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ABSTRACT

MODELING CELLULAR PROCESSES WITH PATIKA

Emek Demir, B.S., Bilkent University
M.S. In Molecular Biology and Genetics

Supervisor: Assistant Professor Rengül Çetin Atalay
19 September 2001, 62 pages

Availability of the sequences of entire genomes shifts the scientific curiosity toward

the identification of function of the genomes in large scale as in genome studies. In the near

future data produced about cellular processes at molecular level will accumulate with an

accelerating rate as a result of proteomics studies. In this regard, it is essential to develop

tools for storing, integrating, accessing, and analyzing this data effectively.

We define an ontology for a comprehensive representation of cellular events. The

model presented here enables integration of fragmented or incomplete pathway information

and supports manipulation and incorporations of the stored data, as well as multiple levels of

abstraction. Based on this model, we present an integrated environment named PATIKA

(Pathway Analysis Tool for Integration and Knowledge Acquisition). PATIKA is composed

of a server-side, scalable, object-oriented database and client-side editors to provide an

integrated, multi-user environment for visualizing and manipulating network of cellular

events.  This tool features automated pathway layout, functional computation support,

advanced querying and a user-friendly graphical interface.

We expect that PATIKA will be a valuable tool for rapid knowledge acquisition;

micro array generated large-scale data interpretation; disease gene identification and drug

development.

Keywords: bioinformatics, cellular pathways, object oriented database, automated

layout, ontology.
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ÖZET

PATIKA İLE  HÜCRESEL OLAYLARIN MODELLENMESİ

Emek Demir, B.S., Bilkent Üniversitesi
Molekuler Biyoloji ve Genetik Yuksek Lisans Tezi

Tez Yoneticisi: Yardimci Docent Dr. Rengül Çetin Atalay
19 Eylül 2001, 60 sayfa

Çeşitli genomların DNA dizilerinin ortaya çıkarılmasıyla, bilimsel ilgi, genomların

işlevlerinin büyük ölçekli çalışmalarla çözümlenmesinde yoğunlaşmaktadır. Bu tür proteom

çalışmaları sonucu, yakın gelecekte hücresel olaylar hakkındaki bilgimiz artan bir ivmeyle

çoğalacaktır. Bu verileri saklayacak, birleştirecek, erişimini ve çözümlenmesini sağlayacak

araçların geliştirilmesi öncelikli gerekesinimlerden biridir.

Bu çalışmada, hücresel işlemlerin modellenmesi için yeni bir ontoloji

tanımlanmaktadır. Önerilen ontoloji, yeni bilgilerin eklenmesini ve parçalı ya da eksik

verilerin birleştirilmesini sağlamasının yanısıra, varolan modelin değiştirilmesine ve birden

çok düzeyde soyutlanabilmesine olanak tanımaktadır. PATİKA bu ontoloji üzerine kurulmuş

tümleşik bir hücresel yolak modelleme ortamıdır. PATIKA, sunucu tarafında nesneye-dayalı,

ölçeklenebilir bir veri tabanı ve istemci tarafında görsel düzenleyiciler ile çok kullanıcılı bir

ortam sunmaktadır. PATIKA ayrıca özdevimli patika yerleşimi, işlevesel hesaplama desteği,

ileri sorgulama olanakları ve kullanıcı dostu görsel arabirim gibi özellikleri de içermektedir.

PATIKA`nın gelecekte hızlı bilgi edinimi, geniş ölçekli verilerin yorumlanması, ilaç

tasarımı ve hastalık-gen ilişkilerinin belirlenmesi gibi alanlarda onemli bir araç olmasını

bekliyoruz.

Anahtar Sözcükler: biyoinformatik, hücresel yolaklar, nesneye dayalı veritabanı,

özdevimli yerleşim, ontoloji.
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1  Introduction

Life is a dynamic and highly complex process (Segre and Lancet 2000). An organism

competes with other organisms for resources, tries to transmit its information to the next

generations and struggles to survive. Problems faced during this struggle are not

straightforward and they often require decision-making mechanisms for a good solution.

Even prokaryotic genomes, with a few thousand genes, encode a fascinating array of

regulatory proteins creating a network of information, ultimately dictating the cell what to do

under existing conditions (Miklos and Rubin 1996; Arnone and Davidson 1997; Blattner,

Plunkett et al. 1997). Human genome, which contain at least 28.000 genes(Jasny and

Kennedy 2001; Lander, Linton et al. 2001) , is expected to create an extremely complex

network, composed of hundred thousands of different molecules and factors . In this regard a

cell can be considered as an inherently complex multi-body system (Hanahan and Weinberg

2000). In order to make useful deductions about such a system, one needs to consider cellular

pathways as an interconnected network rather than separate linear signal routes.  Knowing

the exact map of this network is very important since it potentially explain the mechanisms of

life processes as well as disease conditions. Such knowledge will also serve as key tool for

further biomedical applications such as new drugs and diagnostic approaches (Vidal 2001).

Although our knowledge about cellular processes is increasing at a rapidly growing

pace, it is presently incomplete and fragmented. One of the most important challenges in

bioinformatics is development of tools to represent and integrate this knowledge.

Consequently, we are witnessing the emergence of many different approaches to the

development of “pathway databases”.

It is clear that building a database integrating all such data is a significant undertaking

and is probably beyond the reach of a single research group. However, it is possible to
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provide the scientific community with an internet-based modeling environment where every

member in the community may take part in the construction of such a database. Successful

examples like GenBank and PDB support such an approach to the problem of high

complexity.  We will also need facilities for retrieving and analyzing the network between

entities. It is expected that development of such databases and tools will be one of the major

research subjects in bioinformatics for the next few year (Endy and Brent 2001; Vidal 2001).

 PATIKA (Pathway Analysis Tool for Integration and Knowledge Acquisition) is an

integrated software environment designed to provide researchers a complete solution for

modeling and analyzing cellular processes with visualization and querying. The PATIKA

project aims to build a public database of all cellular processes using a regular, simple yet

comprehensive model. Such a database would benefit the entire scientific community but

would be especially invaluable to researchers using high-throughput techniques.

This M.S. Project includes building the underlying model, designing the mentioned

software, and implementing some components of the software. PATIKA is an ongoing

project as of the date this thesis is written.

First two chapters of this thesis lay out the background information for cellular

pathways and describe previous research on modeling them. Chapter 3 describes our model

and discusses its suitability to the requirements dictated by the needs of the scientific

community. Chapter 4 explains the architecture of the software tool we are currently

developing. Finally, the last chapter discusses our current progress, future directions and

possible applications of the PATIKA.
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2  Theory and Background

2.1 Cellular Pathways

Every second a cell makes hundreds of decisions. This is accomplished by

transmitting signals across chains of interacting molecules. Decisions are made based on the

amount of relevant signals where these chains intersect. These intersecting chains form

networks often specialized in regulating a certain phenomena. Although blueprints of this

network are encoded in the genome, we are still unable to interpret this data as a cell does

regularly. What we often need is a human readable abstraction of events that is happening in

a cell, describing the information, which are known as cellular pathways.

Traditionally there is a tendency to define a pathway as an isolated chain responsible

for transmitting a certain signal. However, as our knowledge about cellular pathways

increases, it is becoming evident that in order to be able to make predictions one needs to

consider cellular pathways as an interconnected network rather than separate linear signal

routes.  Similarly, definition of a signal is becoming less clear as we now have to consider

cases where a “signal” splits, merges and creates feedback loops. Although little ambitious,

perceiving cellular pathways as sub-graphs of a single global pathway can provide more

meaningful models, for purposes of analysis.

System we are dealing with is an inherently complex multi-body system. It is

important to asses at least the magnitude of its complexity. If we try to approximate the

number of interactions in a human cell, in higher organisms, each gene or protein interacts

approximately with seven other proteins on the average. Although there is an ongoing

controversy about the issue, we also know that the number of human genes is at least 28.000

(Blattner, Plunkett et al. 1997; Jasny and Kennedy 2001; Lander, Linton et al. 2001).  There
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are approximately 1.2 proteins per gene (Miklos and Rubin 1996; Arnone and Davidson

1997) (Fig. 1). Using these approximations, we end up with a network of more than one

million interactions. If we consider the small molecules and macromolecule complexes as

well, this number increases to the order of millions of entities. However, practical complexity

can even be higher depending on the representation models.

Figure 1: Multiple proteins from one gene

Ing1 gene encodes for three protein products via different splice forms.

Exon 2Exon 1bExon 1a

P47ING1a

P33ING1b

P24ING1c

ING1 gene

  Coding region in exon,     non-coding region in exon.
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Modeling Cellular Pathways

In a cell, decision mechanisms are governed by molecules. Molecules can be

macromolecules (such as DNA, RNA or Protein), small molecules (such as ions or small

organic compounds) or complexes of those. Additionally physical factors like radiation or

heat also takes role in these decision-making processes. Molecules have the ability to interact

with each other in an information dependant manner and respond to changes in the

environment accordingly.

Figure 2: Life cycle of a molecule:

Life cycle of a molecule starts with a
synthesis or transportation. Its
information context is modified by a
series of transitions. Finally, it is either
degraded or transported out of the cell.

A molecule starts its life cycle by either being synthesized from its precursors or

transported into the cell, then it goes through a series of transitions. Examples of transitions

are group addition and removals, isomerisations, complex formations and transportations.

Each transition changes the information carried by the molecule, transforming it into a new

state. Examples of states are phosphorylated state of a protein or a certain splice form of

RNA. A molecule’s life cycle ends either by being degraded or transported out of the cell

(Fig. 2). A molecule may go through a certain set of possible transitions under a specified
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physiological condition and a very different one under another condition. In fact, this is the

very mechanism of cellular regulation.

First step towards modeling cellular pathways is to define ontology of the model. An

ontology is a formal specification of one’s conceptualization of the phenomena of interest. It

is a scheme-linking model to real life events.

Effectiveness of the ontology is strictly related to the goal we are aiming.

Requirements of an information system, simply outlining the phenomena is much different

from a stochastic simulation. There are a few important parameters defining the effectiveness

of an ontology

2.1.1 Representing molecules

In a cell, most of the information processing occurs via state switches in

macromolecules (i.e. phosphorylated state of certain protein vs. its non-phosphorylated state).

A shorthand representation commonly used in biological literature denotes molecules as

small automatons, and opt not to represent each state of the molecule explicitly for the sake

of brevity. Sometimes so-called “active” and “inactive” states are represented separately.

Obviously, this is an incomplete solution since a molecule has often more than two states and

its active form may change depending on one’s point of view. Consequently, some prior

knowledge is often required to interpret these graphs.

These representations also use hyperedges, the edges that has more than one source or

target points, extensively, in order to represent interactions involving more than two

molecules. This poses another restrain for visualization and analysis. Although these

problems may not have been significant so far due to relatively less complexity of the data,

they will surely cause problems as the average number of molecules per pathway increases.
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An alternative is to denote each state explicitly. This bestows clarity to the model

however, resulting in an increase in modeling and analysis times. Moreover, for the cases

where the mechanistic details are not known (i.e. which state of a molecule actually

participates in a reaction) such a model must provide additional solutions to model

incomplete but important information.

2.1.2 Representing events

Representation of events that changes the information content of a cell is a crucial

part of ontology. There are multiple levels of detail ranging from outright qualitative models

in which we only state the nature of the transition, to the complete quantitative model in

which we define the transition complete with reaction orders and constants (Table 1). The

former is suitable for modeling large-scale networks where the detailed biochemical data is

not available. The latter is suitable for smaller networks in which simulation and prediction

capabilities are critical.
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Level of Detail Advantages Disadvantages

Molecule- molecule
interaction

Very simple to model, Can be
automatically generated from yeast 2
hybrid data

No mechanistic details, simulation and
prediction.

Reaction (Actor-
Event) based models.

Very intuitive and flexible, can cover
most of the biological phenomena

No simulation and poor prediction
capability often requires manual
modeling.

Boolean Networks Often based on reaction based models,
suitable for our current knowledge level

Modeling time is high, simulations are
inaccurate, and control loops oscillate.

Deterministic
continuous models

Very  accurate, powerful simulation and
prediction

Modeling is very difficult and time
consuming, and most of the time not
possible due to lack of experimental
data

Stochastic models May provide more accurate results for
the cases where signal is amplified

Same as continuous models.
Additionally complexity of simulation
increases a great deal

Table 1: A review of some modeling strategies

Each molecule in the cell has a concentration, representing the amount of this

molecule in the cell. Most of the time, the concentration of the molecules is critical for the

decision-making process. One can either assume sharp thresholds and changes in these values

or try to consider the concentrations. Most of our current knowledge lacks the specific

concentration data for each molecule. Similar to chemical information detail, boolean

systems, in which a state is either present (above threshold) or not (below threshold) is

suitable for large-scale modeling with weaker predictive value. On the other hand, continuous

models can provide results that are more accurate but are only suitable for smaller systems in

which modeling time is manageable and data is available.

In lower organisms like prokaryotes or viruses, there are processes in which a single

molecule can change the behavior of the organism. Lambda phage, for example uses this to

switch between lytic and lysogenic cycles unpredictably, weakening its hosts defenses. Such

cases are extremely difficult to model by deterministic systems. Instead, it is possible to use

stochastic methods that are able to handle such small changes. Stochastic methods are

typically based on continuous systems where deterministic equations are replaced by their
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stochastic counterparts. They share the same weaknesses with the continuous models and

additionally their simulation and modeling complexities are even higher.

2.1.3 Spatial – non Spatial

Multicellular organisms highly depend on cell-cell interactions for many processes

like development, immune response and cognition. Therefore, it is crucial to model

intercellular interactions as well as intracellular ones. However, this poses a completely new

set of concepts to model like cell-types and states, cellular neighborhood concept, tissues and

ultimately an organism. Simulation of such a system is also a much more difficult one.

It seems that other than few specific applications like modeling tumor growth, our

current understanding of living organisms are not sufficient for a complete spatial model.

2.2 Previous Work

There is a long tradition of representing cellular pathways as a graph in biological

literature. Although there have been a few efforts to provide the scientific community with a

regular representation system, none of them has been widely accepted. Today researchers are

looking for new options to provide the community with regular models to manage ever-

increasing cellular pathways data.

2.2.1 Still Image Databases

Still image databases aim to build a database of still images to represent cellular

mechanisms. Still images have the advantage of being built most easily, since one does not

need to spend time to learn a biological ontology (which often has steep learning curves) and

have the freedom of modeling the phenomena as he/she thinks.
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One of the most famous of these attempts is the Boehringer Mannheim Biochemical

Pathways Chart.
1
 These wall charts, are edited by retired Boehringer Mannheim researcher

Dr. Gerhard Michal, and covers a quite large amount of metabolic pathways as well as

regulatory pathways. It is also possible to access a digitized version of these charts on the

ExPASy Proteomics Server of the Swiss Institute of Bioinformatics.
2
 Digitized version also

features an index of metabolites and enzymes as well as links to the ENZYME database.

Biological Biochemical Image Database (BBID) 
3
 provides researchers with a set of

images from published articles along with an index to locate the images of interest. BBID

also accepts images from other researchers.

BioCarta
4
 also provides still images of biological pathways. However, it is different

from other still image databases in a number of ways. In an attempt to create a standard,

BioCarta provides researchers with a set of image templates for creating pathway models.

Additionally submitted images are edited further to create clickable maps linking other

databases of interest to the model. Finally, BioCarta uses a guru-researcher system in order to

create a self-curating/self-administrating environment.

Signaling pathways database (SPAD)
5
 provides clickable still image maps along with

data files for each molecule. It focuses on extra cellular signaling pathways and provides data

for each molecule. SPAD does not have a regular ontology and does not support

computations.

                                                
1
 http://biochem.boehringer-mannheim.com/prodinfo_fst.htm?/techserv/metmap.htm

2
 http:/ www.expasy.ch/cgi-bin/search-biochem-index

3
 http://bbid.grc.nia.nih.gov

4
 http://www.biocarta.com

5
 http://www.grt.kyushu-u.ac.jp/spad/
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However still images are inherently handicapped since they are not reusable and they

cannot be integrated automatically. Although image databases are very valuable and provide

a backbone for further research, we ultimately need more reusable, merge capable models for

putting together our knowledge about cellular pathways.

2.2.2 Interaction and Pathway Databases

It is possible to classify the databases that model cellular processes using a regular

model into three: interactions databases, metabolic pathway databases and signaling pathway

databases.

2.2.2.1 Interaction databases

Widespread use of yeast two hybrid and similar “fishing” methods generated many

protein interaction data in the recent years. Similarly better understanding of DNA-Protein

binding enabled us to detect proteins that bind to DNA. In an attempt to cope with these data,

interaction databases have been developed. Rather than modeling cellular processes as a

whole, these databases take the approach of identifying one to one interactions between

molecules. Some of them also create pathways (or similar graphs) from this data on the fly.

One of the most significant interaction databases is Database of Interacting Proteins 
6

(DIP).  It currently contains 9746 interactions among 5703 proteins. It is possible to query

these interactions and visualize it using an applet (JDip). DIP is tightly linked to PIR and

SwissProt and it accepts submissions from users.

Biomolecular Relations in Information Transmission and Expression (BRITE)
7
 is

another database of binary relations for computation and comparison of graphs. It contains

                                                
6
 http://dip.doe-mbi.ucla.edu/

7
 http://www.genome.ad.jp/brite/
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diverse sets including i)the generalized protein-protein interactions from metabolic databases,

ii) systematic experimental data on protein-protein interactions by yeast two-hybrid systems,

iii) sequence similarity relations by SSEARCH, iv)co-expression patterns by micro array

gene expression profiles.

Major disadvantage of these databases is they often miss other important interactions

with small molecules and physical factors. Additionally lacking a meta-structure, they are

poor on representing cellular process on multiple levels. However, their unit-based approach

makes them the most suitable structure for integrations. For example, such databases can be

constructed automatically from yeast two hybrid data.

2.2.2.2 Metabolic Pathway Databases

Although there is no distinct line between metabolic and signaling pathways, it

appears that our knowledge about metabolic pathways are much more detailed and structured.

As a result, databases mainly focusing on the metabolic parts of an organism are more

extensive compared to their signaling counterparts. In all of these databases, the enzymes are

classified according to the Enzyme Commission list of enzymes (EC numbers).

One of the well-known metabolic databases is Kyoto Encyclopedia for Genes and

Genomes (KEGG)(Ogata, Goto et al. 1999)
8
 . KEGG is composed of a set of still images

defining metabolic pathways, a set of tables defining relationships and orthologous entries,

and hierarchal texts defining these entries. These components are backed up with a querying

system that allows users to extract pathways. Although KEGG started as a metabolic

pathways database, it recently started an initiative for modeling cellular signaling processes

as well. However signaling part lacks the ontology of the metabolic part and is not a truly

pathways database.
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A similar database is What Is There?(WIT) (Selkov, Grechkin et al. 1998) 
9
. WIT

Project attempts to produce metabolic reconstructions for sequenced (or partially sequenced)

genomes. It currently has a set of over 25 such reconstructions and 2900 diagrams defining

metabolic pathways. It is strictly metabolic and focuses on the lower organisms. WIT also

features basic querying.

Another important database is BRENDA
10

, which is a collection of enzyme

functional data. Some 3500 "different" enzymes are covered. The data collection is being

developed into a metabolic network information system with links to Enzyme expression and

regulation information. Brenda lacks any computational tools other than basic queries and

has no visualization support.

Metabolic pathways are more manageable compared to signaling pathways in both

terms of complexity and numbers. Therefore, efforts for drawing every interaction in those

pathways as a still image have proved to be successful. These databases have a rigid

definition of a pathway and they never create a pathway on the fly. Unfortunately, these

features are essential for regulatory pathways.

EcoCyc(Karp, Riley et al. 1999; Karp 2000) 
11

 is one of the most serious attempts

towards building an ontology for metabolic pathways. EcoCyc features the entire small

molecule metabolism in E.Coli and provides support for querying and computation. EcoCyc

is also the first true attempt to an integrated environment since it also provides visual tools

for analyzing and displaying cellular environments.

                                                                                                                                                       
8
 http://www.genome.ad.jp/kegg/

9
 http://wit.mcs.anl.gov

10
 www.brenda.uni-koeln.de

11
 http://ecocyc.pangeasystems.com/
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2.2.2.3 Signaling Pathway Databases

Signaling pathway databases take the challenge of modeling signaling networks that

are more complex. As the complexity of the phenomena increases efforts focuses on

decreasing modeling time and increasing regularity of the model. This is not a trivial task and

led to different approaches.

Cell Signaling Networks Data base (CSNDB) is a data- and knowledge- base for

signaling pathways of human cells. It compiles the information on biological molecules,

sequences, structures, functions, and biological reactions that transfer the cellular signals.

Signaling pathways are compiled as binary relationships of biomolecules and represented by

graphs drawn automatically. CSNDB’s pathfinder querying mechanism is probably one of the

pioneering works in the field. Unfortunately, CSNDB suffers from a naive data model in

which you may get multiple instances of the same molecule or their orthologous and generic

variants in the same graph.

TRANSPATH(Wingender, Chen et al. 2000; Wingender, Chen et al. 2001) 
12

employs

a powerful hybrid ontology of both mechanistic (actor-event based) and semantic for

describing cellular events. It has a well-defined structure and an extensive content. It focuses

on pathways involved in the regulation of transcription factors. All data is extracted by

experts from the scientific literature. TRANSPATH features a basic querying system that

allows searching for molecules. TRANSPATH currently does not support computations but

has a very suitable structure as long as all data entries are made in mechanistic model.

                                                
12

 http://transpath.gbf.de/
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3 Systems and Methods

3.1 PATIKA Ontology

PATIKA ontology is developed for providing the scientific community a regular,

comprehensible yet expandable model. The model should facilitate easy integration of new

type of data and functionality to the model.

3.1.1 States, Transitions and Interactions

We propose to represent each state as a separate node in the graph. A molecule may

have any number of states to depict changes in its information context. A state can be a

macromolecule, a small molecule, a complex or even physical phenomena like light. In

addition, each transition is represented as a distinct type of node, making it possible to use

normal edges instead of hyperedges. Although, one may claim that considering membrane

transportation of a large molecule and phosphorylation of glucose similar is a rather rough

approximation, we believe that concepts in both events are the same and the difference is in

the complexity. Transitions provide a convenient mean for representing event-specific

information like reaction constants or the complex regulatory behavior. Each transition has a

number of associated states. States may be substrates, products, or effectors of the transitions

(Fig 3). These relations are represented by different edge types.

This model is very similar to the chemical equations of the form:

BA C→
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where A is a substrate, B is a product, and C is an effector. This analogy is very useful

since most of the biological reactions are essentially chemical reactions. Other non-chemical

phenomena like transportation can be described with the above model as well.

These definitions automatically impose some invariance to the model. Each

interaction of type product must have a transition as its source and a state for its target.

Similarly, each interaction of type substrate, activator or inhibitor has a state as its source and

a transition for its target. As a result, the PATIKA model forms a bipartite graph, where each

transition is connected to a set of states, and each state is connected to a set of transitions. No

state or transition can be connected to itself or any other node of the same type (Fig 3).

Figure 3: PATIKA model

Representation of a basic cellular interaction using
PATIKA model. Edges represent “is a” relation. (e.g
green is an activator of t).

3.1.2 Summaries, Interpathway and Meta Interactions

A summary is a set of states and transitions with some specific restrictions.

Summaries let us condense trivial interactions and model incomplete information. They also

introduce two new types of interactions, into pathway interactions and meta interactions. An

interpathway interaction is an interaction that defines a relation between a node inside the

summary and a node outside. A meta interaction is an interaction between an outside node

and the summary itself. It represents a relation with incomplete information (i.e. the exact

mechanism is not known).
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Summaries also carry an identity; they are either states (summary states) or transitions

(summary transitions) (Fig.4). They have the same restrictions as plain states and transitions

respectively.

Figure 4: PATIKA summary.

Representation of a summary state. Substrates and activator to t' and products of t" are
interpathway interactions where inhibitor interaction is an example of a meta edge indicating
that the red node somehow inhibits the summary transition (represented with the large blue
box). Also, note that this summary details the transition represented in Figure 2.

There are cases where an abstraction for a certain series of events is necessary, as in

the case of apoptosis or glucose metabolism. Details of these processes are rarely of interest

to a common user, and it is meaningful to represent these nodes as abstract states or

transitions, with the details hidden. However, it is also important to be able to model details

in the case where mechanism becomes important to the user. The PATIKA model uses

summaries for encapsulating these details, which can be inspected further upon the request of

the user. It is also possible to nest summaries inside summaries, allowing user to model and

analyze cellular processes at multiple levels of details.
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For most of the cellular processes, our knowledge is far from complete. Although the

nature of the event is known, it is very probable that the details are still unclear. The

PATIKA model allows representation of incomplete information by defining meta edges

representing incomplete information. Consider the case where we want to detail the

mechanism we represented in Figure 2; however, we have details only for the activation of

the mechanism. In that case, we represent the inhibition with a meta edge (Figure 3)

indicating that our knowledge is inadequate to assess how exactly the inhibition occurs.

3.1.3 Compartments and Cell Models

A cell has a structure and compartments, like organelles, membranes, and regions. A

change in the compartment of a state is considered as a change in its information content

since it restricts the molecules it may interact. For example, normal cyctochrome C in

mitochondria having a role in metabolism induces apoptosis if it is released to the cytoplasm.

Similarly most transcription factors, when activated, translocates to nucleus to induce gene

expression.

Each state in the PATIKA model has a compartment. A compartment has a set of

neighboring compartments (e.g. cytoplasm and cytoplasm membrane) where interactions are

possible. States pass through transportation transitions to create new states in a different

compartment.

Structure of cells may differ even between tissues in an organism largely. Neurons for

example differ considerably from lymphocytes. Difference between different organisms, as in

the case of eukaryotes and prokaryotes are even more drastic. A cell model is a definition of

the structure of the cell. It defines compartments and their definitions. Each PATIKA

pathway has a cell model, and each of its states is assigned their compartments according to

the model.
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3.1.4 Bioentities

It is critical to assess as much information as possible to the states in order to be able

to encompass most of the biological information that is already available. In order to achieve

this goal one needs to have additional attributes on the states other than graph topology. It is

also important to have cross-links to other biological databases. One observation is that

PATIKA ontology defines multiple states for a single entry in most of the biological

databases (i.e. RNA, DNA and multiple forms of the protein product of a gene is represented

as a single entry in Swiss-Prot). In order to model this conventional grouping, PATIKA uses

bioentities, set of states that are traditionally grouped under a single title. Bioentities are most

useful and populated for macromolecules where a single information base (genetic code)

leads to multiple states.

3.1.5 Pathways

A pathway is a bipartite graph of states and transitions. It defines a certain abstraction

of a biological phenomenon. Each element of the model is defined in the context of a

pathway. In that sense, pathway is the central element of our ontology.

Each pathway has a list of states, transitions, interactions as well as bioentities. It has

a cell model defining the structure of the cell for which this pathway is defined.

Pathways can be nested through summaries and they can be merged to each other,

ultimately forming a “big picture” that defines all the interactions in a cell.

We believe that the resulting model is flexible enough to encompass most of the

biological phenomena while maintaining a well-defined and comprehensible structure.
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3.2 PATIKA Architecture

We define an Integrated Pathway Editing Environment (IPEE) as a tool, which aims

for a complete solution for editing, analyzing and accumulating cellular process data. It

features tools for visualization, query and simulation of pathways. Increasing complexity of

our current knowledge on cellular processes creates an important demand for such tools.

PATIKA is an integrated pathway-editing environment developed for modeling and

integrating our current knowledge on cellular pathways and facilitating analysis of this data.

PATIKA uses client-server architecture for achieving this task. The server acts as a common

database and manages queries and submissions as well as users. The PATIKA client, on the

other hand, provides a user-friendly interface for querying, retrieving, visualizing and

manipulating pathway information from the database.

Figure 5 : An overview of
PATIKA architecture.

Server side communication is
done via RMI while client-
server communication is done
via HTTP.

PATIKA has three levels of classes, model, database and editor levels. Model level

describes PATIKA model in an abstract manner. Database and editor level objects inherit

from their corresponding model level object. Database level objects are persistent capable

Client SideClient Side Server SideServer Side
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PATIKA 
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ProxyProxy Servlet
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and keep minimal information to increase database performance. On the other hand, editor

level objects have extra functionality required for editor operation like drawing.

PATIKA is designed as an internet based application. It uses Java’s Servlet

Technology for client-server communications. Additionally PATIKA server is designed to

run on multiple machines, and be scalable. PATIKA server uses JAVA’s Remote Method

Invocation (RMI) technology for server side communications.

The reason behind using two different communication systems is the nature of the

communication. RMI presents a programmatic interface for networking rather than relying on

the sockets and streams approach. The method's major advantage is that it offers you a

higher-level, method-based interface in which a remote object is treated as though it was

local. Although RMI has HTTP tunneling, allowing users to connect over the internet, several

bugs and limitations make RMI impractical for an HTTP based connection. It appears that

HTTP is too unstable for RMI and overriding default port behavior disables HTTP tunneling.

Servlets are a well-established technology and they prove to be very successful even over

most unstable connections, making them our choice for server-client communications.

A PATIKA session is started when a user executes the client application.  Once

logged in, the user can connect to the server and query the database to construct the desired

pathway. Pathways are created on the fly, and drawn automatically. A user can analyze and

manipulate the data or may add new information. Finally, the resulting pathway may be

stored locally or submitted to the database.
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Server Side-DetailedServer Side-Detailed
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3.3 Server

 The PATIKA server houses the PATIKA database and provides mechanisms for

retrieving and submitting information.

Figure 6: PATIKA Server
Architecture.

Three manager classes are
responsible for most of the
working logic of PATIKA
server. Database Manager
encapsulates database system
specific tasks (e.g. indexing,
session maintainance). Servlet
Manager is responsible for
creating new threads for
incoming requests.

PATIKA server is designed so that it can run on multiple machines and is scalable.

This is achieved by performing method calls between components by Java’s Remote Method

Invocation. In the server side, the communication protocol between managers is RMI. In the

system, all manager classes are designed to be executed at different machines. By separating

manager classes and enabling them run at different machines independent of each other, we

aimed to eliminate the load-balancing problems that may occur if all manager classes were

executed at the same machine. Since all manager classes will be in the same local area,

(Managers will run in one local area, Bilkent University, and clients can connect from

anywhere on earth) we will not have any communication problem like the ones between

PATIKA Editor and Server side.

A servlet is a Java class and therefore needs to be executed in a Java VM by a service

called a servlet engine. The servlet engine loads the servlet class the first time the servlet is

requested, or optionally already when the servlet engine is started. The servlet then stays
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loaded to handle multiple requests until it is explicitly unloaded or the servlet engine is shut

down. The Servlet (Advanced Programming Interface) API was developed to leverage the

advantages of the Java platform to solve the issues of CGI (Common Gateway Interface) and

proprietary APIs. It's a simple API supported by virtually all Web servers and even load-

balancing, fault-tolerant Application Servers. It solves the performance problem by executing

all requests as threads in one process, or in a load-balanced system, in one process per server

in the cluster. Servlet Manager class, which is a Servlet, is used to pass the requests from

PATIKA Editor to the proper manager class and then to pass the replies of manager classes to

PATIKA Editor.

Servlet Manager directs requests and submissions from user applications to three

managers. User Manager controls user traffic and manages user specific tasks like logging in,

alerting interested users for a certain update or keeping user customized options. Submission

Manager accepts and checks incoming submissions, stores them to the temporary

submissions database (see database structure) and alerts related experts of the new

submission. Query manager interprets user queries and performs them on the database. It

finally sends them back to the user. All of these three managers access database via a fourth

manager, Database Manager. Database Manager encapsulates database specific tasks and acts

as an interface between the database and the other managers.

3.3.1.1 Databases

PATIKA uses an object-oriented database system, so it stores the data exactly as it is

described in the model. It ultimately represents a complete picture of all the interactions in a

particular organism's cell as a graph (interconnected network) of pathways. Specifically, it

stores the following information:

• Every object in the database has a unique ID.
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• Each state and pathway in the database has a name.

• Every state, transition and interaction has an author.

• Each state and transition keeps information regarding its type.

• Every state and transition in this graph knows the states or transitions it is

related.

• Every state (transition) in this graph knows under which conditions it is

present (active) or not. This is calculated by evaluating whether the neighbors

of the state (transition) are active (present) or not.

• Each state is associated with a bioentity that keeps a set of links to the data

that is accumulated about this molecule as publications, sequences, physical

information, origin and associated phenotypes. Bioentities provide a gateway

for other public sources of information related to this molecule. PATIKA links

its model to other major databases such as GenBank or SWISS-PROT.

Although PATIKA currently aims for building a model for humans, it is

possible to use PATIKA for other organisms as well.  Each organism would

obviously need to be stored in a separate database.

3.3.1.2 User Operations

PATIKA is designed as a multi-user environment. Although access to the database is

to be hopefully unlimited, the ability to change its contents requires some restrictions.

PATIKA has three different types of users with different levels of access (Table 3):

Regular Users are the users that are using PATIKA for knowledge acquisition. They

are not actively involved in research, and they do not plan to contribute to the database in the
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near future. Any person can be a Regular User. Regular Users have read-only access to the

database.

Research Users are scientists that produce relevant information. They are the key

users of the database since they provide most of the data and updates. Although they cannot

directly change the main database, they can submit their propositions, which are reviewed by

and made public by experts. Any proposition that is found to be valid is integrated into the

main database. Researchers are required to go through a registration process, where they are

assigned an author ID. This ID is used for referencing entries made by the user. Each user has

interest fields, which maps to a certain subset of the cellular events. These interest fields are

used to notify users of the changes, which may be interest to them.

Expert Users are researchers who have expertise in a particular cellular

pathway/network. They have expertise fields defining the subset of graph in which they have

extensive knowledge, as well as interest fields. They have all the privileges of a research

user, plus the ability to modify the pathway information in the main database. In that sense,

they act as arbiters, deciding whether a proposed model is rational or not. Experts are chosen

by the PATIKA staff.

User Manager is responsible for checking and updating user authentication

information. It communicates with the client via the Servlet Manager and performs all of its

database accession via methods provided by the database manager.   Any database session

has the user information, which is used to determine the access type of that session and user

specific customizations. User Manager also provides means for changing user’s name,

personal and contact information and password.
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User Type Typical Role Access
Regular Medical Doctors, Students. Read only

Research Graduate Students,
Researchers.

Read & Submit

Expert PhDs specialized in the
relevant field.

Read & Write

Table 2:PATIKA user types

PATIKA user notification system notifies users of the changes in their expertise and

interest fields as well as other general changes (e.g. new submission, new version or patch of

software…) via a notification system. Notifier class, communicating with a SMTP server and

sending mail to a list of users handles this operation.

3.3.1.3 Queries

Searching this graph is essential for making a meaning out of it. It not only provides a

mean for accessing entries but also discovering relations that were not noticed before.

PATIKA provides users extensive facilities for querying the database. Users may

• Search for states, transitions, bioentities by ID, keyword, date, type and

author.

• Lookup transitions that a certain state goes into/comes out of/affects.

• Lookup states that a certain transition takes/produces/is affected.

• Search for paths between two bionodes that

o Is the shortest path

o Is shorter than a certain size

o Passes through a certain compartment
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o Involves a certain set of transitions

o Involves a certain set of states

User can also:

• Perform an operation on a query result (parenthesis)

• Perform basic Boolean operations on queries (AND, OR, NOT).

• Restrict the search space (e.g. do not evaluate meta-interactions)

It is possible to extend this list. It is easy to see that most of those queries may lead to

complex searches on the all-pathways database. This requires efficient search algorithms.

Note that this simple model may effectively predict most of the yes/no type questions

we ask in biology. It may also be very useful correlating large amounts of data created by

novel systems.

A QueryProcessor allows encapsulating query logic. For each new type of query, a

new query processor class evaluating the query must be implemented by extending the

QueryProcessor class. This kind of structure makes easy adding of new type of queries and

forms the conventions that must be followed by programmers during the implementation of

processor classes.

Probably, each algorithm will use a separate data structure and will keep different

information about each element of the graph being traversed. This kind of algorithm specific

information is kept in the Wrapper classes. Therefore, every new type of processor must also

have its own Wrapper class.

PATIKA uses Wrapper classes, instead of directly keeping the data on the graph in

order to avoid a few problems. First, due to our database management system, we need to

open it in the update mode, if we are to make changes on it, even though changes are
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temporary. To open the database for most of the queries in the update mode might create

some efficiency problems, especially in a multi-user environment. Moreover adding new data

structures to the graph elements would have been a difficult process, since it would require

rebuilding the database each time such a change is made.

Query Manager class is responsible for processing incoming queries from the users.

The ServletManager redirects query requests to the QueryManager by calling the

requestQuery method and passing a query string. The QueryManager parses the given query

string and for every query, the QueryManager instantiates a QueryProcessor specific to the

query type which runs in a separate thread.

Every query result is a pathway object, even if it only contains a single state. When

the query is complete, QueryManager is notified by the processor and resulting pathway is

then passed to the servlet manager, which is then sent back to the user.

3.3.1.4 Submissions

A user may submit any pathway he/she working on to the database, whether it is

created from the scratch or modified form a query. Since PATIKA’s major goal is to integrate

our knowledge on cellular events automatically, it allows any researcher to submit new data

or corrections to the database. However since the data is highly interrelated, integrating these

submissions and resolving conflicts requires a control mechanism.

PATIKA uses a three level check mechanism ensuring that the new submission can be

integrated into the pathway.

First level checks are needs to assess that the incoming pathway is consistent in itself

that is they comply with the invariance of the PATIKA model. Inconsistent submissions can

be created by network errors of non-PATIKA editors.
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Second level checks evaluates whether it is possible to merge the submissions without

disturbing database integrity. Second level checks for database objects that are not present in

the submission but is in the immediate neighborhood of the changed objects.

Important inconsistencies that may arise during merging submissions are orphans.

Orphans arise when a submission removes an object from the database that is required for a

consistency of another object missing in the submission.

Figure 7: Orphan Interactions:

(a) A very simple pathway resides in the database and user makes a query and retrieves the
shaded region. Note that user is not aware of inhibitor (red) at all.
(b)User then changes the query result, replacing t with two new transitions (t’ and t”) and
assigning interactions accordingly.
(c)When the modified pathway is submitted to the database, an orphan interaction is
generated (Labeled with ‘?’). Assigning this edge is not a simple problem because even the
user may not know the exact mechanism.
(d) A solution to the problem is to convert t to a summary transition (big blue rectangle) and
define inhibitor edge as a meta-edge indicating that our knowledge is incomplete.
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Some PATIKA elements that can become orphans are:

Interactions: An interaction becomes an orphan whenever one of its targets or

sources is removed permanently from the big picture.

States: Practically most biological molecules are constantly degraded and require

consistent synthesis, but it is not possible to form this fact into a rule. Many states (i.e. water)

are virtually self-sustaining.  Thus, states never become orphans because of a removal of a

graph object. Nevertheless, states may become orphans when their related Bioentity is

removed.

Transitions: Transitions become orphans whenever they lack at least one substrate

edge and at least one product edge. Effector edges are optional.

Summaries: Summary states and transitions can also become orphans as normal

states and transitions do. Moreover, summaries become orphans when one of their members

is removed such that their internal consistency is lost.

More than often, orphan objects can be restored trivially by the author of the

submission, if he/she is aware of the fact. Thus, it is important to warn an author about such

orphans and ask him/her to fix them if possible.

Orphans can be dealt in three ways:

Remove the orphan: This is the easy way; however, in most cases, removing

previously available information is not very logical, since we aim to build this database

incrementally. Removing should be reserved to the cases of wrong and outdated entries.

Fix the orphan: Fixing refers to assigning a new graph object to the element orphan

is lacking. This is the way whenever author has complete information about the case and how

to fix it. This is the preferred way but may not be possible in each case.
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Summarizing: Summarizing refers to replacing removed element that leads to

orphans with a summary level object. Incomplete information in that case is represented by

meta interactions. This is the case when an author has partial information about the

phenomena she is editing.

First two level checks are made automatically and a feedback is sent to the user for

correcting inconsistencies. Once these inconsistencies are fixed, server stores the submission

in a separate database and alerts the related experts. When at least one expert validates the

pathway, submission is merged to the PATIKA database.

These operations are performed by the SubmissionManager object. Like other

managers, it performs its database accesses via methods provided by DatabaseManager. It

can only be used after the opened session is activated by the User Manager. Whenever

SubmissionManager needs to update the database, it notifies other managers and when all

existing transactions are closed, it performs its update. Since we expect the rate of updates to

be low, it probably would not be a problem.

3.3.2 Client

PATIKA client consists of a graph editor for editing pathways and a proxy object for

managing database connections.

Figure 8: PATIKA Client
Architecture
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The client side editor provides means for analyzing and manipulating pathways

visually. It is particularly designed for minimizing modeling time for the users, and for

allowing them to effectively construct and analyze pathways. It provides unlimited undo/redo

capability, copy-paste support, zooming, scrolling, importing the graph into various image

formats, saving a local copy of the graph with the visual information and layout and a visual

interface for graph editing. PATIKA client also allows users to work on multiple documents

at the same time, and perform cross-document operations like copy-paste.

Each editor level pathway has a cell model, dictating how the cellular compartments

will be drawn on the screen. By this way, PATIKA editor can model multiple organisms even

in the same editor session.

PATIKA client is composed of several components. Layout Wizard is responsible for

automated layout related tasks. Simulator provides basic simulation support as well as ability

to plug-in more sophisticates simulation tools. Submission Wizard facilitates submission

related tasks using a wizard-type user interface. Query Wizard is the querying interface and it

allows users to navigate over the database and analyze connections and possibilities. Node

Creation Wizard provides a wizard for creating nodes. Inspector display the attributes of any

selected inspect able object and allows users to change them. Database-Editor Converter

changes database level objects to editor level objects and vice-versa. Finally, Proxy performs

servlet related tasks and provides database connection to the rest of the editor.

Since the final graph is expected to be very large, it will probably be impossible for a

user to analyze the whole graph at once. Thus, it is critical to allow user to analyze a given

sub-graph separately. This requires creating pathways on the fly and drawing them

automatically on the screen. PATIKA uses automated layout for creating comprehensible

pathway drawings on the fly. Drawing products and substrates at the opposite sides of a
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transition appears to be resulting in clearer layouts. PATIKA uses a modified spring

embedder layout algorithm to separate substrates and products. Layout wizard allows user to

modify the parameters and other options easily.

Query wizard provides a friendly yet powerful interface for performing pathway

queries on the database. All of the queries mentioned can be performed over the query

wizard.  Results may be created as a new pathway or can be merged to the current pathway.

Submission wizard facilitates submission process. Once logged in submission wizard

sends the submission to the database. Additional entries that need to be modified are

automatically merged to the current submission and error log is displayed for user to correct

these errors.

Inspector provides an easy tool for modifying graph object properties. Every object

implementing inspect able interface, provides the inspector with its inspect able context, that

is the fields that are visible to the user and also editing methods for the fields that can also be

modified by the user. Fields are displayed in a tabular format in a toolbar and user can easily

modify the fields with a few operations.

Database-Editor converter is a bi-directional converter converting editor level objects

to database level objects and vice-versa. Converting editor level objects to database level is

rather simple since editor level objects has all the data that is present in a database level

object. However reverse is not correct, one needs to create drawing information of editor

objects that is missing in database level objects. PATIKA achieves this task by creating UI’s

according to objects properties and some additional definitions like info box definitions.

Then coordinates are assigned by using automated layout.
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4 Implementation

PATIKA is implemented in JAVA using a full object oriented approach. Other than

standard JAVA libraries, PATIKA uses TomSawyer Software’s Graph Editor

Toolkit(TSS(1997-2001) 2001) for JAVA for the basic graph modeling and editing and

ObjectStore(Lamb, Landis et al. 1991) for database management.

Following is the general implementation method we used for PATIKA and the status

as of the date this thesis is presented. For a detailed and up-to-date description of the

implementation, please refer to PATIKA API.

4.1 Model

PATIKA ontology is defined according the specifications described, at package

org.patika.model as interfaces. Any implementation of the PATIKA model is done by

implementing these interfaces. Additionally common fields of the model objects (i.e. name,

ID etc.), and their accessor functions are grouped in classes donated with a suffix info to the

name of the corresponding class (e.g. StateInfo for State) in order to reduce code duplication.

4.2 Server

Server and related classes are implemented at package org.patika.server.

Currently server has the following functionality:

• Database level implementation of the model is completed.

• Database management system and facilities for storage and retrieval are

implemented. It is possible to retrieve, modify and remove objects of the

database, add a new pathway or clone a certain sub graph of a stored pathway.
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All of these functions are encapsulated by DatabaseManager and all other

server components access database through DatabaseManager.

• RMI is implemented. Managers communicate between them using RMI. Only

exception is that currently database and managers need to run in the same

machine. This is due to the current version of the database system we are

using and this limitation will be removed as soon as we pass to the new

database system.

• Servlet is implemented. For the purposes of the server, we have installed an

APACHE web server and TomCat servlet engine and tested our servlet

communications.

• General query mechanism and related objects are implemented. Two specific

queries, which are k-neighborhood of a node and shortest path between two

nodes, are implemented. Queries are performed in parallel as separate threads

over the database. Management of these threads is done by the QueryManager.

• Integrity and orphan checks for submissions are implemented. Submission

manager receives the submission, makes the necessary checks, creates a log

and either sends it back to the user with the error log, or stores it to the

temporary submissions database and notifies related experts for validation. If

at least one expert validates the submission, submission is merged to the

database.

• Database level merging is implemented. Merge first removes the removed

objects, inserts new objects and assigns them a new PATIKA ID (PID), and

finally it copies modified objects. It is important to note that merge does not

perform any checks by itself; therefore attempting to merge an inconsistent
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submission (i.e. one that did not pass the integrity checks) may damage the

database integrity.

• A user system for tracking users and their interest fields are implemented.

Furthermore, a user notification system, using electronic mail, is implemented.

• Additional tools for directly analyzing the database and modifying (mostly

user information) data has been implemented. These will form an

administration tool in the future.

4.3 Client

Client and related packages are implemented under org.patika.client. Editor is a fully

functional graph-editing tool and supports standard features like zooming, cut/copy/paste,

and undo-redo. Additionally client has the following functionality:

• Editor level implementation of the model is completed.

• Server communications are implemented. PATIKA editor can send queries,

encrypted login information and session data, receive query-results, and login

affirmation.

• Converter for converting database and editor levels are implemented.

• Various facilities for modification and analysis are implemented including

node creation wizard and inspector.

• Local persistent storage based on object serialization is also implemented. It

saves the graph complete with its geometric information allowing users to

keep their mental picture.

• A help system is created complete with indexing and search capabilities.
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• A basic layout is provided based on spring embedder layout.

• Submission and query wizards are implemented fully.
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5 Discussion

5.1 Analysis of the Ontology

While designing such an ontology, one need to make trade offs between detail,

coverage and intuition. It is easy to crowd the model with sets of rules to cover all the

exceptions but then there will be much trouble when you want to add new functionality, as

one need to consider each rule and its compatibility. Moreover, analysis and modeling time

increases significantly when you have many rules to handle exceptions. Instead, we tried to

keep number of rules to a minimum, yet providing facilities for extending the ontology. In

general, PATIKA ontology sacrifices modeling ease, avoiding short cut and implicit

representations. This is essential since a major goal is to automate the data integration

process.

5.1.1 Coverage

How much of the biological phenomena we can model with this ontology, is an

important point. Since our approach uses a biochemical relation as its basis, biochemical

reactions can be represented in a straightforward manner. Other events like transportations

also have similar properties. Physical factors tend to break these rules since they have

infinitely many different states and they rarely have compartments at all. However, these

problem can be avoided by duplicating physical factors since they are ubiquitous elements by

their nature.

There may be problems in representing some cellular locations like membrane docked

proteins since current PATIKA default cell model does not define such a compartment.
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However, cell models are designed so that they can be replaced and extended allowing

addition of new locations as required.

5.1.2 Data Integration

An important consideration while designing such a model is ease of integration of

new data. Since the model graph is considerably large, a user will probably work on a sub

graph. Once the changes are made, we need to integrate it to the database such that integrity

of the database remains intact.

Our model uses an atomic approach of defining integrity. Every object’s consistency

is validated over its immediate neighborhood. For example, you only need to consider

associated interactions (edges) of a state or a transition to decide whether it is valid or not.

Therefore, while merging pathways you only need to check objects that are changed and their

immediate neighborhood, facilitating integration of the new data.

5.1.3 Intuition and Modeling Ease

Intuition is the time and effort a user needs to spend in order to analyze and model

cellular pathways using PATIKA model. The PATIKA model employs a mechanistic,

explicit method for representing pathways making it more crowded compared to a

conventional images with implicit shortcut representations. However, we believe that the

tools we have provided can compensate this disadvantage and the explicit representation will

become a clear advantage, as the model gets more and more complex.

Summaries are also very new to the biologists and the meanings of meta and

interpathway interactions may lead to some confusion. However, this representation allows

modeling at multiple levels of detail and completeness, again a very important advantage in

the long run.
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5.1.4 Simulation and Predictions

Although one of the major aim of the PATIKA project is to build models capable of

predictive computation, simulation and prediction systems are yet to be designed. However,

PATIKA model is designed to support such features.

Explicit states and transitions are clearly useful for continuous transitions since they

treat each event as a chemical reaction. Additionally PATIKA models can easily be

converted to Petri-nets, which are reported to be used for successful metabolic predictions.

Other non-continuous approaches published in the literature like gene-nets or pi-calculus

seems to fit perfectly to the PATIKA model.

5.2 Comparison of PATIKA

PATIKA is designed to respond scientific community’s newly emerging needs.

Therefore, it is meaningful to analyze what PATIKA provides compared to the other software

tools and databases (Table 3).
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5.3 Data Accumulation

Value of a knowledge base is clearly related to the amount of data it contains. It is

critical to create a core data for PATIKA, which would serve as a starting point and a

reference for the users.

5.3.1 User Entries

PATIKA depends mostly on manual entries for accumulating its data. We believe that

expert-research user system provides a compromise between fast data entry and curation and

we hope that PATIKA will become popular enough to have a sufficient number of experts to

decrease submission-processing times. We still expect it to be a slow process, especially at

the initial period where there are not many users. However once PATIKA become useful for

data analysis, we expect the input rate increase steeply, a very common pattern for biological

databases. In order to decrease this start up time, we plan to do some data entries mostly

based on current projects in the Molecular Biology and Genetics Department, after the first

beta release of PATIKA.

5.3.2 Importing Data

One idea is to parse the already existing data in other pathway databases. However, it

seems that for most of the databases, data is either too irregular or fragmented for automatic

importation. Still it would be possible to create “outlines” from these data in order to

decrease modeling time.

One particular field, where automatic parsing is feasible is metabolic pathways. It

seems that enzyme commissions (EC) classifications helped a great extend for defining these

pathways clearly. Although PATIKA is developed mainly for signaling pathways,

automatically inserting metabolic pathway to the database would help largely especially for

modeling the pathways, which are connected to metabolic pathways.
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5.3.3 Data Mining

Another idea is to create PATIKA pathways automatically, by mining biological

literature. Although it surely is a brilliant idea and there are already some partially successful

attempts, there are some serious problems to overcome.

Synonyms are abundant in biological literature. Although there are attempts to create

a regular vocabulary for gene names (e.g. HUGO), it may not be appropriate for all protein

states, small molecules and other factors. Similarly, more than often a single term is used for

referring gene, RNA and protein product.

Another problem arises when we consider the nature of the biological research. More

than often evidence is indirect and exact mechanism is not known. In other cases, mechanism

becomes clear with the results but these are represented implicitly.

Previous studies on pathway data mining use much simpler methods and make very

liberal assumptions. In the case of PATIKA, such approaches may not be feasible since

model is very regular and requires a mechanistic and detailed description of the event to be

modeled. Again, it should be possible to use a data mining application for creating “pre-

PATIKA” information to decrease modeling times, but I believe it is not very feasible to

attempt to create pathways automatically.

5.4 Applications of PATIKA

Although PATIKA is still immature, it promises quite important benefits for many

research fields in molecular biology.

5.4.1 Rapid Knowledge Acquisition

As the experimental data and publications related to cellular events increases

exponentially, it becomes harder to keep up with changes and stay up-to-date even for the
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expert in that specific field, where medical doctors or students often find it overwhelming.

PATIKA, with its ability to present information in an integrated manner with easy access to

other databases provides a much faster alternative to scanning literature. More importantly,

PATIKA represents pathways pictorially and in a regular manner, increasing their

comprehensibility. Users can represent additional information as they wish, so it is also a

good tool for discussing a hypothesis or teaching a certain cellular pathway.

5.4.2 Micro Array Data Analysis

Micro array technology produces gene expression profiles, often for more than 10.000

genes, at an unparalleled detail and speed. Data produced is obviously beyond human

perception and require computational tools for analysis(Breitkreutz, Jorgensen et al. 2001;

Comander, Weber et al. 2001; Hvidsten, Komorowski et al. 2001; Raychaudhuri, Sutphin et

al. 2001; Wall, Dyck et al. 2001; Xia and Xie 2001).

Most commonly used data analysis is clustering, that is identifying genes that changes

expression levels simultaneously. Although this data can provide insight, exact mechanism

leading to the fact is hard to find. PATIKA appears to be very suitable for such a reverse

engineering process, identifying relations with a few queries and drawing related pathway for

faster analysis. Furthermore, a PATIKA model can be used for automatically analyzing the

cluster data. evaluation

Such an approach should definitely help finding new relations and mechanisms that

were too complex to be identified by conventional methods. It also decreases data analysis

time largely. Additionally, PATIKA can open a way for a new set of diagnostic tests using

micro arrays.
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5.4.3 Drug Design

With the application of high-throughput approaches from genomics, combinatorial

chemistry, and screening, the pharmaceutical industry faces much less of a shortage of novel

targets or promising lead compounds. More importantly, drug development period is long

and very expensive, leading companies to search ways to reduce costs and decrease research

durations. Enhancements in the ability to quickly select between lead candidates, improve

productivity, raise potency, and identify toxicological or pharmacokinetic properties are

needed to address this bottleneck in the drug development pipeline(Karp, Krummenacker et

al. 1999).

PATIKA can serve as a potent knowledge base for such applications. Being able to

perform complex queries on the pathways researcher can easily find drug target candidates,

check potential side effects or improvements. PATIKA can be hooked to a third party

simulator to investigate potential effects of drugs and can be used for screening drug

candidates in silico. More importantly, PATIKA can be used to analyze combinatorial

approaches, for example in chemotherapy, to calculate the best drug combination. Coupled

with micro-array analysis to identify tumor’s expression pattern, PATIKA can prove to be an

invaluable tool for chemotherapy.

5.5 Perspectives

PATIKA is an ongoing project and is far from being complete. As of the date this

thesis is presented, PATIKA completed its second design and implementation cycle. First

design included the PATIKA model and a prototype editor. Server and other related

functionality like queries, users and submissions were designed and implemented during the

second cycle. This section discusses our plans for the next design period.
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5.5.1 Layout

PATIKA’s layout is currently rather simple. It is a modified form of a spring

embedder algorithm (Eades 1984). Although it produces sensible results, we believe that it

can be improved. There are two ways to create better layouts, we either improve our current

spring embedder algorithm or try other approaches.

Major problem with spring embedder is edge crossings. Edge crossings, especially

when the angle between the lines is low, can be very confusing. There are improvements

reported in the literature to the spring embedder layout to reduce edge crossings, so one can

attempt to modify the algorithm so that edge crossings are minimal.

Additionally, each transition has a set of substrates and products. Conventionally,

substrates are presented on one side of the transition where products are presented on the

other side. PATIKA’s current algorithm attempts to address this issue by defining new forces

between substrates and products however, their parameters are not optimized.

Another problem is compartments. Although states always reside in their respective

compartments, edges and transitions has no compartment concept and edges pass through any

compartment. This can be particularly confusing for the casual user, as it implies that the

reaction, or at least a part of it, happens in the compartment that edge is crossing.

There is already some work on layout of pathways, though all of them are on

modeling metabolic pathways. Since the metabolic pathways has a “directional flow”

structure, these layouts often take a pathway as a linear signal route and try to replace non-

linear components like branches and cycles with nodes and then attempt to draw non-linear

components using different layout methods. This method can act poorly on signaling

pathways which has a more complicated and interrelated structure.
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5.5.2 Simulation

One of the ultimate goals of bioinformatics is to simulate a cell, and ultimately an

organism, in silico. There are many attempts to achieve this goal varying from Boolean Petri-

nets to stochastic models(Akin, Ross et al. 1998; Groaning, Hodgeman et al. 1999; Schiff and

Lowe 1999; Tomita, Hashimoto et al. 1999; Abuts, Mayan et al. 2000; Schiff, Slepchenko et

al. 2000; Hvidsten, Komorowski et al. 2001). The usefulness of these methods highly

depends on the availability of the required data and analysis goals

PATIKA provides users with a simulation API allowing them to plug-in a third party

simulator while maintaining its multi-purpose tool property. Current knowledge base acts as

a blueprint for developers who wish to extend their simulations to encompass more biological

phenomena. Graphical user interface displaying simulations steps lets the simulation

developer focus on the simulation itself. We believe that PATIKA will become a tool of

choice for performing simulations.

5.5.3 Spatial Models

PATIKA currently is capable modeling events in a single cell. However, for

multicellular organisms this does not cover all of the biological phenomena. One needs to

consider different types of cells, their interactions, tissues and ultimately the complete

organisms.

It is possible to use a spatial model for representing life processes. However, it

reduces the flexibility of the model and requires much more data and modeling time. It is

obviously an ambitious task and currently is a long-term goal for PATIKA.
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6 Conclusion

In a sense, PATIKA aims to model cell as a whole entity with mechanistic details.

Although building such a model is a complicated task, building an in silico cell using this

model is much more difficult, in terms of labor and time required. It is a task well beyond any

single research group and requires a collaborative effort from the entire community.

From this point of view, PATIKA’s status is very similar to the early days of Internet.

What made Internet the latest wonder of our civilization is enormous amount of data that was

accumulated by a worldwide effort. Browsers file transfer clients and other utilities have

accelerated this process, but the real keyword was collaboration. PATIKA team puts every

effort to make PATIKA a powerful yet easy to use program, but its success mainly depends

on whether it will be accepted by the scientific community or not. Therefore, it is important

to promote PATIKA at every opportunity and constantly evaluate feedbacks to provide a

more valuable tool.
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