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ABSTRACT

IMPROVING THE PRECISION OF
EXAMPLE-BASED MACHINE TRANSLATION

BY LEARNING FROM USER FEEDBACK

Turhan Osman Daybelge

M.S. in Computer Engineering

Supervisor: Assist. Prof. Dr. İlyas Çiçekli

September, 2007

Example-Based Machine Translation (EBMT) is a corpus based approach to Ma-

chine Translation (MT), that utilizes the translation by analogy concept. In

our EBMT system, translation templates are extracted automatically from bilin-

gual aligned corpora, by substituting the similarities and differences in pairs of

translation examples with variables. As this process is done on the lexical-level

forms of the translation examples, and words in natural language texts are of-

ten morphologically ambiguous, a need for morphological disambiguation arises.

Therefore, we present here a rule-based morphological disambiguator for Turk-

ish. In earlier versions of the discussed system, the translation results were solely

ranked using confidence factors of the translation templates. In this study, how-

ever, we introduce an improved ranking mechanism that dynamically learns from

user feedback. When a user, such as a professional human translator, submits

his evaluation of the generated translation results, the system learns “context-

dependent co-occurrence rules” from this feedback. The newly learned rules are

later consulted, while ranking the results of the following translations. Through

successive translation-evaluation cycles, we expect that the output of the ranking

mechanism complies better with user expectations, listing the more preferred re-

sults in higher ranks. The evaluation of our ranking method, using the precision

value at top 1, 3 and 5 results and the BLEU metric, is also presented.

Keywords: Example-Based Machine Translation, Learning from User Feedback,

Morphological Disambiguation.
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ÖZET

KULLANICI GERİ BİLDİRİMİNDEN ÖĞRENEREK
ÖRNEK TABANLI MAKİNE ÇEVİRİSİ

HASSASİYETİNİ İYİLEŞTİRMEK

Turhan Osman Daybelge

Bilgisayar Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Yrd. Doç. Dr. İlyas Çiçekli

Eylül, 2007

Örnek Tabanlı Makine Çevirisi (ÖTMÇ), analojiyle çeviri kavramını kullanan,

derlem tabanlı bir Makine Çevirisi (MÇ) yaklaşımıdır. Bizim ÖTMÇ sis-

temimizde çeviri şablonları, çift dilli, hizalanmiş derlemlerden otomatik olarak,

çeviri örneği çiftleri arasındaki benzerlik ve farklılıkları değişkenler ile değiştirerek

elde edilir. Bu işlem esnasında çeviri örneklerinin morfolojik açıdan çözümlenmiş

halleri kullanılır. Çoğu zaman, doğal dil metinlerinde kelimeler morfolojik

açıdan belirsiz oldukları için, bu belirsizliği giderecek bir araca ihtiyaç duyu-

lur. Bu yüzden, Türkçe için kural tabanlı bir morfolojik belirsizlik giderici

geliştirdik. Tartışılan sistemin önceki sürümlerinde, çeviri sonuçları yalnızca

çeviri şablonlarının güven çarpanları kullanılarak sıralanıyordu. Bu çalışmada

kullanıcı geri bildiriminden öğrenen, geliştirilmiş bir sonuç sıralama mekaniz-

masını takdim ediyoruz. Bir kullanıcı, örneğin profesyönel bir çevirmen, çeviri

sonuçları hakkındaki değerlendirmelerini girdiğinde, sistem bu geri bildirimden

“bağlama bağlı birlikte kullanım kuralları” öğrenir. Bu kurallara, takip eden

çeviri işlemlerinin sonuç sıralama aşamalarında başvurulur. Birbirini izleyen

çeviri-değerlendirme döngülerinin sonucunda, sıralama mekanizması çıktısının,

tercih edilen sonuçların üst sıralarda listelenmesi açısından, kullanıcı beklenti-

lerini daha iyi karşılayan bir hale gelmesini bekliyoruz. Sıralama mekanizmasının,

en üstteki 1, 3 ve 5 sonuç için hassasiyet değerlerini ve BLEU ölçüsünü kullanarak

yapılmış değerlendirmesini sunuyoruz.

Anahtar sözcükler : Örnek Tabanlı Makine Çevirisi, Kullanıcı Geri Bildiriminden

Öğrenmek, Morfolojik Belirsizlikleri Gidermek.
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under the M.S. Fellowship Program.

I finally wish to thank my family, for their continual support and motivation

during my studies. Acknowledgement and thanks also to my girlfriend, Deniz,

who has always been there for me.

v



Contents

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Review of the Current System 11

2.1 Generating Match Sequences . . . . . . . . . . . . . . . . . . . . . 13

2.2 Learning Similarity Translation Templates . . . . . . . . . . . . . 15

2.3 Learning Difference Translation Templates . . . . . . . . . . . . . 18

2.4 Type Associated Template Learning . . . . . . . . . . . . . . . . . 21

2.4.1 Learning Type Associated Similarity Templates . . . . . . 21

2.4.2 Epsilon (ε) Insertion . . . . . . . . . . . . . . . . . . . . . 23

2.4.3 Extension to the Previous Version:

Learning Type Associated Difference Templates . . . . . . 26

2.4.4 Learning from Previously Learned Templates . . . . . . . . 28

2.5 Confidence Factor Assignment . . . . . . . . . . . . . . . . . . . . 31

2.6 Using Templates in Translation . . . . . . . . . . . . . . . . . . . 34

vi



CONTENTS vii

3 System Architecture 37

3.1 Lexical-Form Tagging Tool . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Morphological Analyzers . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Turkish Morphological Analyzer . . . . . . . . . . . . . . . 41

3.2.2 English Morphological Analyzer . . . . . . . . . . . . . . . 42

3.3 Turkish Morphological Disambiguator . . . . . . . . . . . . . . . . 45

3.4 User Evaluation Interface . . . . . . . . . . . . . . . . . . . . . . . 45

4 Morphological Disambiguation 47

4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 A Morphological Disambiguator for Turkish . . . . . . . . . . . . 51

4.2.1 Tokenizer . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Unknown Word Recognizer . . . . . . . . . . . . . . . . . 53

4.2.3 Collocation Recognizer . . . . . . . . . . . . . . . . . . . . 55

4.2.4 Morphological Disambiguator . . . . . . . . . . . . . . . . 58

4.3 Morphological Annotation Tool . . . . . . . . . . . . . . . . . . . 60

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Evaluation Method . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . 63

5 Learning From User Feedback 66

5.1 Context-Dependent Co-occurrence Rules . . . . . . . . . . . . . . 67



CONTENTS viii

5.1.1 Using the Context-Dependent Co-occurrence Rules . . . . 70

5.1.2 The Concept of User Profiles . . . . . . . . . . . . . . . . . 72

5.2 Learning Context-Dependent Co-occurrence Rules . . . . . . . . . 73

5.2.1 Deep Evaluation of Translation Results . . . . . . . . . . . 73

5.2.2 Determining The Desired Confidence Values . . . . . . . . 78

5.2.3 Extracting Context-Dependent Co-occurrence Rules . . . . 83

5.2.4 Shallow Evaluation of Translation Results . . . . . . . . . 89

5.3 Partially Matching Contexts . . . . . . . . . . . . . . . . . . . . . 93

6 Test Results and Evaluation 100

6.1 BLEU Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2 Performance Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.1 Tests on Morphological Disambiguation . . . . . . . . . . . 102

6.2.2 Tests on Deep and Shallow Evaluation . . . . . . . . . . . 104

7 Conclusion 107

A A Deep Evaluation Example 114

B English Suffixes 119

C Lattice Structure for English 122

D Evaluation Data Set 128



CONTENTS ix

D.1 Training Subset 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

D.2 Training Subset 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D.3 Testing Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140



List of Figures

1.1 Vauquois’ Pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Classification of the Machine Translation Systems. . . . . . . . . . 8

2.1 Basic Operation of the Translation System. . . . . . . . . . . . . . 12

2.2 A Section of the Turkish Type Lattice. . . . . . . . . . . . . . . . 23

2.3 A Section of the Turkish Type Lattice. . . . . . . . . . . . . . . . 25

2.4 A Section of the English Type Lattice. . . . . . . . . . . . . . . . 30

2.5 Translation Results for the Phrase (2.47). . . . . . . . . . . . . . . 35

3.1 A Detailed View of the System Components. . . . . . . . . . . . . 38

3.2 Lexical-Form Tagging Tool. . . . . . . . . . . . . . . . . . . . . . 39

4.1 The Operation of Supervised Tagger. . . . . . . . . . . . . . . . . 52

4.2 Morphological Annotation Tool Operating on an Article. . . . . . 61

5.1 The Tree of Translation Templates of Rule (5.1). . . . . . . . . . . 68

5.2 The Context-Dependent Co-occurrence Rule (5.3). . . . . . . . . . 69

x



LIST OF FIGURES xi

5.3 Parse Tree Built for the Translation of Phrase 5.4. . . . . . . . . . 71

5.4 Translation Results for Examplary Phrase 5.11. . . . . . . . . . . 75

5.5 Evaluation of the Translation Result Given in Figure 5.4(b). . . . 77

5.6 Evaluation of the Translation Result Given in Figure 5.4(a). . . . 77

5.7 lower hinge, upper hinge, length1 and length2 for the Example in

Table 5.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8 Assigning the Desired Confidence Values . . . . . . . . . . . . . . 82

5.9 An Example to Automatic Conversion of Shallow Evaluation Input

into Deep Evaluation Input. . . . . . . . . . . . . . . . . . . . . . 92

5.10 The Context-Dependent Co-occurrence Rule (5.27). . . . . . . . . 94

5.11 Partial Matching of Contexts: Case 1. . . . . . . . . . . . . . . . . 95

5.12 Partial Matching of Contexts: Case 2. . . . . . . . . . . . . . . . . 96

5.13 Partial Matching of Contexts: Case 3. . . . . . . . . . . . . . . . . 96

A.1 1st Step in the Deep Evaluation of the Results. . . . . . . . . . . . 116

A.2 2nd Step in the Deep Evaluation of the Results. . . . . . . . . . . 116

A.3 3rd Step in the Deep Evaluation of the Results. . . . . . . . . . . 117

A.4 4th Step in the Deep Evaluation of the Results. . . . . . . . . . . . 117

A.5 5th Step in the Deep Evaluation of the Results. . . . . . . . . . . . 118

A.6 6th Step in the Deep Evaluation of the Results. . . . . . . . . . . . 118



List of Tables

3.1 Some Recognition Samples for the Turkish Morphological Analyzer. . . 41

3.2 Some Recognition Samples for the English Morphological Analyzer. . . 43

3.3 Number of Root Words and Exceptional Cases in Each Lexicon. . . . 44

4.1 Morphological Analysis Results for the Phrase: “yeni gelişme”. . . 49
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Chapter 1

Introduction

Translation process between two natural languages consists of basically two

stages. These are the interpretation of the meaning of a text in a source lan-

guage, and the reproduction of an equivalent text that conveys the same message

in a target language. The first stage is realized through a mapping of a given set of

linguistic elements (words, phrases, syntax) of the source language into some se-

mantic representations of objects, concepts and actions in the translator’s mind,

acquired from his real world experiences. Similarly, in the second stage, the

translator maps those semantic representations back into some other linguistic

elements, but this time to that of the target language. The critical problem here

is that, generally, neither the mapping rules nor the semantic representations in

the translator’s mind are formally well-defined.

Since language and its translation are rather complex human phenomena,

any serious study must at some point decompose them into a series of levels of

abstractions. The linguistic strata usually considered in such abstractions have

been: phonology, morphology, syntax, semantics and pragmatics, each dealing

with a self-contained domain, and interacting with other levels in limited ways.

Translation task is indeed a challenging one even for an experienced trans-

lator. No word-for-word relationship exists between any two languages. Hence,

1



CHAPTER 1. INTRODUCTION 2

mistranslations may easily happen when, for example, a word in the source lan-

guage has multiple meanings, each of which represented with a distinct word in

the target language. In such situations, in order to achieve an accurate trans-

lation, the translator first has to identify the correct concept referred by the

ambiguous words, which is not necessarily a simple task. An obvious example is

given in [14]:

The Latin translator of the Bible encountered the phrase which in He-

brew means “and rays glowed from Moses’ face”. Since in Hebrew

“rays” and “horns” are referred to by the same word (“karnayim”),

the translator selected the Latin word for “horns”, and mistranslated

the sentence as “and horns grew on Moses’ head”. [. . . ] Such a fail-

ure, due to the confusion of concepts with words, resulted in the little

horns on the head of Michelangelo’s sculpture of Moses.

Some of the linguists were led by similar examples and theoretical problems

to the view that translation between natural languages is not even possible, as

expressed in its most radical form by the Sapir-Whorf hypothesis. Sapir asserted

in 1929 that “The ‘real world’ is to a large extent unconsciously built up on the

language habits of the group. [. . . ] The worlds in which different societies live are

distinct worlds, not merely the same world with different labels attached.” [31].

What has become known as the Sapir-Whorf hypothesis is not generally ap-

plied in its strongest form, as it would imply, contrary to our observations in the

real-world, the impossibility of meaningful communication between members of

different societies. “Nevertheless, it is considered that, this different perception

and mental organisation of reality can be used to explain the existence of certain

“gaps” between languages, which can turn translation into a very difficult process.

Translators have to be aware of these gaps, in order to produce a satisfactory tar-

get text.” [11]

Whereas, Chomsky’s theory of Universal Grammar [7], explaining how chil-

dren acquire their languages, claimes the existance of some universal principles

for grammar rules that are common to all natural languages. Although, Chomsky
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did not attempt to apply his theory to translation, several other scholars built

upon Chomsky’s theory to support the universal translatability notion. Several of

the well-known twentieth-century linguists including Jakobson, Bausch, Hauge,

Nida and Ivir adopt the view that, essentially, everything can be expressed in

any language, and therefore we can expect them to be mutually translatable [11].

Supporters of this view argue that the translatability of a text is guaranteed by

the existence of universal syntactic and semantic categories. They further assert

that [14]:

(i) Language is a means describing reality, and as such can and should expand

to include newly discovered or innovated objects in reality.

(ii) Any word has a referent in reality, however indirectly. All concepts can be

described by their manifestations in reality. For example, “empirical” means

“based on observable phenomena.” Even religious concepts, supposedly

based on faith, can be described.

(iii) Translation is the transfer of conceptual knowledge from one language into

another. It is the transfer of one set of symbols denoting concepts into

another set of symbols denoting the same concepts. This process is possible

because concepts have specific referents in reality. Even if a certain word

and the concept it designates exist in one language but not in another, the

referent this word and concept stand for nevertheless exists in reality, and

can be referred to in translation by a descriptive phrase or neologism.

These optimistic or somewhat reductionist views, however, must be contrasted

with those of some major philosophers of the 20th century, such as Wittgenstein,

Quine, Heidegger and Gadamer, who were involved in the analysis and philoso-

phy of language and, in particular, understanding. They have pointed out the

complexity of the problem of interpretation of a text by the reader or a translator.

Hermeneutics, a branch of continental European philosophy with a long tra-

dition concerned with human understanding and the interpretation of written

texts, offers insights that may contribute to the understanding of meaning, trans-

lation, architectures for natural language understanding, and even to the methods
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suitable for scientific inquiry in Artificial Intelligence (AI) [22].

An earlier author of modern hermeneutics was Schleiermacher who taught

from 1805 onwards at the universities of Halle and Berlin. Schleiermacher’s con-

cept of understanding holds empathy as well as intuitive linguistic analysis. He

assumed that understanding is not merely the decoding of encoded information,

but interpretation is built upon understanding, and it has a grammatical, as well

as a psychological moment. Schleiermacher claimed that a successful interpreter

could understand the author as well as, or even better than, the author under-

stood himself because the interpretation reconstructs and explicates the hidden

motives, implicit assumptions and strategies of the author [22].

Dilthey, who was initially influenced by Schleiermacher, began to emphasize

that texts and actions were as much products of their times as expressions of

individuals, and their meanings were consequently constrained by both an ori-

entation to values of their period and a place in the web of their authors’ plans

and experiences. Thus he extended hermeneutics even further by relating inter-

pretation to all historical objectifications. As such understanding moves from

the outer manifestations of human action and productivity to explore their inner

meaning. In his essay, “The Understanding of Others and Their Manifestations

of Life” (1910) [12], Dilthey makes it clear that this move from outer to inner,

from expression to what is expressed, is not based on empathy. Empathy is based

on a direct identification with the other. Interpretation, on the other hand, in-

volves an indirect or mediated understanding that can only be attained by placing

human expressions in their historical context. Understanding is not a process of

reconstructing the state of mind of the author, but one of articulating what is

expressed in the work [21].

Martin Heidegger’s “Being and Time” (1927) [16] completely transformed the

discipline of hermeneutics. His philosophical hermeneutics shifted the focus from

interpretation to existential understanding, which was treated more as a direct,

non-mediated, thus in a sense more authentic way of being in the world than

simply as a way of knowing. Advocates of this approach claim that such texts,

and the people who produce them, cannot be studied using the same scientific
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methods as the natural sciences, thus use arguments similar to that of antipos-

itivism. Moreover, they claim that such texts are conventionalized expressions

of the experience of the author; thus, the interpretation of such texts will reveal

something about the social context in which they were formed, but, more signif-

icantly, provide the reader with a means to share the experiences of the author.

Among the key thinkers of this approach is the sociologist Max Weber [22].

According to Gadamer, words, that is, talk, conversation, dialogue, question

and answer, produce worlds. In contrast to a traditional, Aristotelian view of

language where spoken words represent mental images and written words are

symbols for spoken words, Gadamerian perspective on linguistics emphasizes a

fundamental unity between language and human existence. Interpretation can

never be divorced from language or objectified. Because language comes to hu-

mans with meaning, interpretations and understandings of the world can never

be prejudice-free. As human beings, one cannot step outside of language and

look at language or the world from some objective standpoint. Language is not

a tool which human beings manipulate to represent a meaningful world; rather,

language forms human reality [4].

Modern ideas on hermeneutics hold that the writer may be an editor or a

redactor and that he may have used sources. In considering this aspect of dis-

course one must take into account the writer’s purpose in writing as well as his

cultural milieu. Secondly, one must consider the narrator in the writing who can

be different from the writer. Sometimes he is a real person, sometimes fictional.

One must determine his purpose in speaking and his cultural milieu, taking into

consideration the fact that he may be omnipresent and omniscient. One must

also take into consideration the narratee within the story and how he hears. But

even then one is not finished. One must reckon with the person or persons to

whom the writing is addressed; the reader, not always the same as the one to

whom the writing is addressed; and later readers. Thirdly, one must consider

the setting of writing, the genre (whether poetry, narrative, prophecy, etc.), the

figures of speech; the devices used, and, finally, the plot [15]. The coverage of

the discipline of hermeneutics has since broadened to almost all texts, including

multimedia and to understanding the bases of meaning.
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Translation between natural languages has a long history, dating back to the

earliest encounters of people from other countries like travelers, traders, artisans,

politicians, or missionaries who spoke different languages, but wished, to com-

municate their messages, or to reach an understanding or an agreement with the

foreigners. In our day due to the immensity of international relations the need

for translation of various texts of literary, scientific, judicial, diplomatic etc. ori-

gin written or spoken in hundreds of languages has reached such a level, that its

solution should be sought through extra-human means.

Indeed, the concept of Machine Translation (MT) emerged shortly after the

end of the World War II, when the idea of automatic translation of texts between

natural languages came into the minds of scientists such as Warren Weaver [34]

and Alan Turing. Turing was among the ones, who deciphered the codes en-

crypted by the Enigma machines used in German naval communication. In this

period, natural language was considered to be a code, and translation was anal-

ogous to code-breaking. Therefore, achieving automatic translation was seen as

a matter of discovering some mechanical translation approach inspired by the

modern cryptanalysis techniques developed at that time.

However today, machine translation systems are still far from replacing expert

human translators, due to the complexities involved in the process of translation

as discussed above. On the other hand, MT has proven to be successful in es-

pecially restricted domains such as the translation of weather reports or highly

standardized texts such as legal documents. Also, when the goal is to get the

grisp of a text, such as the content of a web page, and ungrammatical sentences

are tolerable, MT constitutes a quick and inexpensive solution. With the future

developments in the methods of AI and the computer technology, we may expect

that machine translation will approach the level of expectations placed upon it.

Machine translation systems are generally categorized in two different aspects.

The first categorization considers the architectural basis on which the MT systems

are built upon. MT systems differ in the level to which they analyze their inputs,

where the levels are often figurized as a pyramid diagram1, such as the one in

1First appeared in [33].
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Figure 1.1: Vauquois’ Pyramid.

The lowest level of the pyramid corresponds to direct translation, which uses

only a dictionary and a few simple word-ordering rules, and translates a text solely

by replacing each word in the source language with its most common translation

in the target language. Direct translation performs minimal analysis on the input

text, and thus is the simplest MT approach available. As expected, it has a limited

success rate.

At the other extreme is the interlingual translation approach. In this ap-

proach, the input text is morphologically, syntactically and semantically ana-

lyzed and finally parsed into an interlingual representation that is independent

both from the source and the target languages. Given the necessary generators

of an arbitrary target language, the translation to that language can be achieved

directly from the interlingual representation, without the need of language-pair

dependent transfer rules. The drawback of the interlingual approach is the ex-

pense of complex analyses required. Especially the analyses depicted in the upper

levels of the Vauquois’ pyramid, such as the semantic analysis, requires real-world
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Figure 1.2: Classification of the Machine Translation Systems.

knowledge, which has its own problems in terms of efficient acquisition, represen-

tation and storage. In spite of these difficulties, a semantic analysis, inspired by

the philosophy of hermeneutics and supported by modern artificial intelligence

techniques, would no doubt improve the quality of the translation.

Any approach in between the direct and interlingual translation options is in-

cluded in the transfer-based translation category. In transfer-based approach, the

source text is first parsed into an internal representation that is source language

dependent, which is then converted into a corresponding internal representation

specific to the target language. The tranfer rules are often language-pair depen-

dent and motivated by linguistic concerns.

The second way of categorizing machine translation systems differentiates

the approaches according to their means of acquiring the information used to

translate the inputs. According to this scheme, there are two broad categories,

namely, rule-based and corpus-based approaches, as depicted in Figure 1.2.

In the rule-based category, translation is done using hand-crafted rules that

capture the grammatical correspondences between the languages. This approach

requires a vast amount of translation rules, whose preparation is time consuming

and requires expertise.

Corpus-based approaches, on the other hand, use a bilingual corpora to obtain

the information required for translation. One of the corpus-based approaches is
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Statistical Machine Translation [23]. The idea of applying the statistical and

cryptanalytic techniques, then emerging in the field of communication theory, to

the problem of machine translation was first proposed in 1949 by Warren Weaver

in [34]. In statistical machine translation, translation results are generated on

the basis of statistical models, whose parameters are derived from the analysis

of bilingual corpora. For an input, the statistical translation models allow the

system to generate many possible translations, among which the result with the

highest probability is chosen.

Another corpus-based approach to MT is Example-Based Machine Translation

(EBMT), which is regarded as an implementation of the case-based reasoning

approach of machine learning. EBMT was first proposed by Nagao under the

name translation by analogy [24]. Translation by analogy is a rejection of the

idea that man translates sentences by applying deep linguistic analyses on them.

Instead, it is argued, that man first decomposes the sentence into fragmental

phrases, then translates these phrases into phrases in the target language, and

finally composes these fragmental translations into a sentence. The translation of

fragmental phrases is done in the light of prior knowledge, acquired in the form

of translation examples.

In this thesis, we propose several improvements to an existing EBMT system

[6, 13, 5]. We present here a new method for ranking the translation results

generated by this system. Contrary to the previous versions, in our approach,

the results ranking mechanism is dynamically trained by the user. User feedback

is obtained in the form of an evaluation of the generated results. From the

evaluation of the user, the system learns context-dependent co-occurrence rules,

which are later consulted while ranking the results of the following translations.

Through successive translation-evaluation cycles, we expect that the output of

the ranking mechanism complies better with user expectations, listing the more

preferred results in higher ranks.
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1.1 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 provides a detailed

review of the existing EBMT system. Chapter 3 describes several component of

the system and the interactions among them. Chapter 4 presents a morphological

disambiguator developed for Turkish, which is integrated into the translation

system. Chapter 5 provides the details of the new results ranking mechanism.

Chapter 6 discusses the results of the tests that are conducted to measure the

effects of the newly added components. Chapter 7 concludes the thesis with a

summary and a number of suggestions for further study.



Chapter 2

Review of the Current System

The system described in this thesis builds upon the recent papers of Çiçekli and

Güvenir [6, 5], a detailed review of which is provided in this chapter. Using this

system, translation can be done bidirectionally between two natural languages,

such as Turkish and English. The translation system translates sentences from

the source language to the target one using information gathered from previously

observed translation examples.

The general structure of the system is given in Figure 2.1. The system has

two main components which are learning and translation components. The learn-

ing component takes a bilingual corpus file as input and extracts translation

templates which are to be used later by the translation component. When the

learning is over, the templates extracted in the learning phase are stored in the

file system. When a system user enters a phrase in one of the two languages,

the translation component finds the most suitable translation templates for that

phrase and performs the translation to the target language if possible. Each

translation template is learned by the generalization of two translation examples.

A simple example is given below:

I am reading a book ↔ bir kitap okuyorum (2.1)

I am reading a newspaper ↔ bir gazete okuyorum

11
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Figure 2.1: Basic Operation of the Translation System.

By analyzing the translation examples in (2.1), we can observe similarities (shown

underlined) and differences on both sides. One of the heuristics, that is used to

extract translation templates, is to replace differing parts by variables. Using this

heuristic leads the system to learn the translation template shown in (2.2). A

template, in which the differences are replaced by variables and similarities are

kept untouched, such as the one below is called as similarity translation template.

I am reading a X ↔ bir Y okuyorum if X ↔ Y (2.2)

In addition to (2.2), we can also learn two more templates that represent the

correspondence of the differing constituents of the examples as given below:

book ↔ kitap (2.3)

newspaper ↔ gazete

The templates that do not contain variables, such as those in (2.3), are named

as atomic translation templates or shortly as facts.
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2.1 Generating Match Sequences

We define a translation example as a pair of strings, E1 ↔ E2, where E1 is in

language 1 and E2 is in language 2 and E1 and E2 are translations of each other.

In order to be able to induce translation templates from two given translation

examples E1
a ↔ E2

a and E1
b ↔ E2

b , first a match sequence pair M1
a,b ↔ M2

a,b (or

shortly Ma,b) is generated where M1
a,b is a match sequence between E1

a and E1
b ,

and M2
a,b is a match sequence between E2

a and E2
b . A match sequence between

two strings is defined as an alternating sequence of similarities and differences

between those strings as depicted below:

S1
0 , D

1
0, S

1
1 , . . . , D

1
n−1, S

1
n ↔ S2

0 , D
2
0, S

2
1 , . . . , D

2
m−1, S

2
m, where n = m > 1 (2.4)

A similarity, S1
k , between two strings, E1

a and E1
b , is a non-empty sequence of

tokens that are common to both strings. Similarly, a difference D1
k between two

strings is a token sequence pair (D1
k,a, D1

k,b) where D1
k,a is a substring of E1

a and

D1
k,b is a substring of E1

b . Also no items in a similarity is allowed to appear in a

difference. Any of S1
0 , S1

n, S2
0 or S2

m can be empty, but S1
i , for 0 < i < n, and S2

j ,

for 0 < j < m, can not be empty. Furthermore, at least one similarity on both

sides of Ma,b must be non-empty. Under these restrictions, either a unique match

sequence exists between the two strings, or no match sequences can be found [6].

As an example, the match sequence for the translation examples in (2.5) is

given in (2.6).

I came here today ↔ buraya bugün geldim (2.5)

I came here yesterday ↔ buraya dün geldim

I came here (today, yesterday) ↔ buraya (bugün, dün) geldim (2.6)
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The components of the match sequence (2.6) are given below:

S1
0 : I came here

D1
0: (today, yesterday)

S1
1 : ε

S2
0 : buraya

D2
0: (bugün, dün)

S2
1 : geldim

It can be seen that, in this example, n = m = 1 and the match sequence compo-

nent S1
1 is empty, as represented with ε.

Using the surface-level form representation of the translation examples may

prevent us from extracting useful match sequences and degrade the generality

of the translation templates learned. This problem becomes more critical when

the source or target language is an agglutinative language such as Turkish which

makes use of derivational and inflectional suffixes extensively. A typical example

is given below:

I am coming ↔ geliyorum (2.7)

I am going ↔ gidiyorum

From the translation examples of (2.7), we can not extract any match sequence

since there are no similarities on the right hand sides in the surface-level form. To

cope with this problem, we are keeping our translation examples in the lexical-

level form which identifies morphemes such as root words and suffixes. Rewriting

the examples given above in the lexical-level form yields 2.8. Here the +PROG

morpheme represents the progressive tense suffix and the +1SG morpheme rep-

resents the 1st person singular agreement suffix.

I am come +PROG ↔ gel +PROG +1SG (2.8)

I am go +PROG ↔ git +PROG +1SG
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From the examples written in the lexical-level form, we can now extract the match

sequence (2.9), that conforms with the previously stated restrictions.

I am (come, go) +PROG↔ (gel, git) +PROG +1SG (2.9)

2.2 Learning Similarity Translation Templates

After extracting a match sequence from two given translation examples, the

learning component tries to learn translation templates. Similarity translation

templates are extracted by replacing the differences in the match sequence with

variables. If there is only a single difference, D1
0, on the left hand side and there

is a single difference, D2
0, on the right hand side of the match sequence, then the

constituents of those differences should be the translations of each other. That

is, D1
0,a ↔ D2

0,a and D1
0,b ↔ D2

0,b. For example, since the match sequence (2.9)

is in this form, the learning algorithm can derive the templates below from this

match sequence.

I am X1+PROG ↔ Y 1 +PROG +1SG (2.10)

come ↔ gel

go ↔ git

If there are n > 1 differences on each side, then in order to be able to extract

a similarity translation template, we should be able to identify at least n − 1

correspondences between the differences in the left and right hand sides of the

match sequence. If we can do that, the constituents of the remaining difference on

the left hand side should be the translations of the constituents of the remaining

difference on the right hand side.

After identifying the correspondences between the differences on the left and

right hand sides, each pair of difference is replaced with a pair of variables. Al-

gorithm 1 formalizes the process of similarity translation template learning.

Since the match sequence (2.9) has a single difference on both sides, the
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SimilarityTTL(Ma,b)
• Assume that the match sequence Ma,b for the pair of translation examples
Ea and Eb is:

S1
0 , D1

0, S1
1 , . . . , D1

n−1, S1
n ↔ S2

0 , D2
0, S2

1 , . . . , D2
m−1, S2

m

if n = m = 1 then
• Infer the following templates:

S1
0X

1S1
1 ↔ S2

0Y
1S2

1 if X1 ↔ Y 1

D1
0,a ↔ D2

0,a

D1
0,b ↔ D2

0,b

else if n = m > 1 and n − 1 correspondences between differences in Ma,b

are already known then
• Assume that the unchecked corresponding difference pair is

(D1
kn

,D2
ln

) = ((D1
kn,a, D1

kn,b), (D2
ln,a, D2

ln,b)).
• Assume that the list of corresponding differences is

(D1
k1

,D2
l1
) . . . (D1

kn
,D2

ln
) including the unchecked ones.

• For each corresponding difference (D1
ki

, D2
li
),

replace D1
ki

with X i and D2
li

with Y i to get Ma,bWDV .
• Infer the following templates:

Ma,bWDV if X1 ↔ Y 1 and . . . and Xn ↔ Y n

D1
kn,a ↔ D2

ln,a

D1
kn,b ↔ D2

ln,b

end if

Algorithm 1: SimilarityTTL. Extracts similarity translation templates.

learning algorithm can derive the templates in (2.10) from this match sequence

without needing any prior knowledge.

On the other hand, for the match sequence in (2.12), which is extracted from

the translation examples in (2.11) and has two differences on both hand sides,

it is not possible to learn any translation templates without knowing the corre-

spondence between the differences.

I drink +PAST tea ↔ çay iç +PAST +1SG (2.11)

you drink +PAST orange juice ↔ portakal suyu iç +PAST +2SG

(I, you) drink +PAST (tea, orange juice)↔ (2.12)

(çay, portakal suyu) iç +PAST (+1SG, +2SG)
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In order to be able to learn any translation templates, at least one of the corre-

spondence pairs below should be known beforehand.

I↔ +1SG , you↔ +2SG (2.13)

I↔ çay , you↔ portakal suyu

tea↔ çay , orange juice↔ portakal suyu

tea↔ +1SG , orange juice↔ +2SG

Assuming that the correspondences “I↔ +1SG” and “You↔ +2SG” are known

a priori, the similarity translation template learning algorithm extracts the tem-

plates given in (2.14). One should note that the corresponding variables, namely

(X1, Y 1), and (X2, Y 2), are marked with identical superscripts.

X1 drink +PAST X2 ↔ Y 2 iç +PAST Y 1 (2.14)

tea ↔ çay

orange juice ↔ portakal suyu

Some match sequences may have unequal number of differences on the left and

right hand sides. Algorithm 1 can not learn any templates from this kind of

match sequences. An example to this kind of match sequences is

(I come, you go) +PAST↔ (gel, git) +PAST (+1SG,+2SG) (2.15)

This kind of match sequences that contain unequal number of differences on left

and right hand sides occur frequently because of the different syntaxes of Turk-

ish and English languages. To overcome this problem, the learning component

should feed the similarity translation template learning algorithm with all pos-

sible instances of the match sequence with equal number of differences on left

and right hand sides. In other words, the number of differences on the side that

has fewer differences is increased by splitting at least one difference into two or

more. For example, there is only one possible way of equalizing the number of
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differences of the match sequence (2.15), as shown below:

(I, you)(come, go) +PAST↔ (gel, git) +PAST (+1SG,+2SG) (2.16)

For more complex examples, Algorithm 1 may fail to learn any translation tem-

plate even if the number of differences on left and right hand sides of the match

sequence are equal. In that case, the learning component incrementally increases

the number of differences in the match sequence by one and tries to infer new

translation templates. This process continues until a template is learned or no

possible way of increasing the number of differences remains.

2.3 Learning Difference Translation Templates

Difference translation templates are the second kind of templates extracted by the

learning component. While similarity translation templates replace differences

in the match sequence with variables, difference translation templates do the

opposite by substituting similarities. If there is a single similarity on both sides

of the match sequence, then that pair of similarities should be the translations of

each other. An example to this situation can be given as

(I, you) drink +PAST (tea, orange juice)↔ (2.17)

(çay, portakal suyu) iç +PAST (+1SG, +2SG)

In this situation, the difference translation template learning algorithm re-

places the similarities with variables. This form of the match sequence Ma,b,

with similarities sustituted with variables is named as Ma,bWDV . By splitting

the differences in Ma,bWSV into two, the learning algorithm extracts two dif-

ference translation templates, namely MaWSV : (M1
aWSV ↔ M2

aWSV ) and
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DifferenceTTL(Ma,b)
if numOfSim(M1

a,b) = numOfSim(M2
a,b) = n >= 1 and

n− 1 corresponding similarities can be found in Ma,b then
• Assume that the unchecked corresponding similarity pair is

(S1
kn

,S2
ln

).
• Assume that the list of corresponding similarities is

(S1
k1

,S2
l1
),. . . , (S1

kn
,S2

ln
) including the unchecked ones.

• For each corresponding difference (S1
ki

,S2
li
),

replace S1
ki

with X i and S2
li

with Y i to get Ma,bWSV .
• Split Ma,bWSV into MaWSV and MbWSV by seperating the differences.
• Infer the following templates:

MaWSV if X1 ↔ Y 1 and . . . and Xn ↔ Y n

MbWSV if X1 ↔ Y 1 and . . . and Xn ↔ Y n

S1
kn
↔ S2

ln

end if

Algorithm 2: DifferenceTTL. Extracts difference translation templates.

MbWSV : (M1
b WSV ↔ M2

b WSV ). The difference translation templates ex-

tracted from (2.17) are

I X1 tea ↔ çay Y 1 +1SG (2.18)

you X1 orange juice ↔ portakal suyu Y 1 +2SG

In addition to the translation templates given above, the algorithm also learns

the following atomic template.

drink +PAST↔ iç +PAST (2.19)

If there are n > 1 similarities on both sides of the match sequence, the difference

translation template learning algorithm has to find the correspondence of at least

n− 1 similarities on the left and right hand sides of the match sequence in order

to be able to infer any template. Algorithm 2 formalizes the process of difference

translation template learning.

Some match sequences may have unequal number of similarities on the left and

right hand sides. Algorithm 2 can not learn any template from this kind of match

sequences, which occur frequently because of the different syntaxes of Turkish and
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English languages. To overcome this problem, the learning component feeds the

difference translation template learning algorithm with all possible instances of

the match sequence with equal number of similarities on left and right hand sides.

In other words, the number of similarities on the side that has fewer similarities

is increased by splitting at least one similarity into two or more.

Still the learning algorithm may not infer any translation template even if

the number of similarities on both sides of the match sequence are equal to each

other. An example to this situation arises when the match sequence (2.21) is

extracted from the following translation examples.

I see +PAST the house ↔ ev +ACC gör +PAST +1SG (2.20)

I break +PAST the mirror ↔ ayna +ACC kır +PAST +1SG

I (see, break) +PAST the (house, mirror)↔ (2.21)

(ev, ayna) +ACC (gör, kır) +PAST +1SG

For the match sequence (2.21), no correspondence between the similarities on

the left and right hand sides is valid. In such situations, the difference template

learning algorithm incrementally increases the number of differences by one, until

a template can be inferred, or there remains no possibility to divide a similarity.

For the match sequence 2.20, there exists a single possibility for increasing the

number of differences. By dividing the similarity “+PAST the” into “+PAST”

and “the”, and the similarity “+PAST +1SG” into “+PAST” and “+1SG”, the

learning algorithm can create a new instance of the match sequence with 3 simi-

larities on both sides. Assuming that the correspondences I↔ +1SG and +PAST

↔ +PAST are known, the learning algorithm can learn the following templates:

X1 see X2X3 house ↔ ev Y 3 gör Y 2Y 1 (2.22)

X1 break X2X3 mirror ↔ ayna Y 3 kır Y 2Y 1

the ↔ +ACC
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2.4 Type Associated Template Learning

Although learning by substituting similarities or differences with variables yields

templates that can be successfully used by the translation component, the tem-

plates are usually over generalized [5]. When the algorithm replaces some parts of

the examples with variables, the type information of the replaced parts are lost.

When used in translation, such a template may yield unwanted results, since the

variables can represent any word or phrase. In order to overcome this problem,

each variable is associated with a type information. An examplary template, the

same one in (2.14), but this time marked with type information is given as

X1
Pron drink +PAST X2

Noun ↔ Y 2
Noun iç +PAST Y 1

V ERB−AGREEMENT (2.23)

In this example, the variable X1
Pron can only be replaced by a pronoun and

Y 1
V ERB−AGREEMENT can only be replaced by a verb agreement suffix.

In order to assign a type label to each variable, we have to have a mechanism

that can decompose each word into its morphemes and identify root word and

suffix categories. For this purpose we are using Turkish and English morphological

analyzers in our translation system.

2.4.1 Learning Type Associated Similarity Templates

In order to assign a type label to a variable that substitutes a difference Di,

the learning component must inspect the constituents of this difference, namely

Di,a and Di,b. In general, the type of a root word is its part-of-speech category.

For example, the type label of “book+Noun” would be simply “Noun”. On the

other hand, the type label of any morpheme that is not a root word would be

its own name. For example, the type label of “+A1sg”, which is the first person

noun agreement morpheme in Turkish, is merely its own name, that is “A1sg”.

Assume that the learning algorithm tries to replace the difference Di in 2.24 with
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a variable.

Di: (come+Verb, go+Verb) (2.24)

Observing that there is a single token in both of the constituents Di,a and Di,b

and the types of the tokens match, the variable with type label would be XV erb.

Although in some cases all of the type labels of tokens in Di,a and Di,b match,

most of the times the situation will be different. Assume that this time the

learning algorithm aims to replace the difference Di below with a variable.

Di: (book+Noun +Sg, house+Noun +Pl) (2.25)

In this case, although the first pair of tokens of Di,a and Di,b match in terms of

type, the second pair of tokens, “+Sg” and “+Pl”, which are the singular and

plural markers, do not match. In this kind of situations, the learning algorithm

should be able to identify the supertype of “+Sg” and “+Pl”. Given that the

supertype of “+Sg” and “+Pl” is NOUN-SUF-COUNT, the variable that replaces

the difference in (2.25) would be XNoun NOUN−SUF−COUNT .

The hierarchical structure that represents the subtype-supertype relations be-

tween the type labels is modelled as a lattice in our system. There are two such

lattices, one for language 1 and the other for language 2. A section of the Turkish

lattice used in the system is given in Fig 2.2. One should note that the lattice

can be regarded as a directed acyclic graph (DAG), if each connection from a

subtype to a supertype is considered to be a one directional arrow.

In the lattice there is a single node at the top of the hierarchy labelled “ANY”.

The leaf nodes are tokens that appear in the lexical-level form of the translation

examples. Use of the lattice instead of a tree allows situations where a node

has multiple parents such as the case of “+A3sg” which can both appear as the

singular noun agreement and the 3rd person singular verb agreement.

Using the lattice structure, the learning algorithm can assign a label to token
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Figure 2.2: A Section of the Turkish Type Lattice.

pairs by finding the nearest common parent of the two tokens. Then the type label

of a variable becomes the concatenation of each such token pair in the difference.

An example of a difference, Di can be given as

Di: (kitap+Noun +A3sg, ben+Pron +A1sg) (2.26)

Here, the type label of the first token pair, (kitap+Noun, ben+Pron), is “ANY”

which is the nearest common parent of the two tokens. Likewise, the type label

of the second token pair (+A3sg, +A1sg) will be VERB-AGREEMENT. So the

label of the variable that replaces the difference Di would be “ANY VERB-

AGREEMENT”.

2.4.2 Epsilon (ε) Insertion

In order to infer the type information of a variable in a similarity translation

template, the learning algorithm looks into the lattice to find the nearest common

parent of each token pair in the constituents of the associated difference. The

type association algorithm defined above will fail when the constituents Di,a and

Di,b of a difference Di contain unequal number of tokens.
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In cases where the constituents of a diffence contain unequal number of tokens,

we can insert ε (empty string) tokens into the constituent with fewer tokens until

the number of tokens are equalized. We can determine the insertion point of

an epsilon token by calculating a generalization score for each of the possible

insertion points and then choosing the one with the least score.

The generalization score of an epsilon insertion point possibility is calculated

as the sum of the distances between the types of the corresponding tokens in the

constituents of the difference after the epsilon insertion. The distances between

token types are calculated using the lattice structures as the length of the shortest

path between the types. The distance from epsilon to any type is set to 2.

Assume that the learning algorithm is going to assign a type label to the

variable that is going to replace the difference in the following match sequence:

(a+Det +Indef +Sg red+Adj, the+Det +Def +SP blue+Adj) book+Noun +Sg (2.27)

↔ (bir+Num+Card kırmızı+Adj, mavi+Adj) kitap+Noun +A3sg +Pnon +Nom

In the difference on the left-hand side, there are 4 tokens in both of the con-

stituents, hence there is no need for epsilon insertion. But, in the difference on

the right-hand side, there are 2 tokens in the first constituent where there is

a single token in the second one. In this case there are two epsilon insertion

possibilities, i.e.,

(bir+Num+Card kırmızı+Adj, ε mavi+Adj) (2.28)

(bir+Num+Card kırmızı+Adj, mavi+Adj ε)

The section of the lattice that is going to be used to find the best position of

epsilon insertion is given in Figure 2.3. The generalization scores for the two
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NUMBER

mavi+Adj bir+Num+Card

Adj

ANY

Figure 2.3: A Section of the Turkish Type Lattice.

epsilon insertion points are calculated as

genScore1 = minDist(bir+Num+Card, ε) + minDist(kırmızı+Adj, mavi+Adj)

= 2 + 2 = 4

genScore2 = minDist(bir+Num+Card, mavi+Adj) + minDist(kırmızı+Adj, ε)

= 4 + 2 = 6

After the calculation, the epsilon insertion point with the smallest generalization

score, in our case the first one, is chosen. Then the type of the variable will

become “nullor(Num-Card) Adj”. Here, the nullor function marks the token

position as nullable, that is the token position can either be substituted with

epsilon or a cardinal number during the translation phase. Given that the parent

of “Def” and “Indef” is “DET-SUF” and the parent of “Sg” and “SP” is “DET-

SUF-COUNT” in the English lattice, the similarity translation template and the

two atomic templates that are learned from 2.27 then becomes

X1
Det DET−SUF DET−SUF−COUNT Adj book+Noun +Sg ↔ (2.29)

Y 1
nullor(Num−Card) Adj kitap+Noun +A3sg +Pnon +Nom

a+Det +Indef +Sg red+Adj ↔ bir+Num+Card kırmızı+Adj

the+Det +Def +SP blue+Adj ↔ mavi+Adj
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2.4.3 Extension to the Previous Version:

Learning Type Associated Difference Templates

The variable type labels for the similarity translation templates were inferred

by generalizing the types of token pairs in the corresponding constituents of a

difference. When it comes to learning type associated difference templates, one

replaces similarities, which contain only a single constituent, with variables. In

the previous versions of the translation system [5, 13], type associated difference

template learning mechanism was not implemented, as generalizing type labels

from a single constituent was not desired.

Abandoning the difference translation template learning feature would pre-

vent us from learning useful information. Instead, we can choose to include this

feature, but prevent the over-generalization of the type labels.

In type associated difference translation template learning, if the token is a

root word, then the type of that token is determined as its parent in the type

lattice1. On the other hand, if it is any other token that is not a root word, such as

a feature structure property, then the type label of that token remains as its own

name. In this way, the type labels are always determined strictly when compared

to that of the similarity templates. For example, consider that we are trying to

infer the type label of a variable that is going to be replaced by a similarity Si:

(kitap+Noun +A3sg +Pnon +Nom). Then the variable with its associated type

label would be XNoun A3sg Pnon Nom. This variable now represents any noun that

is singular, without any possesive suffix and is in nominative case.

A type associated difference template learning example is given below. The

1Typically, in the type lattice, the parent of a root word will be its part-of-speech category.
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match sequence for the following translation examples is given in (2.31).

red+Adj book+Noun +Sg↔ (2.30)

kırmızı+Adj kitap+Noun +A3sg +Pnon +Nom

blue+Adj book+Noun +Sg↔
mavi+Adj kitap+Noun +A3sg +Pnon +Nom

(red+Adj, blue+Adj) book+Noun +Sg↔ (2.31)

(kırmızı+Adj, mavi+Adj) kitap+Noun +A3sg +Pnon +Nom

Since there is a single similarity on both sides of the match sequence, the learning

algorithm can replace them by variables without needing any prior knowledge.

The templates learned from (2.31) are given below:

red+Adj X1
Noun Sg ↔ kırmızı+Adj Y 1

Noun A3sg Pnon Nom (2.32)

blue+Adj X1
Noun Sg ↔ mavi+Adj Y 1

Noun A3sg Pnon Nom

book+Noun +Sg ↔ kitap+Noun +A3sg +Pnon +Nom

The above mentioned approach for associating types with variables has a

flaw that has to be considered. For some match sequence instances, a learned

difference template may be equivalent to the original translation example, that

is used in learning that template. For example, from the translation examples in

(2.33), we can extract the match sequence (2.35).

red+Adj book+Noun +Sg↔ (2.33)

kırmızı+Adj kitap+Noun +A3sg +Pnon +Nom

blue+Adj pencil+Noun +Sg↔ (2.34)

mavi+Adj kalem+Noun +A3sg +Pnon +Nom
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(red+Adj book+Noun, blue+Adj pencil+Noun) +Sg↔ (2.35)

(kırmızı+Adj kitap+Noun, mavi+Adj kalem+Noun) +A3sg +Pnon +Nom

This will lead us to extract the following type associated difference templates:

red+Adj book+Noun X1
Sg ↔ kırmızı+Adj kitap+Noun Y 1

A3sg Pnon Nom (2.36)

blue+Adj pencil+Noun X1
Sg ↔ mavi+Adj kalem+Noun Y 1

A3sg Pnon Nom (2.37)

+Sg↔ +A3sg +Pnon +Nom (2.38)

While learning (2.38) will probably be useful, translation templates (2.36)

and (2.37) are totally useless. Template (2.36) can only match the translation

example (2.33), as it is equivalent in generality to the latter. The same is also true

for the template (2.37), as it is equivalent to the translation example (2.34). So,

there are no practical reasons for learning template (2.36) and (2.37). Therefore

in our system, we prevent learning of such templates that do no generalization

over the translation examples that are used to extract them. Thus, the only

template that is going to be learned from this match sequence will be (2.38).

2.4.4 Learning from Previously Learned Templates

Although, extracting translation templates from translation example pairs, as it

is presented in the previous sections, provide an effective learning method, the

generality of the templates learned are usually limited. In order to increase the

learning effectiveness, we do not only learn from example pairs, but also use the

pairs of previously learned templates.

For example, assume that the translation templates in (2.39) have been

learned from some translation examples. The first thing to do is to extract a

match sequence from these templates as if they were translation examples. This
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match sequence is given in (2.40).

at least X1
Num−Card book+Noun ↔ en az Y 1

Num−Card kitap+Noun (2.39)

at least one+Num+Card X1
Noun ↔ en az bir Y 1

Noun

at least (X1
Num−Card book+Noun, one+Num+Card X1

Noun)↔ (2.40)

en az (Y 1
Num−Card kitap+Noun, bir Y 1

Noun)

Regardless of the fact that the differences in the match sequence contain variables,

we can learn the templates given below by running the similarity translation

template learning algorithm.

at least X1
Num−Card Noun ↔ en az Y 1

Num−Card Noun (2.41)

X1
Num−Card book+Noun ↔ Y 1

Num−Card kitap+Noun

one+Num+Card X1
Noun ↔ bir Y 1

Noun

The user should note that learning translation templates from previously learned

ones may yield three non-atomic templates. This was not possible when templates

were extracted from translation examples.

While learning templates from previously learned templates, the constituents

of a difference Di may contain both variables and non variables. In that case,

if we are going to learn a similarity translation template, we should expand the

type labels of the variables in the constituents Di,a and Di,b in order to decide if

epsilon insertion is necessary or not. An example of a difference Di is given by

Di: (X1
V erb +PastSimp, X1

V erb V ERB−SUF−TENSE +123SP) (2.42)

Even if both of the difference constituents contain two tokens, an epsilon insertion

will turn out to be necessary if the variable type labels are expanded as shown in
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ANY

Verb VERB-SUF

VERB-SUF-
TENSE

VERB-SUF-
COUNT-AGR

+PastSimp +123SP

Figure 2.4: A Section of the English Type Lattice.

2.43.

Verb +PastSimp (2.43)

Verb VERB-SUF-TENSE +123SP

Now, there are obviously three posible epsilon insertion points for Di,a as shown

below:

(ε Verb +PastSimp , Verb VERB-SUF-TENSE +123SP) (2.44)

(Verb ε +PastSimp , Verb VERB-SUF-TENSE +123SP)

(Verb +PastSimp ε , Verb VERB-SUF-TENSE +123SP)

Since an epsilon insertion will take place, we should be able to calculate the

distances between type labels, in order to calculate the generalization scores of

epsilon insertion possibilities. The Figure 2.4 provides the section of the English

lattice that is necessary to solve the epsilon insertion problem.
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genScore1 = minDist(ε, Verb) + minDist(Verb, VERB-SUF-TENSE)

+ minDist(+PastSimp, +123SP)

= 2 + 3 + 4 = 9

genScore2 = minDist(Verb, Verb) + minDist(ε, VERB-SUF-TENSE)

+ minDist(+PastSimp, +123SP)

= 0 + 2 + 4 = 6

genScore3 = minDist(Verb, Verb) + minDist(+PastSimp, VERB-SUF-TENSE)

+ minDist(ε, +123SP)

= 0 + 1 + 2 = 3

Since the third epsilon insertion point possibility has the lowest generalization

score, it is chosen as the most appropriate one. As a result, the variable that re-

places the difference in 2.42 is determined as XV erb V ERB−SUF−TENSE nullor(123SP ).

2.5 Confidence Factor Assignment

The translation templates generated during the learning phase, are stored in the

file system, in order to be later used in the translation phase. Although the

translations of some sentences submitted by the system user can be given using a

single template2, vast amounts of the translations are done using a combination

of more than one translation template. During the translation phase, in order

to translate a given sentence from the source language to the target one, a parse

tree of templates are generated by the translation algorithm.

For most of the inputs, there will be multiple translation results. This is due to

the fact that if the learned templates are general enough and numerous, there may

exist multiple parse trees that can be used to translate the input phrase. Another

factor that increases the number of results is the morphological ambiguities faced

when converting the input from the surface-level to an equivalent lexical-level

2If the phrase submitted by the user and its translation exists in the translation examples
file that is used to train the system, an atomic template that reflects this fact must have been
learned.
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representation.

This multiplicity of results is equivalent to that of a search engine. In order to

increase the retrieval precision at the top ranks, a search engine fetching multiple

results sorts them according to a criteria. The method here is to list the best

results, in terms of relevance to the user query, at the top.

Similarly, in our system each translation result is assigned a confidence value

and the results are then sorted in decreasing order of these values. The confidence

value of a translation result is calculated as the multiplication of the confidence

factors assigned to each template that is a node in the parse tree built in that

particular translation [29].

Since the translation is bidirectional, each translation template is associated

with not a single confidence factor, but with a pair of confidence factors. Then

the first confidence factor is used for the translations from language 1 to language

2, while the second one is used for the translations in the reverse direction.

A confidence factor is calculated as

confidence factor =
N1

N1 + N2
(2.45)

where;

• N1 is the number of translation examples containing substrings on both

sides that matches the template.

• N2 is the number of translation examples containing a substring only on

the source language side that matches the template.

For example, assume that the translation examples file contains only the four

examples below.

1. red+Adj hair+Noun +Sg ↔
kızıl+Adj saç+Noun +A3sg +Pnon +Nom
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2. red+Adj house+Noun +Sg ↔
kırmızı+Adj ev+Noun +A3sg +Pnon +Nom

3. red+Adj ↔ kırmızı+Adj

4. long+Adj red+Adj hair+Noun +Sg ↔
uzun+Adj kızıl+Adj saç+Noun +A3sg +Pnon +Nom

In order to assign the first confidence factor, which is to be used in English to

Turkish translations, to a translation template such as

red+Adj X1
Noun ↔ kırmızı Y 1

Noun (2.46)

each translation example has to be evaluated individually. Initially both N1 and

N2 are initialized to 0. The 1st example has a substring on its left side, “red+Adj

hair+Noun”, that matches the left side of the translation template. But there is

no substring on the right that matches the template. So, N2 is incremented by 1.

Similarly, the 2nd example matches the translation template on the left hand

side and it also has a substring on the right, “kırmızı+Adj ev+Noun”, that

matches the right hand side of the template. So N1 is 1.

The 3rd example does not match the template on either side, so N1 nd N2

remain unchanged.

The 4th example, like the first one, matches only on the left hand side; there-

fore, N2 is incremented to 2.

As a result, the English to Turkish confidence factor becomes 1
1+2

= 0.33. The

reader can verify that the Turkish to English confidence factor becomes 1.0 using

the same approach since N1 = 1 and N2 = 0 for that case.

While we are assigning a confidence factor to a template, we are actually

approximating the ratio of the times a phrase matched by the source language

side of the template is translated to a phrase matching the target language side of
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the template, to the total number of times such a phrase in the source language

is ever translated.

If there are one or more type labels in a variable that are marked as nullor, then

all possible type patterns for that variable should be considered while calculating

the confidence factors.

2.6 Using Templates in Translation

The job of the learning component is over, when the templates are learned from

the translation examples in the bilingual corpus file. When the user enters a

phrase to the system in order to retrieve its translation, the translation component

is responsible for handling this task.

Translation component first parses the input phrase using a slightly modified

implementation [13] of the Earley parsing algorithm [19]. The Earley parser uses

the learned translation templates as its grammatical rules. Since the templates

are type associated, type checking is also performed by the translation component.

Parsing becomes successful if at least one parse tree can be built using a

subset of the translation templates in the system. Usually, the parsing algorithm

produces multiple parse trees, each representing a translation result. Then a

translation result is produced merely by substituting each child template with

the corresponding variable in the parent template, in a recursive fashion.

The generated results may be identical, as there may be multiple ways of

reaching to the same translation result, or may be distinct. Some of those results

will be incorrect semantically or syntactically due to the inappropriate general-

izations during template learning. But, hopefully some correct translation results

will also be generated.

For example, assume that the user wants to translate the phrase

“the plane was flying”, (2.47)
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which can be represented in the lexical form as

the+Det +Def +SP plane+Noun +Sg be+Verb +PastSimp +Sg fly+Verb +Prog. (2.48)

Suppose that the known translation templates are as follows:

1 : the+Det +Def +SP X1
Noun Sg be+Verb +PastSimp +Sg X2

V erb +Prog↔
Y 1

Noun A3sg Pnon Nom Y 2
V erb +Pos +Prog1 +Past +A3sg

2 : plane+Noun +Sg↔ uçak+Noun +A3sg +Pnon +Nom (2.49)

3 : plane+Noun +Sg↔ düzlem+Noun +A3sg +Pnon +Nom

4 : fly+Verb↔ uç+Verb

where the associated English to Turkish confidence factors are 0.9, 0.8, 0.2 and

1.0, respectively.

When the parsing algorithm runs on the lexical-level form of the input phrase,

the parse trees in Figure 2.5 will be returned.

1

2 4

1

3 4

(a) (b)
uçak uçuyordu düzlem uçuyordu

Figure 2.5: Translation Results for the Phrase (2.47). Note that the corresponding
translation results are given in the surface-level form.

When the translation is over, the results will be presented to the user. Before

doing this, the results will be sorted in decreasing order of confidence values. As

stated earlier, the confidence value of a translation result is determined as the

product of the translation templates used in generating that translation result.

The confidence value of the translation result in Figure 2.5(a) is 0.9 × 0.8 ×
1.0 = 0.72, while the confidence value of the translation result in Figure 2.5(b)
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is 0.9 × 0.2 × 1.0 = 0.18. Therefore, the first translation result will be ranked

above the second one. This complies with our expectations, as semantically the

first translation result is correct, while the second one is not.



Chapter 3

System Architecture

This chapter describes the interactions among various components that make up

our translation system. While some minor components will be covered in this

chapter, remaining major components, such as User Evaluation Interface and the

Turkish Morphological Disambiguator will only be mentioned here briefly, as the

following chapters cover them in detail.

Due to the portability advantage and string manipulation capabilities of-

fered, we developed our system using the Java Programming Language1

(Java SE 6 SDK). Instead of developing the whole application as a single .jar

package, we divided it into several chunks, all of which can be used as indepen-

dent applications, or can be included in other projects as libraries.

Figure 3.1 depicts the interactions among the components of our system.

Workings of the system can be divided into two phases. In the first phase, the

system is trained using a bilingual aligned corpus. This traning corpus contains

bilingual translation examples in their lexical form. Training of the system fin-

ishes when the Learning Component, principles of which are described in detail

in Chapter 2, writes the translation templates it has learned, into a file. In the

first phase, the user is passive, i.e., the learning process is completed without any

user interaction.

1Java homepage is at http://java.sun.com.

37
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The second phase uses the translation templates extracted in the previ-

ous phase, in order to translate the natural language phrases input from the

user. Unlike the previous one, the translation phase is interactive, i.e., the

Translation Component asks the user to enter a phrase in either of the Turk-

ish or English languages, and after performing the translation, returns the results

back to the user, and waits for the next input (see Section 2.6).

Learning
Component
Learning

Component
Translation
Component

Turkish and English
Type Lattices
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Turkish
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Analyzer

Turkish
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Generator

English
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Turkish
Morphological
Disambiguator

English
Morphological

Analyzer

English
Morphological

Analyzer

Turkish
Morphological

Generator

Turkish
Morphological

Generator

A Turkish
Phrase

A Turkish
Phrase

An English
Phrase

An English
Phrase

Lexical Form
Tagging Tool

Bilingual
Aligned Corpus
in Surface Form

Bilingual
Aligned Corpus
in Lexical Form

Type-Associated
Translation
Templates

Context-Dependent
Co-occurrence Rules

English
Translation

Results

Turkish
Translation

Results
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*
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Figure 3.1: A detailed view of the system components. The components developed
during this thesis study are marked with a star sign (*), and the components modified
during this thesis study are marked with a plus sign (+) in the upper left corner.
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3.1 Lexical-Form Tagging Tool

In order to extract some translation templates, the Learning Component takes

a bilingual corpus as input. This corpus has to be in the lexical-form, as using

the lexical-forms of the translation examples enables the system to learn more

useful templates when compared to using marely the surface-forms. Manually

converting translation examples in a corpus, from their more natural surface-

forms into lexical-forms, without using any software tool, would be an inefficient

and error-prone task. Therefore, we have developed a tagging tool that simplifies

the conversion process.

The user interface of the tagging tool is given in Figure 3.2. The “File” menu

provides options for reading a corpus in surface-form from a file and converting

it into lexical-form, saving a processed corpus, creating a new blank corpus and

opening a previously saved corpus.

Figure 3.2: Lexical-Form Tagging Tool. (1)-(2) The English and Turkish text fields
used to enter a new translation example. (3) The table that shows each English
token and the associated lexical-level representation. (4) The table that shows each
Turkish token and the associated lexical-level representation. (5) The area that lists
the translation examples existing in the corpus. (6) Control buttons that are used to
add, edit and remove translation examples.
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The user can also enter new translation examples interactively by filling the

text fields at the top of the window. When a new translation example is entered,

the tagging tool determines the morphological parses associated with each token

in the left and right constituents of that example. Then the tokens and the

corresponding parses are presented in a table format.

Morphological parsing of the tokens are done by calling the methods provided

by the English and Turkish morphological analyzer libraries. If more than one

morphological parses exist for a certain token, i.e., the token is morphologically

ambiguous, then those parses are shown in a drop-down list, from which the user

can then select the correct parse. Resolving the morphological ambiguities by

selecting the correct parse for each token should be done by the user, as the

translation examples used while tranining the system have to be unambiguous.

3.2 Morphological Analyzers

Morphological analysis2 is the process of breaking a given word into its mor-

phemes. Morphological analysis is closely related to stemming, as this problem

can be reduced to the former one, i.e., using a morphological analyzer, we can

directly obtain the root of an input word, by inspecting the morphological parse

produced for it by the analyzer3.

Morphological generator does the opposite of morphological analyzer by con-

verting a given morphological parse into its surface form. In our system, the

morphological analyzers are bundled with their corresponding generators. Fol-

lowing subsections discuss the morphological anaylzers for Turkish and English

languages used in our system.

2Used interchangeably with morphological parsing.
3If the word is morphologically ambiguous, then this may prevent us from identifying the

stem correctly. In that case, some means of disambiguation will be necessary.
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3.2.1 Turkish Morphological Analyzer

In our translation system, we are using the version 2.1.13 (October 25, 2002)

of PC-KIMMO morphological analyzer engine [2], which is implemented in the

C programming language. PC-KIMMO is a general purpose processor for two-

level morphological descriptions, and its source code is freely available for non-

commercial purposes. The program is designed to recognize (parse) and generate

(produce) words using a two level language description. The recognition function

converts a given word from surface-level form, into lexical-level form, while the

generation function works in the reverse direction.

The two-level description of the Turkish language used by PC-KIMMO was

previously developed by Oflazer [25]. Also, several modifications have been intro-

duced to this description recently [17], such as re-organizing the output format

into a more standard one and changing the internal encoding to ISO-8859-9, which

covers Turkish specific letters. The Turkish lattice structure used by the transla-

tion system is provided in [13]. Some recognition examples for the morphological

analyzer are given in Table 3.1.

Table 3.1: Some Recognition Samples for the Turkish Morphological Analyzer.

Token Parse(s)

ev ev+Noun+A3sg+Pnon+Nom
evden ev+Noun+A3sg+Pnon+Abl
evimden ev+Noun+A3sg+P1sg+Abl
evi ev+Noun+A3sg+P3sg+Nom

ev+Noun+A3sg+Pnon+Acc
geldim gel+Verb+Pos+Past+A1sg
veriyordum ver+Verb+Pos+Prog1+Past+A1sg
hızlı hız+Noun+A3sg+Pnon+NomˆDB+Adj+With

In order to be able to use the function calls provided by PC-KIMMO, we have

developed a Java language interface to it. This interface provides recognition and

generation methods customized for easy use in the Java environment, and more

general methods that can be used to run any command that the PC-KIMMO



CHAPTER 3. SYSTEM ARCHITECTURE 42

command line application accepts. It also supplies a java command line emu-

lator application, by which the user can interact with the original PC-KIMMO

command line interface. The Java interface to PC-KIMMO is designed to be

independently used in other projects as well, hence provided as a seperate .jar

package.

When the user enters an input phrase in Turkish for translation, this phrase is

first split into its tokens, such as words, numerals and punctuation marks4. Then

on each token the recognition function of the Turkish morphological analyzer is

run. Due to the morphological ambiguities of Turkish, the recognizer generally

returns multiple morphological parse results, which are then fed into the mor-

phological disambiguator. Likewise, when an English phrase is translated into

Turkish, the output of the Translation Component is converted into surface-form

by the generator function before being presented to the user.

3.2.2 English Morphological Analyzer

Previous version of our translation system used the online Xerox morphological

analyzer5 to convert English words from surface to lexical-level forms. Basically,

when need for the morphological parse of a new word arose, it queried the online

morphological analyzer. The result was stored in a cache file, which was used as

a lookup table to increase the retrieval speed of the morphological parses. This

cache file was also used in the morphological generation step which converts the

lexical-level representations of the words back to their surface-level representa-

tions.

Accessing the online Xerox morphological analyzer for each distinct English

word could only serve as a short-term solution, as the online querying approach

requires Internet connectivity and is time consuming. Also searching the mor-

phological parse of a word in a non-indexed file was inefficient.

4The tokenization service is not built in PC-KIMMO; it is provided by the Supervised Tagger
library, which will be discussed in Chapter 4.

5Accessible at http://www.xrce.xerox.com/competencies/content-analysis/demos/english.
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The reason for using the Xerox morphological analyzer was, that it produces

morphological parses similar in many aspects to the parses produced by the Turk-

ish morphological analyzer. Other options, such as the two-level specification of

English available for PC-KIMMO, provide a very different formatting approach

for morphological parses. Therefore, using such a morphological analyzer would

add additional complexities in the template learning mechanisms.

In order to overcome the issues mentioned above, we have developed an En-

glish morphological analyzer. Although there are some changes, the parse for-

matting of our analyzer is very similar to that of the online Xerox morphological

analyzer and the Turkish morphological analyzer. Sample outputs of the English

morphological analyzer are given in Table 3.2.

Table 3.2: Some Recognition Samples for the English Morphological Analyzer.

Token Parse(s)

come come+Verb+ProgˆDB+Adj+Zero
come+Verb+ProgˆDB+Noun+Zero+Sg
come+Verb+Prog

there there+Adv
there+Pron
there+Pron+Nom+3SP

umbrella umbrella+Noun+Sg
she she+Pron+Pers+Nom+3sg
their they+Pron+Pers+Gen+3pl
did do+Verb+PastSimp+123SP

do+Aux+PastSimp+123SP
belongings belong+Verb+ProgˆDB+Noun+Zero+Pl
bought buy+Verb+PastPerf+123SPˆDB+Adj+Zero

buy+Verb+PastSimp+123SP
buy+Verb+PastPerf+123SP

teacher teach+Verb+InfˆDB+Noun+Er+Sg
goes go+Verb+Pres+3sg
substitution substitute+Verb+InfˆDB+Noun+Ion+Sg
freely free+AdjˆDB+Adv+Ly

English is a weakly inflected language. Therefore in our morphological ana-

lyzer, the only inflectional suffixes used are verb tense suffixes (-ed, -s, -ing), noun

suffixes (-s, -’s), and adjective suffixes (-er, -est). On the other hand, English uses
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derivational suffixes extensively just like Turkish. Hence, our morphological ana-

lyzer recognizes 51 commonly used derivational suffixes (see Appendix B). Also

there is a special suffix named ZERO, which is used when derivation is done

without affecting the surface-form. For example, most of the verbs in past per-

fect tense, can also be used as adjectives. In this case, we denote the derivation

from verb to adjective with the ZERO suffix.

Root words and exceptional inflection and derivations are kept in lexicon

files. Words are categorized into lexicon files according to their part-of-speech.

The number of entries in each lexicon file is given in Table 3.3.

Table 3.3: Number of Root Words and Exceptional Cases in Each Lexicon.

Lexicon File Number of Entries

Noun 10796
Verb 3859
Adjective 3311
Adverb 375
Abbreviation 114
Other 538

Total 18993

In addition to suffixes, English also uses prefixes which are appended to the

beginnings of words. The current version of our morphological analyzer does not

recognize prefixes. Therefore, prefix-derived forms of the words have to be added

to the lexicon files, as if they were root words.

As we now use a different morphological analyzer for English, the lattice struc-

ture used in the previous version of the system has to be modified. The complete

list of the nodes in the new English Lattice, and the relationships between those

nodes are given in Appendix C.
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3.3 Turkish Morphological Disambiguator

As mentioned previously, Turkish morphology is highly ambiguous and during

the morphological analysis, multiple parses will often be associated with a given

input token. When multiple ambiguous tokens exist, the Translation Component

has to be run on each possible combination of the lexical representations of the

tokens in the input phrase. This does not reduce the recall of the translation

system, as the correct combination will always be tested among many incorrect

combinations. But the problem is that the translation precision will be affected

to a great extent, as the incorrect morphological parse combinations will increase

the number of wrong translations.

Morphological disambiguation is the process of selecting the most suitable

morphological parse for a given word, from the set of parses that is assigned to

that word by the morphological analyzer. Unlike the ideal case, sometimes the

disambiguator cannot select a single parse; in this case it should eliminate as

much wrong parse as it can.

In situations, where syntactic and morphological information derived from a

word in a given text falls short of correctly identifing the lexical class of it, further

evidence from the surrounding words can usually be utilized to disambiguate it.

As shown in Figure 3.1, the Turkish Morphological Disambiguator sits be-

tween the Turkish morphological analyzer and the Translation Component in our

system. The Disambiguator Component is provided by the Supervised Tagger

library which will be disscussed later in Chapter 4.

3.4 User Evaluation Interface

One of the new enhancements we propose for our translation system is a user

feedback mechanism. When the translation system generates multiple results,

either due to the morphological ambiguities discussed above or multiple trans-

lation template combination options for translation, the results are presented to
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the user in descending order of confidence values.

In the previous versions of the system, during the translation phase, the user

had no effect on the confidence values assigned to each result, hence on the

presentation order of the results. In order to reflect his preference into the results

ordering, a user had to enter more translation examples and rerun the learning

component, which consumes computation resources and takes time. Moreover,

in a realistic situation, it will be impossible for a user to estimate the number

of examples to add, that will adjust the ordering of the results to the desired

configuration.

We propose a new method of incorporating user feedback into the result or-

dering mechanism. By evaluating the translation results generated, the user can

teach his preferences to the system. From the evaluation data, the system ex-

tracts template co-occurrence rules, which specify aggregate confidence factors

for certain template configurations. The extracted rules are then kept in the file

system to be used in later translations. Chapter 5 discusses the user feedback

mechanisms in detail.



Chapter 4

Morphological Disambiguation

Morphological disambiguation is the process of eliminating inappropriate parses

assigned to a word by the morphological analyzer. In other words, a morpholog-

ical disambiguator uses the output of the morphological analyzer, and for each

word in the text, tries to select a single morphological parse, from the set of parses

assigned to that word. When eliminating all but one of the parses is not possible,

we expect, that the disambiguator selects a subset of the parses of minimum size.

Structural information obtained from a word in a given text can sometimes

be sufficient to correctly disambiguate it. For example, if the first letter of a word

is written in upper case, but the word is not the first one in the sentence, then

that word is most probably a proper noun.

Usually, however, we cannot simply identify the lexical category of a word by

inspecting just its own syntax and morphological structure. Fortunately, much

useful evidence can be collected from the context that the word lies in, i.e., most

of the time, the morphological information gathered from neighboring words can

successfully be utilized to disambiguate the target word.

A problem, that is closely related to morphological disambiguation, is part-

of-speech (POS) tagging. In part-of-speech tagging, the aim is to find the correct

lexical category of a given word. POS tagging can be reduced to the problem

47
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of morphological disambiguation, as finding out the correct parse of a word, will

lead us to determine its lexical category as well.

Although 100% accurate POS tagging or morphological disambiguation is

practically impossible, highly accurate systems for English are available. The

weak inflectional morphology of English, helps increase the effectiveness of those

systems. For Turkish on the other hand, POS tagging and morphological disam-

biguation are much more complicated processes in general. This is due to the

inherent morphological level ambiguity of the language. Agglutinative nature of

Turkish makes the number of morphological parses for each word larger than

that of English. According to [20], about 80% of all words are morphologically

ambiguous in Turkish. An obvious example is the word “kitabın”:

Kitabın eski. ↔ Your book is old.

Kitabın kapağı maviydi. ↔ The cover of the book was blue.

Here the ambiguity is due to the phonetic similarity of the genitive suffix -in

and the second singular possessive suffix -(n)in. Similarly, nominals with the

accusative suffix -(y)i and the third singular possessive suffix -(s)i, may have the

same surface form if the root ends with a consonant. Another kind of ambiguity

arises when the root of one word is a prefix string of the root of another word,

and the shorter root is appended a suffix which causes the two words to surface

to the same string. A typical example is the word “altın”. For this word, the

morphological analyzer gives the following parses:

1. altın+Adj

2. altın+Noun+A3sg+Pnon+Nom

3. altı+Num+CardˆDB+Noun+Zero+A3sg+P2sg+Nom

4. alt+Noun+A3sg+Pnon+Gen

5. alt+Noun+A3sg+P2sg+Nom

The problem in this case is, that both “alt” (sub, below, lower) and “altı”

(six) are prefixes of the word “altın” (gold). In fact, this is one of the most

common kinds of morphological ambiguities observed in Turkish [28].
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Automatic disambiguation is very important for high level NLP applications,

such as our machine translation system, as the performance of this kind of systems

tend to degrade, when too many words in an input are ambiguous. As an example,

assume that the user wants to translate the noun phrase

“yeni gelişme”

into English. When the Turkish morphological analyzer is run on the words in

this phrase, the results in the following table are returned:

Table 4.1: Morphological Analysis Results for the Noun Phrase: “yeni gelişme”.

Token Parses

yeni yen+Noun+A3sg+P3sg+Nom
yen+Noun+A3sg+Pnon+Acc
yeni+Adj

gelişme geliş+Verb+Neg+Imp+A2sg
geliş+Verb+PosˆDB+Noun+Inf2+A3sg+Pnon+Nom

In order to translate the input phrase into English, we should take

the Cartesian product of the two parse sets, and feed all elements of this set

into the translation component. For our example, there are a total of 3× 2 = 6

elements in the Cartesian product set. Therefore, the translation algorithm will

run a total of 6 times, consuming precious time. Also, only one of the six elements

fed into translation algorithm will be correct. If the translation templates used

by the system are general enough, we should expect that the incorrect elements

will cause invalid translation results, and will probably degrade the translation

precision.

In order to save time and increase the translation precision, we have developed

a morphological disambiguator for Turkish. This chapter provides an elaborate

description of this tool.



CHAPTER 4. MORPHOLOGICAL DISAMBIGUATION 50

4.1 Related Works

There are two broad categories of POS tagging algorithms which are rule-based

taggers and stochastic taggers [19]. Rule based taggers contain a database of

hand-crafted rules that are designed to minimize ambiguity when applied in a

certain order on each word in the text. Statistical POS taggers (also known

as stochastic taggers), use a training corpus to calculate the likelihood of co-

occurrence of all ordered pairs of tags. By training a probabilistic model such as

Hidden Markov Model (HMM), the tagger tries to disambiguate any given new

text.

The earliest algorithms for automatic POS tagging were the rule-based ones.

The tagger that was an aid in tagging the famous Brown Corpus was a rule-based

one. This tagger, named TAGGIT, was able to disambiguate 77% of the Brown

corpus, the remaining parts of which were tagged manually [9].

Stochastic techniques have proven to be more successful compared to pure

rule-based ones. Church at. al. [8] presented a stochastic method that achieved

over 95% accuracy. Also Cutting at. al. [10] presented a POS tagger based on

a HMM that enables robust and accurate tagging with only a lexicon and some

unlabeled training text requirements. According to the authors accuracy exceeds

96%.

Brill [3] introduced a rule based POS tagger which used a transformation based

method that learns its rules from a training corpus. Brill tagger has performance

comparable to the statistical taggers stated above. Unfortunately, Brill tagging

is not directly applicable to agglutinative languages such as Turkish [27].

In [1], Altıntaş et al. introduce a stemming method for Turkish. After the

morphological analysis step, the best stem is determined using stem-length infor-

mation collected from a disambiguated corpus. The stem whose length is closest

to the average stem-length of the corpus is selected. If there is more than one

result with the same length, the part-of-speech information of the stem is consid-

ered, and the stem that belongs to the more common lexical category is selected.
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Current trend in morphological disambiguation and POS tagging is blending

machine learning techniques and statistic methods into rule based approaches.

Oflazer and Kuruöz [26, 20], developed a POS tagger that uses local neighbor-

hood constraints, heuristics and limited amount of statistical information. Oflazer

and Tür [27] developed a system that combines corpus independent, linguistically

motivated hand-crafted constraint rules, constraint rules that are learned via un-

supervised learning from a training corpus, and additional statistical information

from the corpus to be morphologically disambiguated.

4.2 A Morphological Disambiguator for Turkish

As a part of this thesis, we developed a rule-based morphological disambiguation

tool which is based on the previous work in [2, 7]. Our tool differs from the original

one with its easy to use user interface, and more elastic rule specification format,

which is fully compatible with the output format of the new two-level description

of Turkish[17] prepared for PC-KIMMO[2]. Our morphological disambiguator is

a part of the Supervised Tagger package.

Supervised Tagger package can be used on its own, as it contains an applica-

tion with an easy to use graphical user interface (GUI), that disambiguates input

texts. It can also be used as a library in higher level NLP applications, as we have

done in our example-based translation system. The “supervised” in the name of

the package is due to the fact, that the user can supervise the tagging process

in the half-automatic mode provided by the GUI application. When used as a

library, Supervised Tagger works in full-automatic mode.

Supervised Tagger not only provides morphological disambiguation function,

but also supplies a tokenizer, collocation recognizer and an unknown word rec-

ognizer. It operates as follows on an input text: The text is first divided into

its tokens. Then the morphological analyzer is sequentially run on each token

and a list of parses is associated with each word. Then the unknown word rec-

ognizer is run on the tokens, for which the morphological analyzer has returned
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Tokenizer
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Figure 4.1: The Operation of Supervised Tagger. Note that the Turkish morpho-
logical analyzer is not included in the Supervised Tagger package.

an empty list. After that, the collocations, word sequences that constitute some

special meaning when used together, are detected by the collocation recognizer

and packed into composite tokens. Lastly the morphological disambiguator is

run on the token sequence, which detects and eliminates improper morphological

parses using context sensitive rules.

The operation of Supervised Tagger is depicted in Figure 4.1. In the follow-

ing subsections, we describe each module of Supervised Tagger that have been

mentioned above.
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4.2.1 Tokenizer

Collocation recognition and disambiguation rules are applied to an input text

that is represented as a sequence of tokens. Therefore, tokenization must be

applied to an input text first. Supervised Tagger detects token boundaries mainly

using white-space characters and punctuation marks. The tokenizer is also smart

enough in detecting some composite forms that use punctuation marks, such

as the real and ordinal numbers. Token types given in Table 4.2 are properly

recognized by the tokenizer.

Table 4.2: Token Types Recognized by the Tokenizer.

Type Example

Ordinary words evde, geldim, bugün, etc.
Numeric structures 334, 2,5, %10’unda, 1., 10:45’te, etc.
Punctuations ‘.’, ‘...’, ‘,’, ‘!’, ‘?’, ‘:’, ‘;’, etc.

Detecting sentence boundaries to help the disambiguation process is the job of

the tokenizer. Tokenizer detects the beginning and ending of sentences by mark-

ing sentence delimiting punctuation marks. Unfortunately successfully detecting

sentence boundaries is not a trivial task in its own. Some of the punctuation

marks that are used to delimit sentences (‘.’, ‘!’, ‘?’, ‘:’, ‘...’), are also commonly

used as special markers inside tokens. E.g., period is used in abbreviations and

ordinal numbers; and colon is used in time formats. Handling of ordinal and real

numbers and some other forms containing numbers and punctuation marks are

both handled in this step. Sentence boundaries detected during tokenization are

later refined in the collocation recognition step, as the abbreviations are handled

not in tokenization but in the collocation recognition step. Tokens of some sample

sentences that contain numeric structures are given in Table 4.3.

4.2.2 Unknown Word Recognizer

After the morphological analysis there may remain some tokens that are not

assigned any parses such as some foreign proper nouns or mistyped words. These
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Table 4.3: Tokenization Examples for Numerical Structures.

Sentence Tokens

buraya 3:40’ta geldim. “buraya”, “3:40’ta”, “geldim”, “.”
yarismada 1. olmuşum. “yarişmada”, “1.”, “olmuşum”, “.”
1,5 metre yüksekliğindeydi. “1,5”, “metre”, “yüksekliğindeydi”, “.”

tokens are currently handled by the unknown token recognizer module. This

unknown token recognizer also uses PC-KIMMO as a backend, but applies some

root substitution methods that use phonetical rules of Turkish, in order to find

suitable morphological parses for unknown tokens.

As a simple example we can give the token “bienalde” (at the biennale). The

word “bienal” is not included in the lexicon of the morphological analyzer, so

it is an unknown token. In order to find the correct parses of this token, the

Recognize-Unknown-Token procedure is executed (see Algorithm 3).

Recognize-Unknown-Token(token)
1: n = length(token)
2: parse list← ∅
3: for i = x to n, where x is the position of the first wovel in the token do
4: stem← substring of token from character 1 to i, both inclusive
5: suffix← substring of token from character i+1 to n, both inclusive
6: choose a proper pseudostem
7: result←Morphological-Analsis(pseudostem + suffix)
8: replace pseudostem with stem in each parse ∈ result
9: add all parse ∈ result to parse list

10: end for
11:
12: return parse list

Algorithm 3: Recognize-Unknown-Token. Recognizes the tokens un-
known by the morphological analyzer.

The pseudostem selection is the most critical part in this algorithm. The

pseudostem is selected using some phonetic attributes of the stem and suffix, and

it is basically done as a lookup from a table containing preselected tokens that

are guaranteed to be known by the morphologic analyzer. The results of the

unknown token recognizer for the token “bienalde” are given below:
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1. bienal+Noun+A3sg+Pnon+Loc

2. bienald+Noun+A3sg+Pnon+Dat

3. bienald+Verb+Pos+Opt+A3sg

4. bienalde+Noun+A3sg+Pnon+Nom

Unknown abbreviations, foreign proper nouns, unknown verbs, inflected nu-

meral forms unhandled by the morphological analyzer, etc. can be correctly

handled by the unknown token recognizer.

4.2.3 Collocation Recognizer

The third module of Supervised Tagger, the collocation recognizer, takes the

morphologically analyzed text as input, and tries to detect and combine certain

lexicalized and non-lexicalized collocations in it. The need for such a processing

arises from the fact that a group of words, when appeared subsequently in a

sentence, may behave as a multiword construct with a totally or partially different

function compared to its individual members in the sentence. A typical example

is the construct “gelir gelmez”:

O gelir. ↔ He comes.

O gelmez. ↔ He does not come.

O gelir gelmez ayrıldık. ↔ We left as soon as he comes.

Here the words “gelir” and “gelmez”, when used together, function in that

sentence as an adverb, whereas the words are inflected verbs when considered

individually. There are a number of other non-lexicalized forms which are in

general in the form w + xw + y, where w is the duplicated string of a root and

certain suffixes and x and y are possibly different sequences of other suffixes

[27]. Examples of other non-lexicalized collocations supported are “hızlı hızlı”,

“güzel mi güzel”, “koşa koşa”, “kapı kapı”, “yaptı yapalı” and “şırıl şırıl”.

The collocation recognition is performed according to the rules given in the
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collocation rules file, which contains around 340 rules currently. XML (Extensible

Markup Language) file format is chosen for collocation rules because of its flex-

ibilities. An XSD (XML Schema Definition) file is also used during rule loading

to check the validity of rules in the rules file. A collocation rule is a sequence of

token constraints and an action statement. If the sequence of token constraints

matches a sequence of tokens in the text that is analyzed, the action in the action

statement is applied. An action statement provides a template, using which the

collocation recognizer can combine the tokens in the matched sequence into a

single composite token. For example, the rule that handles the collocation “gelir

gelmez” is given below:

<collocationRule>

<constraint><parse> R+Verb+Pos+Aor+A3sg</parse></constraint>

<constraint><parse> R+Verb+Neg+Aor+A3sg</parse></constraint>

<action>%1 %2+Adverb+When</action>

</collocationRule>

In the rule above, the first constraint matches a token such as “duyar”, “ya-

par”, “görür”, etc. and the second constraint matches tokens such as “duymaz”,

“yapmaz”, “görmez”. In both of the constraints, the stem of the token is repre-

sented with the variable “ R”. In the constraints, the character “ ” and the letter

immediately following it, represents a variable. When the constraint matches a

token, the stem of the token is stored in a data structure which uses this letter as

a label. Since both constraints cause the stems of matching tokens to be stored

in the same data structure labeled as “R”, the stems must be identical. If they

are not, then matching tokens will not be considered as a collocation.

The action statement is used to define a template according to which the

collocation recognizer can combine the matched tokens into a composite token.

Again, some special markers are used in the action statement. These markers

begin with the character “%”. If a number follows “%”, then this number denotes

a token sequence number. If a letter follows “%”, then this denotes a stem stored

in the previously mentioned data structure with the given letter used as a label.



CHAPTER 4. MORPHOLOGICAL DISAMBIGUATION 57

The action statement of our example collocation rule

<action>%1 %2+Adverb+When</action>

declares the parse that should be assigned to the composite token when a sequence

of tokens matches the constraint sequence of the rule. This parse, as declared

by the action statement, contains readings of the first and the second tokens in

the match sequence, seperated with a space character and followed by the tag

“+Adverb+When”.

A constraint does not always have to declare a parse to be matched, but also

token readings can be matched. This kind of rules are especially used for detecting

lexicalized collocations, as it is the case for the example rule given below:

<collocationRule>

<constraint><token>hiç</token></constraint>

<constraint><token>kimse</token></constraint>

<action>%1 %2+Pron</action>

</collocationRule>

This rule combines tokens that have readings “hiç” and “kimse” into a single

token “hiç kimse” which is then labeled as pronoun. It is also possible to use

regular expressions when writing token constraints. An examplary rule is given

below:

<collocationRule>

<constraint><token matchType="regex">m[ös]</token></constraint>

<constraint><token>.</token></constraint>

<action>%1.+Adj</action>

</collocationRule>

This rule is an example to the collocation rules that detect abbreviations.
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Two abbreviations, “mö.” and “ms.” are detected by this rule. Token matching

by regular expressions is case sensitive while the ordinary token matching is case

insensitive.

4.2.4 Morphological Disambiguator

Morphological analysis of a Turkish word usually returns multiple morpholog-

ical parses. This ambiguity is due to the agglutinative nature of the language.

Morphological disambiguator module of Supervised Tagger, using a set of context

sensitive, hand-crafted rules, aims to reduce the number of parses associated with

each word.

Disambiguation is performed using two types of disambiguation rules, namely

choose and delete rules. These rules are applied only if a word is in the context

specified by the rule. By being in the context, we mean that the surrounding

words match the constraints of the rule. A disambiguation rule must target a

token, i.e. the token that this rule aims to disambiguate primarily. A rule can

also specify neighboring tokens, each described by an offset value, i.e., the relative

position of the neighbor according to the target.

A high percentage of disambiguation rules in our system are ported from

[32]. The difference is that our tagger uses a more expressive formatting for

disambiguation rules when compared to the former work. Again, the XML file

format is preferred for the disambiguation rules and an XSD file is supplied to

check the validity of a newly added rule during rule loading. An examplary rule

is given below:

<chooseRule>

<neighbour offset="-1"><parse>Dat</parse></neighbour>

<target><parse>düş+Verb</parse></target>

</chooseRule>
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This rule is one of the many choose rules that are stored in the disambiguation

rules file. Most of the choose rules in this file are motivated by the grammatical

constraints of Turkish; so they are independent from the text category. When

choose rules are applied to a certain word, if the constraints of the rule are

satisfied, then the target token and its ambiguous neighbors are disambiguated

at once. As an example, for the noun phrase “çocuğun kitabı”, the morphological

analyzer, by analyzing the words in the phrase independently, returns us the

parses given in Table 4.4.

Table 4.4: Morphological Analysis Results for the Phrase: “çocuğun kitabı”.

Token Parses

çocuğun çocuk+Noun+A3sg+Pnon+Gen
çocuk+Noun+A3sg+P2sg+Nom (correct)

kitabı kitap+Noun+A3sg+Pnon+Acc (correct)
kitap+Noun+A3sg+P3sg+Nom

A rule in our disambiguation rules file,

<chooseRule>

<neighbour offset="-1"><parse>A3sg+Gen</parse></neighbour>

<target><parse stemAllowed="false">Noun+P3sg</parse></target>

</chooseRule>

matches the noun phrase “çocuğun kitabı”. When we apply this rule on the noun

phrase, not only the word “kitabı” is disambiguated, but also the appropriate

parse for its neighbor, “çocuğun”, is chosen.

Another set of rules, called delete rules, are also used in the disambiguation

process. Delete rules are mainly used to remove very rare parses of some common

words. This set of rules only affect the word that is being disambiguated, and
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they work only in a unambiguous context. An examplary delete rule

<deleteRule>

<target><token>biz</token><parse>Noun</parse></target>

</deleteRule>

drops the infrequent noun parse of the word “biz” in favor of the very commonly

used pronoun parse.

The rules in the disambiguation rules file are grouped according to their cat-

egories. They are also ordered according to their generalities; the more a rule is

stricter (specific), the higher in the file it would appear. The order of the rules

is very important, because if the ordering is wrong, then the disambiguation will

produce more wrong results.

4.3 Morphological Annotation Tool

The developed morphological disambiguator is integrated with a graphical user-

interface, so that it can be used as a morphological annotation tool. In fact, our

test data that is used to evaluate the disambiguation performance is prepared

using this annotation tool. A human expert can use this tool to morphologically

annotate a corpus.

The main graphical user-interface window of the annotation tool is given in

Figure 4.2. The user can load a file using the “File” menu and execute the

disambiguation process using the “Analysis” menu. The user can annotate the

text by the help of the disambiguator, and save the completely or partially tagged

text. If the user wants, he can continue to tag the partially tagged text later.

The top portion of the window shows the text and the bottom part shows the

morphological parses of the selected word in the top portion. The parses that

are dropped by the morphological disambiguator are colored in red (e.g., the 2nd

parse in Figure 4.2). If only one parse is left at the end of the disambiguation,
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Figure 4.2: Morphological Annotation Tool Operating on a Newspaper Article
(Accessible at http://www.radikal.com.tr/haber.php?haberno=202413).

i.e., the token is fully disambiguated, that parse is automatically selected by

the disambiguator. A human annotator can accept the selected parse by the

morphological disambiguator, or he can select another parse by just clicking the

parse that he thinks that it is the correct one.
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4.4 Evaluation

4.4.1 Evaluation Method

In order to evaluate the performance of our morphological disambiguator, we cre-

ated a testing data set that consists of 15 randomly selected Turkish articles from

online newspapers. First, the selected articles are manually tagged so that the

results of the morphological disambiguator can be compared with these manually

tagged articles in order to evaluate its results. Initially there were 2454 tokens in

the testing data set. The human expert detected 77 collocations in the testing

data set, and there were 2370 tokens (single or composite) after all collocations

are manually tagged. 329 of these 2370 tokens are punctuation tokens, and 2041

of them were non-punctuation tokens. Each of 2370 tokens is correctly tagged

with a single correct parse by the human expert. The human expert also selected

a correct parse for the tokens that are unhandled by the morphological analyzer

(unknown tokens).

Each token is assigned a set of morphological parses by the morphological

disambiguator. We expect that one of these parses to be the correct one. A

token is fully disam-biguated if the disambiguator has dropped all parses except

the correct one. We call the token correctly disambiguated if its multiple parses

contain its correct parse.

We used the common precision and recall metrics in or-der to evaluate out

morphological disambiguator. Precision measures the ratio of appropriate parses

received from the morphological disambiguator to the total number of parses,

while the recall measures the ratio of correctly disambigu-ated tokens to the total

number of tokens. Precision and recall are calculated as given below:

Precision =
Number of correct parses in the result set

Total number of parses in the result set

Recall =
Number of correctly disambiguated tokens in the result set

Total number of tokens in the result set
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4.4.2 Evaluation Results

After applying the morphological analyzer and the unknown token recognizer

steps of the disambiguator, there were 2454 tokens and there were 4383 parses

for those tokens. The distribution of the tokens into the number of parses can be

seen in Table 4.5.

Then, the collocation recognizer is executed, and it results are given in Table

4.6. The collocation recognizer correctly found all of the 77 collocations. So, we

can say that our collocation recognizer worked with 100% accuracy for this set.

Although it worked with 100% accuracy for this set, some collocations can be

missed in a larger testing data set. Our collocation recognizer is not be complete,

however its coverage is very high. According to the results given in Table 4.6, the

parses of each token contain its correct parse (100% recall), and 56.1% of all the

parses in the result set are correct (56.1% precision). The results in Table 4.6 also

indicate that the average number of parses per token is 1.78 (=2370/4226), and

a token can have a maximum of 12 parses. These values were measured before

the disambiguation process.

We calculated the precision and recall levels after applying the choose and

delete rules (see Tables 4.7 and 4.8). The precision increases from 56.1% to 71.2%

by applying the choose rules with only a small sacrifice (1.3%) from recall. The

average number of parses per token also drops to 1.39 after the application of the

choose rules.

Finally, we apply the delete rules in order to drop rare parses of certain tokens.

By doing that we achieve a precision of 81.2% and the recall becomes 98.5%.

The average number of parses per token also drops to 1.21. This is the overall

performance of our morphological disambiguator. As a result, our disambiguator

reduces the level of ambiguity from 1.78 parses per token to 1.21 parses per token

with 81.2% precision and 98.5% recall values. In general, precision and recall

are inversely proportional to each other, i.e., it is usual to sacrifice from recall in

order to improve precision. As it can be seen from the results, the decrease in

recall is small when compared to the much significant increase in the precision.
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Table 4.5: The Results After the Morphological Analysis and Unknown Token Recog-
nition.

# of parses # of tokens

1 1340
2 701
3 190
4 157
5 29
6 16
7 1
8 10
9 1
10 1
11 0
12 8

Total Number
of Tokens

2454

Total Number
of Parses

4383

Table 4.6: The Results After Running the Collocation Recognizer.

# of parses # of tokens
# of correctly
disambiguated
tokens

1 1304 1304
2 674 674
3 172 172
4 155 155
5 28 28
6 16 16
7 1 1
8 10 10
9 1 1
10 1 1
11 0 0
12 8 8

Number of
Collocations

77

Total Number
of Tokens

2370

Total Number
of Parses

4226

Number of
correctly
disambiguated
tokens

2370

Precision 56.1%

Recall 100%
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Table 4.7: The Results After Applying Choose Rules.

# of parses # of tokens
# of correctly
disambiguated
tokens

1 1820 1796
2 382 380
3 70 67
4 72 71
5 7 6
6 5 5
7 1 1
8 6 6
9 1 1
10 0 0
11 0 0
12 6 6

Total Number
of Tokens

2370

Total Number
of Parses

3283

Number of
correctly
disambiguated
tokens

2339

Precision 71.2%

Recall 98.7%

Table 4.8: The Results After Applying Delete Rules.

# of parses # of tokens
# of correctly
disambiguated
tokens

1 2010 1984
2 271 266
3 56 53
4 22 21
5 3 2
6 7 7
7 0 0
8 1 1
9 0 0
10 0 0
11 0 0
12 0 0

Total Number
of Tokens

2370

Total Number
of Parses

2873

Number of
correctly
disambiguated
tokens

2334

Precision 81.2%

Recall 98.5%



Chapter 5

Learning From User Feedback

The availability of multiple possible template combinations that can be used to

translate a given phrase and the ambiguities faced when converting the input

phrase from the surface to the lexical form, results in multiple translation results

for a given input. In order to present the user the most reliable results before the

less reliable ones, we take advantage of the confidence factor assignment approach

as described in Section 2.5.

The confidence factors are calculated merely from the translation examples in

the learning phase. A problem with this scheme of confidence factor assignment is,

that it does not consider the co-occurrence of the translation templates. Certain

templates may be assigned low confidence factors when considered individually,

but their co-existence in a translation result may require a different treatment,

as the combination deserves a higher confidence. The reverse can also be true. In

[29], Öz and Çiçekli proposed a modification to the original scheme of confidence

factor assignment, that takes template combinations into consideration. This

method calculates the confidence factors for template combinations in the learning

phase, and once this is done the factors are never updated.

Moreover, the confidence factors learned from the translation examples in the

learning phase may not always overlap with user expectations. Translation results

correct for a given context, may be inappropriate for another context. A human

66
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translator can translate a phrase differently depending on the characteristics of

the context of the text. Besides, different users may perceive the same translation

result differently, depending on their background.

We could have encouraged the user, to add more translation examples in

order to teach his preferences to the system. By adding enough number of new

translation examples, the user can achieve to adjust the system to give the results,

that best match his expectations, at the top. The disadvantage of this approach

lies in its complexity. An ordinary user would not be able to estimate the number

of new examples to add, in order to fine-tune the confidence factors assigned to

the templates.

Instead, we propose a different mechanism for incorporating useful user feed-

back into the translation result ordering mechanism, which is one of the new fea-

tures of our translation system. After each translation, the user has the option of

evaluating the translation results in terms of their correctness. The system, using

the information gathered by user interactions, ensures that the results marked

in the evaluation as correct will be ranked above the results that are marked as

incorrect, during the next translation of the same phrase.

The user interface provides two methods for inputting user feedback. The

first one, Shallow Evaluation, lists the seach results in their bare surface-level

representations; and the user can either mark a result as correct or incorrect. The

second type of analysis is the Deep Evaluation, which is targeted for advanced

users and provides the option of evaluating individual nodes of the parse trees

built for each translation result. After inputting user feedback, the system learns

context-dependent co-occurrence rules from that information.

5.1 Context-Dependent Co-occurrence Rules

In the previous versions of our system, only the confidence factors associated

with translation templates were used for sorting the translation results. This

method is not flexible, as the confidence factors are calculated in the learning
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phase and not updated throughout the system lifetime. Therefore, we propose

the use of context-dependent co-occurrence rules in order to incorporate the user

preferences into the result ordering mechanism. In our system, context-dependent

co-occurrence rules are learned from user feedback in the translation phase, and

continually updated throughout the lifetime of the system.

A context-dependent co-occurrence rule specifies a tree arrangement of trans-

lation templates and a list of contexts, each associated with a seperate aggregate

confidence factor. For example, the rule

1(2, 3(5, 6), 4(7)) – [8(2), 9(4)](0.7) (5.1)

specifies the template tree 1(2, 3(5, 6), 4(7)) and it has a single context [8(2), 9(4)],

which is associated with the aggregate confidence value of 0.7. The template tree

of this rule is depicted graphically in Figure 5.1. Here the numbers on the tree

nodes denote the unique identifiers associated with each translation template.

1

2 3 4

5 6 7

Figure 5.1: The Tree of Translation Templates of Rule (5.1).

In general, the tree structure used in co-occurrence rules are specified by the

following context-free grammar (CFG):

T → template id | template id(ChildList) (5.2)

ChildList → T | ChildList, T

where T is the start symbol of the grammar. The ordering of the childen of a

given node is not negligible, e.g., two trees, 1(2, 3) and 1(3, 2) are not equivalent.

A single template tree can be associated with several contexts, all of which
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having a seperate aggregate confidence factor. An examplary context-dependent

co-occurrence rule is

1(2, 3) – [4(1), 5(3)](0.7) – [6(1), 7(4), 8(2)](0.9), (5.3)

in which a tree of translation templates, 1(2, 3), is followed by two contexts,

[4(1), 5(3)] and [6(1), 7(4), 8(2)], associated with aggregate confidence factors 0.7

and 0.9, respectively. The rule 5.3 is depicted graphically in Figure 5.2.

1

2 3

4

5

1

2 3

6

7

8

CF = 0.7 CF = 0.9

1

3

1

4

2

Figure 5.2: The Context-Dependent Co-occurrence Rule (5.3).

A context such as, [4(1), 5(3)], specifies a sequence of translation templates,

where each template is a child of the next template. In addition to that, each

parent is marked with a subscript denoting the position of the child in the parent’s

list of children. For example, for the context [4(1), 5(3)], the tree 1(2, 3) is the 1st

child of template 4; and template 4 is the 3rd child of template 5.

As we aim bidirectinal translation, two sets of co-occurrence rules are main-

tained in the system, one of which is used in English to Turkish translations and
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the other in the reverse direction. As the user runs the translation component

and evaluates the generated translation results, the co-occurrence rules are con-

tinually updated, i.e., new rules are learned and context information of existing

rules are updated.

5.1.1 Using the Context-Dependent Co-occurrence Rules

A co-occurrence rule specifies an aggregate confidence factor. If the parse tree

built for a translation result has a subtree matching the rule, then this aggregate

confidence factor overrides the individual confidence factors in that subtree. For

example, assume that during the translation of the English phrase

“red haired man” (5.4)

the translation templates given below are used:

1 : X1
Adj Noun Sg ˆDB+Adj+Ed X2

Noun +Sg↔ (5.5)

Y 1
Adj Noun A3sg Pnon Nom ˆDB+Adj+With Y 2

Noun +A3sg +Pnon +Nom

2 : X1
Adj X2

Noun Sg ↔ Y 1
Adj Y 2

Noun A3sg Pnon Nom

3 : man+Noun↔ adam+Noun

4 : red+Adj↔ kızıl+Adj

5 : hair+Noun +Sg↔ saç+Noun +A3sg +Pnon +Nom

where the English to Turkish confidence factors of individual templates are

0.8, 0.7, 1.0, 0.5, and 1.0 respectively. Suppose that the parse tree in Figure 5.3

is built during the generation of a translation result,

“kızıl saçlı adam”. (5.6)

Therefore, the confidence value of this translation is

confidence = 0.8× 0.7× 1.0× 0.5× 1.0 = 0.28. (5.7)
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1

2 3

4 5

Figure 5.3: Parse Tree Built for the Translation of Phrase 5.4.

Now, suppose that a co-occurrence rule that specifies an aggregate confidence

factor for the partial translation “red haired → kızıl saçlı”, such as

2(4, 5) – [1(1)](0.9), (5.8)

is learned beforehand. Then, as the template tree specified in the co-occurrence

rule, matches the subtree 2(4,5) in the parse tree of the result and the context of

the matching subtree is [1(1)], the aggregate confidence factor specified in the rule

overrides the original confidence factors of the nodes in the matching subtree;

and the new confidence value of the translation result becomes

confidence = 0.8× 0.9× 1.0 = 0.72. (5.9)

Now we can formalize the confidence value calculation method exemplified

above by giving Algorithm 4. Running this algorithm with the parameter node

set to the root of the parse tree in Figure 5.3 will also return the confidence value

of 0.72 as the result.

Confidence-Value-Exact defines the confidence value of a parse tree re-

cursively. If at any point of recursion, a rule matching the subtree rooted at the

current parse tree node can be found, and a context matching the context of the

current parse tree node is available in the rule, then the associated aggregate

confidence value is returned. If these conditions are not satisfied, then the values

returned by Confidence-Value-Exact(child), for all child in the children set

of node, are multiplied with the confidence factor of the template represented by
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Confidence-Value-Exact(node)
1: tree← the tree rooted at node
2: context← the context of node
3: if there exists a co-occurrence rule R that matches tree and

there exists a context, R context, in R, where R context = context then
4: return the aggregate confidence factor associated with R context
5: else
6: confidence← confidence factor of the template represented by node
7: children← {child : child is a child of node}
8: for all child ∈ children do
9: confidence← confidence×Confidence-Value-Exact(child)

10: end for
11: return confidence
12: end if

Algorithm 4: Confidence-Value-Exact. Returns the confidence value of a
translation result.

node; and the result of this multiplication is retured.

5.1.2 The Concept of User Profiles

The context-Dependent co-occurrence rules learned from user feedback reflect the

preferences of a particular user. Translation characteristics vary from one human

translator to another, and usually there are numerous correct translations of a

given text. Therefore, we use the concept of user profiles in our system.

When a user evaluates the results of a translation, the co-occurrence rules

learned from the evaluation are kept in his own user profile. Thus, other user

profiles in the system are not affected. Also, a single user can create multiple

profiles, each of which is used for a different text context — such as science,

literature, law, etc. — that has a distinct characteristic.
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5.2 Learning Context-Dependent

Co-occurrence Rules

In our system, the context-dependent co-occurrence rules are learned from user

feedback. After retrieving the translation results, a user has the option of evalu-

ating them. As stated earlier, the system provides two different evaluation inter-

faces, the Shallow Evaluation, which provides minimum detail for inexperienced

users, and the Deep Evaluation, which is targeted for advanced users.

5.2.1 Deep Evaluation of Translation Results

The Deep Evaluation is targeted for advanced users and can be used to learn

more fine-tuned co-occurrence rules compared to Shallow Evaluation. In the Deep

Evaluation, the user can evaluate individual nodes of the parse tree associated

with each translation result.

The user interface provides two check boxes for each node of a parse tree in

order to input the correctness judgement from the user. The first check box,

Check Box 1, can be set to 3 different values, which are correct (��), incorrect

(�) and indeterminate (�). The indeterminate state can be chosen for a node

when the user does not want to evaluate the subtree rooted at that one. Check

Box 1 is always shown to the user, whereas the second check box, Check Box

2, is only shown when Check Box 1 is set to incorrect and the node also has a

child evaluated as incorrect. Check Box 2 has two states, namely correct (��) and

incorrect (�). The different configurations of the two check boxes constitute a

total of 5 states for the nodes, the meanings of which are explained in detail in

Table 5.1.

For a given node, the user determines the state of Check Box 1 by answering

the question: “Is the translation implied by the subtree rooted at this

node correct?”. Therefore, if Check Box 1 is set to (��) for a node, then the

partial translation implied by the subtree rooted at that node must be correct.
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Table 5.1: States Used in Deep Evaluation.

State Symbol Explanation

1 � This is the initial state assigned to every node at the be-
ginning of the evaluation. It simple denotes, that no node
exists in the subtree rooted at this node that is evaluated
by the user.

2 �� This state denotes, that the user evaluated the partial
translation, which is implied by the nodes in the subtree
rooted at this node, as correct. It also indicates, that all
children of this node are also in state 2.

3 � This state denotes, that the user evaluated the partial
translation, which is implied by the subtree rooted at this
node, as incorrect. It also indicates, that the user has not
evaluated any of the children nodes as incorrect, or the node
is a leaf.

4 �� This state denotes, that the user evaluated the partial
translation, which is implied by the subtree rooted at this
node, as incorrect. The difference from state 3 is, that, in
order for a node to be in this state, the node has to have a
child that is evaluated as incorrect.

5 ��� This state has all properties of state 4. In addition to that,
this state denotes that, although the translation is erro-
neous, the use of this translation template in the current
context is not the cause of the error. That is, the transla-
tion error is isolated in some children of this node.

Likewise, if it is set to (�) then the partial translation implied by the subtree

rooted at that node is incorrect.

Similarly, for a given node, the user determines the state of Check Box 2 by

answering the question: “Can the translation error be isolated to some

erroneous child(s) of this node?”. If the partial translation implied by the

subtree rooted at a node is incorrect, that node may not be the actual source of

the translation error. In other words, the error can be isolated at one or more

children nodes. If this is the case, the Check Box 2 is set to (��) denoting that the

node is not a cause for the erroneous translation. If the error cannot be isolated

to a child node, then Check Box 2 is set to (�).
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As an example, suppose that the translation system knows only the following

translation templates:

1 : X1
Adj Noun Sg D̂B+Adj+Ed X2

Noun +Sg↔ (5.10)

Y 1
Adj Noun A3sg Pnon Nom D̂B+Adj+With Y 2

Noun +A3sg +Pnon +Nom

2 : X1
Adj X2

Noun Sg ˆDB+Adj+Ed↔ Y 1
Adj Y 2

Noun A3sg Pnon Nom ˆDB+Adj+With

3 : blond+Adj X1
Noun +Sg↔

sarı+Adj saç+Noun +A3sg +Pnon +Nom ˆDB+Adj+With YNoun +A3sg +Pnon +Nom

4 : hair+Noun +Sg↔ saç+Noun +A3sg +Pnon +Nom

5 : woman+Noun↔ kadın+Noun

6 : yellow+Adj↔ sarı+Adj

where the Turkish to English confidence factors are 0.9, 0.8, 0.5, 1.0, 1.0 and 1.0,

respectively. Assume that the user has translated the Turkish phrase

“sarı saçlı kadın”, (5.11)

and the translation system returned two different results, as shown in Figure 5.4.

1

2 5

6 4

3

5

``yellow haired woman´´ ``blond woman´´
(a) (b)

Figure 5.4: Translation Results for Examplary Phrase 5.11.

The first result, “yellow haired woman” is a literal translation and it is less

appropriate when compared to the second one, “blond woman”. However the

confidence value of the first translation, 0.9 × 0.8 × 1.0 × 1.0 × 1.0 = 0.72, is

greater than the confidence value, 0.5 × 1.0 = 0.5, of the second one; therefore,
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the first translation is listed over the second one.

However, suppose that the user prefers the second translation, “blond woman”,

over the first one. In that case, the user may enter the Deep Evaluation screen

to teach his preference to the system.

To simplify the evaluation process, rather than showing the contents of the

non-atomic templates as node labels, the Deep Evaluation screen shows the partial

translations implied by those node. The partial translation implied by a node is

defined recursively, and found by replacing each variable in the template by the

partial translation implied by the corresponding child node. Since the leaf nodes

always represent an atomic template in the parse tree of a result, the partial

translation implied by a node can always be found. Also the partial translation

of the root node is equal to the lexical form of the translation result associated

with that tree. For example, for the template tree of the first result in our

example, rather than showing the contents of the 2nd template as the label of the

node 2, the Deep Evaluation screen shows the partial translation implied by node

2, which is

sarı+Adj saç+Noun +A3sg +Pnon +Nom ˆDB+Adj+With→ (5.12)

yellow+Adj hair+Noun +Sg ˆDB+Adj+Ed

At the beginning of the evaluation, in order to simplify the user interface, the

roots of the translation trees are collapsed, i.e., the children of the root nodes are

hidden from the user. The children of a node are only expanded (shown) when

the partial translation implied by that node is evaluated as incorrect by the user.

By using this method, the user marks paths from the root to the subtrees that

are the sources of erroneous translation.

For translation results that are perceived as correct by the user, the evalua-

tion is simple. When the user marks the root node of the parse tree of such a

translation result as correct, all other nodes in the parse tree are considered to be

correct as well. This is intuitive, as we expect a correct translation to be made up

of partial translations, that are correct in the context of the translated phrase. In
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Figure 5.5: Evaluation of the Translation Result Given in Figure 5.4(b).
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Figure 5.6: Evaluation of the Translation Result Given in Figure 5.4(a).

our example, the user perceives the second translation result, “blond woman”, as

correct. So, the node 5 in the parse tree of that result will be marked as correct

along with the root node. The Deep Evaluation process for this result is depicted

in Figures 5.5(a–b).

For the translation results that are perceived as incorrect, or inappropriate,

by the user, the evaluation requires more attention. The user starts by setting

the root node to state �, and walks through the tree by expanding the nodes

on the paths to erroneous subtrees. For our examplary translation result “yellow

haired woman”, the process of Deep Evaluation is depicted in Figures 5.6(a–e).

One should note that, although this translation result is not a completely wrong
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one, it is less desired compared to the other result. To teach his preference to the

system, a user can treat such a result as if it was incorrect1.

Initially, only the root node is shown to the user (Figure 5.6(a)), along with

the translation result in its lexical form. When the user sets the state of the root

node to �, the root node is expanded and its children are shown (Figure 5.6(b)).

As the partial translation implied by node 5, “kadın+Noun→ woman+Noun”,

is correct, the user sets the state of node 5 as ��. Since the partial translation

implied by node 2, as given in 5.12, is perceived as incorrect, the user sets the

state of node 2 to � (Figure 5.6(c)). Also, as the error can be isolated in node 2,

the user changes the state of the root node to ��� (Figure 5.6(d)).

Lastly, the user evaluates the nodes 6 and 4. Node 6 implies the partial trans-

lation “sarı+Adj → yellow+Adj”. Using this node in the context of [2(1), 1(1)] is

not wrong. Similarly, node 4 could well be used in the same context correctly if

node 6 was not there. In other words, the cause of the error is using nodes 6 and

4 together. When considered separately, using these nodes in the context they

appear is not wrong. So, in the Deep Evaluation, the states of both of the nodes

are set to �� by the user (Figure 5.6(e)).

In order to undestand the Deep Evaluation of the translation results given

above better, see Appendix A, which provides images of the actual Deep Evalu-

ation GUI.

5.2.2 Determining The Desired Confidence Values

Regardless of the evaluation method used, each translation result is either marked

as correct or incorrect. The user also has the option of leaving a translation result

unevaluated. In that case, no co-occurrence rule is learned from that particular

translation result. As stated earlier, we use the symbols �, � and ��, to denote

1In Deep Evaluation, treating a not-that-appropriate result as if it was incorrect is safe,
as the system will never assign a 0 confidence factor to such a translation result. Learned
co-occurrence rules will be fine-tuned to place this kind of results just below the more desired
ones.
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Table 5.2: Sample Translation Result Evaluation.

Translation Original Evaluation
Result Confidence Value Assessment

A 0.9 �
B 0.8 �
C 0.6 ��
D 0.4 ��
E 0.3 �

unevaluated, incorrect and correct translation results, respectively.

The co-occurrence rules learned from a user evaluation guarantee, that during

the next translation of the same input phrase, results marked as correct will be

placed above results marked as incorrect, i.e., learned rules will adjust the con-

fidence value of correct and incorrect translations in such a way, that confidence

values of correct translations will be higher than that of incorrect translations.

Suppose that the translation of an input phrase returned 5 different results,

A, B, C, D and E; and the user evaluated the results as shown in Table 5.2.

From Table 5.2, we can see that the translation results except B were evaluated.

While A is the result with the highest confidence value, it is marked as incorrect.

Although, C and D are marked as correct, they are assigned lower confidence

values compared to A, thus ranking below A. Therefore, the co-occurrence rules,

that will be learned from the evaluation should change the order of A, C and D in

such a way, that A comes below C and D. Even though E is marked as incorrect,

we do not have to change its position in the ordering, since there are no correct

results with confidence values lower than that of E. So, we will not learn any rules

from E.

The next step for learning co-occurrence rules, is to determine desired con-

fidence values for the translation results. In order to do that, we have to cal-

culate 6 values, namely lower hinge, upper hinge, length1, length2, gapavg and

scale factor. The first four of these values for the example in Table 5.2 are shown

in Figure 5.7.

Let the incorrect translation result with the highest confidence value be
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upper_hinge

lower_hinge
length1length2

R inc_high

R cor_low

Figure 5.7: lower hinge, upper hinge, length1 and length2 for the Example in
Table 5.2.

Rinc high and the correct result with the lowest confidence value be Rcor low. Up-

per hinge is the confidence value of the correct result that is ranked just above

Rinc high. If such a correct result does not exits, then upper hinge = 1. Symmetri-

cally, Lower hinge is the confidence value of the incorrect result that is ranked just

below Rcor low. If such an incorrect result does not exist, then lower hinge = 0.

Also, length1 and length2 are defined as

length1 = |upper hinge− confidenceOf(Rcor low)|, (5.13)

length2 = |lower hinge− confidenceOf(Rinc high)|. (5.14)

The average gap, gapavg, between the original confidence values of subsequent

evaluated translation results in range [lower hinge, upper hinge] for Table 5.2 is

gapavg =
(0.9− 0.6) + (0.6− 0.4) + (0.4− 0.3)

3
= 0.2. (5.15)

Lastly, the scale factor is calculated as

scale factor =
upper hinge− lower hinge

length1 + gapavg + length2
, (5.16)
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which is (1− 0.3)/(0.6 + 0.2 + 0.6) = 0.7/1.4 = 0.5 for our examplary evaluation.

After calculating the scale factor, the desired confidence value of a transla-

tion result R, that is in range (lower hinge, upper hinge) is assigned by Formula

5.17.

desired

confidence of R
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

confidenceOf(R) if R is not evaluated,

upper hinge− (upper hinge−
confidenceOf(R))× scale factor if R is correct,

lower hinge + (confidenceOf(R)−
lower hinge)× scale factor if R is incorrect.

(5.17)

For our examplary evaluation, the correct results have been ranked above the

incorrect ones after assigning the desired confidence values, as shown in Table

5.3. The process is depicted graphically in Figure 5.8.

Table 5.3: The New Ranking of the Results in Table 5.2.

Translation Desired Evaluation
Result Confidence Value Assessment

B 0.8 �
C 0.8 ��
D 0.7 ��
A 0.6 �
E 0.3 �

One should note, that our formula in 5.17 preserves the order among correct

results, which is also true for incorrect results.

Now, let us return back to our example translation of the Turk-

ish phrase (5.11):

“sarı saçlı kadın”.

In our examplary scenario, the translation system had returned two different
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Figure 5.8: Assigning the Desired Confidence Values. (θ = arccos(scale factor))

translation results for this input phrase, which are shown below with the core-

sponding confidence values:

“yellow haired woman”: 0.72,

“blond woman”: 0.5.

In this case, when we apply the methods described in this section we will obtain

the following parameters:

lower hinge = 0.0

upper hinge = 1.0

length1 = 0.5

length2 = 0.72

gapavg = 0.22

Therefore,

scale factor =
upper hinge− lower hinge

length1 + gapavg + length2

=
1

0.5 + 0.22 + 0.72

= 0.694.
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Using Formula (5.17), the desired confidence values for the translation results

become:

“yellow haired woman”: 0.499, (5.18)

“blond woman”: 0.653.

One should note, that the desired confidence values comply with the expecta-

tions of the user. The more proper result, “blond woman”, has a higher desired

confidence value then that of the first result, “yellow haired woman”.

The last step in learning context-dependent co-occurrence rules consists of

their extraction from the parse trees using the desired confidence values calculated

as described above. The next subsection shows how to realize this.

5.2.3 Extracting Context-Dependent Co-occurrence Rules

The last step in learning co-occurrence rules, is to extract them from the parse

trees of the evaluated translation results. After finding the desired confidence

values for each translation result in range (lower hinge, upper hinge), the sys-

tem extracts context-dependent co-occurrence rules from those results, using the

Extract-Rules procedure given in Algorithm 5.

The first parameter to this procedure is an array of translation results,

while the second parameter is an array of desired confidence values. The

desired confidence value for each translation result is calculated as described

in Section 5.2.2. Extract-Rules uses Extract-Rules-Incorrect and

Extract-Rules-Correct procedures (given in Algorithms 6 and 7, respec-

tively), as subroutines.

Extract-Rules-Incorrect procedure is used to extract co-occurrence

rules from the parse trees of translation results that are marked as incorrect by the

user. Extract-Rules-Incorrect performs a depth-first traversal on the parse

tree of a given incorrect result. During the traversal, subtrees rooted at nodes

marked as � or ��� are not explored, since we want to learn rules from subtrees
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Extract-Rules(Results, new confidences)
1: if length[Results] �= length[new confidences] then
2: Error: lengths of the two arrays must match
3: else
4: for i = 1 to length[Results] do
5: root← root node of Results[i]
6: context← [ ] //an empty context.
7: if root is in state �� then
8: Extract-Rules-Correct(root, context, new confidences[i])
9: else if root is in state �, ��or ��� then

10: Extract-Rules-Incorrect(root, context, new confidences[i])
11: end if
12: end for
13: end if

Algorithm 5: Extract-Rules. Extracts context-dependent co-occurrence
rules from evaluated translation results.

that cause the incorrect translation. Therefore, Extract-Rules-Incorrect

learns context-dependent co-occurrence rules only from subtrees rooted at nodes

that are marked as � and ��.

The children of a node marked as � will never be explored during the depth-

first traversal, since such a node cannot have an incorrect children. On the other

hand, the childen of nodes marked as �� or ��� will be explored, as this kind of

a node must have at least one incorrect children.

Extract-Rules-Incorrect procedure takes 3 arguments. The first one is

a node in the parse tree of a translation result, the second one is the context in

which the node exists. The last argument is the desired confidence for the subtree

rooted at the given node. This procedure works as follows: Assume that a node p

has children c1, c2, . . . , cn, where c1, c2, . . . , ck are marked as incorrect (�, ��
or ���) and ck+1, . . . , cn are either marked as correct (��) or left unevaluated (�).

When Extract-Rules-Incorrect is called for the node p, with the desired

confidence value desired-confidencep, first a context-dependent co-occurrence rule

is learned, if appropriate. The learned rule will have an aggregate confidence

factor that is lower than the original confidence value of the subtree rooted at p,

penalizing the subtree.
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Extract-Rules-Incorrect(node, context, desired confidence)
1: if state of the node is �, �� or ��� then
2: tree← the tree rooted at node
3: if state of node is � or �� then
4: Learn-Rule(tree, context, desired confidence)
5: end if
6: old confidence← the confidence value of tree
7: incorrect children← {c : c is a child of node in �, �� or ��� state}
8: if incorrect children �= ∅ then
9: β ← (desired confidence/old confidence)1/|incorrect children|

10: for each child ∈ incorrect children do
11: index← getChildIndex(node, child)
12: child context← add(copy(context), 〈node, index〉)
13: child confidence← confidence value of the subtree rooted at child
14: Extract-Rules-Incorrect(child, child context, β × child confidence)
15: end for
16: end if
17: end if

Algorithm 6: Extract-Rules-Incorrect. Extracts context-dependent co-
occurrence rules from incorrect translation results.

Then, an incorrect-child-multiplier value β is calculated as

β = k

√
desired-confidencep

original-confidencep

(5.19)

where original-confidencep is the original confidence value of the tree rooted at

node p. This multiplier is used to distribute the penalty evenly to each of the

incorrect child nodes of p. One should note that, the inequality

desired-confidencep/original-confidencep < 1

will always hold, as p is incorrect, therefore β < 1 is also true.
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Next, for each child ci, 1 ≤ i ≤ k, Extract-Rules-Incorrect is called

recursively with the desired confidence parameter

desired-confidenceci
= β × original-confidenceci

.

Thus, for 1 ≤ i ≤ k,

desired-confidenceci
< original-confidenceci

.

Extract-Rules-Correct is very similar to Extract-Rules-Incorrect,

except it is used to learn rules from correct translations. As all nodes in the parse

tree of a correct translation result would be marked as ��, the depth-first traver-

sal performed by recursive calls of Extract-Rules-Correct will effectively

expore all the nodes in such a tree. This procedure works as follows: Assume

that a node p has children c1, c2, . . . , cm, where all the children are marked

as correct. When Extract-Rules-Correct is called for the node p, with

the desired confidence value desired-confidencep, first a context-dependent co-

occurrence rule that rewards the subtree rooted at p is learned, if appropriate.

Then a correct-child-multiplier value δ is calculated as

δ = m

√
desired-confidencep

original-confidencep

(5.20)

where original-confidencep is the original confidence value of the tree rooted at

node p. This multiplier is used to distribute the reward evenly to each of the

correct child nodes of p. One should note that, the inequality

desired-confidencep/original-confidencep > 1

will always hold, as p is correct, therefore δ > 1 is also true.
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Extract-Rules-Correct(node, context, desired confidence)
1: if state of the node is �� then
2: tree← the tree rooted at node
3: if desired confidence ≤ 1 then
4: Learn-Rule(tree, context, desired confidence)
5: else
6: Learn-Rule(tree, context, 1)
7: end if
8: old confidence← the confidence value of tree
9: correct children← {c : c is a child of node in �� state}

10: if correct children �= ∅ then
11: δ ← (desired confidence/old confidence)1/|correct children|

12: for each child ∈ correct children do
13: index← getChildIndex(node, child)
14: child context← add(copy(context), 〈node, index〉)
15: child confidence← confidence value of the subtree rooted at child
16: Extract-Rules-Correct(child, child context, δ ×

child confidence)
17: end for
18: end if
19: end if

Algorithm 7: Extract-Rules-Correct. Extracts context-dependent co-
occurrence rules from correct translation results.

Next, for each child ci, 1 ≤ i ≤ m, Extract-Rules-Correct is called

recursively with the desired confidence parameter

desired-confidenceci
= δ × original-confidenceci

.

Thus, for 1 ≤ i ≤ m,

desired-confidenceci
> original-confidenceci

.

Note that, for some child ci, 1 ≤ i ≤ m, the inequality desired-confidenceci
> 1

can be true, since δ > 1. This is not allowable2, as we do not want to learn a

context-dependent co-occurrence rule with an aggregate confidence factor > 1.

2A confidence factor represents a probability value, therefore cannot be > 1.
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Extract-Rules-Correct prevents this kind of situations by simply setting

the rule confidence to 1 for subtrees rooted at such ci.

Now, let us return back to our examplary Deep Evaluation scenario for the

translation results of the Turkish phrase (5.11). The parse trees of the translation

results were evaluated as shown in Figures 5.6(e) and 5.5(b), and the desired con-

fidence values were determined as given in (5.18). In the last step, we will extract

context-dependent co-occurrence rules from the parse trees of these translation

results.

The first translation result was an incorrect one. Therefore, Extract-Rules

will call Extract-Rules-Incorrect for the root node of the parse tree of this

result, with the desired confidence value of 0.499. As the root node is marked as

���, no rules will be extracted at that node. Then the β value will be calculated

as

β =
1
√

0.499

0.72
= 0.693. (5.21)

Next, Extract-Rules-Incorrect will be called for the incorrect child of the

root, which is node 2, recursively, with the desired confidence value parameter

of β × 0.8 = 0.693× 0.8 = 0.554, where 0.8 is the original confidence value of the

subtree rooted at node 2. Since node 2 is marked as �� the context dependent

co-occurence rule

2(6, 4) – [1(1)](0.554) (5.22)

will be extracted. Since there are no erroneous nodes in the tree, this rule will be

the only rule that is learned for this translation result.

The second translation result was a correct one. Therefore, Extract-Rules

will call Extract-Rules-Correct for the root node of the parse tree of this

result, with the desired confidence value of 0.653. As this node is marked as ��,

the context dependent co-occurence rule

3(5) – [ ](0.653) (5.23)

will be extracted. Note that the only context associated with this rule is an

empty one, as the rule was extracted from the root node. Then, the δ value will
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be calculated as

δ =
1
√

0.653

0.5
= 1.306. (5.24)

Next, Extract-Rules-Correct will be called for the correct child of the root,

which is node 5, recursively, with the desired confidence value parameter of

δ × 1.0 = 1.306× 1.0 = 1.306, where 1.0 is the original confidence value of the

subtree rooted at node 5. Since the desired confidence value is greater than 1,

the extracted rule will be assigned the maximum possible aggregate confidence

factor, which is 1. Therefore the second extracted rule will be

5 – [3](1.0). (5.25)

As no other nodes remain in the parse tree, the execution will be over.

5.2.4 Shallow Evaluation of Translation Results

Shallow Evaluation is the second evaluation interface of our translation system,

which is targeted for inexperienced users, as it provides much simpler means of

user interaction, compared to Deep Evaluation. In Shallow Evaluation, transla-

tion results are showed in their surface forms, instead of their lexical forms as in

Deep Evaluation. This makes it much more easier to interpret the results during

the evaluation.

While in Deep Evaluation, the nodes in the parse trees of translation results

can be evaluated individually by the user, in Shallow Evaluation the user makes

only a single correctness judgement for each result. Thus, a translation result is

either marked as correct (��) or incorrect (�), or left unevaluated (�).

Due to various morphological level ambiguities that exist in the source and

target languages, two translation results with distinct lexical forms can map to

the same surface form. In such cases, those results are presented to the user in a

group and the correctness judgement of the user for that group is assigned to all

group members.
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In fact, Shallow Evaluation is a front-end to Deep Evaluation with a sim-

plified interface. Shallow Evaluation input taken from the user is automat-

ically converted to an instance of Deep Evaluation input, on which the co-

occurrence rule learning methods described in the previous subsections are ap-

plied. Imitate-Deep-Analysis procedure, given in Algorithm 8 performs this

input conversion. An example run of this algorithm is given in Figure 5.9.

In Imitate-Deep-Analysis, Each incorrect result is compared with the cor-

rect results. For comparison, Compare-Trees procedure is used as a subpro-

cedure. During successive comparisons, the nodes that might have caused the

incorrect translation is tried to be identified. Note that Compare-Trees en-

sures, that the comparison order does not change the final configuration of the

incorrect results.

When an incorrect result is compared with the correct results, in some rare

occasions, all nodes in the parse tree of that incorrect result may be set to ��.

This is an undesired effect, as it prevents learning any co-occurrence rules from

that particular incorrect result. This happens if successive comparisons vali-

date all of the nodes in the parse tree of an incorrect result. Lines 11–14 of

Imitate-Deep-Analysis handles this situation and sets the root node to an

incorrect state. Therefore, it is guaranteed that at least one co-occurrence rule is

extracted from each incorrect result.
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Imitate-Deep-Analysis(correct results list, incorrect results list)
1: for each correct result ∈ correct results list do
2: Initialize-Tree(correct result, ��)
3: end for
4: for each incorrect result ∈ incorrect results list do
5: Initialize-Tree(incorrect result, �)
6: incorrect root← the root node in the parse tree of incorrect result
7: for each correct result ∈ correct results list do
8: correct root← the root node in the parse tree of correct result
9: Compare-Trees(incorrect root, correct root)

10: end for
11: if state of incorrect root is �� then
12: Initialize-Tree(incorrect result, �)
13: set state of incorrect root to �
14: end if
15: end for

Initialize-Tree(result, state)
1: set all nodes in the parse tree of result to state

Compare-Trees(incorrect root, correct root)
1: if state of incorrect root is �� then
2: return true
3: else if template no of incorrect root = template no of correct root then
4: flag ← true
5: for i = 1 to n, where n is the number of children of incorrect root do
6: incorrect child← ith child of incorrect root
7: correct child← ith child of correct root
8: if Compare-Trees(incorrect child, correct child) = false then
9: flag ← false

10: end if
11: end for
12: if flag = true then
13: set state of incorrect root to ��
14: else
15: set state of incorrect root to ��
16: end if
17: return flag
18: else
19: if state of incorrect root is � then
20: set state of incorrect root to �
21: end if
22: return false
23: end if

Algorithm 8: Imitate-Deep-Analysis. Converts a shallow evaluation input
to a deep evaluation input automatically.
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Figure 5.9: An example to automatic conversion of Shallow Evaluation input into
Deep Evaluation input. (a) The initial situation of the parse trees associated
with 4 translation results. Result 1 is the only incorrect result, while Result 2–4
are evaluated as correct by the user. At this point, all nodes of the incorrect
result are initialized to �, while all nodes of the correct results are initialized to��. (b)–(d) The situation after each successive comparison of the incorrect result
with one of the correct translation results. Note that changing the comparison
order does not effect the final configurations of the parse trees.
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5.3 Partially Matching Contexts

We have previously given Confidence-Value-Exact in Algorithm 4, and de-

scribed the way it is used to calculate the confidence value of a given translation

result. In this section we will revise this procedure and apply some modifications.

In order for Confidence-Value-Exact to use a co-occurrence rule in con-

fidence value calculation of a translation result, a rule that matches the current

subtree (the subtree in the parse tree of the translation result, that is currently

processed) has to be available. Additionally, that rule should contain a context

that is identical to the context of the current subtree. If such a rule exists, then

the aggregate confidence factor associated with the matching context of the rule

is returned immediately; otherwise the confidence value calculation continues re-

cursively.

Requiring a rule-context, to match the context of the current subtree exactly

is a constraint that is too strict. In this section, we relax this constraint in

such a way, that in the absence of an exactly matching context, one or more

partially matching contexts are used for deriving an aggregate confidence factor.

When we allow partial matching of contexts, we should first define a metric

that reflects how close a given match is to a perfect one. Therefore, we define our

metric, match-ratio as

match ratio(RC, TC) =

⎧⎪⎪⎨
⎪⎪⎩

1 if length(RC) = 0,

matched(RC, TC)
length(RC)

otherwise.

(5.26)

where RC is the rule-context, TC is the context of the current subtree in the parse

tree of the translation result, length(RC) is the total number of the elements in

RC and matched(RC, TC) is the number of matched elements between RC and

TC. Note that the match-ratio calculated for an empty rule-context is always 1.

Context matching is done simply by comparing the corresponding elements
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of given two contexts from left to right, i.e., from child to parent. For exam-

ple, comparing the contexts [4(2), 6(1), 7(4), 8(2)] and [4(2), 6(1), 9(2)] will yield

two matching elements, 4(2) and 6(1).

The examples in this section use the context-dependent co-occurrence rule

given below:

1(2, 3) – [4(2), 5(3)](0.3)

– [4(2), 6(1), 7(4), 8(2)](0.7) (5.27)

– [4(2), 9(1), 10(2)](0.9)

– [4(2), 12(1)](0.4)

The rule above is depicted graphically in Figure 5.10. This rule contains four

contexts, namely [4(2), 5(3)], [4(2), 6(1), 7(4), 8(2)], [4(2), 9(1), 10(2)] and [4(2), 12(1)]

which are associated with four different aggregate confidence factors, 0.3, 0.7, 0.9

and 0.4, respectively.
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Figure 5.10: The Context-Dependent Co-occurrence Rule (5.27).
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Parse Tree Rule Contexts

7(4) 8(2)6(1)4(2)

12(1)4(2)

Match
Ratio

½

¼

½

2⁄3

Selected

(a) (b)

1

4

9

13

2 3

4(2) 5(3)

10(2)9(1)4(2)

Figure 5.11: Partial Matching of Contexts: Case 1. (a) An example parse tree. A
confidence value will be calculated for the subtree surrounded with the square. Nodes
that are not important are drawn in dashed line pattern. (b) Third context has the
highest match-ratio, therefore it is selected for confidence value calculation.

Given the current subtree and a rule that matches this subtree, we calculate

an aggregate confidence value in three steps. In the first step we calculate match-

ratios for all contexts available in the rule. Then we select a subset of the rule-

contexts, elements of which are the best matching ones. Finally, we calculate an

aggregate confidence factor using the selected subset.

A subset of rule-contexts, elements of which match the context of the given

subtree best, is selected as follows:

• Case 1: If there is a unique rule-context with the highest non-zero

match-ratio, then only that rule-context is selected. (For an example,

see Figure 5.11)

• Case 2: If there are multiple rule-contexts with the highest non-zero

match-ratio, then the longest one of those rule-contexts is selected.

(For an example, see Figure 5.12)

• Case 3: If the longest rule-context is not unique, then all such rule-contexts

are selected. (For an example, see Figure 5.13)
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Figure 5.12: Partial Matching of Contexts: Case 2. (a) An example parse tree. A
confidence value will be calculated for the subtree surrounded with the square. Nodes
that are not important are drawn in dashed line pattern. (b) As there are multiple
rule-contexts with the highest match-ratio, the longest one of those, which is the second
rule-context, is selected.
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Figure 5.13: Partial Matching of Contexts: Case 3. (a) An example parse tree. A
confidence value will be calculated for the subtree surrounded with the square. Nodes
that are not important are drawn in dashed line pattern. (b) As there are two rule-
contexts with the highest match-ratio, and the lengths of them are equal, both of the
of the contexts are selected.
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In the last step, the aggregate confidence factor for the current

subtree — T — given the matching rule — R — is calculated as

ACF (T,R) = CV [T ] + match ratio[S]×

⎛
⎜⎜⎝
∑

RC∈S

(ACF [RC])

|S| − CV [T ]

⎞
⎟⎟⎠ , (5.28)

where CV [T ] is the original confidence value of T (calculated as the multiplication

of the individual confidence factors of the templates in T ), S is the selected subset

of rule contexts, match ratio[S] is the match-ratio of the rule-contexts in S (which

is shared by all), and ACF [RC] is the aggregate confidence factor associated

with the rule-context RC. This formula is intuitive. The calculated aggregate

confidence factor approaches to the original confidence value of the subtree, when

match-ratio decreases. And as the match-ratio increases, it approaches to the

average of the aggregate confidence factors associated with the rule-contexts in

S.

For example, given that the original confidence value of the subtree 1(2, 3) in

Figure 5.13(a) is 0.6, the aggregate confidence factor calculated for this subtree

is

0.6 + 0.5×
(

0.3 + 0.4

2
− 0.6

)
= 0.475. (5.29)

Up to now, we have studied the cases for which at least one rule-context has

a non-zero match ratio. Another case is the one where a context-dependent co-

occurrence rule matching the current subtree exists, but all of the contexts have a

match ratio of zero. The naive solution is simply calculating the confidence value

recursively without using the matching rule, if a rule-context with a non-zero

match ratio is not available.

This approach may not satisfy user expectations. Consider a situation where

the user dislikes a combination of templates. He evaluates that combination as

incorrect, but the combination appears over and over in completely different con-

texts. We cannot expect a user to evaluate that combination for all possible



CHAPTER 5. LEARNING FROM USER FEEDBACK 98

contexts. Therefore — even if a non-zero rule-context does not exist — the pre-

vious evaluations should influence the confidence value calculated for the current

subtree.

We achieve this effect by taking the average of the aggregate confidence fac-

tors of all rule-contexts, and the confidence value of the subtree is calculated

recursively, as given in the equation below:

ACF (T, R) =

(
CV recursive[T ] +

∑
RC∈A

ACF [RC]

)
/ (|A|+ 1) . (5.30)

In this equation CV recursive[T ] is the confidence value calculated for the current

subtree T recursively, and A is the set that contains all rule-contexts in the rule.

The whole partial context matching process is formalized in Algorithm 9,

which provides the procedure Confidence-Value-Partial.
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Confidence-Value-Partial(node)
1: tree← the tree rooted at node
2: context← the context of node
3: rule found← false
4: if there exists a co-occurrence rule R that matches tree then
5: Calculate match-ratio for all contexts in R.
6: Select the subset S, from the contexts in R, that best match context.
7: if S �= ∅ then
8: //See Formula (5.28)

9: return CV [T ] + match ratio[S]×

⎛
⎜⎜⎝
∑

RC∈S

(ACF [RC])

|S| − CV [T ]

⎞
⎟⎟⎠

10: else
11: rule found← true
12: end if
13: end if
14: //Calculate the confidence value recursively.
15: confidence← confidence factor of the template represented by node
16: children← {child : child is a child of node}
17: for all child ∈ children do
18: confidence← confidence×Confidence-Value-Partial(child)
19: end for
20: if rule found = true then
21: //See Formula (5.30)
22: A← {RC : RC is a rule context in R}
23: return

(
confidence +

∑
RC∈A

ACF [RC]

)
/ (|A|+ 1)

24: else
25: return confidence
26: end if

Algorithm 9: Confidence-Value-Partial. Returns the confidence value of
a translation result.
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Test Results and Evaluation

In this chapter, we provide our results of the translation tests on the suggested

morphological disambiguation and user evaluation mechanisms. For performance

evaluation, we used two different metrics, which are BLEU and P@n.

Precision is a widely used metric for evaluating the system performance, es-

pecially in the field of Information Retrieval (IR). When precision is calculated

at a given cut-off rank, only the topmost results returned by the system are

considered. This measure is called “precision at n” or P@n, which is calculated

as:

P@n =
# of correct results in top-n translation results

n
(6.1)

If for a certain translation, the number of translation results, k, is less than n,

then n is taken as k. In our tests, we use the P@n measure for n = 1, 3, 5.

The second method, Bilingual Evaluation Understudy, (BLEU), measures the

closeness of a translation result generated by a machine translation system to a

correct translation reference by using n-gram based method. The next section

reviews the BLEU method.
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6.1 BLEU Method

BLEU Method is developed to obtain a standart method for evaluation of machine

translation systems. Manual evaluation of MT systems is expensive in terms of

time and effort needed to complete the task. BLEU is a quick, inexpensive,

language-independent and automatic evaluation method, which correlates highly

with human evaluation [30]. To judge the quality of a machine translation result,

BLEU calculates its closeness to one or more reference human translations using

n-grams. A BLEU score varies between 0 and 1, where a score of 1 denotes that

the result is an exact translation.

In order to calculate a BLEU score for a candidate translation result, first the

modified n-gram precisions for n = 1 . . .N are calculated. Then the geometric

mean of the calcuated n-gram precisions is found. The calculated precision value

can already distinguish between good and bad candidate results if the length of

the candidate is equal or longer than that of the reference translations. In order

to penalize candidates that are too short, BLEU also uses a multiplicative brevity

penalty. A detailed description of the BLEU method can be found in [30].

In our experiments we take the candidate as the translation result with the

highest confidence value. In cases where multiple results with the highest con-

fidence value exist, candidate is taken as the first result generated. We use a

single reference translation for each element in the testing subset. Also in our

experiments, we used the parameter value N = 4, as recommended in [30].

6.2 Performance Tests

A data collection of 435 translation examples has been created for experimental

evaluation (See Appendix D). This collection is divided into 3 subsets, sizes of

which are shown in Table 6.1.

• Training Subset 1 is used for extracting the translation templates. When
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Table 6.1: Sizes of the Translation Example Subsets.

Size

Training Subset 1 315
Training Subset 2 20

Testing Subset 100

Total 435

we fed this set of translation examples to the learning algorithm, and let the

algorithm run for 2 iterations, a total of 1776 translation templates were

extracted; among which, 679 atomic and 1097 non-atomic templates were

found.

• Training Subset 2 is used to train the system during Deep and Shallow

Evaluations.

• Testing Subset contains the translation examples which were used later,

during the performance evaluation of the system.

All three subsets contain unique elements, i.e., there exists no translation ex-

ample that is shared by any two subsets; however, it is allowed for translation

examples in the training and testing subsets to contain common substrings. In

this way, we guarantee that the system is not directly trained for the elements of

the testing subset, and thus avoid a flawed experiment. In the following subsec-

tions, we present the results of the tests conducted.

6.2.1 Tests on Morphological Disambiguation

We measured the effects of morphological disambiguation on the performance

of the translation system. In this experiment we focused on Turkish to English

translation, as we have a disambiguator only for Turkish.

Morphological disambiguation eliminates wrong morphological parses as-

signed to each word. Without disambiguation, the number of lexical-level rep-

resentation possibilities for each translation input will be high. Disambiguation



CHAPTER 6. TEST RESULTS AND EVALUATION 103

cuts the number of lexical-level representation possibilities, therefore reduces the

time required to complete the translation. The results are given in Table 6.2.

Table 6.2: Effects of Morphological Disambiguation on Translation.

Disambiguation
Avg.
BLEU
Score

Avg.
P@1

Avg.
P@3

Avg.
P@5

Avg. # of
lexical-form
possibilities

Avg.
Time
(sec.)

Disabled 85.4% 70.8% 74.1% 74.2% 10.2 82
Enabled 84.8% 68.7% 73.6% 74% 3.6 65

After morphological disambiguation, the average number of lexical-form pos-

sibilities per input decreased from 10.2 to 3.6. As a result, the average time

required to complete a translation decreased from 82 seconds to 65 seconds. This

approximately corresponds to an improvement of 25% in time consumption.

In our tests, the system extracted 1776 translation templates, but in a real-

word application, the number of templates has to be in the order of millions. In

our tests, we observed that for a lot of incorrect lexical-form possibilities, the

Earley parser terminated at the first few steps, as no rule matching the incorrect

terminal symbols were found among the known templates. We expect that the

importance of morphological disambiguation will get higher as the number of the

templates increases. This is because of the fact that as the number of transla-

tion templates increases, the Earley parser will be able to find some translation

templates matching the first few tokens of the incorrect lexical-form possibilities.

Therefore, the time required for the termination of the Earley parser become

higher for the incorrect lexical-form possibilities as the number of translation

templates increases.

Table 6.2 also shows us that the accuracy of the disambiguator is high. The

improvements in efficiency stated above, can be achieved by sacrificing only a

little from the translation effectiveness. Some amount of drop in the effectiveness

is tolerable, as the disambiguation process can incorrectly eliminate some of the

correct lexical-form possibilities. For our system, the BLEU score drops only
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0.4% points and P@1 drops by 2% when the disambiguator is turned on.

As discussed above, the number of templates used in our tests is small com-

pared to the number required by a real-word application. As the number of

templates increases, contrary to what is observed in this test, we expect that the

performance attained by disambiguation will be higher than it is attained without

disambiguation. This is because of the fact that incorrect lexical-form possibili-

ties can result in the generation of wrong translations results if the templates are

general enough and numerous.

6.2.2 Tests on Deep and Shallow Evaluation

In order to measure the performance of Deep and Shallow Evaluation methods,

we trained the system using the translation examples in Training Subset 2. We

ran the translation algorithm for each element of this set, first in English to Turk-

ish direction, and then performed the Deep Evaluation. Namely, whenever we

disliked the ordering of the translation results, we marked the erroneous nodes in

the translation parse trees of the incorrect results and the root nodes of the cor-

rect results as well. Then, the same process was repeated in the reverse direction

of translation. When the Deep Evaluation for all elements of the Training Set 2

was finished, the Shallow Evaluation was applied in a similar fashion, marking

the correct and incorrect translation results.

The summary of the user evaluation processes are given in 6.3. As Deep

Evaluation is a much more detailed process compared to Shallow Evaluation, the

former takes approximately twice as much time as the latter. Furthermore, in

Deep Evaluation, the user has greater control on the process; as a result, the

number of context-dependent co-occurrence rules learned in Deep Evaluation is

less than the rules learned in Shallow Evaluation.

Table 6.4 presents the results of the tests done in the English to Turkish direc-

tion of translation. In this direction, initially the average BLEU score was 90.6%.

When the context-dependent co-occurrence rules learned from Deep Evaluation
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Table 6.3: Summary of the Deep and Shallow Evaluation.

# of Co-occurrence
Rules Learned

Duration of the
Evaluation

(min.)EN to TR TR to EN

Shallow Evaluation 60 69 7:05
Deep Evaluation 44 50 13:30

were used in the ranking of the translation results, the BLEU score increased to

94.6%. Likewise the average P@1 (precision at the top-1 results) increased from

75% to 87%, while the average P@3 increased from 82.3% to 83.7%. Also, there

was a marginal increase in the average P@5 value. For this experiment, using the

rules learned from Shallow Evaluation resulted in exactly the same performance

improvements. Table 6.5 shows the distribution of the position of the first correct

result among the generated results.

Table 6.4: Experimental Results for English to Turkish Translation.

Average
BLEU Score

Average
P@1

Average
P@3

Average
P@5

Initial 90.6% 75% 82.3% 81.7%
Shallow Evaluation 94.6% 87% 83.7% 82.1%

Deep Evaluation 94.6% 87% 83.7% 82.1%

Table 6.5: Position of the First Correct Result for English to Turkish Translation.

1 2-3 4-5

Initial 75% 21% 2%
Shallow Evaluation 87% 9% 2%

Deep Evaluation 87% 9% 2%

In Turkish to English direction as given in Table 6.6, initially the average

BLEU score was 85.3%. When the context-dependent co-occurrence rules learned

from Shallow Evaluation were used in the ranking of the translation results, the

BLEU score increased to 87.9%. Similarly the average P@1 increased from 70%
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to 79%, P@3 increased from 74.2% to 74.3%, and P@5 increased from 74.4% to

74.7%.

Results for Deep Evaluation were better. When the context-dependent co-

occurrence rules learned from Deep Evaluation were used in the ranking of the

translation results, the BLEU score increased to 88.9%. Similarly the average

P@1, P@3 and P@5 increased to 81%, 75% and 74.7%, respectively. Table 6.7

shows the distribution of the position of the first correct result among the gener-

ated results.

Table 6.6: Experimental Results for Turkish to English Translation.

Average
BLEU Score

Average
P@1

Average
P@3

Average
P@5

Initial 85.3% 70% 74.2% 74.4%
Shallow Evaluation 87.9% 79% 74.3% 74.7%

Deep Evaluation 88.9% 81% 75% 74.7%

Table 6.7: Position of the First Correct Result for Turkish to English Translation.

1 2-3 4-5

Initial 70% 21% 4%
Shallow Evaluation 79% 13% 3%

Deep Evaluation 81% 11% 3%

In Turkish to English direction, results for the Deep Evaluation were better

than that of the Shallow Evaluation. This is because of the fact that, in Deep

Evaluation the user can fine-tune the templates that will be learned from the

evaluation, while this is not possible in Shallow Evaluation. Therefore in the

general case, we expect the number of incorrect context-dependent co-occurrence

rules learned by the Shallow Evaluation to be higher. Also, as the number of rules

learned by Deep Evaluation is usually less than it is for Shallow Evaluation, the

time consumption of the ranking process will also be lower if the former approach

is followed. However, we expect that the users will prefer Shallow Evaluation,

due to its simplicity.



Chapter 7

Conclusion

In this thesis, we added several new modules to an existing example-based ma-

chine translation system, extending its capabilities. The major contribution of

this work is an improved ranking mechanism for the translation results that learns

gradually from user feedback (see Chapter 5). After a translation, the user al-

ways has the option of evaluating the generated results. From the evaluaton, the

system learns context-dependent co-occurrence rules which may be consulted in

the results ordering phases of the upcoming translations.

In order to sort the translation results, the earlier versions of the system

solely used the confidence factors associated with each template. Confidence

factors were calculated in the learning phase once, and never updated there-

after. In our approach, confidence factor scheme is improved by the inclusion of

context-dependent co-occurrence rules. With each user evaluation in the transla-

tion phase, the system continues to learn context-dependent co-occurrence rules.

Certain translation templates may be assigned low confidence factors when

considered individually, but their co-existence in a translation result may deserve

a higher confidence. The reverse can also be true. The original confidence factor

assignment scheme did not handle template combinations, but considered each

template individually. In our approach, the user has the chance to influence

the confidence values of translation template combinations, without affecting the

107



CHAPTER 7. CONCLUSION 108

original confidence factors that will be used when the templates are utilized in-

dividually.

The system provides two different interfaces for inputting user feedback. In

the Shallow Evaluation interface, the user simply marks correct and incorrect

translations. On the other hand, in the Deep Evaluation, as the name implies,

the user can evaluate individual nodes of the parse trees associated with each

translation result, where each node represents a separate translation template.

Therefore, Deep Evaluation takes more time, as it requires more attention and

expertise. However, Deep Evaluation provides fine-tuning capabilities which are

not offered by the Shallow Evaluation.

In our tests, we observed significant performance improvements in the aver-

age BLEU scores and precision values at the top results. In Turkish to English

direction, the improvements for the Deep Evaluation were better than those of

the Shallow Evaluation, as expected. The achieved performance improvements,

which need to be confirmed by further tests on a larger corpus, were promising.

In Section 5.1, the context of a subtree in the parse tree of a translation

result (where the subtree corresponds to a phrase in the translation) was defined

as a chain of nodes. This abstract definition allowed us to develop a context

matching algorithm (see Section 5.3) in a simple manner. However, we expect

a linguistically influenced definition to be superior, as a more natural definition

of the context that a phrase occurs in would be based on the words surrounding

that phrase.

Another extension proposed for the translation system described, is a rule-

based morphological disambiguator for Turkish (see Chapter 4). A morphological

disambiguator, identifies and removes incorrect morphological parses of the words

in a given sentence. If the number of translation templates kept in the system

is high, ambiguity in the input may increase the number of incorrect translation

results and slow down the translation process. The sentences in agglutinative

languages such as Turkish tend to be more ambiguous. Therefore, for a ma-

chine translation system, where one of the languages is Turkish, morphological
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disambiguation becomes more critical. In our tests, we observed that the mor-

phological disambiguator reduces the average time required for the translation of

a given input.

To conclude, we must repeat that language is a complex human phe-

nomenon — even the language acquisition mechanisims of children are still not

completely understood. Hence, the future developments in the field of machine

translation will depend, among several other factors, on our ability to understand

and simulate the higher functions of our brain. New discoveries and the progress

in computer science and technology, especially those in the subfield of artificial

intelligence, would certainly improve the capabilities of future machine transla-

tion systems. However, for the time being, the difficulties of machine translation

remind us of the Italian saying: “Traduttore, traditore!” (Translator, you’re a

traitor!) [18].
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[5] İ. Çiçekli. Inducing translation templates with type constraints. In Pro-

ceedings of Example-Based Machine Translation Workshop, MT Summit X,

pages 27–34, Phuket, Thailand, September 2005.
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Appendix A

A Deep Evaluation Example

This appendix provides a visual walkthrough for the Deep Evaluation of the

translation results produced for the input phrase

“sarı saçlı kadın”, (A.1)

which was used as an example previously in Chapter 5. The system had returned

two translation results, which were:

“yellow haired woman” (A.2)

“blond woman”.

The parse trees of these translation results were given in Figure 5.4.

During the evaluation, each node in the parse tree is labeled with the partial

translation implied by that node. The partial translations are given in the lexical-

level. The parse tree structure of a translation result is given as a list in which

the hierarchy of the nodes is denoted using indentation, where the indentation of

a child node is more than that of its parent.
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Figures A.1 through A.6 depict the Deep Evaluation steps followed by the

user. The process is described step-by-step below:

• Figure A.1: Initially, only the root nodes are shown to the user, i.e., the

trees are collapsed. Both of the nodes are marked as �.

• Figure A.2: The root node of the first translation result is set to �. The

color of the node is changed to red in order to denote that the translation

implied by this node is incorrect. As the node is incorrect, it is expanded,

revealing its children.

• Figure A.3: In the parse tree of the first translation result, Node 2 is set

to state �, therefore it is expanded and its children, Node 6 and Node 4,

become visible. This also affects the state of its parent, Node 1, which is

automatically set to the �� state. The user also sets the state of Node 5,

which is the second children of the root node, to ��.

• Figure A.4: As the error in the first translation result is isolated in the

subtree rooted at Node 2, the user sets the state of Node 1 to ���. Now

the background color of the node is green, but the erroneous portions of the

translation, which are due to the erroneous subtree rooted at Node 2, are

highlighted in red color.

• Figure A.5: The user evaluates Node 6 and Node 4. Node 6 implies the par-

tial translation “sarı+Adj → yellow+Adj”. Using this partial translation

in the context of [2(1), 1(1)] is not wrong. Similarly, Node 4 could well be

used in the same context correctly if Node 6 was not there. In other words,

the cause of the error is using Nodes 6 and 4 together. When considered

separately, using these nodes in the context they appear is not wrong. So,

the states of both of the nodes are set to �� by the user.

• Figure A.6: The user marks the root node of the second translation result

as ��, since it is a correct translation. Therefore, the color of the node is set

to green. The evaluation is completed now.
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Figure A.1: 1st Step in the Deep Evaluation of the Results.

Figure A.2: 2nd Step in the Deep Evaluation of the Results.
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Figure A.3: 3rd Step in the Deep Evaluation of the Results.

Figure A.4: 4th Step in the Deep Evaluation of the Results.
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Figure A.5: 5th Step in the Deep Evaluation of the Results.

Figure A.6: 6th Step in the Deep Evaluation of the Results.



Appendix B

English Suffixes

Inflectional and derivational suffixes recognized by the English morphological

analyzer are given in Tables B.1 and B.2, respectively. One example is provided

for each suffix. Note that the current version of the morphological analyzer does

not handle prefixes. Therefore, prefixed forms of the words have to be added to

the lexicon files, as if they were root words.

Table B.1: English Inflectional Suffixes.

Suffix
Example

Surface-Level Lexical-Level

-’s John’s john+Noun+Prop+Sg+Part+Gen

-ed handled handle+Verb+PastSimp+123SP

-er stronger strong+Adj+Comp

-est brightest bright+Adj+Sup

-ing singing sing+Verb+Prog

-s (Tense) goes go+Verb+Pres+3sg

-s (Plural) houses house+Noun+Pl
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Table B.2: English Derivational Suffixes.

Suffix
Example

Surface-Level Lexical-Level

-able acceptable accept+Verb+InfˆDB+Adj+Able

-age leakage leak+Verb+InfˆDB+Noun+Age+Sg

-al experimental experiment+Verb+InfˆDB+Noun+Al+Sg

-ance aberrance aberrant+AdjˆDB+Noun+Ance+Sg

-ant assistant assist+Verb+InfˆDB+Noun+Ant+Sg

-ar angular angle+Noun+SgˆDB+Adj+Ar

-ary adversary adverse+AdjˆDB+Noun+Ary+Sg

-ate passionate passion+Noun+SgˆDB+Adj+Ate

-ation examination examine+Verb+InfˆDB+Noun+Ation+Sg

-ative talkative talk+Verb+InfˆDB+Adj+Ative

-atory perspiratory perspire+Verb+InfˆDB+Adj+Atory

-cy adequacy adequate+AdjˆDB+Noun+Cy+Sg

-ed haired hair+Noun+SgˆDB+Adj+Ed

-ee employee employ+Verb+InfˆDB+Noun+Ee+Sg

-eer engineer engine+Noun+SgˆDB+Noun+Eer+Sg

-en golden gold+Noun+SgˆDB+Adj+En

-ence adolescence adolescent+AdjˆDB+Noun+Ence+Sg

-ent dependent depend+Verb+InfˆDB+Adj+Ent

-er driver drive+Verb+InfˆDB+Noun+Er+Sg

-ery bakery bake+Verb+InfˆDB+Noun+Ery+Sg

-ess hostess host+Noun+SgˆDB+Noun+Ess+Sg

-ful joy joy+Noun+SgˆDB+Adj+Ful

-ible convertible convert+Verb+InfˆDB+Adj+Ible

-ic satanic satan+Noun+SgˆDB+Adj+Ic

-ify purify pure+AdjˆDB+Verb+Ify+Inf

-ion interruption interrupt+Verb+InfˆDB+Noun+Ion+Sg

-ise apologise apology+Noun+SgˆDB+Verb+Ise+Inf

-ish childish child+Noun+SgˆDB+Adj+Ish

-ism dogmatism dogma+Noun+SgˆDB+Noun+Ism+Sg

-ist colonist colony+Noun+SgˆDB+Noun+Ist+Sg

-ite urbanite urban+AdjˆDB+Noun+Ite+Sg

-itive acquisitive acquire+Verb+InfˆDB+Adj+Itive

-ity brevity brief+AdjˆDB+Noun+Ity+Sg

-ive apprehensive apprehend+Verb+InfˆDB+Adj+Ive

-ize apologize apology+Noun+SgˆDB+Verb+Ize+Inf
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Table B.2: English Derivational Suffixes (Continued).

Suffix
Example

Surface-Level Lexical-Level

-less endless end+Noun+SgˆDB+Adj+Less

-let piglet pig+Noun+SgˆDB+Noun+Let+Sg

-ling duckling duck+Noun+SgˆDB+Noun+Ling+Sg

-ly friendly friend+Noun+SgˆDB+Adj+Ly

-ment development develop+Verb+InfˆDB+Noun+Ment+Sg

-ness kindness kind+AdjˆDB+Noun+Ness+Sg

-or disambiguator disambiguate+Verb+InfˆDB+Noun+Or+Sg

-ory sensory sense+Noun+SgˆDB+Adj+Ory

-ous prestigious prestige+Noun+SgˆDB+Adj+Ous

-sion decision decide+Verb+InfˆDB+Noun+Sion+Sg

-ster songster song+Noun+SgˆDB+Noun+Ster+Sg

-th width wide+AdjˆDB+Noun+Th+Sg

-tion abolition abolish+Verb+InfˆDB+Noun+Tion+Sg

-ty cruelty cruel+AdjˆDB+Noun+Ty+Sg

-ure enclosure enclose+Verb+InfˆDB+Noun+Ure+Sg

-y rainy rain+Noun+SgˆDB+Adj+Y



Appendix C

Lattice Structure for English

The lattice structure for English used in our translation system is given in

Table C.1. The categories that are used by the English Morphological Analyzer

are written as capitalized, whereas the super-categories that are added to arrange

the lattice are written in all capitals.

Table C.1: English Lattice Structure.

Category Name Parent Category Name

ANY

Verb ANY

Det ANY

DET-SUF ANY

DET-SUF-COUNT DET-SUF

PRON-SUF ANY

PRON-SUF-CASE PRON-SUF

PRON-SUF-COUNT PRON-SUF

Prep ANY

NOUN-SUF ANY

NOUN-SUF-COUNT NOUN-SUF

ADJ-SUF ANY

VERB-SUF ANY

VERB-SUF-TENSE VERB-SUF

VERB-SUF-COUNT VERB-SUF

122



APPENDIX C. LATTICE STRUCTURE FOR ENGLISH 123

Table C.1: English Lattice Structure (Continued).

Category Name Parent Category Name

Pl

NOUN-SUF-COUNT

VERB-SUF-COUNT

DET-SUF-COUNT

Sg

NOUN-SUF-COUNT

VERB-SUF-COUNT

DET-SUF-COUNT

SP

NOUN-SUF-COUNT

VERB-SUF-COUNT

DET-SUF-COUNT

VProg
NOUN-SUF

ADJ-SUF

PRON ANY

Pron PRON

Pron+Rel PRON

Pron+Pers PRON

Pron+Poss PRON

Pron+Wh PRON

Part ANY

Interj ANY

Inf VERB-SUF-TENSE

PastPerf VERB-SUF-TENSE

PastSimp VERB-SUF-TENSE

Pres VERB-SUF-TENSE

Prog VERB-SUF-TENSE

1sg
VERB-SUF-COUNT

PRON-SUF-COUNT

2sg
VERB-SUF-COUNT

PRON-SUF-COUNT

3sg
VERB-SUF-COUNT

PRON-SUF-COUNT

123SP VERB-SUF-COUNT

Non3sg VERB-SUF-COUNT

1pl PRON-SUF-COUNT

2pl PRON-SUF-COUNT

3pl PRON-SUF-COUNT

3SP PRON-SUF-COUNT

Gen PRON-SUF-CASE
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Table C.1: English Lattice Structure (Continued).

Category Name Parent Category Name

Nom PRON-SUF-CASE

Obl PRON-SUF-CASE

NomObl PRON-SUF-CASE

Def DET-SUF

Indef DET-SUF

CONJ ANY

Conj+Coord CONJ

Conj+Sub CONJ

Comp ADJ-SUF

Sup ADJ-SUF

NUMBER ANY

Num+Card NUMBER

Num+Ord NUMBER

Noun ANY

NOUN-TYPE ANY

Prop NOUN-TYPE

Adj ANY

Adv ANY

Aux ANY

Punc ANY

NOUN-DB ANY

ADVERB-DB ANY

VERB-DB ANY

ADJ-DB ANY

NUM-DB ANY

ADV-DB ANY

NUM-DB-ADJ NUM-DB

ADJ-DB-VERB ADJ-DB

VERB-DB-NOUN VERB-DB

NOUN-DB-VERB NOUN-DB

ADV-DB-ADV ADV-DB

ADJ-DB-ADV ADJ-DB

VERB-DB-ADJ VERB-DB

VERB-DB-VERB VERB-DB

NOUN-DB-ADJ NOUN-DB

ADJ-DB-NOUN ADJ-DB
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Table C.1: English Lattice Structure (Continued).

Category Name Parent Category Name

ADJ-DB-ADJ ADJ-DB

NOUN-DB-NOUN NOUN-DB

ˆDB+Noun+Sion VERB-DB-NOUN

ˆDB+Adj+Ive
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Noun+Ant VERB-DB-NOUN

ˆDB+Adj+Ary

NOUN-DB-ADJ

NUM-DB-ADJ

VERB-DB-ADJ

ˆDB+Adj+Ar NOUN-DB-ADJ

ˆDB+Noun+Ance ADJ-DB-NOUN

ˆDB+Noun+Ness ADJ-DB-NOUN

ˆDB+Noun+Ity ADJ-DB-NOUN

ˆDB+Adj+Al
NOUN-DB-ADJ

ADJ-DB-ADJ

ˆDB+Adj+Itive
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Noun+Cy

ADJ-DB-NOUN

NOUN-DB-NOUN

VERB-DB-NOUN

ˆDB+Noun+Ery

NOUN-DB-NOUN

VERB-DB-NOUN

ADJ-DB-NOUN

ˆDB+Noun+Ful NOUN-DB-NOUN

ˆDB+Noun+Ment VERB-DB-NOUN

ˆDB+Noun+Ite
ADJ-DB-NOUN

NOUN-DB-NOUN

ˆDB+Adv+Ly
ADJ-DB-ADV

ADV-DB-ADV

ˆDB+Noun+Or VERB-DB-NOUN

ˆDB+Adj+Ative
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Noun+Zero
VERB-DB-NOUN

ADJ-DB-NOUN

ˆDB+Adj+Ly
ADJ-DB-ADJ

NOUN-DB-ADJ

ˆDB+Adj+Ant VERB-DB-ADJ
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Table C.1: English Lattice Structure (Continued).

Category Name Parent Category Name

ˆDB+Adj+Less
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Adj+Ory
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Noun+Tion VERB-DB-NOUN

ˆDB+Noun+Age

NOUN-DB-NOUN

VERB-DB-NOUN

ADJ-DB-NOUN

ˆDB+Noun+Ist NOUN-DB-NOUN

ˆDB+Adj+Ous

ADJ-DB-ADJ

NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Adj+Zero
VERB-DB-ADJ

NOUN-DB-ADJ

ˆDB+Noun+Ism NOUN-DB-NOUN

ˆDB+Noun+Ling

NOUN-DB-NOUN

ADJ-DB-NOUN

VERB-DB-NOUN

ˆDB+Verb+Ate

ADJ-DB-VERB

NOUN-DB-VERB

VERB-DB-VERB

ˆDB+Noun+Ure

VERB-DB-NOUN

ADJ-DB-NOUN

NOUN-DB-NOUN

ˆDB+Noun+Ent VERB-DB-NOUN

ˆDB+Noun+Er

VERB-DB-NOUN

NOUN-DB-NOUN

ADJ-DB-NOUN

ˆDB+Adj+Ic NOUN-DB-ADJ

ˆDB+Adj+Ate
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Noun+Ty ADJ-DB-NOUN

ˆDB+Adj+Ful

NOUN-DB-ADJ

VERB-DB-ADJ

ADJ-DB-ADJ
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Table C.1: English Lattice Structure (Continued).

Category Name Parent Category Name

ˆDB+Noun+Ary

NOUN-DB-NOUN

VERB-DB-NOUN

ADJ-DB-NOUN

ˆDB+Verb+Ize
NOUN-DB-VERB

ADJ-DB-VERB

ˆDB+Adj+Able
VERB-DB-ADJ

NOUN-DB-ADJ

ˆDB+Noun+Let NOUN-DB-NOUN

ˆDB+Noun+Ence ADJ-DB-NOUN

ˆDB+Noun+Ee VERB-DB-NOUN

ˆDB+Adj+Y
VERB-DB-ADJ

NOUN-DB-ADJ

ˆDB+Adv+Zero ADJ-DB-ADV

ˆDB+Adj+Atory
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Noun+Th ADJ-DB-NOUN

ˆDB+Adj+En
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Verb+Zero
NOUN-DB-VERB

ADJ-DB-VERB

ˆDB+Noun+Ion VERB-DB-NOUN

ˆDB+Adj+Ed NOUN-DB-ADJ

ˆDB+Adj+Ent VERB-DB-ADJ

ˆDB+Noun+Al VERB-DB-NOUN

ˆDB+Noun+Y VERB-DB-NOUN

ˆDB+Noun+Ess NOUN-DB-NOUN

ˆDB+Noun+Eer NOUN-DB-NOUN

ˆDB+Verb+Ise
NOUN-DB-VERB

ADJ-DB-VERB

ˆDB+Adj+Ible
VERB-DB-ADJ

NOUN-DB-ADJ

ˆDB+Noun+Ation VERB-DB-NOUN

ˆDB+Noun+Ster NOUN-DB-NOUN

ˆDB+Adj+Ish
NOUN-DB-ADJ

VERB-DB-ADJ

ˆDB+Verb+Ify
ADJ-DB-VERB

NOUN-DB-VERB



Appendix D

Evaluation Data Set

This appendix lists the translation examples that were used in the performance

evaluation of the system (see Chapter 6). The data set is divided into 3 subsets.

Training Subset 1 contains the examples from which the translation templates

were extracted. Translation examples in Training Subset 2 were used for teaching

the system some context-dependent co-occurrence rules. Lastly, Testing Subset

contains, as the name implies, the examples that were used for the testing pur-

poses. The following sections list the examples in each of these subsets.

D.1 Training Subset 1

1. a+Det +Indef +Sg brown+Adj car+Noun +Sg ↔ bir+Num+Card kahverengi+Adj
araba+Noun +A3sg +Pnon +Nom

2. a+Det +Indef +Sg cat+Noun +Sg come+Verb +Pres +3sg ↔ bir+Num+Card
kedi+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Aor +A3sg

3. a+Det +Indef +Sg cat+Noun +Sg go+Verb +Pres +3sg↔ bir+Num+Card kedi+Noun
+A3sg +Pnon +Nom git+Verb +Pos +Aor +A3sg

4. a+Det +Indef +Sg green+Adj apple+Noun +Sg ↔ bir+Num+Card yeşil+Adj
elma+Noun +A3sg +Pnon +Nom

5. a+Det +Indef +Sg pig+Noun +Sg go+Verb +Pres +3sg ↔ bir+Num+Card do-
muz+Noun +A3sg +Pnon +Nom git+Verb +Pos +Aor +A3sg

6. a+Det +Indef +Sg yellow+Adj apple+Noun +Sg ↔ bir+Num+Card sarı+Adj
elma+Noun +A3sg +Pnon +Nom

7. a+Det +Indef +Sg white+Adj car+Noun +Sg ↔ bir+Num+Card beyaz+Adj
araba+Noun +A3sg +Pnon +Nom
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8. a+Det +Indef +Sg yellow+Adj apple+Noun +Sg ↔ bir+Num+Card sarı+Adj
elma+Noun +A3sg +Pnon +Nom

9. the+Det +Def +SP yellow+Adj apple+Noun +Sg ↔ sarı+Adj elma+Noun +A3sg
+Pnon +Nom

10. the+Det +Def +SP green+Adj apple+Noun +Sg ↔ yeşil+Adj elma+Noun +A3sg
+Pnon +Nom

11. the+Det +Def +SP white+Adj car+Noun +Sg ↔ beyaz+Adj araba+Noun +A3sg
+Pnon +Nom

12. the+Det +Def +SP white+Adj car+Noun +Pl ↔ beyaz+Adj araba+Noun +A3pl
+Pnon +Nom

13. the+Det +Def +SP yellow+Adj apple+Noun +Sg ↔ sarı+Adj elma+Noun +A3sg
+Pnon +Nom

14. the+Det +Def +SP yellow+Adj apple+Noun +Pl ↔ sarı+Adj elma+Noun +A3pl
+Pnon +Nom

15. black+Adj book+Noun +Sg ↔ siyah+Adj kitap+Noun +A3sg +Pnon +Nom
16. black+Adj car+Noun +Sg ↔ siyah+Adj araba+Noun +A3sg +Pnon +Nom
17. black+Adj notebook+Noun +Sg ↔ siyah+Adj defter+Noun +A3sg +Pnon +Nom
18. blue+Adj book+Noun +Sg ↔ mavi+Adj kitap+Noun +A3sg +Pnon +Nom
19. blue+Adj notebook+Noun +Sg ↔ mavi+Adj defter+Noun +A3sg +Pnon +Nom
20. all+Det +Pl book+Noun +Pl ↔ bütün+Adj kitap+Noun +A3pl +Pnon +Nom
21. all+Det +Pl house+Noun +Pl ↔ bütün+Adj ev+Noun +A3pl +Pnon +Nom
22. all+Det +Pl notebook+Noun +Pl ↔ bütün+Adj defter+Noun +A3pl +Pnon +Nom
23. every+Det +Sg book+Noun +Sg ↔ her+Adj kitap+Noun +A3sg +Pnon +Nom
24. every+Det +Sg house+Noun +Sg ↔ her+Adj ev+Noun +A3sg +Pnon +Nom
25. every+Det +Sg notebook+Noun +Sg ↔ her+Adj defter+Noun +A3sg +Pnon +Nom
26. every+Det +Sg school+Noun +Sg ↔ her+Adj okul+Noun +A3sg +Pnon +Nom
27. one+Num+Ord house+Noun +Sg ↔ bir+Num+Ord ev+Noun +A3sg +Pnon +Nom
28. one+Num+Ord notebook+Noun +Sg ↔ bir+Num+Ord defter+Noun +A3sg +Pnon

+Nom
29. one+Num+Ord school+Noun +Sg↔ bir+Num+Ord okul+Noun +A3sg +Pnon +Nom
30. at+Prep least+Adv ↔ en+Adverb +AdjMdfy az+Adj
31. at+Prep least+Adv one+Num+Card book+Noun +Sg ↔ en+Adverb +AdjMdfy

az+Adverb +AdjMdfy bir+Num+Card kitap+Noun +A3sg +Pnon +Nom
32. at+Prep least+Adv one+Num+Card notebook+Noun +Sg ↔ en+Adverb +AdjMdfy

az+Adverb +AdjMdfy bir+Num+Card defter+Noun +A3sg +Pnon +Nom
33. at+Prep least+Adv three+Num+Card book+Noun +Pl ↔ en+Adverb +AdjMdfy

az+Adverb +AdjMdfy üç+Num+Card kitap+Noun +A3sg +Pnon +Nom
34. at+Prep least+Adv two+Num+Card book+Noun +Pl ↔ en+Adverb +AdjMdfy

az+Adverb +AdjMdfy iki+Num+Card kitap+Noun +A3sg +Pnon +Nom
35. at+Prep most+Adv ↔ en+Adverb +AdjMdfy çok+Adverb +AdjMdfy
36. at+Prep most+Adv one+Num+Card book+Noun +Sg ↔ en+Adverb +AdjMdfy

çok+Adverb +AdjMdfy bir+Num+Card kitap+Noun +A3sg +Pnon +Nom
37. at+Prep most+Adv three+Num+Card book+Noun +Pl ↔ en+Adverb +AdjMdfy

çok+Adverb +AdjMdfy üç+Num+Card kitap+Noun +A3sg +Pnon +Nom
38. at+Prep most+Adv three+Num+Card notebook+Noun +Pl↔ en+Adverb +AdjMdfy

çok+Adverb +AdjMdfy üç+Num+Card defter+Noun +A3sg +Pnon +Nom
39. at+Prep most+Adv two+Num+Card book+Noun +Pl ↔ en+Adverb +AdjMdfy

çok+Adverb +AdjMdfy iki+Num+Card kitap+Noun +A3sg +Pnon +Nom
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40. ali+Noun +Prop +Sg +Part +Gen notebook+Noun +Sg ↔ ali+Noun +Prop +A3sg
+Pnon +Gen defter+Noun +A3sg +P3sg +Nom

41. ali+Noun +Prop +Sg +Part +Gen school+Noun +Sg ↔ ali+Noun +Prop +A3sg
+Pnon +Gen okul+Noun +A3sg +P3sg +Nom

42. four+Num+Card black+Adj car+Noun +Pl↔ dört+Num+Card siyah+Adj araba+Noun
+A3sg +Pnon +Nom

43. four+Num+Card green+Adj apple+Noun +Pl ↔ dört+Num+Card yeşil+Adj
elma+Noun +A3sg +Pnon +Nom

44. four+Num+Card yellow+Adj apple+Noun +Pl ↔ dört+Num+Card sarı+Adj
elma+Noun +A3sg +Pnon +Nom

45. four+Num+Card white+Adj car+Noun +Pl↔ dört+Num+Card beyaz+Adj araba+Noun
+A3sg +Pnon +Nom

46. four+Num+Card yellow+Adj apple+Noun +Pl ↔ dört+Num+Card sarı+Adj
elma+Noun +A3sg +Pnon +Nom

47. boy+Noun +Pl be+Verb +Pres +Pl come+Verb +Prog↔ oğlan+Noun +A3pl +Pnon
+Nom gel+Verb +Pos +Prog1 +A3pl

48. boy+Noun +Pl be+Verb +Pres +Pl not+Adv come+Verb +Prog↔ oğlan+Noun +A3pl
+Pnon +Nom gel+Verb +Neg +Prog1 +A3pl

49. boy+Noun +Pl be+Verb +Pres +Pl not+Adv go+Verb +Prog ↔ oğlan+Noun +A3pl
+Pnon +Nom git+Verb +Neg +Prog1 +A3pl

50. girl+Noun +Pl be+Verb +Pres +Pl go+Verb +Prog↔ kız+Noun +A3pl +Pnon +Nom
git+Verb +Pos +Prog1 +A3pl

51. girl+Noun +Pl be+Verb +Pres +Pl not+Adv come+Verb +Prog ↔ kız+Noun +A3pl
+Pnon +Nom gel+Verb +Neg +Prog1 +A3pl

52. girl+Noun +Pl be+Verb +Pres +Pl not+Adv go+Verb +Prog ↔ kız+Noun +A3pl
+Pnon +Nom git+Verb +Neg +Prog1 +A3pl

53. thief+Noun +Sg ↔ hırsız+Noun +A3sg +Pnon +Nom
54. cop+Noun +Sg ↔ polis+Noun +A3sg +Pnon +Nom
55. to+Prep steal+Verb +Inf ↔ çal+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
56. to+Prep approach+Verb +Inf ↔ yaklaş+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon

+Nom
57. girl+Noun +Pl will+Aux come+Verb +Pres +Non3sg ↔ kız+Noun +A3pl +Pnon

+Nom gel+Verb +Pos +Fut +A3pl
58. girl+Noun +Pl will+Aux go+Verb +Pres +Non3sg↔ kız+Noun +A3pl +Pnon +Nom

git+Verb +Pos +Fut +A3pl
59. girl+Noun +Pl will+Aux go+Verb +Pres +Non3sg to+Prep the+Det +Def +SP moun-

tain+Noun +Sg ↔ kız+Noun +A3pl +Pnon +Nom dağ+Noun +A3sg +Pnon +Dat
git+Verb +Pos +Fut +A3pl

60. girl+Noun +Pl will+Aux go+Verb +Pres +Non3sg to+Prep the+Det +Def +SP moun-
tain+Noun +Sg tomorrow+Adv ↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb
dağ+Noun +A3sg +Pnon +Dat git+Verb +Pos +Fut +A3pl

61. girl+Noun +Pl will+Aux go+Verb +Pres +Non3sg tomorrow+Adv↔ kız+Noun +A3pl
+Pnon +Nom yarın+Adverb git+Verb +Pos +Fut +A3pl

62. girl+Noun +Pl will+Aux not+Adv come+Verb +Pres +Non3sg tomorrow+Adv ↔
kız+Noun +A3pl +Pnon +Nom yarın+Adverb gel+Verb +Neg +Fut +A3pl

63. girl+Noun +Pl will+Aux not+Adv go+Verb +Pres +Non3sg ↔ kız+Noun +A3pl
+Pnon +Nom git+Verb +Neg +Fut +A3pl

64. girl+Noun +Pl will+Aux not+Adv go+Verb +Pres +Non3sg to+Prep the+Det +Def
+SP mountain+Noun +Sg↔ kız+Noun +A3pl +Pnon +Nom dağ+Noun +A3sg +Pnon
+Dat git+Verb +Neg +Fut +A3pl
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65. girl+Noun +Pl will+Aux not+Adv go+Verb +Pres +Non3sg to+Prep the+Det
+Def +SP mountain+Noun +Sg tomorrow+Adv ↔ kız+Noun +A3pl +Pnon +Nom
yarın+Adverb dağ+Noun +A3sg +Pnon +Dat git+Verb +Neg +Fut +A3pl

66. girl+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg
letter+Noun +Sg ↔ kız+Noun +A3pl +Pnon +Nom bir+Num+Card mektup+Noun
+A3sg +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

67. girl+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg
letter+Noun +Sg tomorrow+Adv ↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb
bir+Num+Card mektup+Noun +A3sg +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

68. girl+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg
message+Noun +Sg ↔ kız+Noun +A3pl +Pnon +Nom bir+Num+Card mesaj+Noun
+A3sg +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

69. girl+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg
message+Noun +Sg tomorrow+Adv ↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb
bir+Num+Card mesaj+Noun +A3sg +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

70. girl+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg letter+Noun +Pl to-
morrow+Adv ↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb mektup+Noun +A3pl
+Pnon +Nom yaz+Verb +Neg +Fut +A3pl

71. girl+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg message+Noun +Pl↔
kız+Noun +A3pl +Pnon +Nom mesaj+Noun +A3pl +Pnon +Nom yaz+Verb +Neg
+Fut +A3pl

72. girl+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg message+Noun +Pl
tomorrow+Adv↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb mesaj+Noun +A3pl
+Pnon +Nom yaz+Verb +Neg +Fut +A3pl

73. girl+Noun +Pl will+Aux write+Verb +Pres +Non3sg a+Det +Indef +Sg letter+Noun
+Sg ↔ kız+Noun +A3pl +Pnon +Nom bir+Num+Card mektup+Noun +A3sg +Pnon
+Nom yaz+Verb +Pos +Fut +A3pl

74. girl+Noun +Pl will+Aux write+Verb +Pres +Non3sg a+Det +Indef +Sg mes-
sage+Noun +Sg ↔ kız+Noun +A3pl +Pnon +Nom bir+Num+Card mesaj+Noun
+A3sg +Pnon +Nom yaz+Verb +Pos +Fut +A3pl

75. girl+Noun +Pl will+Aux write+Verb +Pres +Non3sg a+Det +Indef +Sg mes-
sage+Noun +Sg tomorrow+Adv ↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb
bir+Num+Card mesaj+Noun +A3sg +Pnon +Nom yaz+Verb +Pos +Fut +A3pl

76. girl+Noun +Pl will+Aux write+Verb +Pres +Non3sg letter+Noun +Pl ↔ kız+Noun
+A3pl +Pnon +Nom mektup+Noun +A3pl +Pnon +Nom yaz+Verb +Pos +Fut +A3pl

77. girl+Noun +Pl will+Aux write+Verb +Pres +Non3sg letter+Noun +Pl tomorrow+Adv
↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb mektup+Noun +A3pl +Pnon +Nom
yaz+Verb +Pos +Fut +A3pl

78. girl+Noun +Pl will+Aux write+Verb +Pres +Non3sg message+Noun +Pl tomor-
row+Adv↔ kız+Noun +A3pl +Pnon +Nom yarın+Adverb mesaj+Noun +A3pl +Pnon
+Nom yaz+Verb +Pos +Fut +A3pl

79. boy+Noun +Pl will+Aux come+Verb +Pres +Non3sg ↔ oğlan+Noun +A3pl +Pnon
+Nom gel+Verb +Pos +Fut +A3pl

80. boy+Noun +Pl will+Aux go+Verb +Pres +Non3sg ↔ oğlan+Noun +A3pl +Pnon
+Nom git+Verb +Pos +Fut +A3pl

81. boy+Noun +Pl will+Aux go+Verb +Pres +Non3sg to+Prep the+Det +Def +SP moun-
tain+Noun +Sg ↔ oğlan+Noun +A3pl +Pnon +Nom dağ+Noun +A3sg +Pnon +Dat
git+Verb +Pos +Fut +A3pl

82. boy+Noun +Pl will+Aux go+Verb +Pres +Non3sg to+Prep the+Det +Def +SP moun-
tain+Noun +Sg tomorrow+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb
dağ+Noun +A3sg +Pnon +Dat git+Verb +Pos +Fut +A3pl
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83. boy+Noun +Pl will+Aux go+Verb +Pres +Non3sg tomorrow+Adv ↔ oğlan+Noun
+A3pl +Pnon +Nom yarın+Adverb git+Verb +Pos +Fut +A3pl

84. boy+Noun +Pl will+Aux not+Adv come+Verb +Pres +Non3sg tomorrow+Adv ↔
oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb gel+Verb +Neg +Fut +A3pl

85. boy+Noun +Pl will+Aux not+Adv go+Verb +Pres +Non3sg ↔ oğlan+Noun +A3pl
+Pnon +Nom git+Verb +Neg +Fut +A3pl

86. boy+Noun +Pl will+Aux not+Adv go+Verb +Pres +Non3sg to+Prep the+Det +Def
+SP mountain+Noun +Sg ↔ oğlan+Noun +A3pl +Pnon +Nom dağ+Noun +A3sg
+Pnon +Dat git+Verb +Neg +Fut +A3pl

87. boy+Noun +Pl will+Aux not+Adv go+Verb +Pres +Non3sg to+Prep the+Det +Def
+SP mountain+Noun +Sg tomorrow+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom
yarın+Adverb dağ+Noun +A3sg +Pnon +Dat git+Verb +Neg +Fut +A3pl

88. boy+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg
letter+Noun +Sg↔ oğlan+Noun +A3pl +Pnon +Nom bir+Num+Card mektup+Noun
+A3sg +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

89. boy+Noun +Pl will+Aux not+Adv read+Verb +Pres +Non3sg a+Det +Indef +Sg let-
ter+Noun +Sg ↔ oğlan+Noun +A3pl +Pnon +Nom bir+Num+Card mektup+Noun
+A3sg +Pnon +Nom oku+Verb +Neg +Fut +A3pl

90. boy+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg
letter+Noun +Sg tomorrow+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb
bir+Num+Card mektup+Noun +A3sg +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

91. boy+Noun +Pl will+Aux not+Adv read+Verb +Pres +Non3sg a+Det +Indef +Sg let-
ter+Noun +Sg tomorrow+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb
bir+Num+Card mektup+Noun +A3sg +Pnon +Nom oku+Verb +Neg +Fut +A3pl

92. boy+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef +Sg
message+Noun +Sg↔ oğlan+Noun +A3pl +Pnon +Nom bir+Num+Card mesaj+Noun
+A3sg +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

93. boy+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg a+Det +Indef
+Sg message+Noun +Sg tomorrow+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom
yarın+Adverb bir+Num+Card mesaj+Noun +A3sg +Pnon +Nom yaz+Verb +Neg
+Fut +A3pl

94. boy+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg letter+Noun +Pl
tomorrow+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb mektup+Noun
+A3pl +Pnon +Nom yaz+Verb +Neg +Fut +A3pl

95. boy+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg message+Noun +Pl↔
oğlan+Noun +A3pl +Pnon +Nom mesaj+Noun +A3pl +Pnon +Nom yaz+Verb +Neg
+Fut +A3pl

96. boy+Noun +Pl will+Aux not+Adv read+Verb +Pres +Non3sg message+Noun +Pl↔
oğlan+Noun +A3pl +Pnon +Nom mesaj+Noun +A3pl +Pnon +Nom oku+Verb +Neg
+Fut +A3pl

97. boy+Noun +Pl will+Aux not+Adv write+Verb +Pres +Non3sg message+Noun +Pl to-
morrow+Adv↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb mesaj+Noun +A3pl
+Pnon +Nom yaz+Verb +Neg +Fut +A3pl

98. boy+Noun +Pl will+Aux not+Adv read+Verb +Pres +Non3sg message+Noun +Pl to-
morrow+Adv↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb mesaj+Noun +A3pl
+Pnon +Nom okus+Verb +Neg +Fut +A3pl

99. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg a+Det +Indef +Sg letter+Noun
+Sg ↔ oğlan+Noun +A3pl +Pnon +Nom bir+Num+Card mektup+Noun +A3sg
+Pnon +Nom yaz+Verb +Pos +Fut +A3pl
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100. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg a+Det +Indef +Sg mes-
sage+Noun +Sg ↔ oğlan+Noun +A3pl +Pnon +Nom bir+Num+Card mesaj+Noun
+A3sg +Pnon +Nom yaz+Verb +Pos +Fut +A3pl

101. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg a+Det +Indef +Sg mes-
sage+Noun +Sg tomorrow+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb
bir+Num+Card mesaj+Noun +A3sg +Pnon +Nom yaz+Verb +Pos +Fut +A3pl

102. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg letter+Noun +Pl↔ oğlan+Noun
+A3pl +Pnon +Nom mektup+Noun +A3pl +Pnon +Nom yaz+Verb +Pos +Fut +A3pl

103. boy+Noun +Pl will+Aux read+Verb +Pres +Non3sg letter+Noun +Pl↔ oğlan+Noun
+A3pl +Pnon +Nom mektup+Noun +A3pl +Pnon +Nom oku+Verb +Pos +Fut +A3pl

104. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg book+Noun +Pl↔ oğlan+Noun
+A3pl +Pnon +Nom kitap+Noun +A3pl +Pnon +Nom yaz+Verb +Pos +Fut +A3pl

105. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg letter+Noun +Pl tomorrow+Adv
↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb mektup+Noun +A3pl +Pnon
+Nom yaz+Verb +Pos +Fut +A3pl

106. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg message+Noun +Pl tomor-
row+Adv ↔ oğlan+Noun +A3pl +Pnon +Nom yarın+Adverb mesaj+Noun +A3pl
+Pnon +Nom yaz+Verb +Pos +Fut +A3pl

107. this+Det +Sg school+Noun +Sg ↔ bu+Adj okul+Noun +A3sg +Pnon +Nom
108. these+Det +Pl book+Noun +Pl ↔ bu+Adj kitap+Noun +A3pl +Pnon +Nom
109. these+Det +Pl house+Noun +Pl ↔ bu+Adj ev+Noun +A3pl +Pnon +Nom
110. these+Det +Pl school+Noun +Pl ↔ bu+Adj okul+Noun +A3pl +Pnon +Nom
111. those+Det +Pl book+Noun +Pl ↔ şu+Adj kitap+Noun +A3pl +Pnon +Nom
112. those+Det +Pl house+Noun +Pl ↔ şu+Adj ev+Noun +A3pl +Pnon +Nom
113. those+Det +Pl notebook+Noun +Pl ↔ şu+Adj defter+Noun +A3pl +Pnon +Nom
114. three+Num+Card book+Noun +Pl ↔ üç+Num+Card kitap+Noun +A3sg +Pnon

+Nom
115. three+Num+Card house+Noun +Pl↔ üç+Num+Card ev+Noun +A3sg +Pnon +Nom
116. three+Num+Card notebook+Noun +Pl↔ üç+Num+Card defter+Noun +A3sg +Pnon

+Nom
117. three+Num+Card school+Noun +Pl ↔ üç+Num+Card okul+Noun +A3sg +Pnon

+Nom
118. two+Num+Card book+Noun +Pl ↔ iki+Num+Card kitap+Noun +A3sg +Pnon

+Nom
119. two+Num+Card brown+Adj car+Noun +Pl ↔ iki+Num+Card kahverengi+Adj

araba+Noun +A3sg +Pnon +Nom
120. two+Num+Card green+Adj apple+Noun +Pl↔ iki+Num+Card yeşil+Adj elma+Noun

+A3sg +Pnon +Nom
121. two+Num+Card house+Noun +Pl ↔ iki+Num+Card ev+Noun +A3sg +Pnon +Nom
122. two+Num+Card yellow+Adj apple+Noun +Pl↔ iki+Num+Card sarı+Adj elma+Noun

+A3sg +Pnon +Nom
123. two+Num+Card school+Noun +Pl ↔ iki+Num+Card okul+Noun +A3sg +Pnon

+Nom
124. two+Num+Card white+Adj car+Noun +Pl↔ iki+Num+Card beyaz+Adj araba+Noun

+A3sg +Pnon +Nom
125. two+Num+Card yellow+Adj apple+Noun +Pl↔ iki+Num+Card sarı+Adj elma+Noun

+A3sg +Pnon +Nom
126. cold+Adj ↔ soğuk+Adj
127. whole+Adj ↔ bütün+Adj
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128. heavy+Adj ↔ ağır+Adj
129. heavy+Adj ↔ zor+Adj
130. hard+Adj ↔ zor+Adj
131. hard+Adj ↔ sert+Adj
132. difficult+Adj ↔ zor+Adj
133. mouth+Noun +Sg ↔ ağız+Noun +A3sg +Pnon +Nom
134. rim+Noun +Sg ↔ ağız+Noun +A3sg +Pnon +Nom
135. brim+Noun +Sg ↔ ağız+Noun +A3sg +Pnon +Nom
136. beer+Noun +Sg ↔ bira+Noun +A3sg +Pnon +Nom
137. whiskey+Noun +Sg ↔ viski+Noun +A3sg +Pnon +Nom
138. week+Noun +Sg ↔ hafta+Noun +A3sg +Pnon +Nom
139. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl a+Det +Indef +Sg tailor+Noun +Sg

↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card terzi+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A2sg

140. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl a+Det +Indef +Sg cop+Noun +Sg
↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card polis+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A2sg

141. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg a+Det +Indef +Sg tailor+Noun +Sg
↔ ben+Pron +A1sg +Pnon +Nom bir+Num+Card terzi+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A1sg

142. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg a+Det +Indef +Sg cop+Noun +Sg
↔ ben+Pron +A1sg +Pnon +Nom bir+Num+Card polis+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A1sg

143. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg a+Det +Indef +Sg car+Noun +Sg
↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card araba+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +Cop +A3sg

144. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl not+Adv a+Det +Indef +Sg tai-
lor+Noun +Sg ↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card terzi+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A2sg

145. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl not+Adv a+Det +Indef +Sg
cop+Noun +Sg↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card polis+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A2sg

146. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg not+Adv a+Det +Indef +Sg tai-
lor+Noun +Sg↔ ben+Pron +A1sg +Pnon +Nom bir+Num+Card terzi+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A1sg

147. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg not+Adv a+Det +Indef +Sg cop+Noun
+Sg ↔ ben+Pron +A1sg +Pnon +Nom bir+Num+Card polis+Noun +A3sg +Pnon
+Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A1sg

148. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg not+Adv a+Det +Indef +Sg
car+Noun +Sg ↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card araba+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +Cop +A3sg

149. they+Pron+Pers +Nom +3pl be+Verb +Pres +Pl cop+Noun +Pl ↔ o+Pron +A3pl
+Pnon +Nom polis+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A3pl

150. they+Pron+Pers +Nom +3pl be+Verb +Pres +Pl tailor+Noun +Pl↔ o+Pron +A3pl
+Pnon +Nom terzi+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A3pl

151. they+Pron+Pers +Nom +3pl be+Verb +Pres +Pl not+Adv cop+Noun +Pl↔ o+Pron
+A3pl +Pnon +Nom polis+Noun +A3sg +Pnon +Nom değil+Noun +A3sg +Pnon
+Nom ˆDB+Verb+Zero +Pres +A3pl
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152. they+Pron+Pers +Nom +3pl be+Verb +Pres +Pl not+Adv tailor+Noun +Pl ↔
o+Pron +A3pl +Pnon +Nom terzi+Noun +A3sg +Pnon +Nom değil+Noun +A3sg
+Pnon +Nom ˆDB+Verb+Zero +Pres +A3pl

153. which+Pron+Wh +NomObl +3SP book+Noun +Sg↔ hangi+Adj +Ques kitap+Noun
+A3sg +Pnon +Nom

154. which+Pron+Wh +NomObl +3SP book+Noun +Pl↔ hangi+Adj +Ques kitap+Noun
+A3pl +Pnon +Nom

155. which+Pron+Wh +NomObl +3SP house+Noun +Sg ↔ hangi+Adj +Ques ev+Noun
+A3sg +Pnon +Nom

156. which+Pron+Wh +NomObl +3SP house+Noun +Pl ↔ hangi+Adj +Ques ev+Noun
+A3pl +Pnon +Nom

157. custom+Noun +Sg ↔ adet+Noun +A3sg +Pnon +Nom
158. habit+Noun +Sg ↔ adet+Noun +A3sg +Pnon +Nom
159. rock+Noun +Sg ↔ kaya+Noun +A3sg +Pnon +Nom
160. problem+Noun +Sg ↔ sorun+Noun +A3sg +Pnon +Nom
161. nature+Noun +Sg ↔ doğa+Noun +A3sg +Pnon +Nom
162. food+Noun +Sg ↔ yiyecek+Noun +A3sg +Pnon +Nom
163. to+Prep take+Verb +Inf ↔ al+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
164. to+Prep get+Verb +Inf ↔ al+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
165. to+Prep buy+Verb +Inf ↔ al+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
166. to+Prep call+Verb +Inf ↔ ara+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
167. to+Prep call+Verb +Inf ↔ çağır+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
168. take+Verb +Pres +Non3sg this+Pron +NomObl +3sg↔ bu+Pron +A3sg +Pnon +Acc

al+Verb +Pos +Imp +A2sg
169. heavy+Adj ↔ ağır+Adj
170. heavy+Adj ↔ zor+Adj
171. difficult+Adj ↔ zor+Adj
172. strange+Adj ↔ garip+Adj
173. poor+Adj ↔ garip+Adj
174. small+Adj ↔ küçük+Adj
175. tiny+Adj ↔ küçük+Adj
176. mother+Noun +Sg ↔ anne+Noun +A3sg +Pnon +Nom
177. mother+Noun +Sg ↔ ana+Noun +A3sg +Pnon +Nom
178. mom+Noun +Sg ↔ anne+Noun +A3sg +Pnon +Nom
179. space+Noun +Sg ↔ aralık+Noun +A3sg +Pnon +Nom
180. space+Noun +Sg ↔ uzay+Noun +A3sg +Pnon +Nom
181. paper+Noun +Sg ↔ kağıt+Noun +A3sg +Pnon +Nom
182. paper+Noun +Sg ↔ makale+Noun +A3sg +Pnon +Nom
183. gap+Noun +Sg ↔ aralık+Noun +A3sg +Pnon +Nom
184. december+Noun +Sg ↔ aralık+Noun +A3sg +Pnon +Nom
185. interval+Noun +Sg ↔ aralık+Noun +A3sg +Pnon +Nom
186. portion+Noun +Sg ↔ bölüm+Noun +A3sg +Pnon +Nom
187. department+Noun +Sg ↔ bölüm+Noun +A3sg +Pnon +Nom
188. slice+Noun +Sg ↔ bölüm+Noun +A3sg +Pnon +Nom
189. chapter+Noun +Sg ↔ bölüm+Noun +A3sg +Pnon +Nom
190. water+Noun +Sg ↔ su+Noun +A3sg +Pnon +Nom
191. juice+Noun +Sg ↔ su+Noun +A3sg +Pnon +Nom
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192. cat+Noun +Sg ↔ kedi+Noun +A3sg +Pnon +Nom
193. girl+Noun +Sg ↔ kız+Noun +A3sg +Pnon +Nom
194. short+Adj tail+Noun +Sg ˆDB+Adj+Ed horse+Noun +Sg be+Verb +Pres +3sg

come+Verb +Prog ↔ kısa+Adj kuyruk+Noun +A3sg +Pnon +Nom ˆDB+Adj+With
at+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Prog1 +A3sg

195. short+Adj tail+Noun +Sg ˆDB+Adj+Ed cat+Noun +Sg be+Verb +Pres +3sg
come+Verb +Prog ↔ kısa+Adj kuyruk+Noun +A3sg +Pnon +Nom ˆDB+Adj+With
kedi+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Prog1 +A3sg

196. high+Adj heel+Noun +Sg ˆDB+Adj+Ed girl+Noun +Sg be+Verb +Pres +3sg
come+Verb +Prog ↔ uzun+Adj topuk+Noun +A3sg +Pnon +Nom ˆDB+Adj+With
kız+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Prog1 +A3sg

197. high+Adj heel+Noun +Sg ˆDB+Adj+Ed woman+Noun +Sg be+Verb +Pres +3sg
come+Verb +Prog ↔ uzun+Adj topuk+Noun +A3sg +Pnon +Nom ˆDB+Adj+With
kadın+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Prog1 +A3sg

198. nice+Adj girl+Noun +Sg ↔ hoş+Adj kız+Noun +A3sg +Pnon +Nom
199. red+Adj ↔ kırmızı+Adj
200. red+Adj ↔ kızıl+Adj
201. hair+Noun +Sg ↔ saç+Noun +A3sg +Pnon +Nom
202. short+Adj girl+Noun +Sg ↔ kısa+Adj kız+Noun +A3sg +Pnon +Nom
203. black+Adj horse+Noun +Sg ↔ siyah+Adj at+Noun +A3sg +Pnon +Nom
204. red+Adj flag+Noun +Sg ↔ kırmızı+Adj bayrak+Noun +A3sg +Pnon +Nom
205. black+Adj pencil+Noun +Sg ↔ siyah+Adj kalem+Noun +A3sg +Pnon +Nom
206. red+Adj flag+Noun +Sg ↔ kızıl+Adj bayrak+Noun +A3sg +Pnon +Nom
207. red+Adj pencil+Noun +Sg ↔ kırmızı+Adj kalem+Noun +A3sg +Pnon +Nom
208. red+Adj pencil+Noun +Sg ↔ kızıl+Adj kalem+Noun +A3sg +Pnon +Nom
209. red+Adj line+Noun +Sg ↔ kırmızı+Adj çizgi+Noun +A3sg +Pnon +Nom
210. a+Det +Indef +Sg very+Adv nice+Adj girl+Noun +Sg ↔ çok+Adverb +AdjMdfy

hoş+Adj bir+Num+Card kız+Noun +A3sg +Pnon +Nom
211. a+Det +Indef +Sg blond+Adj girl+Noun +Sg ↔ sarışın+Adj bir+Num+Card

kız+Noun +A3sg +Pnon +Nom
212. very+Adv nice+Adj ↔ hoş mu hoş+Adj
213. a+Det +Indef +Sg very+Adv nice+Adj lady+Noun +Sg ↔ çok+Adverb +AdjMdfy

hoş+Adj bir+Num+Card bayan+Noun +A3sg +Pnon +Nom
214. very+Adv sick+Adj ↔ hasta mı hasta+Adj
215. very+Adv sick+Adj ↔ çok+Adverb +AdjMdfy hasta+Adj
216. literate+Adj ↔ okur yazar+Adj
217. woman+Noun +Sg ↔ kadın+Noun +A3sg +Pnon +Nom
218. man+Noun +Sg ↔ adam+Noun +A3sg +Pnon +Nom
219. free+Adj ↔ boş+Adj
220. empty+Adj ↔ boş+Adj
221. seat+Noun +Sg ↔ koltuk+Noun +A3sg +Pnon +Nom
222. chair+Noun +Sg ↔ sandalye+Noun +A3sg +Pnon +Nom
223. car+Noun +Sg of+Prep the+Det +Def +SP month+Noun +Sg ↔ ay+Noun +A3sg

+Pnon +Gen araba+Noun +A3sg +P3sg +Nom
224. monument+Noun +Sg of+Prep the+Det +Def +SP year+Noun +Sg ↔ yıl+Noun

+A3sg +Pnon +Gen anıt+Noun +A3sg +P3sg +Nom
225. brim+Noun +Sg of+Prep the+Det +Def +SP cup+Noun +Sg ↔ kupa+Noun +A3sg

+Pnon +Gen ağız+Noun +A3sg +P3sg +Nom
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226. car+Noun +Sg ↔ araba+Noun +A3sg +Pnon +Nom
227. monument+Noun +Sg ↔ anıt+Noun +A3sg +Pnon +Nom
228. element+Noun +Sg ↔ eleman+Noun +A3sg +Pnon +Nom
229. personnel+Noun +Sg ↔ eleman+Noun +A3sg +Pnon +Nom
230. element+Noun +Sg of+Prep the+Det +Def +SP set+Noun +Sg↔ küme+Noun +A3sg

+Pnon +Gen eleman+Noun +A3sg +P3sg +Nom
231. an+Det +Indef +Sg hour+Noun +Sg ↔ bir+Num+Card saat+Noun +A3sg +Pnon

+Nom
232. mary+Noun +Prop +Sg +Part +Gen jacket+Noun +Sg ↔ mary+Noun +Prop +A3sg

+Pnon +Gen ceket+Noun +A3sg +P3sg +Nom
233. mary+Noun +Prop +Sg +Part +Gen pencil+Noun +Sg ↔ mary+Noun +Prop +A3sg

+Pnon +Gen kalem+Noun +A3sg +P3sg +Nom
234. ahmet+Noun +Prop +Sg +Part +Gen pencil+Noun +Sg ↔ ahmet+Noun +Prop

+A3sg +Pnon +Gen kalem+Noun +A3sg +P3sg +Nom
235. tom+Noun +Prop +Sg ↔ tom+Noun +Prop +A3sg +Pnon +Nom
236. john+Noun +Prop +Sg ↔ john+Noun +Prop +A3sg +Pnon +Nom
237. sound+Noun +Sg ↔ ses+Noun +A3sg +Pnon +Nom
238. voice+Noun +Sg ↔ ses+Noun +A3sg +Pnon +Nom
239. sound+Noun +Sg of+Prep the+Det +Def +SP engine+Noun +Sg ↔ motor+Noun

+A3sg +Pnon +Gen ses+Noun +A3sg +P3sg +Nom
240. sound+Noun +Sg of+Prep the+Det +Def +SP music+Noun +Sg ↔ müzik+Noun

+A3sg +Pnon +Gen ses+Noun +A3sg +P3sg +Nom
241. i+Pron+Pers +Gen +1sg voice+Noun +Sg ↔ ben+Pron +A1sg +Pnon +Gen

ses+Noun +A3sg +P1sg +Nom
242. size+Noun +Sg ↔ boy+Noun +A3sg +Pnon +Nom
243. height+Noun +Sg ↔ boy+Noun +A3sg +Pnon +Nom
244. giant+Noun +Sg size+Noun +Sg ↔ battal+Noun +A3sg +Pnon +Nom boy+Noun

+A3sg +Pnon +Nom
245. one+Num+Card size+Noun +Sg ↔ tek+Adj boy+Noun +A3sg +Pnon +Nom
246. she+Pron+Pers +Gen +3sg height+Noun +Sg ↔ boy+Noun +A3sg +P3sg +Nom
247. i+Pron+Pers +Gen +1sg size+Noun +Sg ↔ ben+Pron +A1sg +Pnon +Gen be-

den+Noun +A3sg +P1sg +Nom
248. size+Noun +Sg ↔ beden+Noun +A3sg +Pnon +Nom
249. hour+Noun +Sg ↔ saat+Noun +A3sg +Pnon +Nom
250. watch+Noun +Sg ↔ saat+Noun +A3sg +Pnon +Nom
251. the+Det +Def +SP child+Noun +Sg be+Verb +PastSimp +Sg laugh+Verb +Prog ↔

çocuk+Noun +A3sg +Pnon +Nom gül+Verb +Pos +Prog1 +Past +A3sg
252. the+Det +Def +SP baby+Noun +Sg be+Verb +PastSimp +Sg sleep+Verb +Prog ↔

bebek+Noun +A3sg +Pnon +Nom uyu+Verb +Pos +Prog1 +Past +A3sg
253. to+Prep cry+Verb +Inf ↔ ağla+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
254. to+Prep cry+Verb +Inf ↔ bağır+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
255. to+Prep weep+Verb +Inf ↔ ağla+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
256. do+Aux +Pres +Non3sg not+Adv weep+Verb +Inf at+Prep i+Pron+Pers +Gen

+1sg grave+Noun +Sg ↔ mezar+Noun +A3sg +P1sg +Loc ağla+Verb +Pos
ˆDB+Noun+Inf2 +A3sg +Pnon +Nom

257. do+Aux +Pres +Non3sg not+Adv cry+Verb +Inf for+Prep i+Pron+Pers +Obl +1sg
↔ ben+Noun +A3sg +P1sg +Nom için+Postp+PCNom ağla+Verb +Neg +Imp +A2sg

258. baby+Noun +Sg ↔ bebek+Noun +A3sg +Pnon +Nom
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259. child+Noun +Sg ↔ çocuk+Noun +A3sg +Pnon +Nom
260. animal+Noun +Sg cry+Verb +Inf ˆDB+Noun+Zero +Pl ↔ hayvan+Adj bağır+Verb

+Pos ˆDB+Noun+Inf3 +A3pl +P3sg +Nom
261. war+Noun +Sg cry+Verb +Inf ˆDB+Noun+Zero +Sg ↔ savaş+Noun +A3sg +Pnon

+Nom bağır+Verb +Pos ˆDB+Noun+Inf3 +A3sg +P3sg +Nom
262. i+Pron+Pers +Gen +1sg plane+Noun +Sg ↔ uçak+Noun +A3sg +P1sg +Nom
263. i+Pron+Pers +Gen +1sg name+Noun +Sg ↔ isim+Noun +A3sg +P1sg +Nom
264. plane+Noun +Sg ↔ düzlem+Noun +A3sg +Pnon +Nom
265. to+Prep crash+Verb +Inf ↔ düş+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
266. to+Prep fly+Verb +Inf ↔ uç+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
267. weep+Verb +Prog ˆDB+Noun+Zero +Sg in+Adv frustrate+Verb +Inf ˆDB+Noun+Ion

+Sg ↔ ağla+Verb +Pos ˆDB+Adj+PresPart taş+Adj
268. music+Noun +Sg ↔ müzik+Noun +A3sg +Pnon +Nom
269. to+Prep steal+Verb +Inf ↔ çal+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
270. to+Prep play+Verb +Inf ↔ çal+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
271. to+Prep ring+Verb +Inf ↔ çal+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
272. song+Noun +Sg ↔ şarkı+Noun +A3sg +Pnon +Nom
273. to+Prep insert+Verb +Inf ↔ sok+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
274. to+Prep sting+Verb +Inf ↔ sok+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
275. bee+Noun +Sg ↔ arı+Noun +A3sg +Pnon +Nom
276. scorpion+Noun +Sg ↔ akrep+Noun +A3sg +Pnon +Nom
277. insert+Verb +Inf the+Det +Def +SP coin+Noun +Sg ↔ para+Noun +A3sg +Pnon

+Acc sok+Verb +Pos +Imp +A2pl
278. a+Det +Indef +Sg bottle+Noun +Sg of+Prep whiskey+Noun +Sg ↔ bir+Num+Card

şişe+Noun +A3sg +Pnon +Nom viski+Noun +A3sg +Pnon +Nom
279. a+Det +Indef +Sg barrel+Noun +Sg of+Prep wine+Noun +Sg ↔ bir+Num+Card

fıçı+Noun +A3sg +Pnon +Nom şarap+Noun +A3sg +Pnon +Nom
280. bottle+Noun +Sg ↔ şişe+Noun +A3sg +Pnon +Nom
281. barrel+Noun +Sg ↔ fıçı+Noun +A3sg +Pnon +Nom
282. cup+Noun +Sg ↔ kupa+Noun +A3sg +Pnon +Nom
283. cup+Noun +Sg ↔ fincan+Noun +A3sg +Pnon +Nom
284. world+Noun +Sg cup+Noun +Sg ↔ dünya+Noun +Prop +A3sg +Pnon +Nom

kupa+Noun +A3sg +P3sg +Nom
285. mug+Noun +Sg ↔ fincan+Noun +A3sg +Pnon +Nom
286. european+Noun +Sg cup+Noun +Sg ↔ avrupa+Noun +Prop +A3sg +Pnon +Nom

kupa+Noun +A3sg +P3sg +Nom
287. coffee+Noun +Sg cup+Noun +Sg ↔ kahve+Noun +A3sg +Pnon +Nom fincan+Noun

+A3sg +P3sg +Nom
288. coffee+Noun +Sg ↔ kahve+Noun +A3sg +Pnon +Nom
289. tea+Noun +Sg ↔ çay+Noun +A3sg +Pnon +Nom
290. depart+Verb +Prog ˆDB+Adj+Zero ship+Noun +Sg↔ git+Verb +Pos ˆDB+Adj+PresPart

gemi+Noun +A3sg +Pnon +Nom
291. ship+Noun +Sg ↔ gemi+Noun +A3sg +Pnon +Nom
292. face+Noun +Sg ↔ surat+Noun +A3sg +Pnon +Nom
293. laugh+Verb +Prog ˆDB+Adj+Zero face+Noun +Sg↔ gül+Verb +Pos ˆDB+Adj+PresPart

surat+Noun +A3sg +Pnon +Nom
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294. a+Det +Indef +Sg laugh+Verb +Prog ˆDB+Adj+Zero face+Noun +Sg ↔
bir+Num+Card gül+Verb +Pos ˆDB+Adj+PresPart surat+Noun +A3sg +Pnon
+Nom

295. a+Det +Indef +Sg blue+Adj carpet+Noun +Sg ↔ bir+Num+Card mavi+Adj
halı+Noun +A3sg +Pnon +Nom

296. carpet+Noun +Sg ↔ halı+Noun +A3sg +Pnon +Nom
297. to+Prep grow+Verb +Inf ↔ büyü+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
298. to+Prep rise+Verb +Inf ↔ yüksel+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
299. to+Prep rise+Verb +Inf ↔ doğ+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
300. this+Det +Sg laugh+Verb +Prog ˆDB+Adj+Zero face+Noun +Sg↔ bu+Pron +A3sg

+Pnon +Nom gül+Verb +Pos ˆDB+Adj+PresPart surat+Noun +A3sg +Pnon +Nom
301. this+Det +Sg blue+Adj carpet+Noun +Sg ↔ bu+Pron +A3sg +Pnon +Nom

mavi+Adj halı+Noun +A3sg +Pnon +Nom
302. moon+Noun +Sg ↔ ay+Noun +A3sg +Pnon +Nom
303. sun+Noun +Sg ↔ güneş+Noun +A3sg +Pnon +Nom
304. to+Prep rise+Verb +Inf ↔ kalk+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
305. to+Prep glow+Verb +Inf ↔ yan+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
306. to+Prep burn+Verb +Inf ↔ yan+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
307. to+Prep ignite+Verb +Inf ↔ yan+Verb +Pos ˆDB+Noun+Inf1 +A3sg +Pnon +Nom
308. lamp+Noun +Sg ↔ lamba+Noun +A3sg +Pnon +Nom
309. wood+Noun +Sg burn+Verb +PastSimp +123SP↔ tahta+Adj yan+Verb +Pos +Past

+A3sg
310. base+Noun +Sg ↔ ayak+Noun +A3sg +Pnon +Nom
311. foot+Noun +Sg ↔ ayak+Noun +A3sg +Pnon +Nom
312. phone+Noun +Sg ↔ telefon+Noun +A3sg +Pnon +Nom
313. priest+Noun +Sg ↔ rahip+Noun +A3sg +Pnon +Nom
314. bell+Noun +Sg ↔ çan+Noun +A3sg +Pnon +Nom
315. base+Noun +Sg of+Prep the+Det +Def +SP monument+Noun +Sg ↔ anıt+Noun

+A3sg +Pnon +Gen ayak+Noun +A3sg +P3sg +Nom

D.2 Training Subset 2

1. red+Adj hair+Noun +Sg ˆDB+Adj+Ed girl+Noun +Sg be+Verb +Pres +3sg
come+Verb +Prog ↔ kızıl+Adj saç+Noun +A3sg +Pnon +Nom ˆDB+Adj+With
kız+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Prog1 +A3sg

2. a+Det +Indef +Sg very+Adv sick+Adj woman+Noun +Sg ↔ çok+Adverb +AdjMdfy
hasta+Adj bir+Num+Card kadın+Noun +A3sg +Pnon +Nom

3. personnel+Noun +Sg of+Prep the+Det +Def +SP month+Noun +Sg ↔ ay+Noun
+A3sg +Pnon +Gen eleman+Noun +A3sg +P3sg +Nom

4. john+Noun +Prop +Sg +Part +Gen voice+Noun +Sg ↔ john+Noun +Prop +A3sg
+Pnon +Gen ses+Noun +A3sg +P3sg +Nom

5. the+Det +Def +SP child+Noun +Sg be+Verb +PastSimp +Sg cry+Verb +Prog ↔
çocuk+Noun +A3sg +Pnon +Nom ağla+Verb +Pos +Prog1 +Past +A3sg

6. the+Det +Def +SP plane+Noun +Sg be+Verb +PastSimp +Sg crash+Verb +Prog↔
uçak+Noun +A3sg +Pnon +Nom düş+Verb +Pos +Prog1 +Past +A3sg
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7. john+Noun +Prop +Sg +Part +Gen height+Noun +Sg ↔ john+Noun +Prop +A3sg
+Pnon +Gen boy+Noun +A3sg +P3sg +Nom

8. a+Det +Indef +Sg cup+Noun +Sg of+Prep tea+Noun +Sg ↔ bir+Num+Card fin-
can+Noun +A3sg +Pnon +Nom kahve+Noun +A3sg +Pnon +Nom

9. a+Det +Indef +Sg rise+Verb +Prog ˆDB+Adj+Zero sun+Noun +Sg↔ bir+Num+Card
doğ+Verb +Pos ˆDB+Adj+PresPart güneş+Noun +A3sg +Pnon +Nom

10. a+Det +Indef +Sg fly+Verb +Prog ˆDB+Adj+Zero plane+Noun +Sg↔ bir+Num+Card
uç+Verb +Pos ˆDB+Adj+PresPart uçak+Noun +A3sg +Pnon +Nom

11. john+Noun +Prop +Sg +Part +Gen size+Noun +Sg ↔ john+Noun +Prop +A3sg
+Pnon +Gen boy+Noun +A3sg +P3sg +Nom

12. a+Det +Indef +Sg empty+Adj seat+Noun +Sg ↔ boş+Adj bir+Num+Card
koltuk+Noun +A3sg +Pnon +Nom

13. a+Det +Indef +Sg cry+Verb +Prog ˆDB+Adj+Zero baby+Noun +Sg↔ bir+Num+Card
ağla+Verb +Pos ˆDB+Adj+PresPart bebek+Noun +A3sg +Pnon +Nom

14. the+Det +Def +SP song+Noun +Sg be+Verb +PastSimp +Sg play+Verb +Prog ↔
şarkı+Noun +A3sg +Pnon +Nom çal+Verb +Pos +Prog1 +Past +A3sg

15. john+Noun +Prop +Sg +Part +Gen watch+Noun +Sg ↔ john+Noun +Prop +A3sg
+Pnon +Gen saat+Noun +A3sg +P3sg +Nom

16. the+Det +Def +SP bee+Noun +Sg be+Verb +PastSimp +Sg sting+Verb +Prog ↔
arı+Noun +A3sg +Pnon +Nom sok+Verb +Pos +Prog1 +Past +A3sg

17. mother+Noun +Sg of+Prep the+Det +Def +SP child+Noun +Sg ↔ çocuk+Noun
+A3sg +Pnon +Gen anne+Noun +A3sg +P3sg +Nom

18. john+Noun +Prop +Sg +Part +Gen mother+Noun +Sg ↔ john+Noun +Prop +A3sg
+Pnon +Gen anne+Noun +A3sg +P3sg +Nom

19. a+Det +Indef +Sg month+Noun +Sg ↔ bir+Num+Card ay+Noun +A3sg +Pnon
+Nom

20. this+Det +Sg fly+Verb +Prog ˆDB+Adj+Zero plane+Noun +Sg ↔ bu+Pron +A3sg
+Pnon +Nom uç+Verb +Pos ˆDB+Adj+PresPart uçak+Noun +A3sg +Pnon +Nom

D.3 Testing Subset

1. a+Det +Indef +Sg pig+Noun +Sg come+Verb +Pres +3sg ↔ bir+Num+Card do-
muz+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Aor +A3sg

2. all+Det +Pl school+Noun +Pl ↔ bütün+Adj okul+Noun +A3pl +Pnon +Nom
3. four+Num+Card car+Noun +Pl ↔ dört+Num+Card araba+Noun +A3sg +Pnon

+Nom
4. all+Det +Pl pig+Noun +Pl ↔ bütün+Adj domuz+Noun +A3pl +Pnon +Nom
5. a+Det +Indef +Sg black+Adj car+Noun +Sg ↔ bir+Num+Card siyah+Adj

araba+Noun +A3sg +Pnon +Nom
6. at+Prep least+Adv two+Num+Card car+Noun +Pl ↔ en+Adverb +AdjMdfy

az+Adverb +AdjMdfy iki+Num+Card araba+Noun +A3sg +Pnon +Nom
7. at+Prep most+Adv two+Num+Card car+Noun +Pl ↔ en+Adverb +AdjMdfy

çok+Adverb +AdjMdfy iki+Num+Card araba+Noun +A3sg +Pnon +Nom
8. at+Prep least+Adv one+Num+Card car+Noun +Sg ↔ en+Adverb +AdjMdfy

az+Adverb +AdjMdfy bir+Num+Card araba+Noun +A3sg +Pnon +Nom
9. at+Prep most+Adv one+Num+Card car+Noun +Sg ↔ en+Adverb +AdjMdfy

çok+Adverb +AdjMdfy bir+Num+Card araba+Noun +A3sg +Pnon +Nom
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10. at+Prep least+Adv three+Num+Card notebook+Noun +Pl ↔ en+Adverb +AdjMdfy
az+Adverb +AdjMdfy üç+Num+Card defter+Noun +A3sg +Pnon +Nom

11. at+Prep most+Adv three+Num+Card notebook+Noun +Pl↔ en+Adverb +AdjMdfy
çok+Adverb +AdjMdfy üç+Num+Card defter+Noun +A3sg +Pnon +Nom

12. ali+Noun +Prop +Sg +Part +Gen book+Noun +Sg↔ ali+Noun +Prop +A3sg +Pnon
+Gen kitap+Noun +A3sg +P3sg +Nom

13. every+Det +Sg pig+Noun +Sg ↔ her+Adj domuz+Noun +A3sg +Pnon +Nom
14. every+Det +Sg car+Noun +Sg ↔ her+Adj araba+Noun +A3sg +Pnon +Nom
15. four+Num+Card brown+Adj car+Noun +Pl ↔ dört+Num+Card kahverengi+Adj

araba+Noun +A3sg +Pnon +Nom
16. three+Num+Card apple+Noun +Pl ↔ üç+Num+Card elma+Noun +A3sg +Pnon

+Nom
17. cop+Noun +Pl be+Verb +Pres +Pl approach+Verb +Prog ↔ polis+Noun +A3pl

+Pnon +Nom yaklaş+Verb +Pos +Prog1 +A3pl
18. cop+Noun +Pl be+Verb +Pres +Pl not+Adv approach+Verb +Prog ↔ polis+Noun

+A3pl +Pnon +Nom yaklaş+Verb +Neg +Prog1 +A3pl
19. thief+Noun +Pl be+Verb +Pres +Pl steal+Verb +Prog↔ hırsız+Noun +A3pl +Pnon

+Nom çal+Verb +Pos +Prog1 +A3pl
20. thief+Noun +Pl be+Verb +Pres +Pl not+Adv steal+Verb +Prog ↔ hırsız+Noun

+A3pl +Pnon +Nom çal+Verb +Neg +Prog1 +A3pl
21. three+Num+Card cop+Noun +Pl↔ üç+Num+Card polis+Noun +A3sg +Pnon +Nom
22. girl+Noun +Pl be+Verb +Pres +Pl approach+Verb +Prog↔ kız+Noun +A3pl +Pnon

+Nom yaklaş+Verb +Pos +Prog1 +A3pl
23. cop+Noun +Pl will+Aux not+Adv approach+Verb +Pres +Non3sg ↔ polis+Noun

+A3pl +Pnon +Nom yaklaş+Verb +Neg +Fut +A3pl
24. thief+Noun +Pl will+Aux not+Adv steal+Verb +Pres +Non3sg↔ hırsız+Noun +A3pl

+Pnon +Nom çal+Verb +Neg +Fut +A3pl
25. cop+Noun +Pl will+Aux approach+Verb +Pres +Non3sg↔ polis+Noun +A3pl +Pnon

+Nom yaklaş+Verb +Pos +Fut +A3pl
26. thief+Noun +Pl will+Aux steal+Verb +Pres +Non3sg ↔ hırsız+Noun +A3pl +Pnon

+Nom çal+Verb +Pos +Fut +A3pl
27. girl+Noun +Pl will+Aux approach+Verb +Pres +Non3sg ↔ kız+Noun +A3pl +Pnon

+Nom yaklaş+Verb +Pos +Fut +A3pl
28. cop+Noun +Pl will+Aux go+Verb +Pres +Non3sg tomorrow+Adv ↔ polis+Noun

+A3pl +Pnon +Nom yarın+Adverb git+Verb +Pos +Fut +A3pl
29. these+Det +Pl cop+Noun +Pl ↔ bu+Adj polis+Noun +A3pl +Pnon +Nom
30. those+Det +Pl cop+Noun +Pl ↔ şu+Adj polis+Noun +A3pl +Pnon +Nom
31. two+Num+Card cold+Adj cop+Noun +Pl ↔ iki+Num+Card soğuk+Adj polis+Noun

+A3sg +Pnon +Nom
32. four+Num+Card cold+Adj beer+Noun +Pl↔ dört+Num+Card soğuk+Adj bira+Noun

+A3sg +Pnon +Nom
33. three+Num+Card cold+Adj whiskey+Noun +Pl ↔ üç+Num+Card soğuk+Adj

viski+Noun +A3sg +Pnon +Nom
34. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg a+Det +Indef +Sg thief+Noun +Sg
↔ ben+Pron +A1sg +Pnon +Nom bir+Num+Card hırsız+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A1sg

35. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg a+Det +Indef +Sg boy+Noun +Sg↔
ben+Pron +A1sg +Pnon +Nom bir+Num+Card oğlan+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A1sg
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36. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl a+Det +Indef +Sg boy+Noun +Sg
↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card oğlan+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A2sg

37. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl a+Det +Indef +Sg thief+Noun +Sg
↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card hırsız+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +A2sg

38. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg not+Adv a+Det +Indef +Sg
thief+Noun +Sg ↔ ben+Pron +A1sg +Pnon +Nom bir+Num+Card hırsız+Noun
+A3sg +Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A1sg

39. i+Pron+Pers +Nom +1sg be+Verb +Pres +1sg not+Adv a+Det +Indef +Sg boy+Noun
+Sg ↔ ben+Pron +A1sg +Pnon +Nom bir+Num+Card oğlan+Noun +A3sg +Pnon
+Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A1sg

40. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl not+Adv a+Det +Indef +Sg
boy+Noun +Sg↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card oğlan+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A2sg

41. you+Pron+Pers +Nom +2sg be+Verb +Pres +Pl not+Adv a+Det +Indef +Sg
thief+Noun +Sg ↔ sen+Pron +A2sg +Pnon +Nom bir+Num+Card hırsız+Noun
+A3sg +Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A2sg

42. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg a+Det +Indef +Sg notebook+Noun
+Sg ↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card defter+Noun +A3sg +Pnon
+Nom ˆDB+Verb+Zero +Pres +Cop +A3sg

43. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg a+Det +Indef +Sg car+Noun +Sg
↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card araba+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +Cop +A3sg

44. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg not+Adv a+Det +Indef +Sg note-
book+Noun +Sg↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card defter+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +Cop +A3sg

45. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg not+Adv a+Det +Indef +Sg
car+Noun +Sg ↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card araba+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +Cop +A3sg

46. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg not+Adv a+Det +Indef +Sg
pig+Noun +Sg ↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card domuz+Noun +A3sg
+Pnon +Nom değil+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +Cop +A3sg

47. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg a+Det +Indef +Sg school+Noun +Sg
↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card okul+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +Cop +A3sg

48. ali+Noun +Prop +Sg +Part +Gen car+Noun +Sg ↔ ali+Noun +Prop +A3sg +Pnon
+Gen araba+Noun +A3sg +P3sg +Nom

49. the+Det +Def +SP cold+Adj beer+Noun +Sg↔ soğuk+Adj bira+Noun +A3sg +Pnon
+Nom

50. the+Det +Def +SP cold+Adj beer+Noun +Pl↔ soğuk+Adj bira+Noun +A3pl +Pnon
+Nom

51. the+Det +Def +SP whole+Adj week+Noun +Sg ↔ bütün+Adj hafta+Noun +A3sg
+Pnon +Nom

52. they+Pron+Pers +Nom +3pl be+Verb +Pres +Pl thief+Noun +Pl ↔ o+Pron +A3pl
+Pnon +Nom hırsız+Noun +A3sg +Pnon +Nom ˆDB+Verb+Zero +Pres +A3pl

53. they+Pron+Pers +Nom +3pl be+Verb +Pres +Pl not+Adv thief+Noun +Pl↔ o+Pron
+A3pl +Pnon +Nom hırsız+Noun +A3sg +Pnon +Nom değil+Noun +A3sg +Pnon
+Nom ˆDB+Verb+Zero +Pres +A3pl
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54. which+Pron+Wh +NomObl +3SP thief+Noun +Pl↔ hangi+Adj +Ques hırsız+Noun
+A3pl +Pnon +Nom

55. which+Pron+Wh +NomObl +3SP cop+Noun +Sg ↔ hangi+Adj +Ques polis+Noun
+A3sg +Pnon +Nom

56. which+Pron+Wh +NomObl +3SP tailor+Noun +Pl↔ hangi+Adj +Ques terzi+Noun
+A3pl +Pnon +Nom

57. a+Det +Indef +Sg very+Adv sick+Adj girl+Noun +Sg ↔ çok+Adverb +AdjMdfy
hasta+Adj bir+Num+Card kız+Noun +A3sg +Pnon +Nom

58. a+Det +Indef +Sg literate+Adj woman+Noun +Sg↔ okur yazar+Adj bir+Num+Card
kadın+Noun +A3sg +Pnon +Nom

59. red+Adj hair+Noun +Sg ˆDB+Adj+Ed woman+Noun +Sg be+Verb +Pres +3sg
come+Verb +Prog ↔ kızıl+Adj saç+Noun +A3sg +Pnon +Nom ˆDB+Adj+With
kadın+Noun +A3sg +Pnon +Nom gel+Verb +Pos +Prog1 +A3sg

60. personnel+Noun +Sg of+Prep the+Det +Def +SP year+Noun +Sg↔ yıl+Noun +A3sg
+Pnon +Gen eleman+Noun +A3sg +P3sg +Nom

61. tom+Noun +Prop +Sg +Part +Gen voice+Noun +Sg ↔ tom+Noun +Prop +A3sg
+Pnon +Gen ses+Noun +A3sg +P3sg +Nom

62. tom+Noun +Prop +Sg +Part +Gen height+Noun +Sg ↔ tom+Noun +Prop +A3sg
+Pnon +Gen boy+Noun +A3sg +P3sg +Nom

63. tom+Noun +Prop +Sg +Part +Gen size+Noun +Sg ↔ tom+Noun +Prop +A3sg
+Pnon +Gen beden+Noun +A3sg +P3sg +Nom

64. the+Det +Def +SP baby+Noun +Sg be+Verb +PastSimp +Sg cry+Verb +Prog ↔
bebek+Noun +A3sg +Pnon +Nom ağla+Verb +Pos +Prog1 +Past +A3sg

65. the+Det +Def +SP plane+Noun +Sg be+Verb +PastSimp +Sg fly+Verb +Prog ↔
uçak+Noun +A3sg +Pnon +Nom uç+Verb +Pos +Prog1 +Past +A3sg

66. tom+Noun +Prop +Sg +Part +Gen watch+Noun +Sg ↔ tom+Noun +Prop +A3sg
+Pnon +Gen saat+Noun +A3sg +P3sg +Nom

67. a+Det +Indef +Sg cup+Noun +Sg of+Prep coffee+Noun +Sg ↔ bir+Num+Card fin-
can+Noun +A3sg +Pnon +Nom kahve+Noun +A3sg +Pnon +Nom

68. a+Det +Indef +Sg empty+Adj chair+Noun +Sg ↔ boş+Adj bir+Num+Card sanda-
lye+Noun +A3sg +Pnon +Nom

69. this+Det +Sg rise+Verb +Prog ˆDB+Adj+Zero sun+Noun +Sg ↔ bu+Pron +A3sg
+Pnon +Nom doğ+Verb +Pos ˆDB+Adj+PresPart güneş+Noun +A3sg +Pnon +Nom

70. a+Det +Indef +Sg crash+Verb +Prog ˆDB+Adj+Zero plane+Noun +Sg ↔
bir+Num+Card düş+Verb +Pos ˆDB+Adj+PresPart uçak+Noun +A3sg +Pnon +Nom

71. this+Det +Sg crash+Verb +Prog ˆDB+Adj+Zero plane+Noun +Sg↔ bu+Pron +A3sg
+Pnon +Nom düş+Verb +Pos ˆDB+Adj+PresPart uçak+Noun +A3sg +Pnon +Nom

72. this+Det +Sg cry+Verb +Prog ˆDB+Adj+Zero baby+Noun +Sg ↔ bu+Pron +A3sg
+Pnon +Nom ağla+Verb +Pos ˆDB+Adj+PresPart bebek+Noun +A3sg +Pnon +Nom

73. the+Det +Def +SP music+Noun +Sg be+Verb +PastSimp +Sg play+Verb +Prog ↔
müzik+Noun +A3sg +Pnon +Nom çal+Verb +Pos +Prog1 +Past +A3sg

74. the+Det +Def +SP scorpion+Noun +Sg be+Verb +PastSimp +Sg sting+Verb +Prog
↔ akrep+Noun +A3sg +Pnon +Nom sok+Verb +Pos +Prog1 +Past +A3sg

75. thief+Noun +Pl will+Aux steal+Verb +Pres +Non3sg letter+Noun +Pl↔ hırsız+Noun
+A3pl +Pnon +Nom mektup+Noun +A3pl +Pnon +Nom çal+Verb +Pos +Fut +A3pl

76. priest+Noun +Pl will+Aux ring+Verb +Pres +Non3sg bell+Noun +Pl↔ rahip+Noun
+A3pl +Pnon +Nom çan+Noun +A3pl +Pnon +Nom çal+Verb +Pos +Fut +A3pl

77. the+Det +Def +SP phone+Noun +Sg be+Verb +PastSimp +Sg ring+Verb +Prog ↔
telefon+Noun +A3sg +Pnon +Nom çal+Verb +Pos +Prog1 +Past +A3sg
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78. the+Det +Def +SP nature+Noun +Sg be+Verb +PastSimp +Sg call+Verb +Prog ↔
doğa+Noun +A3sg +Pnon +Nom çağır+Verb +Pos +Prog1 +Past +A3sg

79. a+Det +Indef +Sg ring+Verb +Prog ˆDB+Adj+Zero bell+Noun +Sg↔ bir+Num+Card
çal+Verb +Pos ˆDB+Adj+PresPart çan+Noun +A3sg +Pnon +Nom

80. the+Det +Def +SP strange+Adj habit+Noun +Pl↔ garip+Noun +A3sg +Pnon +Nom
adet+Noun +A3pl +Pnon +Nom

81. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg a+Det +Indef +Sg watch+Noun +Sg
↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card saat+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +Cop +A3sg

82. a+Det +Indef +Sg hard+Adj problem+Noun +Sg ↔ zor+Adj bir+Num+Card
sorun+Noun +A3sg +Pnon +Nom

83. a+Det +Indef +Sg hard+Adj rock+Noun +Sg↔ sert+Adj bir+Num+Card kaya+Noun
+A3sg +Pnon +Nom

84. tom+Noun +Prop +Sg +Part +Gen mouth+Noun +Sg ↔ tom+Noun +Prop +A3sg
+Pnon +Gen ağız+Noun +A3sg +P3sg +Nom

85. priest+Noun +Pl will+Aux buy+Verb +Pres +Non3sg food+Noun +Pl↔ rahip+Noun
+A3pl +Pnon +Nom yiyecek+Noun +A3pl +Pnon +Nom al+Verb +Pos +Fut +A3pl

86. john+Noun +Prop +Sg +Part +Gen mother+Noun +Sg ↔ john+Noun +Prop +A3sg
+Pnon +Gen anne+Noun +A3sg +P3sg +Nom

87. these+Det +Pl interval+Noun +Pl ↔ bu+Adj aralık+Noun +A3pl +Pnon +Nom
88. this+Det +Sg department+Noun +Sg ↔ bu+Adj bölüm+Noun +A3sg +Pnon +Nom
89. the+Det +Def +SP girl+Noun +Sg be+Verb +PastSimp +Sg call+Verb +Prog ↔

kız+Noun +A3sg +Pnon +Nom çağır+Verb +Pos +Prog1 +Past +A3sg
90. boy+Noun +Pl will+Aux write+Verb +Pres +Non3sg paper+Noun +Pl↔ oğlan+Noun

+A3pl +Pnon +Nom makale+Noun +A3pl +Pnon +Nom yaz+Verb +Pos +Fut +A3pl
91. these+Det +Pl paper+Noun +Pl ↔ bu+Adj makale+Noun +A3pl +Pnon +Nom
92. this+Det +Sg paper+Noun +Sg ↔ bu+Adj makale+Noun +A3sg +Pnon +Nom
93. these+Det +Pl mouth+Noun +Pl ↔ bu+Adj ağız+Noun +A3pl +Pnon +Nom
94. the+Det +Def +SP child+Noun +Sg be+Verb +PastSimp +Sg call+Verb +Prog ↔

çocuk+Noun +A3sg +Pnon +Nom çağır+Verb +Pos +Prog1 +Past +A3sg
95. man+Noun +Pl will+Aux read+Verb +Pres +Non3sg paper+Noun +Pl↔ adam+Noun

+A3pl +Pnon +Nom makale+Noun +A3pl +Pnon +Nom oku+Verb +Pos +Fut +A3pl
96. which+Pron+Wh +NomObl +3SP portion+Noun +Sg ↔ hangi+Adj +Ques

bölüm+Noun +A3sg +Pnon +Nom
97. it+Pron+Pers +Nom +3sg be+Verb +Pres +3sg a+Det +Indef +Sg song+Noun +Sg
↔ o+Pron +A3sg +Pnon +Nom bir+Num+Card şarkı+Noun +A3sg +Pnon +Nom
ˆDB+Verb+Zero +Pres +Cop +A3sg

98. yellow+Adj car+Noun +Sg ↔ sarı+Adj araba+Noun +A3sg +Pnon +Nom
99. ali+Noun +Prop +Sg +Part +Gen plane+Noun +Sg↔ ali+Noun +Prop +A3sg +Pnon

+Gen uçak+Noun +A3sg +P3sg +Nom
100. three+Num+Card car+Noun +Pl ↔ üç+Num+Card araba+Noun +A3sg +Pnon

+Nom


