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TRANSFORMING STOCHASTIC MATRICES
FOR STOCHASTIC COMPARISON
WITH THE ST-ORDER*
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Abstract. We present a transformation for stochastic matrices and
analyze the effects of using it in stochastic comparison with the strong
stochastic (st) order. We show that unless the given stochastic matrix
is row diagonally dominant, the transformed matrix provides better st
bounds on the steady state probability distribution.
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1. INTRODUCTION

The stochastic comparison of random variables is a powerful technique in dif-
ferent areas of applied probability [7]. It allows the resolution of complex models
involving large state spaces, and/or numerically difficult operators or distributions.
There are several applications of this technique in practical problems of telecom-
munication engineering [9, 10] or reliability [11]. The stochastic comparison of
Markov Chains (MC for short) is discussed in detail in [3,8,12]. The compari-
son of two MCs may be established by the comparison of their state probability
distributions at each time instant. Obviously, if steady states exist, stochastic
comparison between their steady state probability distributions is also possible.
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There are different stochastic ordering relations and the most well known is the
strong stochastic ordering (i.e., <g). Intuitively speaking, two random variables
X and Y which take values on a totally ordered space being comparable in the
strong stochastic sense (i.e., X <4 Y') means that it is less probable for X to take
larger values than Y (see [11,12]).

Sufficient conditions for the existence of stochastic comparison of two time-
homogeneous MCs are given by the stochastic monotonicity and bounding prop-
erties of their one step transition probability matrices [3,8]. In [14], this idea is
used to devise an algorithm that constructs an optimal st-monotone upper bound-
ing MC corresponding to a given MC. Later, this algorithm is used to compute
stochastic bounds on performance measures that are defined on a totally ordered
and reduced state space (see [4] for a tutorial). Performance measures may be
defined as reward functions of the underlying MC. In [1], states having the same
reward are aggregated, so the state space size of the bounding MC is consider-
ably reduced. St-comparison of MCs implies that both transient and steady state
performance measures may be bounded. However, quite often, the transient mea-
sures are meaningless or too difficult to compute. So, we may accept to lose the
transient bounds to improve the accuracy of steady state bounds.

In this note, we characterize the properties of a simple transformation on a
discrete-time Markov chain (DTMC) and analyze its effects on the optimal st-
monotone upper bounding matrix computed by the algorithm in [1]. This trans-
formation keeps invariant the steady state distribution. Our motivation is to im-
prove the accuracy of the steady state probability bounds that may be computed
by stochastic comparison with the st-order. We remark that the transformation
has a similar effect on the optimal st-monotone lower bounding matrix which we
do not discuss here.

In this paper, we focus on the accuracy of the bounds and we do not consider
the complexity issue. The matrix we obtain has the same size as the original
matrix. We do not study new techniques to reduce the complexity of the resolution
(see [2,6] for this topic). Indeed, the arguments developed in [14] are still valid and
allow a large reduction of the state space. In our opinion, Vincent and Plateau
methodology is sufficient to reduce the state space. And the accuracy of the bounds
remains the major problem.

In Section 2, we provide brief background on stochastic comparison with the
st-order and present an example. In Section 3, we introduce the transformation
and provide a comprehensive analysis. Section 4 has concluding remarks.

2. SOME PRELIMINARIES

First, we give the definition of st-ordering used in this note. For further infor-
mation on the stochastic comparison method, we refer the reader to [12].

Definition 1. Let X and Y be random variables taking values on a totally ordered
space. Then X is said to be less than Y in the strong stochastic sense, that is,
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X <4 Y iff E[f(X)] < E[f(Y)] for all nondecreasing functions f whenever the
expectations exist.

Definition 2. Let X and Y be random variables taking values on the finite state
space {1,2,...,n}. Let p and ¢ be probability distribution vectors such that

pj=Pr(X=j) and ¢;=Pr(Y=j) for j=1,2,...,n

Then X is said to be less than Y in the strong stochastic sense, that is, X <q Y
iff
n
ij < qu for k=1,2,...,n.

It is shown in Theorem 3.4 of [8] (p. 355) that monotonicity and comparability
of the one step transition probability matrices of time-homogeneous MCs yield
sufficient conditions for their stochastic comparison, which is summarized in:

Theorem 1. Let P and Q be stochastic matrices respectively characterizing time-
homogeneous MCs X (t) and Y (t). Then {X(t), t € T} < {Y(t), t€ T} if

hd X(O) Sst Y(O);

e st-monotonicity of at least one of the matrices holds, that is,

either  Pi . <st Pj« or Qs <st Qj« Vi,j suchthat i< j;
o st-comparability of the matrices holds, that is, P; . < Qi Vi.

Here P; . refers to row i of P.
On page 11 of [1], the following algorithm is presented to construct the optimal
st-monotone upper bounding DTMC @ for a given DTMC P.

Algorithm 1. Construction of optimal st-monotone upper bounding DTMC Q
corresponding to DTMC P of order n:
qi,n = Pl,n;s
fori=23,...,n,
Gin = MaxX(qi—1,n, Pi,n);
forl=n—-1,n-2,...,1,
q1,1 = P15
fori=23,...,n,
it = max(Xl_y Gim1,55 25—y Pig) = D jmi1 G-

Let U be another st-monotone upper bounding DTMC for P. Then @ is optimal
in the sense that Q) <y U.

The following example provides the results of applying Algorithm 1 to two MCs
that have the same steady state probability distribution, and shows that it may
be possible to obtain different steady state st bounds.
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Example 1. Consider the following (4 x 4) DTMC

0.2 0 0.3 0.5
0.1 0 0.6 0.3
04 03 0.1 02
03 03 03 0.1

whose steady state probability distribution is given by mp = [0.2686, 0.1688,
0.2922, 0.2704]. Application of Algorithm 1 to P yields the st-monotone upper
bounding DTMC

02 0 03 05
o—| 01 0 04 05
“1 01 0 04 05

0.1 0 04 05

The steady state probability distribution of @) given by mg = [0.1111, 0.0000,
0.3889, 0.5000] provides an st upper bound on wp (c¢f. Def. 2). Note that it is
possible to obtain an st-monotone upper bounding DTMC having transient states
with Algorithm 1 even though the input DTMC was irreducible. Nevertheless, we
will always have a single irreducible subset of states, which includes the last state,
in the output DTMC with Algorithm 1 if there is a path from each state to the
last state in the input DTMC [1].

Application of Algorithm 1 to

06 O 0.15 0.25
0.06 05 03 0.15
0.2 0.15 055 0.1

0.15 0.15 0.15 0.55

which has the same steady state probability distribution as P, yields the st-
monotone upper bounding DTMC

06 O 0.15 0.25
0.06 0.5 0.2 0.25
0.06 03 04 025
0.056 0.25 0.15 0.55

S:

The steady state probability distribution of S is given by g = [0.1111, 0.3110,
0.2207, 0.3571], and it is clearly a better st-upper bound on 7p than mg. Now, we
show how R is obtained from P using a simple linear transformation.

3. THE TRANSFORMATION AND ITS ANALYSIS

Proposition 1. Let P be a reqular DTMC of order n. Consider the transforma-
tion
R=(1-0)I+6P for 6€(0,1). (1)
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(i) Then R is a regular DTMC of order n, where

1—5(1—])1‘1') Z:j .o
rii = RS or 4,j=1,2,...,m; 2
7 {51%,]‘7 i / ! @

(ii) R has the same steady state probability distribution as P.

Proof. By construction, R is a DTMC of order n and its elements are given by
equation (2). Furthermore, the off-diagonal part of R has the same nonzero struc-
ture as that of P because [ is the identity matrix with ones on the diagonal and
zeros elsewhere. Since P is regular ([13], p. 120) (i.e., finite, irreducible, aperi-
odic), then so must be R. Existence of the steady state probability distribution
of P follows from the fact that P is regular. The steady state distribution is the
only stationary distribution, and it satisfies 7P = 7, ||«||s = 1. Since R is regular,
7 is also the stationary distribution of R:

7R=n[1-0)I+06P]=(1—-6)mr+dr=m. O

Corollary 1. If P is a DTMC of order n, then the transformation in equation
(1) for 6 € (0,1) satisfies: (i) 0 < Z;;Z rij; <6, (1)1 -6 <wry,; <1 for
i=1,2,...,n.

Proof. From equation (2) and 0 < Z;;sipi,j < 1, we have 0 < Z?# Tij =
62?#171'71’ < § for ¢ =1,2,...,n. This proves part (i). To prove part (ii),
we write r; ; =1 — Z;;i r; ; and use part (i). O

Definition 3. A stochastic matrix is said to be row diagonally dominant (RDD)
if all of its diagonal elements are greater than or equal to 0.5.

Theorem 2. Let P be a DTMC of order n that is not RDD. Consider the trans-

formation in equation (1) for3

0.5

= - s
1 —mini<i<n Pis

8y (3)

and let S be the st-monotone upper bounding DTMC for R computed by Algo-
rithm 1. Then:

(1) 05 <m;=1-3"ri; <1fori=12,...,n (ie, Ris RDD);
(17) 0 < Z;;ﬁl i < O'i’ fori=1,2,....n—1;
(’LZ’L) 0.5 < Zj:i Sij = Zj:i Ti,5 <1 fO?“ 1= 1,2, sy

Proof. We remark that ¢, is the largest positive scalar within (0,1) that makes
R RDD. Part (i) follows from Corollary 1 and that d, < 0.5. Now, consider the

35, assumes the value in equation (3) throughout this note.
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implications of st-monotonicity and st-comparability on S. From Algorithm 1, we
have

n n

E S;s = max g Ton. i for 1=1,2,...,n—1.
L U T g | & T Ty
j=it1 ==\ =i+l

Since, 0 < Z?:Hl Tm,; < 0.5 for m <4 from part (i) of Theorem 2, part (ii) is
proved. Again, consider how st-monotonicity and st-comparability are imposed
on S:

n n
E 85,5 = Max E Tm,j for i=1,2,...,n.
— 1<m<i | —
j=i j=i

However, maxi<m<i(dj—; Tm.j) = 2 j—;Tij fori=1,2,...,n and 0.5 < 37, x
ri; < 1 from part (i) of Theorem 2, implying part (iii). O

When R is RDD, its diagonal serves as a barrier for the perturbation moving
from the upper-triangular part to the strictly lower-triangular part in forming S.
We stress that it is the concept of row diagonal dominance together with the
semantics of Algorithm 1 (i.e., st-monotonicity and st-comparability) and nothing
more that enable us to develop the results in this note.

Corollary 2. Let P be a DTMC of order n that is not RDD. Consider the trans-
formation in equation (1) for J., and let S be the st-monotone upper bounding
DTMC for R computed by Algorithm 1. Then:

(i) s2,1=121;
(”) Sn,n = Tnyn;
(’LZ’L) Si,igri,i fori=2,3,...,n—1.

Proof. To prove part (i), we write sg; = 1 — Z?:z so,; and use part (iii) of Theo-
rem 2. To prove part (ii), recall that s, , = max(sp—1,n,"n,n). But, Sp—1., < 0.5
and 0.5 <7, , < 1. So, the maximum may be taken as the second argument, and
we have s, p, = 7. To prove part (iii), note that part (iii) of Theorem 2 directly
gives s;; + Z;.L:Hl Sij = Tii + Z;.L:Hl 7. Since Z;.L:Hl i < Z;.L:Hl s;; for
i=2,3,...,n— 1 due to st-comparability from Algorithm 1, we have s;; < r;;
fori=2,3,...,n—1. O

Theorem 3. Let P be a DTMC of order n that is not RDD. Consider the trans-
formation in equation (1) for two different values 1,02 € (0, 0] such that §1 < 2,
and let S(8;) be the st-monotone upper bounding DTMC for R(&;), 1 = 1,2, com-
puted by Algorithm 1. Then s;;(61) = psi;(02) fori # j = 1,2,...,n, where
p= 51/52 S (O, 1).

Proof. Due to the form of the transformation in equation (1), we have r; ;(d1) =
prij(d2) for ¢ # j = 1,2,...,n from equation (2). Furthermore, due to Algo-
rithm 1, the first rows of S(d;) and R(d;), I = 1,2, are identical. Hence, we have
s1,j(01) = ps1,;(d2) for j = 2,3,...,n, and the theorem holds for all off-diagonal
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elements in the first rows of S(d1) and S(d2). Now, consider how s2 ,(d;), I = 1,2,
is computed:

S2,n(61) = max(s1,,(d1), r2,n(01)).
But, max(si n(d1),72,n(01)) = pmax(s1,,(d2),72,n(02)) = ps2n(d2). Hence, the
theorem holds for s3 ,(d1) and s2,,(d2). Next, consider how s3 ,(8;), I = 1,2, for
k=3,4,...,n—11is computed starting from column n — 1 left to column 3:

SQ,k(él):max Zsl,j(él)7zr2,j(5l) - Z Sg,j((sl).
j=k j=k j

But Y7, s15(01) = pXi_gs1,(02), D_y7r2;(01) = pdi_;7r2,(d2), and
Z?:kﬂ S2,i(01) = pZ?:kH $2,;(62). Hence, s2x(d1) = ps2x(d2) for k = 3,
4, ..., n. Finally, from part (i) of Corollary 2, we have s2.1(8;) = r21(d), I = 1,2,
which implies s2,1(d1) = psz2,1(d2). Hence, the theorem holds for all off-diagonal
elements in the second rows of S(d1) and S(d2). This is the basis step. Now, let
the induction hypothesis be s; ;(61) = ps; j(d2) for i = 3,4,...,m — 1. Then, we
must show that sy, ;(01) = psm,j(02) for j # m. The proof for j > m is similar to
that of row 2. That is, one starts with the proof for the last column and moves
to the left till column m + 1. Hence, we concentrate on the proof for columns
j=1,2,...,m—1. Let us consider how s, m—1(d;), I = 1,2, is computed:

Sm,m—1(0;) = max Z Sm—1,j(01), Z Tm, — Z Sm.,j (01)-
=m— j=m

j=m—1 J 1

But, 37 1 smo1(0) = 1= 70 sim1,5(01), Sy T (1) = 1= 30 x
T, (01), and D075 s i (01) = D25, Tm,(01) = 1= 3200 ' 7m.;(81) from part (iii)
of Theorem 2. Therefore, S, m—1(0;) = rnin(Z;';2 Sm—1,5(01), 27 2 (8) +

ZT 11 Tm,;(61). The elements of S(d;) that contribute to sy, m—1(d;) come from
the induction hypothesis and those of R(9;) are in the strictly lower-triangular part
of row m. Hence, Sy, m—1(01) = pSm,m—1(d2). The proof for columns j < m —1 in
row m is similar. O

Corollary 3. Let P be a DTMC of order n that is not RDD. Consider the trans-
formation in equation (1) for two different values 01,062 € (0, d,] such that 5, < da,
and let S(8;) be the st-monotone upper bounding DTMC for R(&;), 1 = 1,2, com-
puted by Algorithm 1. Then S(01) and S(d2) have the same steady state probability
distribution.

Proof. Since, both S(61) and S(d2) are DTMCs by construction, from Theorem 3
we must have a transformation of the form

A psi,;(02), i #
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where p = 61/d2 € (0,1). But, this is a transformation as in equation (1). Since,
S(61) and S(d2) have the same nonzero structure, they will have the same steady
state probability distribution whenever it exists, as we already proved in part (ii)
of Proposition 1. The existence of the steady state distributions follows from the
fact that S(d;), I = 1,2, is finite, has one irreducible subset of states including
state n [1], and 0.5 < s, ,(0;) from part (ii) of Corollary 2 implying aperiodicity.
O

An important consequence of Corollary 3 is that one cannot improve the steady

state probability bounds by choosing a smaller § value to transform an already
RDD DTMC.

Corollary 4. Let P be a DTMC of order n that is RDD and Q be the correspond-
ing st-monotone upper bounding DTMC computed by Algorithm 1. Consider the
transformation in equation (1) for 6 € (0,1), and let S be the st-monotone upper
bounding DTMC for R computed by Algorithm 1. Then @Q and S have the same
steady state probability distribution.

Proof. Follows from Corollary 3 by noticing that R(d1) and R(d2) are both RDD.

|

The discussion so far sheds light on the characteristics of the optimal st-mono-

tone upper bounding DTMC computed by Algorithm 1 using the transformed ma-

trix, and its steady state probability distribution. Having set the stage, we adapt

a different approach to state the main result about the quality of this distribution.
Specifically, our goal is to prove:

Theorem 4. Let P be a DTMC of order n and Q be the corresponding st-
monotone upper bounding DTMC computed by Algorithm 1. Consider the transfor-
mation in equation (1) for 6 € (0,1), and let S be the st-monotone upper bounding
DTMC for R computed by Algorithm 1. Then g <y 7g, where g and mg are
respectively the steady state probability distributions of S and Q.

To enhance readability, from now on we denote the (4,7)-th element of the
matrix A as Ai, j] rather than a; ;.

Definition 4. Let B be the set of DTMCs of order n, and let P € B. We define
the following three operators to assist us in proving Theorem 4:

(i) t is the operator corresponding to the transformation in equation (1):

Pyl ={ jpt 5200 120

We remark that ¢(P) € B;
(ii) 7 is the summation operator used in the st-comparison:

r(P)[i,j] =Y Pli,k].

k=j



A TRANSFORMATION FOR STOCHASTIC COMPARISON 93

We remark that r(P) is not a stochastic matrix. Let A be the set of
matrices defined by r(P), where P € B;

(iii) v is the following operator which transforms P € B to a matrix in A:

> on—; PI1, K, i=1

v(P)[i, j] =
o {max(v(P)[z’—Lj],zz_jp[i,k]), i>1.

Proposition 2. Let Z € A. Then r~*, the inverse operator of r, is given by

. Zli,n), j=n
T_l(Z)[Zaj] - .o .o .
Zli,j) = Zli,j +1], j<n.
We remark that r=*(Z) € B.

Proposition 3. Unrolling v yields the simpler representation

v(P)li,j] = max | ¥ Plm.k]
=t \k>j

Proposition 4. The operator corresponding to Algorithm 1 is r—1v.

The proofs of Propositions 2 through 4 are straightforward. From Proposition 4,
we have @ = r~1v(P), S = r~!vt(P) and S is st-monotone. Our objective is to
prove that

r Y ot(P) <4 trtu(P) (4)
since it implies w5 <g T4y = 7Q, the equality following from part (ii) of Propo-
sition 1. To this end, we need to specify the composition of the operators in (4).

Proposition 5. Let P € B. Then the composition vt is given by

1, i=1,j=1

maxmﬁi(Zij((sp[mv k] + (1 - 5)1m:k))7 { > ]-a .7 S 1.

Proof. The result follows from substituting part (i) of Definition 4 in Proposition 3
and algebraic manipulations. (|

Proposition 6. Let Z € A. Then the composition rtr—! is given by
621, jl, i<J

rir” <Z>["’ﬂ:{ L—6+02[i,5), i>j.
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Proof. From algebraic manipulations using Definition 4, Proposition 2, and sub-
stitution, we have

1—-96+Z[n,n], i=n,j=n
0Z '7 ) ) < s | —
| % I o e
rtr~Y(2Z)[i, 5+ 1]+ 6Z[i, 5] — 6Z[i, j + 1], i<n, j£i
rtr~ Y (2)[i,i+ 1] +1—=6+6Z[i,i] —6Z[i,i+ 1], i <mn, j=i.
The result follows after unrolling the recurrences in the last two lines. O

Proposition 7. Let P € B. Then the composition rtr~1v is given by

17 Z = 1, j = 1
ov(P)[1, 7], i=1,7>1
rtr~'v(P)[i,j] = Pl o , ] )
1—04d6v(P)i,g], i>1, j<i
ov(P)[i, 7], i1>1, j>i.
Proof. The result follows from direct substitution using Proposition 6. |

Thus, we have to compare the two systems of recurrence equations in Proposi-
tions 5 and 7 which are based on v(P). We remark that both systems are linear
systems on the (max,+) semi-ring. Furthermore, the two systems have the same
values in the strictly upper triangular part (i.e., when j > 4) and at the point (1, 1).
This suggests an element-wise comparison as specified in the next proposition the
proof of which follows:

Proposition 8. 7~ 1vt(P) <y tr~1v(P) is equivalent to vt(P) < rtr~1v(P), where
the latter comparison is element-wise.

It is easier to use element-wise comparison (i.e. <) because we have to compare
elements defined by recurrence relations. We do not want to unroll the recurrence
relations of the operator v. So, let us proceed with the comparison of the lower
triangular elements.

Lemma 1. For all i and j such that i > j, we have vt(P)[i, j] < rtr~tv(P)[i, j].
Proof. Recall the value of vt(P) for i > j:
P = s | SOPImH + (1 1)
>j

Using the fact that the maximum of a summation is less than or equal to the sum
of the maxima, we obtain

ot(P)li, ] < max ;ap[m,k] + max Z;_(lfa)lm:k
) )
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Since i > j, the summation of the indicator function (i.e., the second term) equals 0
or 1, and the value 1 is reached for some m. Thus,

max Z(l =)l | = (1 =9).

m<i
k>j

As the multiplication by ¢ is linear for both of the operators max and +, we
identify v(P)[i, j] to complete the proof:

vt(P)li, j] < 6v(P)[i,j] + (1 = 6) = rtr "o (P)[i, j]. 0

Hence, we have proved Proposition 8, which in turn completes the proof of Theo-
rem 4, and we have g <¢ 7Q.

Theorem 5. Let P be a DTMC of order n that is not RDD and Q be the corre-
sponding st-monotone upper bounding DTMC computed by Algorithm 1. Consider
the transformation in equation (1) for two different values 61,02 € [dx,1) such
that 01 < 82, and let S(6;) be the st-monotone upper bounding DTMC' for R(d;),
I = 1,2, computed by Algorithm 1. Then Tg(s,) <st Ts(5,) <st TQ, where Tg(s,)
and m¢g are respectively the steady state probability distributions of S(§;), | = 1,2,
and Q. Furthermore, if P[n,n] < maxi<;<n(P[i,n]), then mg(s,) # 7q-

Proof. The general result follows from Theorem 4 together with Corollary 4. As for
the latter part, observe that 7 = my () from part (i) of Definition 4 and part (ii) of
Proposition 1. Now, assume that 7g(s,) = 7(g), Where t uses do. We will prove by
contradiction that this is not possible. By construction, we have S(d2)[i,n] =
t(Q)i,n] = demaxi<m<i(Plm,n]) for i = 1,2,...,n — 1, S(d2)n,n] = 1 —
d2 + 62 P[n,n], and t(Q)[n,n] = 1 — J2 + maxi<;<n(P[i,n]). Then Pln,n] <
maxi <;<n(P[i,n]) implies S(d2)[n,n] < t(Q)[n,n]. Now, notice that

Ts(52) (1] = Zﬂsw?)[i] S(02)[i, n]
= ms(sp)[n] S(82)[n,n] + D w(syli] S(82)[i, ],

i=1

Ty Q) n] = Zﬂt(Q) [i] t(Q)[i,n] = Tyq)ln] L(Q)[n,n] + i T li] HQ)[i, n].

The second term involving the summation on the right-hand side is the same in

both equations since S(d2)[i, n] = t(Q)[i,n] for i = 1,2,...,n—1, and we assumed
TS(s,) = Ty(Q)- However, the first terms are different, contradicting the assumption
that mg(s,)[n] = Ty(g)[n]. Hence, it must be that mgs,) # Tq. a

Proposition 9. Remember that 0.5 < d.. Thus, one matriz which gives the best
st-bound for this family of matrices can be computed through P/2+ I/2.
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The st-monotone upper bounding matrix construction algorithm for continuous-
time Markov chains (CTMCs) (see [14]) employed in [15] uses the diagonal of (P —
I) as a barrier for the perturbation that is moving from the upper-triangular part
to the strictly lower-triangular part in forming the continuous-time st-monotone
upper bounding matrix. In other words, the algorithm in [14] essentially achieves
the same effect as the transformation in equation (1) for § € (0, d,] on a stochastic
matrix that is not RDD. However, to the best of our knowledge a discussion of its
characteristics and an analysis of its effects on the bounding matrix do not exist.

4. CONCLUSION

We have presented a transformation for stochastic matrices that may be used
in stochastic comparison with the strong stochastic order (see [5] for a tool on
st-bounds which implements this result). We have shown that if the given sto-
chastic matrix is not row diagonally dominant, then the steady state probability
distribution of the optimal st-monotone upper bounding matrix corresponding to
the row diagonally dominant transformed matrix is better in the strong stochastic
sense than the one corresponding to the original matrix. And we have estab-
lished that the transformation P/2 + I/2 provides the best bound for the family
of transformation we have considered here.
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