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Closed-form solutions and free energy of hard-spin mean-Beld theory of a fully frustrated system
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Closed-form solutions of the hard-spin mean-field theory equations for the antiferromagnetic Ising
model on a triangular lattice, with or without an external field H, are obtained, showing the lack of order
for H =0 and very good agreement with Monte Carlo data for the onset of order for nonzero H. A free

energy calculation is developed, within the context of hard-spin mean-field theory, distinguishing be-
tween metastable solutions and true thermodynamic equilibrium.

PACS number(s): 05.70.Fh, 75.10.Nr, 64.60.Cn, 64.60.My

The recently introduced [1,2] "hard-spin mean-field
theory" appears to be a rather promising new method of
statistical physics [3]. Designed to conserve frustration,
it has been quantitatively successful in yielding the order-
ings and phase boundaries of the fully frustrated antifer-
romagnetic triangular Ising model [1] (including the lack
of finite-temperature phase transition at zero external
field) and of the partially frustrated, ferromagnetically [1]
or antiferromagnetically [2] stacked three-dimensional
version of the model. Thus, unlike usual mean-field
theory and other previous self-consistent theories, hard-
spin mean-field theory is sensitive to qualitative
differences in ordering behavior between different spatial
dimensions [1,2], in fact giving exact results [4] in d =1.
Immediate further applications of the method to partially
and fully frustrated square and cubic lattices has yielded
phase diagrams that discerned up to 24 coexisting phases
and 16 magnetization sublattices, and the novel phenom-
ena of inclusive and exclusive coexistence lines [5]. Re-
sults have also been obtained on the competition between
frustration and high-spin kinematics [6]. The method is
also formulated for arbitrary types of local degrees of
freedom [2].

Nevertheless, important questions on hard-spin mean-
field theory have remained current. In the theory, the
self-consistent equations for the thermodynamic densities
are written directly from microscopic considerations.
Thus, the question remains as to whether a variational
principle exists that yields the equations from an optimi-
zation. In any case, a free energy calculation is needed to
enable a choice when multiple solutions are found in the
closed-form solution [2,4,7] of the theory. Such a free en-

ergy calculation is presented in this article. This leads to
the question of whether the closed-form solution and
Monte Carlo implementation of the theory are
equivalent. Interestingly, it is found in the work present-
ed here, which is a detailed closed-form solution of hard-
spin mean-field theory, that the answer to the latter ques-
tion is no: Monte Carlo hard-spin mean-field theory cal-
culates a distribution of local magnetizations and yields
[1],for example, correctly for the three-state Potts model,
the second-order phase transition in two dimensions and
the first-order phase transition in three dimensions.

Therefore, the self-consistent functional equation for the
distributions of magnetizations is needed and given at the
end of this study. Application of this functional self-
consistency should lead, in closed-form, in the direction
of Monte Carlo hard-spin mean-field theory.

Consider the antiferromagnetic Ising model on the tri-
angular lattice, with Hamiltonian

—P%= —J g s;s +H gs, ,
(ij) i

where (ij ) denotes the summation over all nearest-
neighbor pairs of sites, a spin s; =+1 is located at each
lattice site i, and J 0. Thus, the interactions of the sys-
tem [the first term in Eq. (1)] are fully frustrated. The
hard-spin mean-field-theory self-consistent equation for
the magnetizations is [2,7]

m; = g gp(rrtI;si } tanh —J gsl+H
t~, =+~] . j . . j

(2)

where the product and sum over j runs over all sites
neighboring site i, and the single-site probability distribu-
tion p(m;s, ) is (1+m s )i2. Thus, the spin at each site
is affected by the anti-aligning field due to the full (i.e.,
hard) spin each of its neighbors. The above is a set of
coupled equations for all the local magnetizations. A
Monte Carlo treatment [1] of the hard-spin mean-field-

theory equations involves (1) the choice of a site i, (2) the
fixing of each neighboring s as +1 for r )~m, where r is a
random number in the interval [—1, 1], and (3) the up-
dating of m; as tanh( —Jgisl+H). Then, the process is

repeated, starting with step (1}. Excellent results are ob-

tained with a quasinegligible computational effort [1].
The hard-spin mean-field-theory equations (2) can also

be solved in closed-form, numerically. We have obtained
such a solution by fixing the local magnetizations [m; ] to
values for three sublattices [m, , m2, m3 }. A solution us-

ing 81 sublattices [m„. . . , msi] reduces to the three-
sublattice solution. The stable solutions (thick curves in

Figs. 1 and 2) are obtained by iterating repeatedly Eqs. (2)
successively applied to each sublattice magnetization.
The unstable solutions (thin curves in Figs. 1 and 2) are
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obtained by iterating repeatedly a Newton-Raphson pro-
cedure on Eqs. (2}. Among the stable solutions, it is
found that a uniform solution (m

&
=m2 =m3) is supple-

mented at low temperatures by a threefold symmetry-
broken solution (m, Am& =m 3 and permutations).

A higher level of approximation is

m, = g gp(rn;$ ) u, (I$ )),
Is.=+1I j

with

(3)

u, (I$, ] )=g $,exp[ —P&([$,,$, j )]/ g exp[ —P&(I$;,$J J )],
Is,. I Is,. I

p%( [$;,$1 I )= —J($,$2+$2$, +$3$~ )+H($~ +$2+$3 )

J$&($4+$5+$6+$7) J$2($7+$s+$9+$]p} J$3($]p+$~~+$~t+$4)

where the sites i=1,2, 3 form an elementary triangle of
the lattice, and j=4, 5, . . . , 12 runs over the nine sites
neighboring this elementary triangle. An analogous
equation applies for m2 or m3, obtained by replacing the
subscripts 1 by 2 or 3 in the first two lines of Eq. (3).
Thus, the statistical mechanics of a triplet of sites [as op-
posed to a single site, Eq. (2)] is done in the anti-aligning
hard-spin fields of nine neighbors. These closed-form re-
sults are also shown in Figs. 1 and 2, and it is seen that
the approximations are robust.

The occurrence of the symmetry-broken solutions, in
the space of temperature (1/J) and relative field strength
(H/J), is shown in Fig. 3 for both levels of approxima-
tion. It is seen that no symmetry-broken solution occurs
in the absence of external field (H =0), in agreement with
Wannier's exact result [8] and in contrast to conventional
mean-field theory. Also shown in Fig. 3 are data for the
onset of order from an extensive Monte Carlo simulation
study [9]. It is seen that these data points are remarkably
close to the onset of the ordered solution here. Also
shown in Fig. 3 is a lower temperature curve where the
uniform solution crosses the unstable symmetry-broken

solution and exchanges stability with it, as illustrated in

Fig. 2.
In order to choose between the distinct solutions of the

hard-spin mean-Seld-theory equations, a knowledge of
the free energy of each solution is necessary. According-
ly, we consider the dimensionless free energy per site

f(J,H) = —(1/N)ln g e (4)
Is I

Its partial derivative with respect to inverse temperature
1s

af/aJ=(l/2N) g (&$;$, )+&$,$„)+&$ $;)) .
&ijk &

The sum is over all nearest-neighbor triplets. The aver-
ages on the right-hand side are determined for each solu-
tion, by replacing $, with $;$ +$ $k+$k$; on the right-
hand side of Eq. (3), once the sublattice magnetizations,
and thereby the probability distributions p(m;$ ), have
been determined self-consistently from Eq. (3). At high
temperatures, J~O, the free energy of the uniform solu-
tion reduces to

f= —ln(e +e )

+(J/2N) y (&$;$, &+&$J$„)+&$k$;)) .
&ijk &
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At low temperatures, J~ao, the free energy of the
symmetry-broken solution reduces to
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FIG. 1. Solutions from Eq. (3) of hard-spin mean-field
theory, for H=1 (full curves). The stable and unstable solu-
tions are, respectively, shown with thick and thin curves. The
dashed curves are the solutions from the lower level of approxi-
mation of Eq. (2). Also shown are the calculated free energies
per site, with dark circles (uniform solution) and open circles
(symmetry-broken solution).
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FIG. 2. Same as in Fig. 1, but for H =2.



2682 KABAKQIOGLU, BERKER, AND YALABIK

1.5 1.5

1.0-

Q
0.5

1.0

Q
0.5

0.0
-6 -4 -2 0 2 4 6

Relative Field Strength H/J

0.0
-12

I QC I

-6 0 6
External Field H

12

FIG. 3. The upper curve bounds the regions of temperature
(1/J) and relative field strength (H/J) where a symrnetry-
broken solution occurs. The dark circles are the Monte Carlo
simulation data for the onset of symmetry breaking, from Ref.
[9]. The lower curve shows where the uniform solution and the
unstable symmetry-broken solution cross and exchange stabili-
ty, as illustrated for H =2 in Fig. 2. The full and dashed curves
are obtained from the two levels of approximations of Eqs. (3)
and (2), respectively.

f=(J/2N) g ((s,s &+(s,s„)+(s„s;&)
(ip &

(H /6N) —g ( (; ) +(, ) + ( „)) —S (H), (7)

+(1—m;}ln(1 —m;)] . (8)

The thermodynamic densities in Eq. (6) are, of course,
calculated at the uniform solutions of Eq. (3), and the
thermodynamic densities in Eqs. (7) and (8) are calculated
at the symmetry-broken solutions of Eq. (3). Thus, the
free energies of the uniform and symmetry-broken solu-
tions are obtained by integrating Eq. (5) at constant H
from high and low temperatures, respectively, as shown
in Fig. 4, and adding the limiting free energies of Eqs. (6)
or (7), respectively.

The calculated free energies for H=2 are shown in
Fig. 2. The symmetry-broken solution has the lower free
energy at low temperatures, in its entire range of ex-
istence. The two free energies, calculated from opposite
temperature extremes, meet at the point of appearance of
the symmetry-broken solution. Note that there is no
built-in requirement for this occurrence, as will be seen
below. The symmetry-broken magnetizations in Fig. 2

where Sp(H} is the ground-state entropy per site under
uniform field H. For large ~H ~, the sublattice magnetiza-
tions of the symmetry-broken phase fully saturate at
~H ~

&&J~ ~ to k(1, 1, —1} and permutations, so that
the ground-state entropy Sp(H) is zero. However, for
low IHt these sublattice rnagnetizations do not fully satu-
rate, and the system has a finite ground-state entropy
Sp(H}. As a trial we use the entropy of free spins under
fields (H, , Hz, H3) causing magnetizations (m, , mz, m3),
namely,

Sp(H)=ln2 —( —,') g [(1+m, )ln(1+m, )
i =1,2, 3

FIG. 4. The curves bound the region in temperature (1/J)
and field strength (H) where a symmetry-broken solution
occurs, as obtained from Eq. (3). The data points are from
Monte Carlo simulation (dark circles, Ref. [9]) and finite-size
scaling (open circles, Ref. [10]). The arrows show the paths of
integration of the uniform (upper arrow) and symmetry-broken
(lower arrow) solutions.

essentially saturate at low temperature, so that the zero-
temperature entropy term discussed above is negligible
for this case.

The free energy results shown in Fig. 2 are qualitative-
ly reproduced for other values of H, except when the
low-temperature symmetry-broken magnetizations do not
fully saturate, which occurs for low values of ~H~. This
situation is illustrated for H =1 in Fig. 1. In this case,
the free energy of the symmetry-broken solution is again
lower in its entire range of existence, but, as calculated
with Sp(H) from Eq. (8), it does not meet the free energy
of the uniform solution at the point of appearance. In
fact, the entropy Sp(H), which is the logarithm of the
number of microscopic states consistent with
(m, , mz, m3) divided by the number of sites, is overes-
timated by Eq. (8), since the constraints imposed by
J~ao are ignored. Accordingly, Sp(H) from Eq. (8)
reduces for H =0 to the free-spin value of ln2, whereas
Wannier's exact result [8] gives 0.323. When the expres-
sion of Eq. (8) is scaled to match 0.323 at H =0, the free
energies cross somewhat below the point of appearance.

The above implies a first-order phase transition with
critical correlations in one of the coexisting phases,
namely, in the symmetry-broken phase. Now we note
that when the hard-spin mean-field theory Eqs. (2) or (3)
for the local magnetizations Im, ] are solved in terms of
sublattice-wise uniform magnetizations, an order-
parameter jump wi11 always be obtained at the phase
transition of the threefold permutation-symmetric
(three-state Potts) ordering, because of the third-order
term in the small order-parameter expansion of the equa-
tion. What is remarkable here is that the equations come
as close to a second-order phase transition as they possi-
bly can, by putting the appearance of the symmetry-
broken solution at the order-parameter jump, while also
giving the position of the transition at its correct value,
as compared with Monte Carlo simulation data [9) (Figs.
3 and 4).

Monte Carlo hard-spin mean-field theory with Eq. (1)
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D, (m, )=f gdm D (m ) 5(m, M,.(—[mi])), (9)

where M, ( [mj ] ) is the right-hand side of Eq. (2) or Eq.

treats the local magnetization [m;] independently and

yields [1] the expected second-order phase transition of
this ordering, which is in the universality class of the
two-dimensional three-state Potts model. Moreover,
Monte Carlo hard-spin mean-field theory also yields [1]
the expected first-order phase transition of this ordering
in the stacked version of this system, which is in the
universality class of the three-dimensional three-state
Potts model. The success of Monte Carlo hard-spin
mean-field theory must be due to the fact that, in treating
local magnetizations, the theory incorporates correlations
between different sites. Accordingly, to include this effect
in a closed-form solution, the hard-spin mean-field theory
for the distribution D;(m; ) of local magnetizations m, at
site i must be considered. This equation is

(3), depending on the chosen level of approximation.
This distribution hard-spin mean-field theory [Eq. (9)]
and Monte Carlo hard-spin mean-field theory [1] also

open the door to the possibility of non-mean-field critical
exponents, since one is in effect doing Landau theory
with infinitely many order parameters. This possibility
should be further studied. The imposition of uniformity,
on the other hand, dictates standard mean-field ex-

ponents, since the small order-parameter analysis is then
standard Landau theory.
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