wAka!kaAk)
k

+'L}tskataskb + lAkb+ataAk +h.c.]. (16)
k

Here the operators at, describe the laser (pump) field with the frequency WL, the phonons
of frequency n are described by the operators b. Due to the Manley-Rowe relations [31]
WSk - WAk '" 2n. The operators aSk and aAk correspond to the Stokes and anti-Stokes
photons respectively and 15k, lAk are the coupling constants.

The investigation of quantum properties of this Hamiltonian is the subject of a number
of works (e.g., see Refs. [32, 33, 34] and references there) . However, due to the cubic
nonlinearity, the problem is not solved exactly except the case of lAk = 0 [34,35, 36].

The Hamiltonian (16) has the following conservation laws

{
nL + Ek(nsk +nAk) == N = const X 1 (17)
nb - Ek(nsk - nAk) == M = const X 1

Here n., denotes the number operator of the field x.
To examine the problem with the Hamiltonian (16) let us use the method of elimination

of Bose variables [37, 38]. In view of our main aim, we follow here the case considered in
the Ref. [39]. We should eliminate from the equations of motion the phonon field dynamics
of which is described by the following formal expression

bet) =bl(t) - iB(t), bl(t) =b(to)e-iO(t-tol,

B(t) =it dre-iO(t-Tl L[,Sk4k(r)aLCr) + lAkat(r)aAk(r)]. (18)
to k

Consider now the time evolution of the expectation values {nsk)t and {nAk)t describing the
process of emission of the Stokes and anti-Stokes photons respectively. Here {... )t denotes
the average of corresponding operator in the Heisenberg representation with respect to
the density matrix of the initial state of the complete system [38]. We have

i ~ {nsk)t = -ISk((atask b) - (b+4kaL),

i 1t (nAk)t = -IAk({b+ataAk) - (a!kaLb).
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We have to substitute here the expression (18) and conjugated expression for b+. It leads
to the expectation values containing the mixed averages with participation of b(to) and
b+(to). Depending on the choice of the initial state, these averages have different values.
In the case of thermal harmonic phonons we get [39]

(19)

where A is an arbitrary operator and nb is the initial number of phonons depending on
the temperature, while in the case of squeezed thermal phonons

Here u and v are the parameters describing the squeezed state. It follows from these
exact relations that the mixed correlation functions of thermal harmonic phonons do not
contribute into the equations of motion at T '" 0 when nb '" 0 while in the case of squeezed
phonons, they give' a non-vanishing contribution even at T =O. Thus, there is a principal
difference between these two cases.

Consider, for simplicity, just the case of low temperatures when nb '" 0 and use the
Markov approximation. Then, the equations of motion in the case of harmonic phonons
have the form

:t (nsk)t = 2'1r"Y~(ataL) tOkks + 'Ir"Ysk"Ys«ataL4ask)t + (4k asataL)t)

'Ir"Ysk"YA«at2askaA)t + (a!4kal,) t) (21)

and

:t (nAk)t = -'lr"YAk"YA«!aAk)t + (a!kaA)t) - 'Ir"YAk"YA«ataLa!aAk)t + (a!kaAataLh)

-'lrIAkls«42asaAk)t + (a!k4 a1)t).(22)

Here as .rts and aA, fA denote the resonance values defined by the conditions

WSk =WL - n, WAk =WL+n

(23)

respectively.
One can see that unlike the Eq. (21), the right-hand side of (22) does not contain any

direct dependence on the mean number of photons in the laser mode (ataL)t . Using the
short-time approximation, it is not hard to see that this property leads to a delay of the
anti-Stokes radiation with respect to the Stokes radiation (Fig. 6). In the case of the
squeezed phonons, the right-hand side of the Eq. (21) should be added by the terms

2'1rlvI2"Y~(ataL)tOkks- 'lrlvI 2"Ysk"Ys«a;ask)t + (4kas)t)
+'Ir"YSk"YA(uv(a!ask)t +uv*(4kaA)t)

which shows the increase of dependence on (ataL)t and at the same time, the increase of
correlation between the Stokes and anti-Stokes photons. Similar additional terms for (22)
have the form

2'1rlvl2f~ (at aL)tOkkA - IvI 2'1r"YAk"YA( (a!aAkh + (a!kaA)t)
+'Ir"YAk"Ys(uv(a!kas)t + uv*(4aAk)t) . (24)
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Figure 6. Short-time behavior of the mean photon number for the Stokes and anti -Stokes components
described by the Eqs, (21) and (22) .

One can see from (24) that now there is a direct dependence of the right-hand side of
the equation of motion for the average number of anti-Stokes photons on the number of
photons in the laser mode . Therefore, in the case of squeezed phonons there is no delay
between the Stokes and anti-Stokes radiation. Thus, the change of state of the phonons
leads to some qualitative change of the spectra of scattered light in the Raman scattering
process . Some other changes are discussed in the Refs. [9, 33,34,35].

Of course, the analysis of the high-order intensity correlations of the Stokes and anti­
Stokes components can give richer picture of qualitative and quantitative effects of the
dependence of photon statistics of scattered light on the quantum statistical properties
of the scatterers [9, 36]. These high-order intensity correlations can be measured by the
methods of correlation spectroscopy [40] .

4 . Summary

It is shown that many different mechanisms of interactions can lead to the formation of
strongly correlated (squeezed) state of boson excitations in solids. These correlations are
manifested by the quantum number fluctuations which can have a super-Gaussian char­
acter at low temperatures. The increase of temperature leads to the increase of thermal
number fluctuations exceeding the quantum fluctuations. Therefore, the principal observ­
ability of the quantum number fluctuations of bosonic excitations in solids requires the
low temperatures.

The quantum number fluctuations of optical-active boson excitations in solids can be
observed by the methods of optical spectroscopy, especially by the correlation spectroscopy.
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