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ABSTRACT

PAINLEVE TEST AND THE PAINLEVE EQUATIONS
HIERARCHIES

Fahd Jrad
Ph. D. in Mathematics
Supervisor: Assoc. Prof. Dr. Ugurhan Mugan
January, 2001

Recently there has been a considerable interest in obtaining higher order ordi-
nary differential equations having the Painlevé property. In this thesis, start-
ing from the first, the second and the third Painlevé transcendents polynomial
and non-polynomial type higher order ordinary differential equations having
the Painlevé property have been obtained by using the singular point analysis.

Keywords : Painlevé property, movable singularity, resonances, compatibil-

ity conditions.
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OZET

PAINLEVE TESTI VE PAINLEVE DENKLEMLERININ
HIYERARSILERI

Fahd Jrad
Matematik Bolumu Doktora

Tez Yoneticisi: Assoc. Prof. Dr. Ugurhan Mugan
Ocak, 2001

Son zamanlarda Painlevé 6zelligine sahip, ylksek dereceli adi diferansiyel den-
klemleri bulmaya ilgi olugmustur. Bu tezde, birinci, ikinci ve liglincli Painlevé
denklemlerinden baslayarak, Painlevé 6zelligine sahip yiiksek dereceli polinom
ve polinom olmayan adi diferansiyel denklemler tekil nokta analizi kullanilarak
bulunmustur.

Anahter Kelimeler: Puainlevé 6zélli§i, Hareketli tekil nokta, Rezonans,
Uyumluluk sartlars.
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Chapter 1

Introduction

An ordinary differential equation (ODE) is said to be of Painlevé type, or
have the Painlevé property, if the only movable singularities of its solutions are
poles. Movable singularity means that its location depends on the constant of
integration of the differential equation.

The Ricatti equation
y = a(2)y? + b(2)y + c(2), (1.1)

where a,b and ¢ are locally analytic functions in z is the only example of the
first-order first-degree differential equation which has the Painlevé property.
Fuchs [3, 4] considered the equation of the form

F(z,y,y) =0, (1.2)

where F is polynomial in y and 3y’ and locally analytic in z, such that the
movable branch points are absent, that is, the generalization of Riccati equa-
tion. The irreducible form of the first order algebraic differential equation of

the second-degree is

2 4
ao(2)(y)? + Z b:(2)y'y + Y ci(z)y’ =0, (1.3)
0

1=0 j=

where b;, ¢; are analytic functions of z and ag(z) # 0. Briot and Bouquet
[3] considered the subcase of (1.2). That is, first order binomial equations of
degree m:

)"+ F(z,y) =0, (1.4)
where F(z,y) is a polynomial of degree at most 2m in y and m is a positive
integer. It was found that there are six types of equation of the form (1.4).

. 1



But, all these equations are either reducible to a linear equation or solvable by

means of elliptic functions [3].

The most well known second-order first-degree Painlevé type equations are
Py, Pyy, ..., Pyr discovered by Painlevé and his school [1, 2, 3] around the turn
of the last century. They classified all equations of the form

y'=Fl(z,y,Y), (1.5)

where F' is rational in 3/, algebraic in y and locally analytic in 2. They found
fifty such equations, but six of them

P]][ :,yll — (yy) ,L_I_,.)/y + Cty2+ +
cott— W2 B
Prv :y'= 7 1+ y® + dzy® + 2(2* )y+y (16)
— 3y- 2 1
Pv ¢y =550 -3¢
+%y(y_l) +ﬂ(y 1) +’Yy+ Jy(y+1),

Pyr:y' = é(;+-1—1+;-17)(y’)2— (:+ 211 + -5y
s 1 62(z—1
+ y(./(z)(l./z)z) (a+ ,Bz + ij 1).) + (};(_Z_Z)z))’

are the only irreducible ones and define new transcendents. Any of the other

forty four equations either can be integrated in terms of the known functions or
can be reduced to one of the six equations by using the Mobius transformation.
Although the Painlevé equations were discovered from strictly mathematical
considerations, they have appeared in many physical problems, and possess
rich internal structure.

Second-order second-degree Painlevé type equations of the following form
(") = Bz, 9,9 )" + F(z,9.9), (1.7)

where F and F are assumed to be rational in y, y' and locally analytic in
z were subject of the articles [8, 13, 18]. In [8, 13], the special form, E =0,
and hence F is polynomial in y and %' of (1.7) was considered. Also, in
this case no new Painlevé type equation was discovered, since all of them can
be solved either in terms of the known functions or one of the six Painlevé
transcendents. In [18], it was shown that all the second-degree equations ob-
tained in [8, 13], E =0 case, and second-degree equations such that E # 0
can be obtained from Py, ..., Py; by using the following transformations which

preserve the Painlevé property

u(z, &) = L D 6 (1.8)
, Zf:o bi(z)yi 7

2



and ) . . _
W)+ D w2y + 2 b(2)Y

u(z, &) = S ()Y + Sy i (2)07
where a;, b;, ¢;, d; are analytic functions of z. That is, if y solves one of the
Painlevé equation with parameter set « then u solves a second-order second-
degree Painlevé type equation of the form (1.7) with the parameter set &.

=0, (1.9)

The special form, polynomial-type, of the third order Painlevé type equa-
tions

" = F(z,5,9,¢"), (1.10)

where F' is polynomial in y,y’ and %" and locally analytic in z was considered

in [5, 7). The most well known third order equation is Chazy’s " natural-barrier”

equation

6y ~y*)%. (1.11)

4
36 — n?
The case n = oo appears in several physical problems. The equation (1.11) is
integrable for all real and complex n and n = oco. Its solutions are rational for
2 < n <5, and have a circular natural barrier for n > 7 and n = co. Bureau
[7] considered the third order equation of Painlevé type of the following form

ym — 2yy// _ 3yl2 +

y" = Pi(y)y" + B)y” + Ps(v)y' + Pa(y), (1.12)

where P,(y) is a polynomial in y of degree n with analytic coefficients in z. In
[12] Martynov investigated Painlevé type equations of the form

1. (" = 2yy')? "y y')3

y" = (1——)———(y ‘/J) +ayy"+b(y')2+cy2y'+dy4+a12—ji+b1——(y2,) (1.13)
vy —y? y Yy

where a,b,¢,d, a;,b; are constants and d # 0. In [10], Exton attempted to

classify equations of the form

o'y 3 1" Y2
y"’ = b‘/—;L +CQ%+ (62y2+61?j+€0)1y + (flz,/?'f‘fz:l/'f‘fo)%

+ (94y* + 959° + 2y® + 1y + 90) 2 (114
+ (hey® + hsy® + hay® + hay® + hay® + hiy + ho) 5

where b, c are constant and the other coefficients are locally analytic in z.
In [7, 14] fourth order polynomial-type equations of the form
y W = ayy” + oy'y" + cy®y" + dyy? + e’y + fy° + F(z,y), (1.15)
where

F(z,y) = agy" + (c1y + co)y’ + doy + (e2y* + e1y + €)Y’

A (1.16)
+ fayt 4+ fsy7 + foyt + fiy + fo,

3



and all the coefficients a, b, ¢, d, e, f with or without subscripts are assumed to

be analytic functions of 2z were investigated.

Besides their mathematically rich internal structure and appearance in
many physical problems, Painlevé equations play an important role for the
completely integrable partial differential equations (PDE). Ablowitz, Ramani
and Segur [20] demonstrated a close connection between completely integrable
PDE solvable by inverse scattering transform and the Painlevé equations. They
conjectured that every non-linear ODE obtained by an exact reduction of a non-
linear PDE solvable by inverse scattering transform has the Painlevé property.
They gave an algorithmic method to test the given equation. The test provides
the necessary conditions a given PDE is completely integrable . Weiss, Tabor
and Carnavale [23] introduced the Painlevé property for PDE’s or Painlevé
PDE test as a method of applying the Painlevé ODE test directly to a given
PDE without having to reduce it to an ODE.

Recently, Kudryashov [16], Clarkson, Joshi and Pickering [17] obtained the
higher order Painlevé type equations, the first and second Painlevé hierarchy,
by similarity reduction from the Korteweg-de-Vries (KdV) and the modified
Korteweg-de Vries (mKdV) hierarchies respectively.

In this work hierarchies of the first, second and third Painlevé equations
are investigated by using the Painlevé ODE test, singular point analysis. It is
possible to obtain the Painlevé type equation of any order, as well as the known
ones, starting from a Painlevé equation. Singular point analysis, an algorithm
introduced by Ablowitz, Ramani, Segur [20] to test whether a given ODE
satisfies the necessary conditions to be of Painlevé type. It consists of seeking
a Laurent series expansion solution of the given ODE in the neighborhood of
a movable singularity and requires this series solution to be single-valued and

self-consistent.
The singular point analysis can be summarized as follows : Let
y(n) = F(z7 y’ y/’ "‘7y(n—1))’ (1'17)

be an nth order ODE where F' is analytic in z and rational in the other argu-

ments. Then y(z) is expanded as
® .
y(z) = _yi(z — )", (1.18)
7=0

where zp is an arbitrary singularity and R(a) < 0. The singular point analysis

consists of three basic steps:



1- The leading order analysis: substitute y = yo(z—zy)* in equation (1.17).
For certain values of integer ¢, two or more terms balance. These balancing
terms are called leading or dominant terms. After finding «, one can determine

Yo-
2- The resonances: For each choice («, o) from step 1, substitute

v =1yo(z = 2) +8(z = )", (1.19)

where § is an arbitrary constant, in the part of (1.17) that contains the domi-
nant or the leading terms only. This equation reduces to @Q(r)d(z — zo)"t"T* =
0. The roots of the polynomial Q(r) are called the resonances. It should noted
that —1 must be a resonance that corresponds to the arbitrariness of 2y and
the other n — 1 resonances must be distinct integers # —1.

3- The compatibility conditions: For each choice (a,yp) substitute the
series (1.18) in (1.17) to get the relation relation for the coefficients y; :

G+1G =71 (F = 1)y = Fj (Yo, Y1, s Yj=1) (1.20)

where 7;, 1 = 1,2,...,n — 1, are the roots of Q(r). If at each nonnegative r;,
the compatibility condition F,, = 0 is satisfied, then equation (1.17) meets the
necessary conditions to have the Painlevé property. '

Painlevé test was improved in such a way that negative resonances can be
treated [24]. In this work , we will consider only the ”principal branch” that
is, all the resonances r; (except ryp = —1 ) are positive real distinct integers
and the number of resonances is equal to order of the differential equation for
a possible choice of (o, yp). Then, the compatibility conditions give full set of
arbitrary integration constants. The other possible choices of (o, yp) may give
"secondary branch” which possess several distinct negative integer resonances.
Negative but distinct integer resonances give no conditions which contradict

integrability [21].

The procedure to obtain higher order Painlevé type equations starting any
Painlevé equation may be summarized as follows:
I. Take an nth order Painlevé type differential equation of the form (1.17).
If y ~ yolz — 20)® as z — 2y, then « is a negative integer for certain
values of yp. Moreover, the highest derivative term is one of the dominant
terms. Then the dominant terms are of order &« — n. There are n resonances
ro = —1,71, 7, ... Tyo1, wWith all 7, 4 =1,2,..., (n—1) being nonnegative distinct
integers such that Q(r;) =0, 7 =0,1,2,...,,(n — 1). The compatibility con-
ditions, for the simplified equation that retains only dominant terms of (1.17)
are identically satisfied. Differentiating the simplified equation with respect to

5



z yields
vy = Gz, 9,9, ..., y™). (1.21)

where G contains the terms of order & — n — 1, and the resonances of (1.21)
are the roots of Q(r;)(c + r — n) = 0. Hence, equation (1.21) has a resonance
Tn = n — « additional to the resonances of (1.17). Equation (1.21) passes
the Painlevé test provided that r, # r;, ¢ = 1,2,...,(n — 1) and positive
integer. Moreover the compatibility conditions are identically satisfied, that is
20, Yrys -, Yr,, are arbitrary.

II. Add the dominant terms which are not contained in G. Then the resonances
of the new equation are the zeros of a polynomial Q(r) of order n+1. Find the
coeflicients of Q(r) such that there is at least one principal Painlevé branch.
That is, all n + 1 resonances (except ro = —1) are positive distinct integers
for at least one possible choice of (c,yo). The other possible choices of (e, yo)
may give the secondary Painlevé branch, that is all the resonances are distinct
integers.

ITI. Add the non-dominant terms which are the terms of weight less than
a —n — 1, with (locally) analytic coefficients of z. Find the coefficients of the
non-dominant terms by using the compatibility conditions.

In this work we apply the procedure to the first, the secon‘d and the third
Painlevé equations. In Chapter 2, we start with the first Painlevé equation P,
and obtain the third, fourth, fifth and sixth order equations of Painlevé type.
In Chapter 3, we start with the second Painlevé equation P;; and obtain the
third, fourth and some of the fifth and sixth order equations with the Painlevé
property . In Chapter 4, we start with the third Painlevé equation P;;; and
obtain third order equations of Painlevé type.



Chapter 2

The first Painlevé hierarchy

In this chapter, we apply the procedure to the first Painlevé equations and give
Painlevé type equations , of order three, four, five and six.

2.1 Third order equations: PESQ’)

The first Painlevé equation, Py is
y" =6y 4z (2.1)
Painlevé test gives that there is only one branch and
(a,90) = (=2,1) Q(r) = r? — 57 — 6, (2.2)

The dominant terms are 4" and y* which are of order —4 as z — 2;. Taking
the derivative of the simplified equation gives

y" = ayy’ (2.3)

where a is a constant which can be introduced by replacing y with Ay, such that
12X = a. For the equation (2.3), (o, %) = (=2,12/a). No more polynomial
type term of weight —5 with constant coefficients can be added to (2.3). The

resonances of (2.3) are the zeros of
Qr) = Q(r)(r — 4). (2:4)

Hence, the resonances are (ro,71,72) = (—1,4,6). Next step is to add the terms

of weight greater than —5 of z. That is,

y" = ayy + 4(2)y" + A (2)y* + A3(2)y + Ag(2)y + As5(2). (2.5)

7



where A; ¢ = 1,...,5 are (locally) analytic functions in z. The linear transfor-
mation
y(z) = p(2)u(t) + v(z), t = p(z), (2.6)

where p, v and p are analytic functions of z preserves the Painlevé property.
By using the transformation (2.6), one can set

6.41 + A2 = 0, Ag = O, a=12. (27)

Then, substituting
6 .
y=1o(z—20)" 2+ Zyj(z - z) 72, (2.8)
i=1

into equation (2.5) gives that
vo=1, =0, 1%=0 yi=Az2)/12 (2.9)
The recursion relation for j = 4 implies that, if y4 = arbitrary, then

Al — AjAy =0, (2.10)

Il
[

and for j

1
ys = _5[12A§f” + 2040y, + 1249 + 248 AD) (2.11)
where Agk), k =0,1,2,... denote the coefficient of the k** order term of Tay-
lor series expansion of the function A;(z) about z = z;. The compatibility

condition at the resonance 7o = 6 implies that

Al + A} =0,

2.12
—"6(141145 + Ai—)) - A4(A4 - AIAII) + 31‘1414,1/ - 3A1AZ - AZ, = O, ( )

if ys is arbitrary. According to (2.12.a), there are two cases should be considered
separately:

I. Ai(z) = 0: Equations (2.7),(2.10) and (2.12.b) imply that A, = 0, Ay =
¢) = constant,

As(z) = —(c?/6)z + c2, ¢z = constant. Then the canonical form of the third

order Painlevé type equation is
n ! 1 2
y" = 12yy" + cy — gC1% + ¢p. (2.13)
If ¢, = ¢, =0, then (2.13) has the first integral

y" = 6y® + k, k = constant, (2.14)



which has the solution in terms of the elliptic functions. If ¢, # 0, then
replacing z + co/k* by z where k = —c;/6, and then replacing y by By and z
by vz such that ¥*8 =1 and ky®> = —1 in (2.13). Then it takes the form of

y" = 12yy’ + 6y — 62. (2.15)

If one lets y = v/, integrates with respect to z once and replaces u by u — ¢/6
to eliminate the integration constant c, then (2.15) gives

u" = 6u? + 6u — 32%. (2.16)
Equation (2.16) was also given by Chazy and Bureau [5, 7].
II. Ai(2) =1/(z — ¢;): Equations (2.7),(2.10) and (2.12.b) give

6

2.17
— 2.17)

1- c
A4 202(2’—01), A5 = ——cg(z—cl)s-i- 3

Ay = - .
2 24 zZ—C

where ¢;, 4 = 1,2, 3, are constants. Then the canonical form after replacing
z—c) by zis
m , 1oy 2 C3 C% 3
" =129y + = (v = 6y°) + o2y + = — =2°. (2.18)
z z 24
Equation (2.18) was also considered in [7]. Replacing z by vz and y by By,
such that y28 = 1 and c,v* = 12 reduces the equation (2.18) to

1
y" = 12yy + ;(y" —~ 6y — k) + 122y — 62°, (2.19)

where & is an arbitrary constant. Integrating (2.19) once yields

k k
(u" — 6u? — Zl)z = 2°(u"? — 4u?® - ?lu), (2.20)
where k; = —(k+72)/3 and u = y — z2/12. There exists one-to-one correspon-

dence between u(z) and solution of the fourth Painlevé equation [18].

2.2 Fourth order equations: Pg‘”

Differentiating (2.3) with respect to z gives the terms y*), 3’2, yy", all of which
are of order —6 for @ = —2 and as z — 25.Adding the term y* which is also of
order —6, gives the following simplified equation

v = a1y + aouyy” + azy®, (2.21)
where a;, 1 = 1,2, 3 are constants. Substituting
y=1yo(z—20) 7" + (2 ~ 20)" 7%, (2.22)

9



into above equation gives the following equations for resonance r and for yg

respectively,

Q(r) = (r +1)[r® — 1572 + (86 — azyo)r + 2(2a,1y0 + 3asye — 120)] =0,

azys + 2(2a; + 3ag)yo — 120 = 0.
(2.23)

Equation (2.23.b) implies that in general, there are two branches of Painlevé
expansion, if a3 # 0. Now, one should determine yo;, j = 1,2 and a; such
that at least one of the branches is the principal branch. That is, all the
resonances (except 19 = —1 which is common for both branches) are distinct
positive integers for one of (-2, yo;), j = 1,2. Negative but distinct resonances
for the secondary branch may be allowed, since they give no conditions which
contradict the Painlevé property. If yo;, yo2 are thé roots of (2.23.b), by setting

P(yoj) = -—2[(2(11 + 3a2)y0j - 120], ] = 1, 2 (224)

and if (ry;,712,713), (721,722,723) are the resonances corresponding to the
branches (—2,yo;) and (-2, yo2) respectively, then one can have

3 3
HTli = P(yn) = p1, HTzi = P(Y02) = Pa, (2.25)
i=1

=1
where py, po are integers and such that, at least one of them is positive. Equa-
tion (2.23.b) gives

2 120
Yo1 + Yoz = ——(2a, + 3ay), YorYo2 = ——. (2.26)
as as
Then equation (2.24) can be written as
P(yo) = 120(1 - 22), Plye) =120(1 - 22).  (2.27)
Yo2 Yo1

Then, for p;ps # 0, p, po satisfy the following Diophantine equation
1 1 1
(

+—==.
pr p2 120

Now, one should determine all integer solutions of Diophantine equation un-
der certain conditions. Equation (2.23.a) implies that S°_ 71y = Yoo 7 =
15. Let (ry1, 712, 713) be the distinct positive integers, then ) +7r;p+713 =15
implies that there are 12 possible choices of (r1, 7, 73). Then (2.28) has nega-
tive integer solutions p, for each of the possible values of p; except p; = 120.
p1 = 120 case which corresponds to (ry,79,73) = (4,5,6) will be considered
later. The equations (2.26), (2.27.a) and Z#j Tir1; = 86 — agyo1 deter-
mine o1, Yoz, @1, a3 in terms of ay. Hence, all the coefficients of (2.23.a) are

10



determined such that its roots (ry;, 72, 713) corresponding to o, are positive
distinct integers, and Hf=1 To; = py < 0 and integer for yy. Then, it should
be checked that whether the resonances (ro1,722,723) are distinct integers (i.e
the existence of the secondary branch). There are 4 cases out of 11 cases
such that (ry;,712,713) corresponding to yo, being positive distinct integers
and (rq1, T2, 723) corresponding to 1y, being distinct integers. These cases are

as follows:
Case 1:
Yo1 = g% . (Tllarl2xrl3) = (21 37 10)
Yoo =2 (21,72, Te3) = (=2,5,12)
a1 =0, a3=—1503
y(4) = as(yy" — %0293) (2.29)
Case 2:
yor =201 (ri,T2,713) = (2,5,8)
Yoo = 221 (ra1,7a2,723) = (—3,8,10)
a; = 302, 43 = —50}
v = ax(yy” + 3y? — Saxy®) (2-30)
Case 3:
Yo1 = % : (7”11>T12,T13) = (3,4,8)
Yor = a2 i (ra1,722,723) = (=5,8,12)
a1 = 303, 03 = —5a}
yW = ax(yy” + 3% — Zaxy®) (2.31)
Case 4:

Yo1 = ;11% : (7'11,7‘12,7”13) = (3,5,7)

Yor = 2 (Ta1,79,723) = (=7,10,12)
ay = 30y, a3 = —1:a3
v = ax(yy" + 1y”? ~ awy’) (2:32)

For each case the compatibility conditions are identically satisfied. To find
the canonical form of the fourth order equations of Painlevé type, one should

11



add non-dominant terms with the coefficients which are analytic functions of
z. That is, one should consider the following equation

¥ = ay” + aoyy” + agy® + A(2)y" + As(2)yy +
As(2)y" + Aa(2)y* + As(2)y' + As(2)y + Ar(2). (2.33)
The coefficients 4;, i = 1, ..., 7 are (locally) analytic functions in z and can be

determined by using the compatibility conditions.
Case 1. By using the transformation (2.6), one can set

124, + Ay =0, A; =0, as = 30. (234)

Substituting
T3
y=1yo(z —2z) "+ Z yi(z — 29)7 2 (2.35)
i=1

into equation(2.33) gives the recursion relation for y;. The recursion relation
yields y; = 0 for j = 1 and for j = r; = 2, Ay = 0 if y, is arbitrary. If
ys is arbitrary, then A, = As = 0 and then (2.34.a) implies that A; = 0.
Recursion relation for j = 713 = 10 implies that As = ¢; =constant and
A7 = ¢y =constant if y;o is arbitrary. Therefore, the canonical form is,

y@ = 30yy" — 60y° + 1y + co. (2.36)

Equation (2.36) was also obtained by Cosgrove [15]. For ¢; = 0, replacing y by
—y yields
y = —30yy" - 60y° + ¢, (2.37)

y(z) is the stationary solution of Caudrey-Dodd-Gibbon equation [25].
Case 2: Linear transformation (2.6) allows one to set

124, + A, =0, A3 =0, a, = 20. (238)

Then, the compatibility conditions imply that A4 =0 for j =2, A; = 45 =
0, Ag(z) = ¢, = constant for j =5 and A7 = oz 4¢3, ¢ and ¢y are constant,

for 7 = 8. Then the canonical form for this case is,
y@ =102yy" + 3 — 4®) + ey + c2z + ¢s. (2.39)

One can always choose c; = 0 by replacing z + ¢3/c; by 2. Replacing y by
—y/4 in (2.39) gives

) 5
y(4) + 5yy" + 5’3//2 + 51/3 + ky + koz = 0. (2'40)



where k; =constant. Equation (2.40) was also introduced by Kudryashov and
Cosgrove [16], [15].
Case 3: By using the linear transformation (2.6), one can set

1241+ A2, =0, 643+A,=0, a =18 (2.41)

Then, the compatibility conditions imply that A, = A5 = Ag =0 and A3 =
c1, Aqg = —6¢c,, A7 = cyz + c3, where ¢;, 1 =1,2,3 are constants. Therefore,
the canonical form of the fourth order Painlevé type equation for this case is

y ™ = 18yy” + 9y — 24y° + c1y" — 6c1y? + coz + c3. (2.42)

Equation (2.42) was also obtained in [15]. For ¢, # 0, replacing z + c3/co by
z and then replacing z by vz and y by By such that
By =1, cy" =1 reduces the (2.42) into the following form

y(4) — 18yy" + 9y12 _ 24’93 + kly" _ 6k1y2 + z, (2.43)

where k; = 172
Case 4: Linear transformation (2.6) allows one to set

12.41 + Az = O, ' A4 = O, Qo = 15. (244)

Then the compatibility conditions at the resonances j = 3,5,7 imply that, if
Y3, Ys, Y7 are arbitrary then A, = A3 = A5 = 0 and Ag = ¢; = constant, A; =
¢y, = constant. Therefore the canonical form is

45
y @ = 15yy" + Zy'z — 15¢° + 1y + ca. (2.45)
If one sets y = —2u then (2.45) takes the form of
(4) " 45 2 3
'™ + 30uu” + S U + 60u” + kju+ ko = 0, (2.46)
where k) = —cy, ky = ¢p/2. u(z) is the stationary solution of Kuperschmidt

equation [25] for k; = 0 and it was also given in [15].
If a3 = 0, equation (2.23) reduces to

Q(r) = (r + 1)[r® — 157 + (86 — agyo)r — 120] = 0,

2.47
(2(11 + 3a2)y0 —60 = O, ( )

and hence, there is only one Painlevé branch which has to be the principal
branch. (2.47.a) implies that 7o = =1 and 3>, 7; = 15 which gives 12
possible positive distinct integers (ry, o, 73). But, H?=1 r; = 120 implies that
(ry,72,73) = (4,5,0) is the only possible choice of the resonances. Equation

13



(2.47.b) and 3, 7i7j = 86 — agyp imply that @) = a,. Then, the simplified

equation is
y(4) =q (yy” + y’z). (248)

Adding the non-dominant terms with the analytic coefficients of z gives

v = ai(yy" +y%) + ARy + Aa(2)yy + As(2)y" +
A4(z)y2 + A5 (z)y' + As(Z)‘y + 147(2) (249)

One can always set
12A1 + A2 -‘—“0, A3 - O, g = 12, (250)

by using the linear transformation (2.6). The compatibility conditions at the
resonances 7 = 4, 5,6 imply that y4, ys, ys are arbitrary and A; = A4 =0 and

1l,c
A5 = -C—I‘Z + Co, Aﬁ = (i, A? = _—('—l‘z + 62)21 (251)
2 6" 2
where c;, ¢ are constants. Hence , the canonical form is
(4) _ 7 ” C1 ! 1 ¢ 2 9
v =12(yy" +y )+(§z+02)y + Yy — 5(32-'_02) : (2.52)

If ¢; = 0, then integrating (2.52) once gives the equation(2.15). If ¢; # 0,
letting ¢; = —12k;, co = —6k, first, and replacing z + k3/k; by 2z, and then
replacing z by vz, y by By, such that 8% = 1, k;7* = 1 then the equation
(2.52) takes the form of

y ) = 12(yy) — 62y’ — 12y — 622 (2.53)
If one lets y = —u’ and integrates the resulting equation once then (2.53) yields
u® 4+ 120" = 62’ + 6u + 22° — £, (2.54)

after replacing u by Su, z by vz such that 8y = —1, v* = —1. Equation (2.54)
was also obtained by Bureau [7] and which belongs to hierarchy of the second

Painlevé equation.

2.3 Fifth order equations: P§5)

Differentiating (2.21) with respect to z gives the terms y®), yy™, v'y", y*/
which are all the dominant terms for & = —2 and z — 2z;. Therefore, the

simplified equation is
y® = ayy" + awy'y" + asy’y, (2.55)

14



where a;, 1 = 1,2,3 are constants. Substituting (2.22) into (2.55) gives the
following equations for the resonance r and v,
(r+ 1){r* = 21r% + (176 — ayy0)r* + [2(5a; + a2)yo — 378]r
+[1800 — 18(2a;1 + a2)yo — asyi]} = 0,
asys + 6(2a; + a)yo — 360 = 0. (2.56)
Equation (2.56.a) implies that one of the resonance ry = —1 which corresponds
to arbitrariness of z5. (2.56.b) implies the existence of two Painlevé branches
corresponding to (—=2,v0:), ¢ = 1,2. Let (r11,712,713,714) and (7ay, 722, 723, T24)
be the resonances corresponding toyp; and yoo respectively. Setting,

P(yo;) = 1800 — 18(2a; + a2)yo; — ag,ygj, i=1,2 (2.57)

then, (2.56.a) implies that
4 4
Hﬁi = P(yo1) = p1, [T72 = Pyor) = pa, (2.58)
1=1 1=1

where py, py are integers such that at least one of them is positive, to have the
principal branch. From equation (2.56.b), one can have
360
, 201 +a, =
Yo1Yoz2 Yor1Yo2
By using the above equation, (2.57) yields the following Diophantine equation,

if p1py #0

az = — (Yo1 + Yo2)- (2.59)

1,11
pr p2 720
Now, one should determine all possible integer solutions (pi,ps) of (2.60).
(2.56.a) implies that S5 r;; = 21 j = 1,2. Then, there are 27 possible
cases for (ry1, 712,713, 714) (i-e. 27 possible values of p;) such that r;’s are posi-
tive distinct integers. Diophantine equation implies that there are 12 cases out
of 27 cases such that both p; > 0,p, < 0 are integers. By using the equations
ZTHTU =176 — a,y01, Z rirre = —2[(5a1 + a2)yor — 378] (2.61)
iz] i£j#k
and (2.59), yo1, Yoz, G2, a3 can be obtained in terms of a; for each 12 possible
integer values of (py,m:). But, there are only 4 cases out of 12 cases such
that the resonances (rq1, 792, 703, 724) corresponding to ygo are distinct integers.
These cases and the corresponding simplified equations are as follows:
Case 1:

(2.60)

Yor = % : o (r, 2,713, T1e) = (2, 3,6,10)
Yoo = 2—? (721,792,723, T24) = (—2,5,6,12)
a; =aj, az= —%af
y® = a(yy" + 'y — tay™y) (2.62)

15



Case 2:

Yo =20 (r,7i2,713,714) = (3,5,6,7)
Yor = 2 (ra1,Ta,723,724) = (=7,6,10,12)
_5 _ 1.2
az = a1, a3 = —3a]
y(5) — al(yy/// + gy/y// _ éalyzy/) (263)
Case 3:
yor =2 (T, 712,718, 71e) = (3,4,6,8)
Yoz = % (721,722,723, 724) = (—5,6,8,12)
a, = 2a;, a3= —%af
y® = ay(yy” + 20'y" — 2a1y%y) (2.64)
Case 4:
Yo = % : o (ru,riz, i3, m4) = (2,5,6,8)
Yoo = % : (721,7T22,T23,T24) = (—3,6,8,10) (2.65)
ay = 2ay, a3 =—-a?
v = a(yy"” + 20y - Faw?y) (2.66)

The compatibility conditions for all 4 cases are identically satisfied. To obtain
the canonical form of the fifth order equation of Painlevé type, one should add
the non-dominant terms of weight < 7 for @ = —2 with analytic coefficients of

z. Therefore, the general form is

y® = a1yy” + aoy'y" + asy®y’ + Ai(2)y® +
Ar(2)y" + A3(2)yy” + Ag(2)y" + As(2)y? + As(2)yy +
A2y + A2y + A2y + An(@y + AnD). (267

The coefficients 4;(z), ..., A11(z) can be determined by using the compatibility

conditions. Substituting
T4 ‘
y=vo1(z = 20) 2+ > _y;(z —20)7 72, (2.68)
j=1

into (2.67) gives the recursion relation for y;. The recursion relations for
J = 711,712,713, T14 give the compatibility conditions if Y, ,, Yris, Yriss Yrig 2T
arbitrary.

Case 1: By using the linear transformation (2.6), one can set

120.—11 + 6‘43 + 4A5 + Ag = 0, AG = 0, a) = 30, (269)
16



then, yo; = 1 and y; = 0. The compatibility conditions at j = 2, 3,6, 10 imply
that all the coefficients are zero except

Ar =1z + ¢, A = 2¢, (2.70)
where c;, ¢co are constants. Then the canonical form for this case is
y® = 30(yy" + o'y" - 6y%y') + (c1z + )y’ + 2c1y. (2.71)

Equation (2.71) was also obtained in [15]. If ¢; # 0, replacing z + cz/c; by 2
and then replacing z by vz and y by By such that v*8 =1, ¢;7° =1 in (2.71)
gives

y® = 30(yy" +y'y" — 6y%Y) + 2y’ + 2u. (2.72)

Case 2: One can always choose
120A1 + 6A3 + 4A5 + Ag = 0, 12A2 + AG = O, a) = 15, (273)

by using the linear transformation (2.6). Then yo; = 1, y; = y2 = 0. The
compatibility conditions at 7 = 3,5, 6,7 imply that all the coefficients are zero

except
Ar=cz+c, A= 2c, (2.74)

where c;, ¢; are constants. Then the canonical form for this case is
. 5
y® = 15(yy" + Sy'y" = 3v*y) + (az + &)y + 2e1y. (2.75)

Equation (2.75) was also given in [15]. If ¢; # 0, replacing z + ¢y/c; by z and
then replacing z by vz and y by By such that 28 =1, ¢;v°> = 1 in (2.75) gives

- 5
y® = 15(yy" + Sy'y" = 3y*y) + 2y’ + 2. (2.76)

Case 3: By using the transformation (2.6) one can set yo, = 1, y; = y2 = 0.
That is,

1204, +64; + 445+ A =0, 124, +945=0, a =18  (2.77)

The compatibility conditions at 7 = 3,4,6, 8 give

64y + A7 =0, (2.78)
—6A43+4A5 — 343 =0, A; =0, (2.79)
24.4% — 4849 — AgAg = 0, — 24 A%, + AgAyp = 0, (2.80)
and
845 +343 =0, 24A0+ AZ =0, 2447 + AgAy =0, (2.81)
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respectively. The equation (2.81.b) implies that there are two cases that should

be considered separately.
a. Ag(z) = 0: The equations (2.77)-(2.81) and the compatibility condition at
J = 8 implies that all the coeflicients are zero except

1
Ag = ¢y, Ay = —601, A= o, (2-82)

where ¢y, co are constants. Then, the canonical form of the equation for this
case is 1
v = 18(yy" + 2" ~ 4'y) - e + oy + o (2.83)

Equation (2.83) was given in [15].

b. As(z) = 24/(z — ¢): For simplicity, let the constant ¢ = 0. Then the
equations (2.77)-(2.81) and the compatibility condition at j = 8 implies that
there are two following distinct cases:

i.

A=t A= a=- a=2 4=
z 6 z 6z z
Co C1
Ag = —2¢y, A7 = P Aw=0, A= P (2.84)

where ¢y, ¢, are constants. Then, the canonical form is

"

y® = 18(yy" + 2y — 4y”y) + 1y + " - Py

c2, 0t 9,,2 ! 24,3 c2,,2 c (285)
-5V — v 2y + Sy + 2yt + 4
Equaton (2.85) was also given in [15]. When ¢, = 0; if one lets
u =y = 3(6yy" + 3y — &%), (2.86)
Then equation (2.85) can be written as
1
o= —u+ 2 (2.87)
z z
Hence, (2.85) has the first integral
y@ = 3(6yy” + 3y”? — 8y°) + kz — ¢y, (2.88)

where k is an arbitrary constant. Equation (2.88) is nothing but the equation
(2.43) with k; = 0.
ii. A4 = A7 = Ag =0 and,

1 18 9
Al= -, A2=—2Z, A3=——, A5=——,
z 2 z z
o cs C.
As =6c3z, Ay = 5%, Ay = —%zQ + ;* (2.89)

18



where c3, ¢4 are constants. Then, the canonical form is

mo__ 18,1

5) = 18(yv™ + /" — 472 (4) _ ¢
(v +2y'y" — dy™y) + y 52y — S (2.90)
— 292 4 Bezzyy’ + 2yt + —izy —iz + .
When ¢; = 0, (2.90) has the first integral same as (2.85).
Case 4: By using the transformation one can set
12OA1 + 6A3 + 4A5 + Ag = 0, AG = 0, ay = 20. (291)

The compatibility conditions at j = 2 and 7 = 5 implies that A, = 0 and
A4 = 0 respectively. The compatibility conditions at j = 6, 8 implies

445 + Ag = 0, (2.92)

and
A7 =0, —TA3+6A45—243=0, 4d0Az+AZ=0, 40A4,;+ AgAd =0,
(2.93)

respectively. Therefore there are two cases should be considered separately: a)
Ag(z) =0 and b) Ag(z) = 40/z (for simplicity the integration constant is set

to zero).
a) Ag(z) = 0: The equations (2.91)-(2.93) implies that all the coefficients are
zero except A7 = c1z + ¢, A = 2¢; and A;; = ¢3 where ¢; are constants.

Then, the canonical form is
y® = 20(yy" + 2y'y" — 6y%Y) + (c1z + c2)y' + 2c1y + cs. (2.94)

b) Ag(z) = 40/z: The equations (2.91)-(2.93) and the compatibility conditions
at 7 = 5,8 imply that

A =1 Ay =0, Ay=-2 4, =0 A;=-2
461— oz,, A:— —}cl, BAg = 5,’ A:) = k— ;11 = ‘~— (299
where ki, ky are constants. Then, the canonical form is
y® = 20(yy" + 24'y" - 6y°y') + ly(‘*’ - Eyy”
—10 — ki +£Qy +é—J+£CE (2.96)
When k; = 0: if one lets
w=y® - 1002yy" + 9y — 41/°). (2.97)
Then equation (2.96) can be written as
u = %u + % (2.98)
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Hence, the first integral of (2.96) is
y@ =10(2yy" + y? — 4°) + kaz — ks, (2.99)

where k3 is an arbitrary constant. Replacing y by ~y/4 in (2.99) gives (2.40)
with £, = 0.

2.4 Sixth order equations: Pgﬁ)

1, 11

Differentiating (2.55) with respect to z gives the terms y(®), yy™), o'y "2,
y*y"and yy’? all of which are of order —8 for & = —2 as z — z,. Adding the
term y* which is also of order —8 gives the following simplified equation

y® = aiyy™ + asy'y" + sy + asy®y" + asyy” + asy’, (2.100)

where a;, ¢ =1, 2,..., 6 are constants. Substituting (2.22) into (2.100) gives the

following equations for the resonance r and p,

(r + 1){r® — 28r* + (323 — ayy0)7® + [(15a, + 2a9)yo — 1988]r°
—[aayd + 2(43a; + 10as + 6a3)yy — 7092)r
+2[(2a5 + 3a4)y? + 12(10a, + 4as + 3a3)yo — 7560]} = 0,
asys + 2(3aq + 2as)yd + 12(10a; + 4as + 3a3)yo — 5040 =0 (2.101)

Equation (2.101.a) implies that one of the resonance ry = —1 which corresponds
to arbitrariness of zy. Two cases should be considered separately a) ag = 0 and
b) aes # 0.

a) ag = 0: There are two Painlevé branches corresponding to (—2,vo;), 7 =

1,2, where yp;’s are the roots of
(3a4 + 2a5)y2 + 6(10a; + 4ay + 3az)yo — 2520 = 0. (2.102)

Then, one has

6(10@1 + 4(12 + 3a3) 2520
Sy = —  Yoer = ——— 2.103
Yo1 T Yoz 304 + 205 Yo1Yo2 304 + 205 ( )
Let 711,712, ..., 715 and 791,722, ..., 725 be the roots (additional to 79 = —1) of

(2.101.a) corresponding to yo; and yp respectively. Setting

P(yoj) = —2[(2a5+3a4)y§j+12(10a1+4a2+3a3)yoj—7560], j=12. (2104)
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then, (2.101.a) implies that
5 5
[Iri=Plwo) =p, [1r2 = Plye) =2 (2.105)
i=1 i=1

and

5 5

Zﬁz’ = ZTzi =28, (2.106)

i=1 i=1
where py, p; are integers, and at least one of them is positive. Now, one should
determine yo;, 7 = 1,2, and a;, ¢ = 1,2,...,5 such that there is at least one
principal branch. Let the branch corresponding to yo; be the principal branch,
then p; > 0. Equation (2.104) gives

Yo1 Yo2

P(ym) = 5040(1 - ——) =7, P(yog) = 5040(1 - ——) = D2, (2107)
Yo2 Yo1

by using the (2.103). Therefore, p;, p, satisfy the following Diophantine equa-

tion, if pyps # 0
1 1 1

i pa 5040
Equation(2.106) implies that there are 57 possible cases of (ry1, 712, ..., "15) such
that r,;’s are positive distinct integers. Diophantine equation has 27 integer
solutions (p1,p2) such that p, < 0. For each 27 cases of (p1,p2), %, J = 1,2,
and a;, i = 2,...,5 can be obtained from (2.103), (2.107) and

(2.108)

D i T = 323 = a1ty Diuiar T1T1 Tk = —[(15a1 + 2a2)yor + 1988,
E##k#l THTLTETL = —aqyé, — 2(43a; + 10ay + 6az)yer + 7092.
(2.109)
in terms of a;. But, there are only 3 cases out of 27 cases such that the
resonances (7,792, ..., T25) corresponding to ygo are distinct integers. These
cases and the corresponding simplified equations are as follows:
Case 1:

Yor = %% : (r, 72,713, T4, T1s) = (2,5,6,7,8)
Yo2 = % t(ra1, 722, T3, 24, T23) = (=3,6,7,8,10)
ar =3ay, a3=2a;, ag=-3a}, as=—%ai,
y® = ai(yy™ +3y'y" + 2" — Faw®y” - fayy®)  (2110)
Case 2:
yor =22 (ru,m12,713, 71, T1s) = (3,4,6,7,8),
Yo2 = % : (7211T22)7‘23;T247T25) = (_5’61718)12)
ay =3ay, a3=2a;, a4= —%a%, as = —%af,
y(G) = fll(jlj’,I/M) + 3y/y/// + 2’!/”2 _ %alyzy// _ {}alyy”) (2‘111)
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Case 3:

Yor = % o (ru, T, T, e, is) = (2,3,6,7,10),

yor = 2 ¢ (ra1, a2, 723, Tag, T2s) = (=2, 5,6,7,12)

ap =201, az=a;, as=-—ia}, as=—3a},
y® = ai(yy® + 2/y" + y? - ary’y" — Zaryy?) (2.112)

The compatibility conditions are identically satisfied for the first two cases but
not for the third case. Therefore, the third case will not be considered.

To obtain the canonical form of the sixth order Painlevé type equation when
as = 0, one should add the non-dominant terms with analytic coefficients of z.
That is,

" 2

y® = ayy™ + asy'y" + asy” + aay®y" + asyy
+A1(2)y® + A (2 + As(2)yy" + Aa(2)y" + As(2)y'y"
+As(2)yy" + Ar(2)y" + As(2)y*y + As(2)yy’ + Awo(2)y”
+ A (2)Y + Ap(2)y® + A(2)y* + Au(2)y + As(2) (2.113)

The coefficients A,(z), ..., A15(z) can be determined by using the compatibility
conditions at the resonances. Substituting

y =yor(z — ) +Zyjz—z0 , (2.114)

into (2.113) gives the recursion relation for ;. Then, one can find 4,,..., 45
such that the recursion relations for j = 71,712,713, 714,715 are identically

satisfied, and hence ¥r,,, Yrys» Yrizs Yria» Yris aT€ arbitrary.
Case 1: By using the linear transformation (2.6), one can set

360A1 + 12A3 + 6A5 + Ag = 0, A(; = O, ay = 20, (2115)

then, yo; = 1 and y; = 0. The compatibility conditions at j = 2,5, 6, 7,8 imply
that all the coefficients are zero except

Ar=cz+oy, A = 3cy, (2.116)
where ¢y, ¢y are constants. Then the canonical form for this case is
y© = 20(yy™ + 3y'y" + 2y — 637" — 12yy™) + (cr2 + c2)y" + 3c1y’ (2.117)

If ¢, # 0, replacing z +cz2/c; by z and then replacing z by vz and y by By such
that v28 =1, c;7° = 1in (2.117) gives

y(© = 20(yy™ + 3y'y" + 24" — 6y%y" — 12yy'?) + 2y" + 3¢/ (2.118)

22



Case 2: One can always choose yo; = 1,and y; = y2 = 0 by choosing
3604, +12A3+6A45+A3 =0, 1204A+6A5+4A0+A12 =0, a3 =18, (2-119)

Then, the recursion relation imply that if, s, v, ¥s, y7, and ys are arbitrary
then Al = A3 = .-15 = A7 = Ag = Alg = A13 =0 and

1 1
Ay = —5(013 +co), Ay = —661, A=A =ciz+cy A9 =2c,
| 1 c? 0
4, = = (clz + cz) Ay = 3661’ Ais = ~ 5593 ——(c12 + ¢2) (2.120)

where ¢y, ¢o are arbitrary constants. Then the canonical form for this case is

J(6 — 18(yy(4) + 3JI "o 2y//2 4?/2 7 Syy&) _ 1%(612 + c2)y(4)
—Sy" + (az+c)yy” + 2clyy’ +(c12 + )y
+8(c1z + )y + 2y — 5 - (c1z+ ¢5) (2.121)

If ¢y # 0, replacing z +cy/c; by z and then replacing z by vz and y by Sy such
that 28 =1, ¢;v® = 36 in (2.121) gives

y© = 18(yy™ + 3y'y" + 2" — 4%y" — 8yy”?) — 3zyt

—6y" +362(yy" + y'%) + 6(12yy’ + 3z’ + 6y — 3z). (2.122)

"2

b) as # 0: Equation (2.101.b) implies that there are three Painlevé branches
corresponding to (—2,vo;), j = 1,2,3 where yo; are the roots of (2.101.b).
(2.101.b) implies that

3 3

5040 2(3ay4 + 2as)
Hyo]'=—a—, Zy()j:—_z—_)
12
Z YoiYoj = a—(1001 + 4ay + 3a3). (2.123)
i#j 6
If the resonances (except ro = —1) are ry;, 79,73 @ = 1,2,...,5 corresponding

to Vo1, Yoz, Yos3 respectively. If one sets,
P(yo;) = —2[(2a5 + 3a4)y5; + 12(10a; + 4ay + 3as)yo; — 7560],  (2.124)

then, (2.101.a) implies that

5

5 5
[T = Plyor), [Tr2=Pwe),  []rsi=Pves) (2.125)
i=1 i=1

i=1
and

5 5 5
ZTU = Zrzi = ngi = 28 (2.126)
i=1 i=1 i=1
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The condition of ry;, 7o, 73; being integers and (2.124), (2.125) give
P(yol) =p1,  Pyoe) =p2,  Plyos) =ps3 (2.127)

where p1, po, p3 are integers, and at least one is positive. Then the equations
(2.123) and (2.124) give

pr = 5040(1 — 2y - 2
Yo2 Yo3
Yo2 Yo2
=5040(1 — —)(1 — ==
2= ( yo1)( Yos3
ps = 5040(1 - Z2)(1 - £2).
Yo1 Yo2
(2.128)
By setting, £ = Y02 — Y03, # = Y03 — Yo1, and v = yo1 — Yoz, then (2.128) yields
py = —5040—2 ) py = —B0A0———,  p; = —5040—E—.  (2.129)
Yo2Yo3 YorYos Yo1Yo2
Thus,
> pips = (5040)2kun(— + = 1+ ). (2.130)
oy Yor Yoz  Yo3
But,
AR SR A i (2.131)
Yor Yoz o3 Yo1Y02Yo3
Therefore,
k2 uty? 1
ipj = —(5040)° -~ = . 2.132
;p p; = —(5040) i 5oah PP (2.132)
So that, p;, 1 = 1,2, 3, satisfy the following Diophatine equation
3
1 1
o= — (2.133)
i—1 Di 5040

If the principal branch corresponds to (=2, o), then the resonances ry;, ¢ =
1,2,...,5 are positive distinct integers and thus p; is a positive integer. Equation
(2.129) yields
5 K22

Yo1Y02Y03
Therefore, either p, or p; is a negative integer. > r;; = 28 and 7y; being
distinct positive integers imply that there are 57 possible values of p;. Then,
one should find all integer solutions (ps, ps) of (2.133) for each possible values
of p;. There are 3740 possible integer values of (py, ps, p3) such that p;,ps >0
and p3 < 0. Equations (2.123), (2.128) and

p1p2ps = —(5040) (2.134)

D ixj T1T15 = 323 — ayyo
D itiak T1TLTL: = —[(15a1 + 2a2)y01 — 1988],
Zi#j#k;ﬁl TLTLT T = —(141/31 — 2(43(11 + 10as + 6a3)y01 + 7092(2.135)
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determine all the coefficients of (2.101.a) in terms of a; for all possible values
of (p1,p2,p3). Now one should find the roots ry;, 73; of (2.101.a). There are
only 3 cases such that ry;,73; are being distinct integers. The cases and the

corresponding simplified equations are as follows:

Case 1:
Yo1 = % : (r11,712, 713, T4, T1s) = (2,3, 4,9, 10)
yor = B2 : (ryy,7a,725, 724, 725) = (=5, -7,10,12, 18)
Yoz = % t (731,732,733, T34, 735) = (—2,3,5,10,12)
a2=§al, a3=§a1, a4=a5=—%a'~f, a6=6—2§a?

y(ﬁ) — a1(yy(“) + gy/y/// + %y//'z _ %alyzy” _ _I%alyym + %G%Zfl) (2.136)

Case 2
Yo1 = % : (7‘11,T12,T13,T14,7”15) ( 4,5,7, 10)
Yoo = % : (a1, T22, T23, Toa, Tos) = (=3, —5,10,12,14)
Yo3 = % . (7’31,7‘32,7‘33,7‘34,7‘35) ( 3 ~,7 10 12)
az =2a;, a3 = %ah a4 = as = —1%02 as = 38203,

y(s) _ al(yy(.{) +2y1yll/+ gyIIQ . 14a ,y y - l4a1J'y + 392 ) (2 137)

Case 3
_ 2.
yo =21 (T1i,712, 713,714, 715) = (3,4,5,7,9)
336 . (p
yoo = 250 (721,722,723, Tae, Tos) = (=5, —11,12, 14, 18)
o105 . (.
Yos = 52t (731,732,733, T34, 735) = (=5,3,7,11,12)
3 _7 _ 2.2 _ 5.2 L3
Ay = fal) asz = Zah aq = —7(11, as = __4'0’1) e = 117a'17

y® = a1 (yy™ + 2y'y" + Ty - 2ay®y” — Sawy? + aly?) (2.138)

For all three cases, the compatibility conditions are identically satisfied. To
obtain the canonical form of the sixth order Painlevé type equation, one should
add the non-dominant terms with analytic coefficients of z. That is,

y® = aiyy® + apy'y" + asy™ + e’y + asyy” + aey’*

+A1(2)y® + A (2)y™ + A3(2)yy" + Au(2)y" + As(2)y'y"

+A4s(2)yy" + Ar(2)y" + As(2)y*y + Ao(2)yy’ + Aw(2)y”
+A411(2)y + Ap(2)y® + Ais(2)y? + Au(2)y + Ar5(2) (2.139)

The coefficients A,(z), ..., A15(2) can be determined by using the compatibil-
ity conditions at the resonances. Substituting (2.114) into (2.139) gives the
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recursion relation for y;. Then, one can find Ay, ..., A5 such that the recur-
sion relations for 7 = ryy, 710, 713,714,715 are identically satisfied, and hence

y?‘n ? yT127 yT13’ yr147 yrls are arbitral‘y-
Case 1. By using the linear transformation (2.6), one can set

3604, + 12435 + 645 + Ag =0, A =0, a; = 36, (2140)

then, yo; = 1 and y; = 0. The compatibility conditions at j = 2,3,4,9, 10
imply that all the coeficients are zero except

c
Ar = _gl’ A =c, Au=oc, Ads=c, (2.141)

where ¢;’s are arbitrary constants. Therefore, the canonical form for this case
is

5 5 A
y® =36(yy™ + 29"y + 2y = 10y%" - 10yy” + 104°)

—gly” + iy’ + eyt (2.142)
Case 2. One can always choose 35, = 1,and y; = 0 by setting
3604, + 1245 + 6A5 + Ag = 0, A =0, a; = 28, (2.143)

Then, the recursion relation imply that if, ¥2,y4,ys, y7,and yio are arbitrary
then all the coefficients are zero except

c
Ay =—= Az=c, Au=o, Ai=caz+c, (2.144)

6 )
where ¢;’s are arbitrary constants. Then the canonical form is
. 3
y® = 28(yy™ + 29y + Sy — 10y%y" - 10yy” +10y")
—Ely”-l—cly + oy + 32 + ¢4 (2.145)

(2.145) can also be obtained by the similarity reduction of the hierarchy of the
(KdV) equation [16].
Case 3: One can always set o, = 1,and y; = y2 = 0 by choosing

360A1+12A3+6.45+Ag = O, 120A2+6A6+4A10+Alg = 0, a, = 21, (2146)

Then, the recursion relation imply that if, 3, y4, ¥s, y7, and yo are arbitrary
then all the coefficients are zero except

C1 3

—, As=-c, Ap=--c, Au=c, A;s=c (2-147)
15 4

where ¢;’s are arbitrary constants. Then the canonical form is

.42 =

5 7 : 15
y® = 21(yy™ + YY"+ 4y — 6y°y" - 7011?/2 +3y*)

3
—l—r’y(4) - Clyy” - chy"‘z + Cy + C3. (2148)
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Chapter 3

The second Painlevé hierarchy

In this chapter we apply the procedure to the second Painlevé equation and
present Painlevé type equations of order three, four, five and six.

3.1 Third order equations: P§3I)

The second Painlevé equation, Py is
1

v =2 + 2y +v. (3.1)

Painlevé test gives that there are two branches with common resonances are
(—1,4). The dominant terms of (3.1) are y” and 2y*® which are of order —3 as
z — zp. Taking the derivative of the simplified equation gives

y/// — a'yQy' (32)

where a is a constant which can be introduced by replacing y with Ay, such that
6A? = a. Adding the polynomial type terms of order —4 gives the following

simplified equation
y" = ay” + a2y + asy’y’ + agy’. (3.3)
where a;, © = 1,..., 1 are constants. Substituting
y=1yo(z—2)"" +8(z = 2)"}, (3.4)

into the simplified equation, to leading order in ¢, gives the equation Q(r) =0

for the resonance r, and for y, respectively

Q(r) = (r+ 1){r? = (aryo + 7)r — [asy — 2(2a; + a2)yo — 18]} =0, (3.5)
aqys — azyz + (2a; + az)yo + 6 = 0. .
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Equation (3.5.b) implies that, in general, there are three branches of Painlevé
expansion if a, # 0. Now, one should determine y,;, j = 1,2,3 and a; such
that at least one of the branch is the principal branch. There are three cases

which should be considered separately.

Case I: a3 = a4 = 0: In this case there is only one branch. The resonance
equation (3.5.a) implies that 779 = 6. Therefore, there are following four

cases:
a: yo = —% . (r1,m2) =(1,6), a; =0,
b: you = —% : (r,7m2) =(2,3), a1 =as (3.6)
C: Yo = ——i% (r,me)=(-2,-3), a1 = —3as,
d: yo=-2: (r,m)=(-1,-6).

The case d will not be considered since r = —1 is a double resonance. The

compatibility conditions are identically satisfied for the first two cases. To find
the canonical form of the third-order equations of Painlevé type, one should
add non-dominant terms with the coeflicients which are analytic functions of
z. That is, one should consider the following equation for each case

Y = a1y’ + asy? + A1y + Asyy’ + Asy® + Ay’ + Asy? + Asy + 47, (3.7)

where Ax(z), k=1,...,7 are analytic functions of 2. Substituting
6
y=1o(z —20) " + D _yilz — 2, (3.8)
i=1

into equation (3.7) gives the recursion relation for y;. Then one can find A
such that the recursion relation, i.e. the compatibility conditions for j = ry, 79
are identically satisfied, and hence y,,, y-, are arbitrary.

I.a: By using the transformation(2.6), one can set A;—As =0, A; =0, and
ay = —6. The compatibility condition at the resonance r; = 1 gives Ay = As.
The arbitrariness of y; in the recursion relation for j = 6 and the recursion
relation yield that
1
6

According the equation (3.9.a), there are three cases should be considered

1
A AT=0,  A-Asds=0, A7-cAsAr=cAL A =0 (39)

separately.

IL.a.i:  A; = 0: From the equation (3.9), all the coefficients A, can be
determined uniquely. The canonical form of the third order equation for this

case is

1 1 1
y" = —6y? + (c1z + ¢y + —7502{24 + ECICQZ3 + ﬁcng +c3z+ ¢y, (3.10)
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where ¢;, @ = 1,...,4 are constants. If ¢; = ¢c; = 0, then (3.10) can be written
as
u” = 6u’ —c3z — ¢4 (3.11)

where u = —y'. If c3 = 0 then the solution of (3.11) can be written in terms of
the elliptic function. If ¢5 # 0, (3.11) can be transformed into the first Painlevé
equation. If ¢; = 0, ¢p # 0, (3.10) takes the following form by replacing y by
vy and z by §z such that v =1, 6% =6

y" = =By + 6y + 32° + G3z + &, (3.12)

where ¢ = ¢30°, & = c40*. Equation (3.12) was also given in [5] and [7]. If
c1 # 0, c; = 0, replacing y by vy and z by 6z in (3.10) such that y6 = 1, ¢;6* =
12 yields

y" = —6y” + 122y + 22° + Gz + &, (3.13)
where ¢3 = c36°, ¢ = c46%. Equation (3.13) was also given by Chazy [5]
and Bureau [7]. It should be noted that (3.10) can be reduced to (3.13) by
replacing z by z — (¢z/c1) and then replacing y by vy and z by dz such that
v6 =1, ¢16* = 12.

La.i: A; = (TfT) Without loss of generality the integration constant ¢
can be set to zero. From (3.9), the coefficients Ay can be determined and the
canonical form of the equation is

y" = =6y + 6272y + 12 + (12 + ez D)y + 32 + cyz 7t

1,1 3 34 _
+ E(chzg + 5010223 + Zc%z 3, (3.14)

where ¢;, 7 = 1,...,4 are constants. If ¢; = ¢, = 0, (3.14) is a special case of
the equation given by Chazy [5]. If ¢; =0, ¢ # 0, (3.14) takes the following
form by replacing y by vy and z by dz such that yd =1, cod = 24

y" = =6y + 6272y + 1P+ dy) + G2 + Gzt + 24277 (3.15)

where ¢ = ¢36% and & = c,6°. The equation (3.15) is given in [7]. If ¢; #

0, ¢, = 0, then equation (3.14) takes the form of

m 2 6 / 2 3 8 > .2 "'1

Yy = =6y +Z—2(y +y)+l8z Y+ 2° +c32 +C4; (316)
where €3, ¢y are constants and equation (3.16) was also given in [7].

I.a.iii: If one replaces As with 6A4s, 4 with 64 and A; with 64, then
the equations (3.9) yields

Al 642 =0, Aj—64;4;=0, AY—-24;4, = A2 (3.17)
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Integrating (3.17.a) once gives

A2 =443 — o, (3.18)
where o is an integration constant. Then

As =P(2,0,a;) (3.19)

where P is Weierstrass elliptic function. If Ag = 0, (3.17.c) implies that A;
satisfies the Lamé’s equation. Hence,

A7 = cre™@ olz+a) + cpe%(@ o(z—2) (3.20)
o(2) o(2)
where ( is ¢-Weierstrass function such that {' = —P(z), o is o-Weierstrass

function such that %/(%)—) = ((z) and a is a parameter such that P(a,0,a;) = 0.

Then the equation

—x¢(@9(z +a) +8,e%@ o(z —a)

= =~ (3.21)

y" = —6y*+6P(2,0,01) (v +y>) +éie
where ¢ = 6¢; and ¢, = 6c,. Equation (3.21) was also considered in [5].

I.b: The coefficients Ai(z), £k =1,...,7 of the non-dominant terms can be
found by using the linear transformation (2.6) and the compatibility conditions.
The linear transformation (2.6) allows one to set a; = —2, A;(2) =0, Aa(z) —
A;3(z) = 0 and the compatibility conditions give that A,(z) = As(z) = 0 and
A4(z) = As(z). So, the canonical form of the equation is

y" = —2(yy" + y/2) + A4(y' + y‘z) + Az, (3.22)

where A4 and A; are arbitrary analytic functions of z. If one lets u = ' + y2,
then (3.22) can be reduced to a linear equation for u. Equation (3.22) was also

given in [7].

I.c: Without loss of generality one can choose a; = 2, then the simplified

equation is
y/// — 2’!/:1/” _ 3'!//2; (323)

which was also considered in [5, 7]. Since all the resonances are negative distinct
integers then there are no compatibility conditions and hence no non-dominant

terms can be introduced.
Case II. a4 = 0: In this case yq satisfies the following quadratic equation
asye — (2a, + as)yo — 6 = 0, (3.24)
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Therefore, there are two branches corresponding to (—1,v;), 7 = 1,2. The
resonances satisfy the equation (3.5.a). Now, one should determine yo; and
a;, t=1,2,3 such that one of the branches is the principal branch. If v, are

the roots of (3.24), by setting
P(yo;) = —[asyo; — 2(2a1 + ag)yo; — 18],  j=1,2 (3.25)
and if (rjy, T;2) are the resonances corresponding to yo;, then one has
riTiz = Plyo;) =pj, 7=1,2 (3.26)

where p; are integers and such that at least one is positive. Equation (3.24)

gives that 5
az = — ) 2a1 + ay = as(ym + yog). (327)
Yo1Yo2
Then (3.25) can be written as
1 1
Plyo) = 6(1 - %), P(yo) = 6(1 — 22). (3.28)
Yoz Yo1

For pip, # 0, p; satisfy the following Diophantine equation
1 1 1
—+ —=-. 3.29
pr p2 6 (3.29)
Now, one should determine all finite integer solutions of Diophantine equation.
One solution of (3.29) is (p1,pe) = (12,12). The following cases should be
considered: i) If p; > 0, ps > 0 and p; < p,, then p; > 6 and py > 12. ii) If
p1 > 0, pp <0, then p; < 6. Based on these observations there are following

nine integer solutions of Diophantine equation.

(p1,p2) = (12,12), (7,42), (8, 24), (9, 18), (10, 15),
(2,-3), (3, =6), (4, —12), (5, —30). (3.30)

For each (p,p2), one should write (r;1,7;2) such that r;; are distinct integers
and ;752 = pj, 7 =1,2. Then yy; and a; can be obtained from (3.27), (3.28)
and

T+ T =0y +7, Jj=1,2 (3.31)

in terms one of the a;. There are following five cases such that all the resonances

are distinct integers for both branches. The resonances and the simplified

equations for these cases are

ILa: y81 =L (7‘11,7"12) = (3;4)7 Yo2 = —Yor - (T21,7‘22) = (3, 4),

a3
y/// — a3y2y/
(3.32)
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ILb: yor=—5-: (r,m2) = (2,4), Y2 =2: (ra1,m22) = (4,6),
y/// — al(yy// + 2y/2 + 2a1y2y/)
(3.33)
ILe: yo = —;3? (rn, ) = (1, 3), Yoz = “% D (ra, ma2) = (=2,3),

,y/// — a1(:t/'y” + yfz _ éalyzy’)
(3.34)

ILd: yo = —;2; p(ry i) = (1,4), Yo = —;6; D (ra,ma2) = (=3, 4),
y/// =q (yy” + lez _ %alyzy/)
(3.35)
ILe:  yo = —ﬁ t(ru,mi2) = (1,5), Yo2 = '-;67 t {ra,ma2) = (=5, 6),

y/// =a, (yyu + 5y/2 _ alyzy’).
(3.36)

For each case the compatibility conditions for the simplified equations are iden-
tically satisfied. To find the canonical form of the third order equations of
Painlevé type, one should add non-dominant terms with the coeflicients which

are analytic functions of z.

Il.a: Using the linear transformation (2.6), one can set 24, +A; =0, Ay =
0 and a3 = 6. The compatibility conditions at 7 = 3,4 for the both branches
allows one to determine the coefficients A;. The canonical form of the equation

for this case is

1. 1 1
ez —c)y tayt—(Gz—c)y-=c + 5C1C2Z + 5C1C3.

4
(3.37)
where ¢y, ¢9, c3 are constants. If one replaces z — % by z, then y by vy and 2
1
by 6z such that v§ = 1, ¢,6% = —2, then (3.37) yields

1
=0 - (e

u" = 6u2ul + 12zuu’ + 4(22 + k)u' +dzu + 4U2, (338)

where u = y — z and k is a constant. Equation (3.38) was also considered in
[5, 7], and its first integral is the forth Painlevé equation. If ¢; = ¢, =0, (3.37)
can be solved in terms of the elliptic functions. If ¢; =0, ¢ # 0, (3.37) gives
y" = 6y"y + ca(z + Z—S)z/ + cay. (3.39)

2
If one introduces ¢ = z + 2 then the first integral of (3.39) is the second

Painlevé equation.

II.b: On using the linear transformation (2.6) one can always choose 24, +
A; =0, Ay =0, and a; = —1. Then the compatibility conditions for the both
branches, that is the arbitrariness of y5; and y4; for the first branch and vy and
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ys» for the second branch imply that all the coefficients A, of non-dominant
terms, are zero. So the canonical form for this case is

1"

y ! — _yyli _ 2y/2 + 2y2yl' (340)

Equation (3.40) was also given in [5, 7].

Il.c: By using the linear transformation (2.6), one can always set Az =
As =0, and a; = —3. Then, the compatibility conditions at j = 1,3 give that
Ay =c¢1/2, Ay = ¢y, ¢; = constant, and A} = Ag. Then the canonical form of

the equation is
y" = —3yy" — 3y — 3y + %cly" + ey + Ay + Ay + Ag (3.41)
The first integral of (3.41) gives that
v = —3uu' — v’ + Biu+ By (3.42)

where u = y—(c;/6), and B}, B; are arbitrary analytic functions of z. Equation
(3.41) was also considered in [5].

II.d: One can always choose A3 = A; = 0, and a; = —2 by using linear
transformation (2.6). The arbitrariness of y;; and y,; for the first branch and
Y42 for the second branch imply that A; = A, = A; = 0,and A = 24. Then
the canonical form is

‘ 1
y" = =2yy" — 4y — 2% + Ay + 544y (3.43)

The first integral of (3.43) is

w_ Y ;Y c
= % 2yy’ — 5t Agy + " ¢ = constant (3.44)

4

<2

The equation (3.43) was also considered in [5, 7).

IT.e: By the linear transformation (2.6), one can choose A; = Az = 0, and
a; = —1. Then the compatibility conditions give that Ay = A5 = 0, As =
A'4/3, Ay = —A]/3. After replacing y by —y and Ay by 34, the canonical
form of the equation for this case is

v =y + 5y — vty + 3Ay + Ay + Af. (3.45)

Equation (3.45) has the first integral

8 12
W' —yy =y’ + Ay + Ag)? = g(y’ — )y + 12—

Fa(y =y (2447 + Ay + A"y) + 4427 + 4A, Ay + 447 + ¢, (3.46)

3
+ 54
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where Ay is an arbitrary function of z and ¢ is an arbitrary integration constant.
Equation (3.45) was also considered in [5, 7].

Case III: a4 # 0: In this case there are three branches corresponding to
(=1,905), J =1,2,3 where yp; are the roots of (3.5.b). (3.5.b) implies that

3 3
as 6
Zyo]' = Zymyo] 201 + as), Hij = PN (3.47)

i=1 ! i i=1
If the resonances (except ro = —1, which is common for all branches) are
Tji, t = 1,2 corresponding to yp;, and if one sets

P(yoj) = —lasys; — 2(20; + as)yo; — 18],  j=1,2,3 (3.48)

then (3.5.a) implies that

2

[ 175 = Plwos) = ps, (3.49)

i=1
where p; are integers and in order to have a principal branch, at least one of
them is positive. The equations (3.47) and (3.48) give

p = 6(1— Ly - Loy
Y02 Yo3

pr = 6(1 - 22)(1- 22),
Yo1 Yo3

ps = 6(1 — 22y(1 - %2 (3.50)
Yol Yo2

3

1 1

— = - 3.51
> =5 (3.51)

Moreover the equation (3.50) gives that

3 63
H ——(3/01 — y02)* (Y01 — vos)* (Yoz — Yo3)?, (3.52)
(Yo1¥02y03)?

if a; # 0. That is, if p; > 0 then either p, or p; is a negative integer. One

should consider the case a; = 0 separately.

IIl.a: a; = 0: In this case the sum of the resonances for all three branches

are fixed and )
dora=T,  j=1,2.3 (3.53)



Under this condition, the solutions of the Diophantine equation (3.51) are
(p1,p2,p3) = (10,10, -30), (10,12, —60).

ITL.a.i: (py,po,p3) = (10,10, -30): The equation (3.50) can be written as
P1(Yo2 — Yo3) = kyor, D2(Yo3 — vor) = Yoz, P3(¥or — Yo2) = k¥os, (3.54)

where 6
k = ————(yo1 ~ Yo2) (Y02 — Yo3)(Yor — Yo3)- (3.55)
Yo1Yo2Y03
For k = £10v/5, the system (3.54) has nontrivial solutions Yoj, 7 = 1,2,3.

For these values of yo; the resonances and the coefficients a;, ¢ =2,3,4 are as
follows
yor = (1= VB): (ri,m2) = (2,5), o2 = v(1+V5): (ra1,722) = (2,5),

Yoz = 6v: (r31,732) = (=3,10),

a2 =%, a3=3%, as=_ %, v =constant.

=N

(3.56)

for both values of k. For these values of yo; and a; the simplified equation
passes the Painlevé test for all branches. The linear transformation (2.6) and
the compatibility conditions at the resonances of the first and second branches
are enough to determine all the coefficients A, (2) of the non-dominant terms.

The canonical form of the equation for this case is,
" =12y + 720% + 54y* + ¢;. (3.57)

where ¢; is an arbitrary constant. (3.57) can be obtained with the choice of
v = 1/(1 — /3) and replacing y with 6y/(1 — v/5). (3.57) was also given in
[5, 14].

I11.a.ii: (py,p2,p3) = (10,12, —-60): For this case the equation (3.54) has
non-trivial solution yy; for k& = +20v/3. Then Yoj» ;i and the corresponding
resonances are as follows:

yor = —3(-1£V3): (r,m12) = (2,8), o =%%: (ra1,72) = (3,4),
yo3s = —+(=6£V3) 1 (r31,ma2) = (=5,12),

02352 g = 3G § = constant.
(3.58)

By using the linear transformation (2.6), one can choose § = #+v/3 and

A, = A, = 0. All the other coeflicients A, of the non-dominant terms can

be determined from the compatibility conditions at the resonances of the first

and second branches. The canonical form for this case is as follows:

" = 22 1\/'@ oyt + 120:1:42\/—J2y + (! \/-‘/—y +12)
_ 931:!:14'3\/— 2.
132

,3:_

Q
)
e

(3.59)



or
y" =6y + FOE TV +17) - (4 F 3V)ay + 58 F 5v3)ay’

— 55(9 £ 7V3)ck.
(3.60)

where ¢, = 44¢/(3 ¥ 5v/3). Equation (3.60) was also considered in [14].

ITL.b: a; # 0: Since p;,p2 > 0, p3 < 0, equation (3.52) can be written as

pip2fs = 6n” (3.61)
where n is a constant and p3 = —p3. Then the Diophantine equation (3.51)
yields
pip2 = Ps(p1 + p2) — 1 (3.62)
and since (p; — p2)? > 0 then
(p1 + p2)® — 4ps(p1 + p2) + 40 > 0 (3.63)

Therefore —n < p3 < n so 0 < p3 < n. Hence, one may assume that n
is a positive integer. When p3 = n the equations (3.61) and (3.62) give that
(p1,p2,p3) = (6,n,—n) as the solution of the Diophantine equation. For the
case of p3 < n, if one assumes that p; < po (if p; = po, (3.62) implies that
p1 and p, are complex numbers) then the Diophantine equation (3.51) implies
that p; < 12. The equations (3.51) and (3.62) give that

(p1p3)® = n*[6py — (6 — p1)Ps), (p1p2)? = n?[6p; + (6 — p1)pa] (3.64)

for p; < 6 and for 6 < p; < 12 respectively. Equation (3.64) imply that
[6p1 —(6—p1)p3] and [6p; + (6—p1)p2] must be square of integers. By using these
results, p;, the multiplication of the resonances for the branches corresponding
the yo;, 7 =1,2,3, are
(p1, P2, p3) = (4,6, =10), (5,870, —26), (5, 195, —21), (7, 41, —1722)
(7,38, —399), (7, 33, —154), (8, 22, —264), (8, 16, —48),
(9,15, -90), (10, 14, —210), (11,13, —858) (3.63)

For each values of (py, p2, p3) given in (3.65) one should follow the given steps
below for (4,6, —-10). When (p;,ps,p3) = (4,6,—10): p; = 4 implies that
integer possible values of r;,1 = 1,2 are (ry1,712) = (1,4),(—=1,—4). Then

Tj1 + Tj2 =a1y0j+7, 7=1,2,3 (366)

implies that yo; = —2/a; and yo; = —12/a; for (ry1,712) = (1,4), (=1, —4)
respectively. On the other hand y,; satisfies the equation (3.54) for £ = +20.
For k = 20, y92 = —901/14. But the resonance equation for the second branch

ry — (T+a1ym)roi +p2 =0, i=1,2 (3.67)
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implies that 7 + a;y02 has to be an integer. So, in order to have integer res-
onances (r1,759) for the second branch, a;yg2 has to be integer. Similar ar-
gument holds for the third branch. But for ¥ = 20 both yy; and g are not
integers. Also, for £ = —20 the resonances for the second and third branches
are not integers. Following the same steps one can not find the integer reso-
nances for the second and third branches for all the other cases of (py, ps, p3)
given in (3.65). When (py,ps,p3) = (6,7, —n), the equation (3.54) has non-
trivial solution yg; for kK = £n. yo =0, Yoz = Y3 for £ = n and yo; = 12v,

Yoz = V(6 — n), yo3 = v(6 + n) for K = —n where v is an arbitrary constant.

Since 11 = 0 for £ = n, this case will not be considered. For k = —n, 2a; + as,
a3 and a4 can be determined from the equation (3.47) as follows:
180 — n? 12 : 1

2 = = =————— (3.68

Mt =T BT Tame— ) M gm0

Since, p; = 6, then all possible distinct integer resonances for the first branch
are (r11,712) = (=1, =6), (=2, -3), (1,6), (2,3). The case (-1, —6), because of
the double resonance at ro = r1; = —1, will not be considered. For (r;,712) =
(1,6), (3.66) implies that a; = 0. This case was considered in case IILa.
For the other possible resonances,' one can obtain the a;, 7 = 1,2,3,4, and
Yoj» J = 1,2,3. Once the coefficients of the resonance equation (3.5) are known
one should look at the distinct integer resonances for the second and third
branches. We have only two cases, such that all the resonances are distinct
integers for all branches. The resonances and the corresponding simplified

equations are as follows:

IILb.i: yor = =2 : (r1y,m2) = (=2,-3),
Yoo = (6 - Tl) (TZI) 7"2) (1 n) (369)
Yoz = __(6 + n) (7'31, TJZ) (1> _77')a

y" = ay[yy" +: E;?Z;y ez 01 Yy +(3—671—)ay] n # 1,86.

It should be noted that as n — co the simplified equation reduces to (3.23).

IILb.i: yo, = —% : (ru,mi2) = (2,3),
vr = =5 (1= ) (a1,72) = (6,7/6), (3.70)
Yoz = _Ell-(l + D’) : (7"31,7'32) = ( _n/6)

y - a’l[JJ + 436()8 :.Z y 3:33120'13/ y + 3eloi’a1y ] n 75 6)36

The canonical form of the equations corresponding to the above cases can
be obtained by adding the non-dominant terms with the analytic coefficients
x4k, k = l, ...7.

III.b.i: By using the transformation (2.6), one can set A; = Ay = 0 and
a; = 2. The compatibility conditions at the resonances imply that all the

.
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coefficients are zero except Ag and A; which remain arbitrary for n = 2. For
n = 3, A7 is arbitrary and all the other coefficients are zero. For n = 4, 5,6,
all the coefficients A are zero. However it was proved in [22], for n > 4 the
equation does not admit the non-dominant terms. The canonical form of the

equations for n = 2 and n = 3 are

3 1
y" = 2yy" + 5y/2 - gygy' + gy4 + Agy + A7 (3.71)
7 16 4
V" =2y + gy - Yyt A (3.72)

respectively. (3.71) and (3.72) were also given in [5], [14], and both can be
linearized by letting y = —2u'/u and y = —3u'/2u respectively.

I1I.b.ii: The linear transformation (2.6) and the compatibility conditions
at the resonances of the first and second branches give the following canonical

form of the equation

y" = —2yy" + 2_6:_223:(/’2 + 2 (2y' + ’yQ)yQ + As(y' + y2) (3 73)

m2—1 me—1
2
— 2L (AL - LAY + iz + ¢
where m = 6/n,, m # 1,6 and ¢, co are arbitrary constants and As is an
arbitrary function of z. (3.73) was also given in [5], [14] and equivalent

m2 - 1 m2 - ]. " 2 1
13 A5 - 4 U, u = o6u° + -4(—7712——_1)(612: + CQ). (374)

Y +y’ =

3.2 Fourth order equations: P‘(,il,)

Differentiating (3.3) with respect to z gives the terms ¥, vy, v'y", v*y", yy"
and y3y/, all of which are of order —5 for @ = —1, as z — 2;. Adding the term
y® which is also of order —5, gives the following simplified equation

v = ayy" + asy'y" + asy’y" + asyy® + asy®y’ + asy’, (3.75)

where a;, ¢t = 1,...,6 are constants. Substituting (3.4) into (3.75) gives the

following equations for resonance r and for y, respectively,

Q(ry = (r + 1){r’® = (11 + a1y)r® — [asys — (Tar + a2)yo — 46]r
- 05?/8 + 2(2&3 + a4)'!/g - 6(301 + ag)yo - 96} =0, (3.76)
agys — asys + (2a3 + a4)yd — 2(3a; + ax)yo — 24 = 0.
Equation (3.76.b) implies that in general there are four branches of Painlevé

expansion, if ag # 0, corresponding to the roots yo;, j = 1,2,3,4. Now,
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one should determine yo; and a; such that at least one of the branches is the
principal branch. Depending on the number of branches there are four cases.
Each case should be considered separately.

Case I: a5 = ag = 0, 2a3+ ag = 0: In this case there is only one branch
which should be the principal branch. There are following two sub cases which

will be considered separately.

I.a: a; = 0: In this case the equation (3.76.a) gives that the resonances
(r1,72,73) (additional to ry = —1) satisfy that So_ i =11, [[o,m = 24 .
Under these conditions only possible distinct positive integer resonances are
(r1,7re,m3) = (1,4,6). Then (3.76) implies that a3 = 0 and yy = —12/a,.

Therefore, the simplified equation is
y @ = ayy'y". (3.77)

To obtain the canonical form of the equation, one should add the non-dominant
terms, v, yy", v", v, v¥/, yv', v, v* v, v vy, 1, that is the terms of
order greater than —5 as z — 2z with the coefficients Ax(z), ¥ =1, ..., 12 which
are analytic functions of z. The coefficients A can be determined by using the
linear transformation (2.6) and the compatibility conditions at the resonances.
One can choose a> = =12, A; =0 and 24; — A + A9 = 0 by using the linear
transformation (2.6). The compatibility conditions, that is, the arbitrariness

of y1, Y4, ys give that

Ay —42=0
A&+.—1%=A3/3, A4:6A1, As-‘—‘Ag'——-Ag:O
Ag =245, AU — AgA; = 24, Ag Al + 2424 (3.78)

Ap= ‘1/; - A1A3, An = (A7 - AIO)I - Al(A7 — Aw),
: 112 + .—11_-112 = %(A7 ot Alo)z.

According to the solution of (3.78.a), there are following three cases:

I.a.i: 43 =0. 4, =0: Then the canonical form of the equation is

1
y @ = —120"y" + (crz + )y’ + ey + E(clz + ) +cs (3.79)
1

where ¢;, 1 = 1,2.3 are arbitrary constants. Integrating (3.79) once gives

1
y" = —67/2 +(c1z+ )y + W(clz +co)t +csz + ¢y (3.80)

1
where ¢, is an integration constant. If ¢, # 0, ¢; = 0, then the equation (3.80)
takes the form of (3.13). For ¢; =0, ¢y # 0, (3.80) yields (3.12).
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La.i: A3 =0. 4, =1/(z — ¢): Without loss of generality one can choose
the integration constant ¢ as zero. Then the canonical form of the equation is

y(4) — _ls)y/y// + 1y//r + 6y12 + (clz _ Cz)yl + c?gy + ﬁcfz3 (3 81)
— §clczz + cgz+
If ¢; = ¢o = 0 then (3.81) is equivalent to
1
W= (ute), y"=-6y"+u (3.82)

If ¢, =0, cp #0, after replacing z by vz, y by By, such that By =1, ;7 =6
the equation (3.81) takes the form of

1 6 : C:
y@® = —12¢"y" + = y”’ + - (y’2 +y) =6y +3z+ cz—“, (3.83)
where ¢3 = c37'. If ¢; #0, ¢ = 0, then the equation (3.81) takes the form of
1
y @ = —12y"y" + = (y’” + 6y2) + 122 + 62° + = (3.84)

where ¢; is an arbitrary constant.

I.a.iii: A3 = 6/(2z — ¢): For simplicity let ¢ = 0. Then the canonical form

of the equation is

6
y() 19:(/ ”+,~11(y"’+6y'2)+;—2-(y"+2yy')+A7y'+A10y2+A11y+A12, (385)

where

3

. 2c1z—ce»
Al— ( 32 K

zlc1z2vrce

A7 = i (5e1cs2® + o3’ + crcz — 2461 + cacyz™? = 6cy273)

12 6 -3
Ap = 3 Tz J+U(2Cl — 2 7%), . .

_ 1 6163 10 C"Cg 7 lcgcg c»('3c5 _ciey _ c2¢; -3
An = clz3+w(l3:>0 + 900 + 2+ 22 + sz 76 527)

_ cies

Ap = m[c 3210 — 48c328 4””“ 2T+ 5ctcsz® — E221 + dejepes 2

— 42¢)c0z — c3c3z™! + 63z
— (12t + c;;z)(f’%giz6 + 3—°§Ciz3 — 48¢) + crog — 2004272 + 6cp27%)].
(3.86)

where ¢;,i = 1,..., 5 are constants. The equations (3.79), (3.81), (3.83), (3.84)
and (3.85) were also considered in [7, 11, 15].

I.b: a, # 0: The equation (3.76.a) implies that 77973 = 24. Under this
condition there are four possible cases of (71, 72, 3) such that r; > 0 and distinct
integers. But, there is only the following case out of the four cases such that
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the compatibility conditions at the resonances for the simplified equations are

identically satisfied and yp # 0.
(Tlv T2, 7'3) = (27 3, 4-)’ Yo = —2/(11, as = 3a17 az = a4 = O) (387)

By adding the non-dominant terms to the simplified equation, using the linear
transformation (2.6) and the compatibility conditions one finds the canonical

form of the equation as follows:
y(4) — _ny/// _ 6y/y// +Al(y///+2yy//+2y/2) +A3(y//+2yy/)
+A(y +9%) + A, (3.88)

where A;, A3, A7, A2 are arbitrary functions of 2. If one lets u = y? + ¢/ then
the equation (3.88) can be linearized. (3.88) was also considered in [7, 15].

Case II: a5 = ag = 0: In this case there are two branches corresponding
to (—=1,y0;), 7 = 1,2 where yo; are the roots of (3.76.b) and

2(3@1 + ag) 24
S L == 3.89
Yo1 + Yoz Das T a4 Yo1Yoz2 203 + 04 (3.89)
Let (r;1,752,7;3) be the roots (additional to 7o = —1) of the resonance equation
(3.76.a) corresponding to yo,;. By setting
P(yo;) = —2(2a3 + aa)ys; + 6(3ar + az)yo; + 96, j=1,2 (3.90)
then (3.76.a) implies that
3
Hrji = P(yo;) =pj, j=1,2 (3.91)
i=1

where p; are integers and at least one of them is positive integer in order to
have the principal branch. Let the branch corresponding to 7g; be the principal
branch, that is p; > 0. The equations (3.89) and (3.90) give

1
Plyo) = 24(1- 22 = p,  Plyoe) = 24(1 - 2) = p, (3.92)
Yo2 Yo1
Hence p; satisfy the following Diophantine equation if p;p; # 0,
1 1. 1
p1 pr 24 ( )

There are 21 integer solutions (p;,ps2) of (3.93) such that one of the p; is
positive. Once p, is known, for each p; one can write possible distinct positive
integer (r11,712,713) such that H?zl r1; = p1. Then for each set of (1,712, 713),
ak, k =2,3,4 and yo; can be determined in terms of a; by using

3
ZT]',' =11+ 1Yo, eri'rjk = —agygj -+ (70,1 -+ ag)yoj + 46, (394)
i=1 17k
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for j = 1, and the equation (3.89). Then for these values of ax and yo; one
should check that whether the resonance equation (3.76.a) has the distinct
integer roots r; corresponding to yge. Only for the following cases a) (p1, p2) =
(12, —24) and b) (p1,p2) = (20, —120) all the resonances are distinct integers
for both branches and one of which is the principal branch. The resonances

and the simplified equations for these cases are as follows:

ILa:  (p1,p2) = (12,-24) :
= ——l M , y = 1, 3,4 ,
Yo1 %1 (7‘11 T12 7‘13) ( ) (3'95)
Yoo = _a_l' : (T21aT227T23) = (—'213) 4)

" 1 2.1t 2 72
- 3a19%Y" — fa1yy”)

yW = ay(yy” + 3y'y
ILb:  (p1,p2) = (20, -120) :

Yo1 = —é t(r, 2, m3) = (1,4, 5), (3.96)

Yoo = =3¢ (T21,722,T23) = (=5,4,6)

y@ = ay(yy" + 11y'y" — a1yy” — 2a1yy”®)
For the case Il.a the compatibility conditions at the resonances of the sim-
plified equation are identically satisfied. For the case II.b the compatibility
condition at the resonance ri3 = 5 implies that y; = 0 which contradicts with
the arbitrariness of y,. Moreover, in the case ILb, if one lets y = Au such that

Aa; = 1 and integration of the simplified equation once yields

2 -
u" = uu" + 50— wtu + e (3.97)

where ¢ is an arbitrary integration constant. Equation (3.97) is not a Painlevé
type equation unless ¢ = 0 and was also studied in (7, 11]. Hence, we will con-
sider the case I.a. Adding the non-dominant terms to the simplified equation
and by using the linear transformation (2.6) and the compatibility conditions
of the first branch, the coefficients Ag(z) of the non-dominant terms can be
determined. The canonical form of the equation for the case Il.a is as follows:

y(4) — _3yy/// _ gy/y// _ 3'.1/21/” _ ny/Z + Ry” + 2R’y’ + R//y

3.98)
+ Ag(y® +3yy' +y" — Ry) + Au, 55

where R(z) = 43(z) — Ao(z) and Az, Ag are arbitrary analytic functions of z.
If one lets
u=y"+3yy +y°— Ry (3.99)

then the equation (3.98) can be reduced to a linear equation for u. (3.98) was

also considered in (7, 15].



Case III: ag = 0: There are three branches corresponding to yp;, 7 =1,2,3
which are the roots of the equation (3.76.b). If one lets

3

Hrjizpjz

i=1

P(yo;) = asys; — 2(2a3 + a4)yg; + 6(3a1 + a)yo; + 96, 7 =1,2,3

(3.100)
where p; are integers and at least one of them is positive. By using the same
procedure which was carried in the previous case, p; satisfy the following Dio-
phantine equation:

3
1 1
; i =50 (3.101)
if p1pop3 # 0, and if a; # 0
43
HPJ ——)—(ym ~ vo02)* (Yor — ¥o3)*(vo2 — vos)? (3.102)

yo1y02y03

Hence, let py,pp > 0 and p3 < 0. If (5,72, 7j3) are the resonances correspond-
ing to yo; respectively, then they satisfy the equation (3.94) for j = 1,2,3.
There are following two cases which should be considered separately.

IIl.a: a; = 0: Equation (3.94.a) for 7 =
possible values of (r);,712,713) and hence five possible values of p;. For each
value of p; one can solve (3.101) such that py > 0, p3 < 0 and integers. Then

1 implies that there are five

for each (p1,p2,p3), the equations

p=24(1- 21 - 2,
Yo2 Yos3
P = 24(1- 22)(1 - 2),
Yo1 Yo3
Yo3 Yos3
=24(1 — —)(1 — =), 3.103
P ( 3101)( yoz)' ( )
give the equations (3.54) for yo; for
24
k= (o1 = Yo2) (Yo2 — Yos3) (Yor — Yo3)- (3.104)

Yo1Y02Y03

The system (3.54) has non-trivial solution if £? =
= 3,4,5 in terms of a;. Once the coeffi-

value of k, one can find yy; and a;, @

—(p1pa+p1p3+p2ps). Foreach

cients of the resonance equation (3.76.a) are known for all branches, one should
look at the cases such that the roots of (3.76.a) are distinct integers for the
second and third branches. There is only one case, (p1, po, p3) = (40, 40, —120),
and k = 40V/5. Yoj, the resonances and the simplified equation for this case
are as follows:

f—;(l —V5)
43

Yo = (ri1, 112, 113) = (2,4, 5),



Yoo = a%(l +5) (ro1,790,723) = (2,4,5),

Yo3 = Z—L,l : (T31>7‘32,7”33) = (-3,4,10),
y ™ = ay(y'y" + sa2y%y" + 1a0yy”® + 57035°Y) (3.105)

The compatibility conditions are identically satisfied for the simplified equa-
tion. To obtain the canonical form of the equation one should add the non-
dominant terms with analytic coefficients Ax(z), & = 1,...,12. The linear
transformation (2.6) and the compatibility conditions at the resonances of the
first and second branches give the following equation

y & = 249y + T2y%y" + 1ddyy”® + 21673y (3.106)
Integrating (3.106) once gives (3.57).
ITL.b: a; # 0: In this case the resonances (71, 752, 7j3) and yo; satisfy (3.94)

for j =1,2,3 and

3
1
ZTJOJ' 2@3+a4 ZyOJJOk == 3a1+a2 Hyo] (3.107)

i=1 J#Fk

respectively. p; = H?:LTji satisfy the Diophantine equation (3.101). If one

lets
2 24 2 2 2
n° = m(!/m — yo2)“ (Vo1 — Y03)“ (Y02 — Yo3) (3.108)
then (3.102) gives
PLpapy = 24n? (3.109)
where p3 = —ps. p; < 48. If one follows the procedure given in the previous

section, (3.101) and (3.109) give that
(p1p3)? = n*[24p, — (24 —p1)P3), (p1p2)? = n*[24p, + (24 —p;)pa] (3.110)

for p; < 24 and for 24 < p; < 48 respectively. So, the right hand side of both
equations in (3.110) must be complete square. Based on these conditions on
pi, 1= 1,2, 3, there are 71 integer solutions (py, p2, p3) of the Diophantine equa-
tion (3.101). For each solution (pi, p2, p3), one can find yo; by solving the system
of equations (3.54). Then one can write possible resonances (ry1,12,713) for

each p, provided that

3
a1Yo1 = Z?"li —11 (3111)

are all integers. There are following three cases such that all the resonances of

all three branches are distinct integers.
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IILb.i:  (py,ps,ps) = (15,60, —24)

Yo = —527 by iz i) = (1,3, 5),
Yoo = —22 ¢ (ra1,72,7a3) = (=2, -5,6), (3.112)
Yos = ~a 1 (31,752, 733) = (—4,1,6),
ay = %(ll, as = '—%CL%, ay = %a% as = %CL?
HIb.ii:  (p1,p2,p3) = (24,1, —n)
Yoo = —& ¢ (rn, 12, 713) = (2,3,4),
Yo2 = —a( ) (7”21,7‘22,7'23) (4 6, %) (3.113)
Yos = —5-(1+35) : (731,7‘32,7”33) = (4,6, ——) .
ILbiii:  (p1,po,p3) = (24,n,-n), n>0, n#4,24
Yoo = =52 (ru, 7z, 71s) = (=2, -3,4),
yoz=-i(6—§) : (7'21,7‘22,7"23)=(1;4,%), (3.114)
. Yoz = —L(G +5) 0 (ra1,mae,m3) = (1,4, -3),
az = lé?gtzﬁ a1, 03 = — ol G4 = “Feomal, 05 = 5ol

For all three cases, the simplified equations pass the Painlevé test. To obtain
the canonical form of the equation one should add the non-dominant terms
with the coefficients Ag(z), k = 1,...,12. The linear transformation (2.6) and
the compatibility conditions at the resonances give the following equations:

IIL.b.i:

'!,/(4) — _2yy/// _ 113/,’!]” _ 21/2@/” _ 7:/://2 _ ysy/2 + As(y// + yy/)

N 1 (3.115)
+ 345V + 4y) + 348 — SAsAy

where Ag is an arbitrary function of z. (3.115) was also given in [15].

ITI.b.ii: Since the compatibility condition at the resonance r = 6 for the

third branch gives that
Al +A2=0. (3.116)

The following two cases should be considered separately.
III.b.ii.1: A; = 0: The canonical form of the equation is

y @ = —2yy" — L= [(m? - 9)y'y" - 8y*y" — 16(yy” + v°y)] (3.117)

-1
+ Ay( J”+°l//) + (As+c) (' +y?) + Aio,
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where m = n/24, m # 1,4,6, A; is an arbitrary function of z and
m?—1
48

(3.117) was also given in [15].

Ay = (A3 — A3A} — c1 A3 + 2¢%2 + ¢y, ¢1, o = constant. (3.118)

ITII.b.ii.2: 4, = 1/(z — ¢): Without loss of generality, one can set ¢ = 0.
The canonical form of the equation is

yW = ~2yy" + [(54 6mP)y'y" + 48y%y" + 96(yy” + 1°y')]
+ [y + ’)yy — ——1(26 — 2m?)y? + 48y%y’ + 24y°] (3.119)
+A ( ”+9yy) (AQ_A3;+CIZ)('!/ +y +A12]

Aj is an arbitrary function of z and

. m2=1( 4m 1 qu ' 1 42 1.2.3 ¢
A12 = —T(.43 - ;A3 - A3A3 + §;A3 - Cleg + 5012 ) -+ PR

¢), C = constant.
(3.119) was also given in [15].

ITL.b.iii: If we let m = n/4, m # 1,4,6 then the canonical form of the

equation for m = 2 is

,y(4) — ny/// + 5:1/”!/” _ §y2y// _ 3’5/'3/’2 + éyiy/ (3 121)
+ALY" = 2uy" - 3% + S - 3yt - Ay + Ary + by + Ap,

If one lets

3 3 1
u= y/// _ ny” _ _z_y/2 + ayQy/ _ §y4 _ A7y, (3‘122)

then (3.121) can be reduced to a linear equation for w. It should be noted that
(3.122) belongs to P ;7 and was given in (3.71). For m = 3

y W = 2yy” + 'fJ’J” B2y — Ry 4 1803y 4 A (y" — 2yy" — Iy

+ 20 - 5y )+A12;

(3.123)
where A; and A4, are arbitrary functions of z. If one lets
7 16 , 4
w=y" =2y = 2y + SV - 2 (3.124)

then (3.123) can be reduced to a linear equation. (3.124) belongs to P§3,’ and
was given in (3.72). (3.121) and (3.123) were also given in [15]. It should be
noted that for m > 4, integration of the simplified equation once gives the
simplified equation of the case given in (3.70) with an additional integration
constant ¢. Thus, for m > 4 the simplified equation is not of Painlevé type if

c#0.
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Case IV: ag # 0: In this case there are four branches corresponding to
(=1,%05), J =1,2,3,4. If (rj1,752,7j3) are the resonances corresponding to the
branches, then H?:l 7j3 = p; such that p; are integers and at least one of them

is positive. Then (3.76.a) implies that
P(yo;) = asyo; —2(2a3+a4)y5;+6(301+a2)y0;+96 = p;, j =1,2,3,4. (3.125)

On the other hand (3.76.b) implies that

4
Z as 2(13 + ay
Yoj = — E YojYoi = ————
¥ aﬁ, 7504 as )

Jj=1 J#i
) 4

2(3a; +a 24
> Yosvostior = (—;—i) [T =-= (3.126)

jEiEk 6 j=1 6

Then (3.125) yields
pi=Plyy) =24]J(1-22), j=123.4 (3.127)
ik Yok

Therefore p; satisfy the following Diophantine equation

Zi L (3.128)

P 24

To find the simplified equation, one should proceed the following steps: a) Find
all integer solutions (pi, p2, p3, pa) of the Diophantine equation (3.128). b) For
each pair (p;,p2) from the solution set of the Diophantine equation, write all
possible (71, 7j2,7;3) such that H?:in =pj, j = 1,2. ¢) Determine yo; and
Yoz 1n terms of a), if a; # 0, by using the equation [3.94.a) for j = 1,2. d) Use
(3.127) to find yo3 and yps in terms of a;. ) Eliminate the cases (71,752, 7j3)
J = 1,2 such that a;ypx, & = 3,4 are not integers (see the equation (3.94.a)).
f) Find a;, ¢ = 2,...,6 in terms of a; by using the (3.125) and (3.126). Once
all the coefficients of the equation (3.76.a) are known, look at the cases such
that the roots of (3.76.a) are distinct integers for yo3 and yo4. There are four
cases such that all the resonances are distinct integers for all branches. These
cases and the corresponding simplified equations are as follows:

IV.a: (pl)p'.?)p3:p4) = (6) _4) 67 _24) :

Yor = —% : (r, 712, 13) = (172;3)7_

Yo2 = —g : (ro1, 722, 723) = (=2,1,2),

Yo3s = = ¢ (ra1,73,7a3) = (=3, -2,1), (3.129)
Yoa = —% : (7‘41,7‘42,7”43) = (—4, -3, —2);

S (4) 1/ Ao 2 2.1 3 2 2 2,3,/ 1 3.5
y® = a (yy" +2¢'y" = 2ayPy" — Loy + Eadyty - gadyd)
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IV.h: (pl,pg,pg,m) = (36,36, —84, —504) .

Yor = —i (i, 2, m13) = (2,3, 6),

Yoo = ;—3 : (7"21,7”22,7”23) = (2,3;5)7

Yoz = ;f t (a1, a2, ma3) = (=2,6,7), (3.130)
Yoa = —% D (a1, Ta2, Ta3) = (=7, 6,12),
y(4) — az[y/y/r + %a'z(y‘zy// + Z/’!jlz _ régagys)]
IV.c: (p1,p2, 3, pa) = (36,36, —144, —144) ;
'!/31 = % : (7‘11,7"12,7'13) = (2,3,6);
Yo2 = —Yo1 - (T21;722,7'23) = (27376),
Yoz = % : (a1, a2, 733) = (=3,6,8), (3.131)
Yoa = —Yo3 © (Ta1,Ta2,743) = (—3,6,8),
y(4) — aa(y’.)y// + yy’2 _ _5%a3y5)
IVd (p17p2)p3ap4) = (20, _1207 —60) 60) :
Yo1 = ;2; t (ru, T2, mis) = (1,2,10),
Yoo = —;81- : (ra1, T2, T23) = (=10,1,12),
Yoz = % : (7‘31)7‘3277‘33) = (_2) 2) 15)) (3132)

You = = ¢ (Ta1,Taz,743) = (=3, =2,10),
y @ = a(yy" — Ly + Lay®y’ - Layy” + aly’y — Ealy®)
The simplified equation for the case IV.d does not pass the Painlevé test. So
this case will not be considered. The canonical forms for the other cases can be
obtained by adding the non-dominant terms with the coefficients Ax(z), k =
1,...,12 to the simplified equations. All the coefficients Ay can be obtained by
using the linear transformation (2.6) and the compatibility conditions at the

resonances. The canonical forms are as follows:

I'V.a:
y @ = —5yy" - 10(y'y" + vy +y*y) - Loyy” - y°
+ Ay (y" +dyy" + 3y + 6y%y +yt) + As(y" + 3y +y°) (3133
+ A7(y + 93 + Ay + Are.
If one lets y = u'/u then (3.133) gives the fifth order linear equation for w.
(3.133) was also given in [15].
IV.b:
y W = —5y"y" + 5y%y" + 5yy” — P + (ciz + )y + e (3.134)
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where ¢; are constants and (3.134) was also given in [15].

IV.c:
y® = 10y%" + 10yy”? — 6° + 1 (v ~ 20%) + (22 + c3)y + o (3.135)

where ¢; are constants and (3.135) was also given in [15, 16].

3.3 Fifth order equations: Pg)

Differentiating (3.75) and adding the term y® which is also of order —6 as
z — zp gives the following simplified equation of order five

2,1

y® = ayy® + asy'y" + asy"™ + auy®y" + asyy'y"” (3.136)
+asy” + ary’y" + asy’y? + agyy’ + a0y’ |

where a;, 7 = 1,..., 10 are constants. Substituting (3.4) into (3.136) into above
equation gives the following equations for resonance r and for y, respectively,

Q(r) = (r+ 1){r* — (16 + a1yo)7° — [as¥d — (11la; + ay)yo — 101]r?
— [aryd — (Tag + as)yo + (46a; + Tas + das)yo + 326]r
— [aoyd — 2(2a7 + ag)ys + 3(6as + 2as + ag)y? (3.137)
— 8(12a; + 3as + 2a3)yo — 600] =0,
awoys — aoyy + (2a7 + as)ys — (6as + 2a5 + as)y}
+ 2(12a; + 3az + 2a3)yp + 120 = 0.
(3.137.b) implies that there are five branches, if ag # 0. If (r;1,7j2, 753, 754), J =
1,...,5 are the distinct integer resonances corresponding to (—1,vg;), and if
[T, 7; = p; where p; are integers and at least one of them is positive, then

p; satisfy the following Diophantine equation,

11
Yo === (3.138)
— Dj 120

=1 Pi
Finding the solution of the Diophantine equation is quite difficult and has large
nurnber of solutions, including infinite families. So, for the sake of complete-
ness, in this section we will present the cases when we have one, two, three
and four branches. Since the procedure to obtain the canonical form of the
differential equations is the same as described in the previous sections, we will
only give the canonical form of the differential equations for each cases.

The canonical form of the equation can be obtained by adding the non-
dominant terms y™, yy", y'v", v*y", vy, vy, v5, v, vy, v VRS vt
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vy', v°, v, v2, v, 1 with the coefficients Ax(z), k =1, ..., 19 which are analytic

functions of z, respectively.

Case I: If q; =0, [ =4, ...,10, then there is only one branch, and there are

two cases such that the resonances are distinct positive integers.

La:
Yoo = —2/ay: (r1,72,73,74) = (2,3,4,5)
y® = 25y - 8y'y" — 6y + Ai(y* + 2y + 6y'y") (3.139)

+As(y" + 2yy" + 2y%) + Aws(y" + 2uy') + Ass(y +y7) + A,
where A;, As, A3, A1, A19 are arbitrary analytic functions of z. (3.139) can be

linearized by letting u = 3’ + y2.

Lb: yo=-12/as: (ri,7m2,73,74) = (1,4,5,6).
In this case the linear transformation and the compatibility conditions give
Ai=0, 1= 1,...,7, All =A12=A15 = (0 and

Ay — %Ag =0 (3.140)
Depending on the solution of (3.140) there are following two sub cases.
I.b.i: Ay = 0. The canonical form of the equation is
y® = —12y"y" = 120" + (c1z + c2)y" + 2c1y’ + é(clz + )2, (3.141)

where ¢y, ¢y are constants. If ¢; # 0, (3.141) can be reduced to (3.13). If ¢; = 0
(3.141) can be reduced to a third order equation which belongs to the hierarchy
of the first Painlevé equation, Pﬂ” [19], by integrating once and letting y = u'.
I.b.ii: Ay = 12/22%. The canonical form of the equation is

y(5) — _19J/y/// 1r)y//2 _3(331/// +Z/J“ + 9y/2) + (C Z + e _ 24)3/”/
"4

Byy + (6c12® = B+ By + (4o + By + By? + §(ar? +§ )?
(3.142)
where ¢y, co are constants.
Case II: a; = ... = a;p = 0: In this case there are two branches. The

resonances and the canonical form of the equation is

Yor = —f—l :(r, T2, T3, ) = (1,3, 4,5),
Yoz = -—% : (7">1,T22,T23,7‘24) = (—2,3 4, 5)
y(s) — —3'!/'Z/ _ lx)J/ " 9'!/’2 18?/3/’ " 6’3//3 _ 33/2?/” + (Ry)”’+
LAy + 3yy" + 3y + 3y — (Ry)] + Ais(y" + 3yy' +v° — Ry) + Ap
(3.143)
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where B = As — Ag/3 and As, Ag, A1p, A15 and A, are arbitrary analytic
functions of z. (3.143) can be linearized, if one lets

uw=1y"+3yy +v° - Ry (3.144)
It should be noted that (3.144) is of Painlevé type.

Case III: a9 = ay;p = 0: In this case there are three branches. The

resonances and the canonical form of the equations are as follows:

II1.a:

Yo1 = i?' : (7.117T12;T137T14) = (27.3747 5)7

Yoo = =2 (Ta1, 722,723, T2a) = (4,5, 6,7),

Yo3 = — 12 (7'31,7”32,7”33,7'34) = (4,5,6, —n), 3.145)
y©) = =2yt + S2[(56 — 8n?)y'y" + (54 — 6n2)y"? + 48y%y” '

+288yyl //+96(JI3+y3 //) +288y ,y/2] +A8(ylll+2yyll+,y12)
+(245 + ez + &) (y" + 29y) + (45 + 20) (Y + %) + A,

n®—1

48
and cy, co are constants , n is a positive integer # 1,4,5,6. If ¢; = ¢, = 0,
twice integration of (3.145) yields (3.73).

A = — (A — AgAg — A7 — Ag(ciz+ ) — 2c1 Ag +2(crz+¢2)?] (3.146)

III.b: The resonances are

yor = =222 ¢ (T1, 12, 13, 1) = (1,4, 5,n),
Yo2 = —%n : (721,722,723, T24) = (1,4, 5, —n),
Yos = —22 ¢ (r31, T3, Ta3, 734) = (=3, -2,4,5). (3.147)

a)

where n is a positive integer # 1,4,5. It should be noted that, when n > 6
the twice integration of the simplified equation gives the third order equation
(3.69) with the additional term (12 + ¢2). Therefore, the simplified equation
is not of Painlevé type if ¢;, co # 0. Hence, we will only consider the cases for

n = 2,3. The canonical form of the equation for n = 2 is

,y(5) — ‘2:1/;1/( )+ ”/IJH/ + 5'!/”2 3y2 m _ ny J _ 3y13 + lyB,U// + 3 2y12
+A1 (y = 2yy" = 5y'y" + 397y + 3yy* — 3u°Y)
+Ag(y" = 2yy" — 3y” + §y2y' Lty + Ay + (241 — A1An)y

+ (Al — A4} — Agd)y + Axg,
(3.148)



where A, Ag, A3, A9 are arbitrary analytic functions of z. Twice integration
of (3.148) yields (3.71).
Forn=3
y®) = 2yy™ + 1(26y'y" + 20y — Loy — 32yy'y” — Ly + Byy”
+ Fvhy? + Aly® - 2uy” - 3(10y'y" - Suy" - Sy + 5]
+ As(y" = 2yy" — Ty? + ByPy — Zyf) + A,

(3.149)
Where A;, Ag, A1g are arbitrary analytic functions of z. If one lets
7 16 4
w=y" =2y - 39" + SV - 5=y (3.150)

then (3.149) can be reduced to a linear equation for u. It should be noted that
(3.150) belongs to Pg‘h}) and given by the equation (3.72).

Case IV: a;p = 0: In this case there are four branches. The resonances

and the canonical form of the equations are as follows:

IV.a:
you = 220 (T1, iz 13, m1a) = (1,2, 3,5),
Yoo = 2 ¢ (721,722, 23, T2a) = (=2, 1,2,5),
Yo3 = 22 : (131,732,733, 7aa) = (=3, -2,1,5),
Yoa = _7210 D (Ta1, a2, a3, Taa) = (=2, =3, —4,5), (3.151)

y(s) — _5(?/'!/(4) + 3y/y/// + 2y//2 + 2y2y/// + loyy/y// + 3:1/,3 4 2:1/3',1]”

+6y*y”? +y'y) + Ally@ + Syy” + 10y'y" + 10y%y" + 15yy”
+ 109y +4°) + A (y" + 2uy) + Ay’ + (Aly — Aid)y’
+ (A/IG -/ /1/3 + A,1A13 + 2A1A,13 — AjA; — A%Alg)'y + Ajg

where A4;, A3, A, A9 are arbitrary analytic functions of z. Integrating (3.151)

once gives the special case of (3.133).

IV.b:
yor = — 2 (111, 712,13, 714) = (2,3,5,6),
Yo2 = }1—,, D (T, T2, 723, T2e) = (2,3, 3,6),
Yos = o ¢ (131,732,733, 734) = (=2,5,6,7), (3.152)
You = — 221 (Ta1,Tuz, Ta, Tae = (=7, 5,6,12),

'!/(5) — _5y/y/// _ 5(y//>2 + 5?/23/,” + ZOyy’y” + 5(y/)3 _ 5'!/4'!//
+ (c1z + )y + 1
Integrating (3.152) once gives (3.134)
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IV.c:

2 _ 10 _ : _ =AY i —
Yor = g 0 Yo2 = —Yor; (Ta,Ti2 i3, Taa) = (2,3,5,6); 1=1,2

Yos = % D Yoa = —Yo3; (751,752,753, Ti4) = (=3,5,6,8); 7 =23,4
y®) = 10y%y" + 40yy'y” + 10(y")® — 30y*y' + c1 (v — 6y%y')

+ (c2z + )Y + oy
(3.153)

3.4 Sixth order equations: Pg)

Differentiating equation (3.136) and adding the term y” which is of order —7
as z — zp give the following simplified equation of order six

1,11

¥ = a1yy® + asy'y@ + azy"y" + agy*y® + asyy'y
+asy(y")? + a7 (y)?y" + asy®y" + aoy®y'y" + ary(y')? (3.154)
+ any*y” + any®(Y)? + ay®y + ey,

where a;, 1 = 1,2, ..., 14 are constants. Substituting (3.4) into (3.154) gives the

following equations for the resonances 7 and yg respectively,

Q(r) = (r +1)[r® = (22 + aryo) + [197 + (1641 + az)yo — dyg)r® + [-932
~ (101a; — 1lay — 2a3)yo + (1lay + as)yd — agyd)r? + [2556
+ (326a; + 46as + 20a3)yp — (46a4 + Tas + 4ag)ys + (Tas + ag)ys
— ayyd]r — 4320 — (600a; + 120ay + 60a3)yo + (96aq + 24as + 16as
+ 8a7)yZ — (18ag + 6ag + 3ai0)ys + (dai; + 2a12)ys — azyg] =0
a1y — arsys + (a + 2a11)ys — (awg + 2ay + ag)ys + (2a7 + 4ag

+6as + 24ay) ~ (12a3 + 24a; + 120q;) — 720 = 0.
(3.155)

(3.155.b) implies that we have five branches if a;4 = 0 and aj3x0 and six
branches if ayy # 0. If (751,752,735, 7j4,7j5), J = 1,...6 are the distinct integer
resonances corresponding to (-1, yo;), and if Hle rj; = p;, where p; are inte-
gers and at least one of them is positive, then p;, 7 = 1, ...5 satisfy the following

Diophantine equation

Z 1oL (3.156)

g 2N

when a4 = 0 and a;3 # 0, and



when ay4 # 0. Finding the solutions of the Diophantine equations (3.156) and
(3.157) is quite difficult. So, for the sake of completeness we will present the
cases when we have one, two, three and four branches. Since the procedure to
obtain the canonical form of the differential equations of order six is the same
as the one described in the previous sections, we will only give the canonical
form of the differential equations and their corresponding resonances.

The canonical form of the equations can be obtained by adding the non-
dominant terms ¥, yy™, y'y", 4", ", yy'y", v, vy vPy vty v @,
vy Yy vy vty T vy v vty vt v vy vRh o Ry, 1 with the

cofficients Ay, k =1, ..., 30 which are analytic functions in z, respectively.

Case I: Ifq; = 0,1 = 4, ...14, then there is only one branch. The resonances

and the canonical form of the equation is

Yo1 = _% : (7‘1aT2>T3a7'4aT5) = (2) 3)4’5)6)
,y(G) — _2,yy(5) _ loy/y(4) _ 20'!/”3/", + Al(y(s) + ny(AL) + 8y/y/// + (y//)2)
+A12(y(4) +2yy///+6y/y//) +Alg(y”’+2yy”+2y’2) +A24(y”+yy’)

+ A27(y’ + y2) + Ago,
(3.158)

where A, A1, Ao, Aoy, Aa7, A3p are arbitrary analytic functions of z. (3.158)
can be linearized by letting u = ¢y’ + y>.

Case II: If g, =0, ] = 8, ...14, then we have two branches. The resonances

and the canonical form of the equation are

_ 3. . _ -
Yoo = —5 ° (r11, 712,713, 714, 715) = (1, 3,4, 5,6)
6

02 = —g- (r21,722, 723,724, T25) = (—2,3,4,5,6)

;

<

y(G) — _3yy(5) _ 15,!//:(/(4) _ 30y//ym _ 3y2y(4) _ 243/'!]/1/”/ _ 181/(3/”)2 _ 36(y’)2y”

+ Ap[y™ + 3yy” + W'y" + 3yPy" + 6y(¥)? — (A2 — Aw)y)"]
+ Aso[y™ + 3yy" + 3('9')2 +3y%y' — (A2 — A13)y)']

+ Aoy + 3yy’ + v — (A2 — Ai3)y] + Aso,
(3.159)

where Aja, A13, A2, Aas, A3 are arbitrary functions. (3.159) can be linearized

under the transformation

u=y"+3yy + 9> - (A — Aia)y (3.160)

Case III: If a; = 0, [ = 11,...,14, then we have three branches. The



resonances of the equation are

yor = =52 (11,712,718, 71, T1s) = (1,4,5,6,7)
Yo2 = —6—;—'1 : (721,722, T23, Toa, T2s) = (1,4,5,6, ~n) (3.161)
Yoz = —il—f : (731,732, 733, T34, T35) = (=3,-2,4,5,6)

where n is a positive integer such that n # 1,4,5,6. It should be noted that
integration three times of the simplified equation gives the third order equation
(3.69) with the additional term (c;z® + cyz + ¢3). Therefore, the simplified
equation is not of Painlevé type unless ¢; = ¢ = ¢3 = 0. Hence we will
consider the cases for n = 2,3. The canonical form of the equation when n = 2

18
y(G) — ny(S) + 9,yly(4) + 17’1,/”?/”, _ %ygy(‘*) _ gy(y//)2 _ 182/”(3,//)2
= 12yy'y" + 30" + 3"y + 3y ()’
+ A [y® + 2yy — Ty - 5(y")? + 3u2y" + Yy + 3(y)° - 2y
— 32(y)Y + Anly™® - 2uy" - 59"y + Sy + 3y(y')? — Sv°Y]

+ 3(2A10 + Aso)y" — 3An (" - 2uy" — 3(v)? - 3v*Y — vY)
+ [2(2A10 + An)' — 2A1(2419 + Az)]y”

+[2(2A10 + Az)" — A1(2419 + Az)' — 3A12(2A19 + Ax)]y’
+ [2(2410 + A20)" + $A20 (2419 + A)

— LA (2410 + An)" — 3A12(2A10 + Ax)'ly + Aso,
(3.162)

where A, A, A1y, Aog, A3g are arbitrargf analytic functions. Integrating
(3.162) three times gives an equation of the form of the equation (3.71).
Forn=23

1, 1

y® = 2y 4 Ry/y(H 4 229y — My2y (1) _ Ly
- Zy(y")? = By () + 5% + Y+ By ()’
+ Al[y(s) _ ny(zi) _ %y/ym _ ?(yuy + ngyfzym + %yy/y// + %(y/)s

— 83y — D2(y)?] + Apy® - 2yy” — Ry'y" + Ly(y')? - 2%y

+ Ay = 2yy" — W)+ L% — 5y + Aso,
(3.163)
where Ay, Ay, 419, A30 are arbitrary analytic function in z. (3.163) is lineariz-

able under the transformation (3.150).

Case IV: If a;3 = a;4 = 0, then there are four branches. The resonances

and the canonical form of the equation are as follows:
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Yo1 = —%5 (r11,T12, 713, 714, 715) = (1,2, 3,5, 6)

Yo2 = —;11% t (T21,722, 723, 724, T25) = (=2,1,2,5,6)
o3 = — o> ¢ (31,752,753, 734, 735) = (=3,-2,1,5,6)
Yo4 = —% D (P41, 742, T3y Tag, Tas) = (—4, -3, —2,5 6)

y'® = —3yy® — 20y'y — 35y"y" — 10y%y@ — 70yy'y" — 50y(y")*
—95y"(y')* - 103/3 " — 90y y'y" 6Oy(y) — 5y*y" — 20°(y')?

+ A [y® + 5yy™ + 10(y")? + 10y%y" + 50yy'y” + 15(y")° + 10y°%y"

+ 30y%(y")? + 5y*y') + Ap[y® + Syy™ + 10y'y" + 10y%y" + 15y(y')?

+109°%Y + %] + (445 — 241 A410)yy’ + Aoy + 2yy" + 2(y')%] + Aasy”
4 [=3A" + 3A AL + 2AL, — AppArg + 241 Arg — Ay Agy — A2AL)Y

+ 341 A7y — A1 AL, — A1 AT Ay — A2ALy — Al Aag + 241541

- AlAlg_V‘llg]'y + Asp,

(3.164)

where Ay, A9, Ajg, Ao, Ajg are arbitrary analytic functions in z. Integrating

(3.164) twice gives

y@ = —Syy" — 10y'y" — 10y°y" - 15y(y')* — 104y — ¢°
+ ./'119("(/ + Yy ) (Al_AlQ — 2A/19 + Ag:l)y + B(Z),

where B(z) satisfies the equation

B” = fllBl + AIQB + Ago

(3.165)

(3.166)

(3.165) is of the form of equation (3.133) and linearizable under the transfor-

. /
mation y = .



Chapter 4

The third Painlevé hierarchy

In this chapter we apply the procedure to the third Painlevé equation and
obtain non polynomial Painlevé type differential equations of order three.

4.1 Third order equations: Pﬁ)f

The third Painlevé equation Py;y is

vy wt+v T
y"=u—y—+w—+fyy3+— (4.1)

y oz z y
The Painlevé test gives that there are two branches with common resonances

and
(o 798) = (=1,1), Q(r)=(r+1)(r—2) (4.2)

If one applies the transformation z = 2y + €t to equation (4.1) and then

take the limit as ¢ — 0 one gets

2
.Y
= 4.3
=75 (4.3)
where " = 2. The only values of y in (4.1) for which the general existence

dt’
theorem of Cauchy does not apply are 0,00. The dominant terms of P, are

y", % and yy* which are of weight —3 as z — z,. Taking the derivative of

the simplified equation gives

vy )
y Y2

The leading order is -1 and the leading terms are of weight -4. Adding the

dominant terms of weight -4 with constant coefficients such that the only values

y" =2 + 377y (4.4)

o7



of y for which the Cauchy general existence theorem does not apply are 0, co
and these dominant terms vanish as ¢ — 0 when we make the transformation

z = 2y + €t give

w YY" (y)?

yo= Cl—y— +c2 i~ +a1yy” + aa(y)? + asy®y + aur’, (4.5)

where c2+c3 # 0. If ¢; = ¢y = 0, then (4.5) reduces to equation (3.3). Applying
the transformation z = zg + €t to equation (4.5) and taking the limit as € — 0
give
. e -3
vy )
=cp— = 4.6
y=a ” +C 2 (4.6)
Equation (4.6) is of Painlevé type if its solution can be written as

o]

y=> vt —t)™, (4.7)

1=0

where « € Z and y is single-valued. Substituting (4.7) in (4.6) gives
(ci+c—1)a*+(B-c)a-2=0 (4.8)

Substituting y = u®, which preserves the Painlevé property, in (4.6) and using

(4.8) give the equation
ul = (i — 3o + 3)id (4.9)

Integrating (4.9) once yields
i = kusreiets (4.10)
where k) is an integration constant. Equation (4.10) can be solved in terms of
the Weiestrass elliptic function, if
cca—3a+3=8, pf=0123 (4.11)
From equations (4.8) and (4.11), one can have

01=§+3(1—é)

G ==2-1(3-8) - H(1+8) (4.12)
5=0,1,2,3

One should note that when o — o0, (¢1,¢2) = (3,-2), and (4.6) has the

solution (it + & )
y = koeapl LR (413

where k;, ¢+ = 1,2, 3 are integration constants.

58



(4.5) was considered by Exton [10] without giving the general expression
(4.12) of ¢; and c,. Moreover, he had mistakes in applying the method of
finding the necessary conditions for the equations in the canonical forms to be
of Painlevé type. Martynov [12] considered (1.13), which reduces to (4.5) when
v = 1. But he only investigated the case a4 # 0, and he did not consider the

situations when (4.3) attains recessive terms.

Substituting
y=1yo(z—20)"" +3(z = 2)"" (4.14)

into (4.5) give the following equations for the resonances r and yq, respectively

Q)= (r+1)[r* = (7+ ayo)r +3(6 — 2¢; — ¢2) + 2(2a; + az)yo — azyZ] =0

ays — asys + (2a; + a2)yo + 6 —2¢, —cp =0
(4.15)

Equation (4.15.b) implies that, in general, there are three branches if ag # 0.
According to the number of branches, the following cases have to be considered

Case I: a4 = a3 = 0. In this case there is one branch. Then if r; and o

are the resonances, (4.15.b) implies
—(2a1+a)yo=rire=6—-2c1—cy, TiH+Ta=ay+7—ci. (4.16)

Therefore one has (6 —2¢; —¢p) € Z—{0} i.e 2¢; + ¢, € Z—{6}. For each value
of B one may have the following such cases

La: 8=0;then (c;,c) = (3—2,-2+3 - L&)
Since 2¢; + ¢y = 4 — % -~ D% is an integer, then o = £1
La.i: a =1, then (¢, ¢2) = (0,0).

Ia.ii: = —1, then 6 — 2¢; — ¢y = 0.

I.b: B =1; then (¢,cp) = (3 - %, -2+ %)
Since 2¢; 4 ¢, = 4 — £ is an integer, then o = £1, +2
Ibi: o= -1, then 6 —-2¢; —c, =0.
Lb.ii: a = 1, then (¢,c2) = (1,0) and (4.16) gives r;7, = 4. Then the
resonances and the simplified equation are
y/// — y%ﬁ + alyy// + 20«1(3//)2

Replacing y by Ay such that a;A = —1 and applying the transformation y = é,
which preserves the Painlevé property, to (4.17.b) give

vu" = Sun'n” — 4(u)? — w4+ 4(u')? (4.18)
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Painlevé analysis of (4.18) gives that the leading order is -1 and the resonances
are (fg, 71, 79) = (—=1,0,2) with dominant terms uu", uu'v”, (v')3. Substituting

the series
o

Zui(z — zp)'! (4.19)

i=0
into (4.18) yields that the compatibility condition at the resonance 73 = 2 is not
satisfied identically and hence (4.18), consequently (4.17), is not of Painlevé

type.
Lbiil: « = 2, then (¢;,¢3) = (2,1) and r;72 = 3. Then the resonances and

the simplified equation are
101 N3 . .
'!/H/ — 2y;/ _ (.7;2) + al[yy” + (y/)Q]
(4.20.b) has the first integral

"2
"= —(yTJ)— + ayy’ + £, (4.21)

where k is an integration constant. (4.21) is of Painlevé type [6], [3] .
Lb.iv: « = -2, then (¢i,¢p) = (4,-3) and ry7o = 1 i.e 1y = ry = £1. That is

one has a double resonance at +1.

Lc: f=2;then (c1,0) =(3— 1, -2+ 1+ %)
Since 2¢; + ¢; = 4 — £ + 2 is an integer, then a = £1
I.ci: a=-1, then 6 —2¢; — ¢, =0.
I.cii: a=1, then (c;,¢) = (2,0) and ;72 = 2. Then the resonances and the

simplified equation are

p=-%: (r,m)=(12) (4.22)
y" =28 4 ayfyy” — (v)?]

Equation (4.22.b) does not pass the Painlevé test since the compatibility con-
dition at the resonance 7o = 2 is not satisfied identically.

I.d: B=3;then (ci,c) = (3, -2+ ).
Since 2¢; + ¢, = 4 + 2 is an integer, then o = +1. But then for both values

al

of o, one has 6 — 2¢; — ¢, = 0.

Case II: a4 = 0,a3 # 0. In this case there are two branches. If v, are the
roots of (4.15.b) such that yo; # Yoz, by setting

P(yo;) = 3(6 — 2¢, — c2) + 2(2a; + a2)yo; — agygj, j=1,2 (4.23)
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and if (r;1,7;2) are the resonances corresponding to Yoj, then one has
riri2 = P(yo;) =pj, j=1,2 (4.24)

where p; € Z and such that at least one of them is positive. Equation (4.15.b)
gives
6 —2¢c; — ¢y _
as = I 20,1 + a9 = ag('ym + ’yog). (420)
Yo1Yo2
Then (4.23) can be written as
Yo1

Plyo1) = (6 — 2¢1 — ¢5)(1 - %), Plyes) = (6 — 2¢1 — ¢3)(1 — 1—10—2). (4.26)

For pyp; # 0 and 6 — 2¢; — ¢, # 0, p; satisfy the Diophantine equation

N — (4.27)
pr pr 6-2c—c '

For each (pi,p2), one should find (rji,7;2) such that rj; are distinct integers
and 71752 = p;. Then yo; and a; can be obtained from (4.25), (4.26) and

Ti1 + T2 = Q1Yoy +7— C1 (428)
For each value of 3, one may have the following cases
II.a: B =0, then the Diopahantine equation takes the form

1 1 o?
St 4.29
p Py 202 +3a+1 ( )

Since it is not possible to find the integer solutions of (4.29) for all &, we will
look for the integer solutions of (4.29) when a = £2, £3. One should note that
when o = —1 one has 6 — 2¢; — ¢; = 0 and when &« =1 one has ¢; = ¢; = 0.
IT.a.i: « = 2; then the Diophantine equation is

1 1 4
4 - == 4.30
p1 * P2 15 (4.30)

Equation (4.30) has the following integer solutions
(p1,p2) = (3,-15), (4,60), (5,15), (6, 10), (4.31)

There is only one case (p1,p2) = (3,—15), such that all the resonances are
distinct integers for both branches. The resonances and the simplified equation

of this case are

Yor = —ﬁ po(rre) = (1,3)
Yoo = —ja ¢ (ra1,m22 = (=5,3) (4.32)
y" =30 - 2L [y + ()] - Salyy
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If one replaces y by Ay such that ;A = ——:1,;, then (4.32) has the first integral

N2

y”=zg§——gm/—§¢+k, (4.33)
where k is an integration constant. (4.33) is of Painlevé type [6] [3].
IT.a.ii: o = —2; then (4.29) has the only integer solution (py, p2) = (1,3) but
then there will a double resonance at +1.
IL.a.ii: « = —3; then (4.29) has the only integer solution (p;,ps) = (1, —10)
but then there will be a double resonance at +1.
IT.aiv: « = 3; then (4.29) has the only integer solution (pi,ps) = (4,14).
Using (4.28) one can obtain that (r1;,712) = (1,4) and that the resonances 7o;
satisfy the equation rZ, — 5ry; + 14 = 0 which has non-integer roots.

II.b: B =1; then the Diophantine equation takes the form

1 1 «
-2 4.34
p pr 2Ma+1) (4.34)

Equation (4.34) always has the particular solution (p1,p2) = (2, —2a — 2). In
this case the resonances and the simplified equations are

yoo = =220 (ru, ) = (1,2),

yop = — 1AL (7 ) = (-1 - 0 2), (4.35)
1o 0l u 3 .
y" = (3 - %)%’ + (_2 + %)%2)— + a1yy” — (a?,_{;)z a%yQy/
a#0,-1,-3
Substituting y = “;/ gives
2 u/lulll 2 (ull)3
(4 —
u® = (3 - ~)—— +(-2+ ) )2 (4.36)

Substituting v’ = v* in (4.36) gives the following differential equation in v
w'" =" (4.37)

Integrating (4.37) once gives v” = kv, where £ is an integration constant, which
has the solution v = kjz + ko if k=0, or v = k‘le‘/’—” + kge"/Ez if k % 0. The
simple zeros of v might be singularities of u. Then one can easily show that for
v’ not to contain the term ——, i.e u and consequently ¥ is of Painlevé type,

z—20"

it is necessary and sufficient that o # —2m — 1 where m € Z,.

Since it is not possible to solve equation (4.34) for all o we will cover the
cases o = 1, £2. One should note that when oo = —1 one has 6 — 2¢; —¢; = 0.

II.b.i: o =1, then the Diophantine equation has the form

1 1 1
L == 4.38
2} * p2 4 (4.38)
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(4.38) has the solutions
(p1,p2) = (2,-4), (3,-12), (5, 20), (8,8), (6,12) (4.39)

There are three cases (p1,p2) = (2,—4),(8,8),(6,12) such that all the reso-
nances are distinct integers for both branches. The resonances and the simpli-

fled equations for these cases are

ILbil: (py,p2) = (2,—4)

’.1/01:—%3 (i, mi2) = (1. 2),
Yor = —2 (ra1,722) = (=2, 2), (4.40)

(ll

y”’="" + ay(yy" — galz/?J)

Equation (4.40.c) is nothing but equation (4.35) when @ = 1. If one replaces
y by Ay such that a; A = —3, then (4.40.c) has the first integral

y" = =3yy' —y* + ky, (4.41)
where k is an integration constant. (4.41) is of Painlevé type [6] [3].
IL.b.i.2:  (p1,p2) = (8,8)

o= oy =—yo, (i) =(2,4), j=1,2
J?Nl Tafa,," Yoz - Yo1 (;1 12) (2.4), J (4.49)
y" = Fayty

If one replaces y by Ay such that azA = 4, then (4.42.h) has the first integral
y' =2y + ky (4.43)

where & is an integration constant. (4.43) is of Painlevé type [6] [3].

I1.b.i.3: (py,p2) = (6,12)

Yor = ——- (711,7‘1_) = (2 3),

a)
Yoz = % : (7"21-722) = (2, 6)) (4-44)
’IJ”’ — y_’;/l +a ('yy” + 2a1y2y/).

If one replaces y by Ay such that a;A = —2, then (4.44.c) has the first integral
y'=—yy' + v’ +ky, (4.43)

where & is an integration constant. (4.45) is of Painlevé type [6] [3].
II.b.ii: « = 2; then the Diophantine equation is of the form

1 1 1
=" 4.4
Pi i p2 3 (4:46)
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(4.46) has the solutions
(pl)pQ) = (27 —6)7 (4; _12)7 (6; 6)) (447)

among which only the cases (2, —6),(6,6) are such that the resonances are
distinct integers for both branches. The resonances and the simplified equations

are as follows
II.b.ii.l: (p1,p2) = (2, —6)

Yo1 = —521- : (r11,712) = (1,2),
Yoz = _% . (TQI)TQQ) = (—37 2)) (448)

I (yl)s
2

y" =2 — Tty — jayty).

(4.48.c) is nothing but equation (4.35) when a = 2. If one replaces y by Ay,
then (4.48.c) has the first integral

1 el 2 1
y// — _2_ (37;/) _ ny/ _ 5?]3 + ky (449)

where & is an integration constant. (4.49) is of Painlevé type [6] [3].

ILb.ii.2: (p1,ps) = (6,6)

ygl = f; © Yo2 = —Yo1; (TjI:TjZ) = (273)) J = 112 (4 50)
1,01 733 )
y" = 200 — WL 4 agy?y

(4.50.b) has the first integral

' 2
Y 3
where k is an integration constant. (4.51) is of Painlevé type [6] [3].
II.b.iii: « = —2; then the Diophantine equation has the form
1 1
— 4+ =1 (4.52)
1 P2

which has the only solution (p, p2) = (2,2). The resonances and the simplified
equations in this case are
Yo = o Yoo = —you; (rjnri) = (1,2), j=1,2 (4.53)

oy ()3 2,1
Y —4/-—-—y — 3 T asyy

Note that (4.35) reduces to (4.53) if @ = —2. (4.53) has the first integral

27\2
y' = W + ey’ + ky? (4.54)
Y
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where £ is an integration constant. (4.54) is of Painlevé type [6] [3].
II.c: 8 = 2; then the Diophantine equation is

1 1 2
S S (4.55)
o pr 2% +a+1

When o = —1, one has 6 — 2¢; — ¢; = 0. When o = £2) £3, the integer
solutions of (4.55) lead to equations with non-integer resonances. When o =1

equation (4.55) has the solutions
(plap2) = (1a_2)7(3)6)7(4:4) (456)

There are two cases such that the resonances for both branches are distinct
integers. The resonances and the simplified equations for these cases are

IL.c.l: (p1,p2) = (3,6)

yo=~5: (r,n2) =(1,3)
Yoz = % : (ro1,7m22) = (1,6) (4.57)
y/// — 2%& + al[yy// _ (y/)2 + alyQy/]

(4.57) does not pass the Painlevé test since the compatibility conditions at the
resonance 733 = 3 is not satisfied identically.
II.c.2: (p1,m2) = (4,4)
Yo = = Yoo =—Yor; (rjn,mi2) = (1,4), j=1,2 (4.58)
y/// — Q?I_;L + a3y2y/‘
(4.58.b) has the first integral
y" = cy® + ky?, (4.59)
where k is an integration constant. (4.59) is of Painlevé type [6] [3].

II.d: § = 3; then the Diophantine equation is

1 1 o?

pr p2 2(e?-1) (4.60)
Since it is not possible to solve (4.60) for all @ will cover the case o« = £2. One
should note that when o = %1 one has 6 — 2¢; — ¢ = 0 and when o = +£3
the integer solutions of (4.60) gives non-integer resonances. when a = 2 the

Diophantine equation has the solutions

(pl,p‘Z) = (1’ _3)v (27 6)7 (3> 3) (461)
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There are two cases such that all the resonances for both branches are distinct
integers. The resonances and the simplified equations for these cases are

II.d.1: (p1,p2) = (2,6)

Yo1 = -1 (T11,7'12) = (1 2)

a)

'!/02 = a31 : (ra1,722) = (1, 6), (4.62)

Lo 0l

= 3L — 3L 4 g fyy - (y)? + Jayy®y]

(4.62.c) does not pass the Painlevé test since the compatibility condition at
the resonance 715 = 2 is not satisfied identically.

I1.d.2: (p1,p2) = (3,3)

Yor = 5?73 Doyor = —yor; (rjnmie) =(1,3), =12 (4.63)
y/”:,?)#'—;(y} +a?/y

(4.63.b) has the first integral

1 "2
y" = 5(—1/1—)— +asy’ + ky?, (4.64)
y

where k is an integration constant. (4.64) is of Painlevé type [6] [3].

Case ITI: a4 # 0. In this case there are three branches corresponding to
(=1,%0;) , 7 =1,2,3, where yp; are the roots of (4.15.b). (4.15.b) implies that
3 6 — 201 — Co 1 CL3 -
Hij =TT Z@/oﬂJoy P (2a1 + a), Z Yoj = —. (4.63)

j=1 ! i) ‘
If the resonances (except ro = —1 which is common for all branches) are rj;,

i = 1,2 corresponding to y;, and if one sets
P(yo;) = 3(6 — 2¢c1 — ¢2) + 2(2a1 + a2)yo; — asyg;, J =1,2,3 (4.66)

then (4.15.a) implies that

rii = P(Yoj) = Dj, (4.67)

1~

=1
where p; are integers and in order to have a principal branch, at least one of
them is positive. Equations (4.65) and (4.66) give

3
pi=(6-2-c) J[] 1-2), j=1,2,3 (4.68)



and hence p; satisfy the following Diophantine equation

4.69
Zp] - 201 —c (4.69)

where H';.:l p; # 0,6 —2¢c; — ¢y # 0 and from (4.68) one has the system
Pl(yoz - ?/03) = kyo1, Pz(yo:s - ’y01) = ko2, p3(3/01 - 1/02) = ko3, (4-70)

where 6_ 9
— 201 — Cy
k= (Yo - - — 4.71
Voroalos (o1 — Yo2) (Y2 — vo3) (Yor = Yo3) (4.71)

Moreover it can be deduced from (4.12) if 6 — 2¢; — ¢; # 0, then for all a € Z
and §=0,1,2,3, one has 6 —2¢; — ¢; > 0. Then. (4.68) gives that

6 —-2c; —c¢
HPJ L= co)” (Y01 — Yo2)*(vo1 — o3)*(Yo2 — Yos)? (4.72)
(Yo1Y02903)*

Thus from (4.72) if a; # 0, then H3=1Pj < 0. That is p; > 0, and either p, or
p3 is a negative integer. So one should consider the case a; = 0 separately.

I1I.1: a; = 0. Then (4.15.a2) gives
Tii+ T =T7—C (4.73)
Thus ¢, is an integer and since
(rj1 = 1j2)* = (rj1 +152)* = drjurys, (4.74)

one has that (7 — ¢;)? — 4p; is a perfect square. Then one can determine p;
and then by using the system (4.70) and (4.65), one can obtain yo; and an,
m = 2,3,4. For each value of 5 one can have the following cases

III.1.a: 8 = 0. Since ¢; = 3(1 — %) is an integer, then o = £1,+3.
There is only one case, o = —3, such that 6 — 2¢; — ¢y # 0, ¢} + ¢ # 0 and
the resonances of all branches are distinct integers. The resonances and the

simplified equation for this case are

Yo1 = "ﬁ—, : (ri1,m12) = (1,2),

2. , -
Yor = gy (ra1,m22) = (1, 2), (4.73)
'!/03 = 373, (r31,732) = (=2,5),

y" = 42— BUL 4 0,[(y/)? + Gazy®y’ + 3ady’]

(4.75 d) does not pass the Painlevé test since the compatibility conditions are

not satisfied identically.
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III.1.b: B =1. Since ¢; = 3 — 2 is an integer, then o = +1,+2. No cases
such that the resonancses of all branches are distinct integer.

III.1.c: B =2. Since ¢; = 3— L is an integer then o = £1. When o = —1,
one has 6 — 2¢; — ¢3 = 0. The case o = 1 leads to the following resonances and

simplified equation

ygj = —¢12_4 : ('rjlvlrj?) = (2:3): J= 1,2,3 (4 76)
y/// — 2;/_;& + a4y4 .
Replacing y by Ay such that a4A* =2 (4.76.b) becomes
nida !
Y = 2% + 2yt (4.77)

(4.77) was considered by Martynov [12].

I11.1.d: B =3. Then ¢, = 3. Since (7 — c1)? — 4p, = 16 — 4p} is a perfect
square and p; > 0, then p; = 3. (4.69) gives that p; and ps satisfy

11 242
=2 S (4.78)

__+_
p, p3 6(a?2-1)

From (4.78), one can deduce that one of pp and ps, say po is positive. Since
16 — dp, is a perfect square , one has ps = 3. Then (4.78) gives p3 = 6{;’_2;31) =

-6+ 4—}80‘— Since p; is an integer, one has a = +1. But then one has 6 —2c; —

CQZO.

II1.2: a; # 0. Then after solving (4.69) for p; = 751752, Yoj and a;, © =
1,2,3,4 can be determined from equations (4.70), (4.65) and

le+7‘j2=7—01+alyoj, i=123 (4-79)
For each value of 3, one can have the following cases

I11.2.a: B =0. Then Diophantine equation takes the form

2

3
a
S b= s 4.80
jzopj 202 + 3o+ 1 (4.80)

(p1,p2,p3) = (2,40 + 2, —a — 1) is a particular solution of (4.80), but not all
the solutions are of this form. For this particular solution the system (4.70)
gives k = £2«. There is only one case , k = 2¢, such that the resonances for
all branches are distinct integers. The resonances and the simplified equation
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for this case are

Yo1 = —at3 (r11,m12) = (1, 2),

a) &

Yoz = —%ﬁﬁl—) b (ran, ) = (—20 - 1,-2),

yos = —EEUHD () ryp) = (e - 1,1),

v =301 D5+ (24 2 - DY +aly' + 2y () - R’y
+ Zwaty?, a#-1,-2,-3.

(4.81)
Note that when oo = —3 ,(4.81) reduces to (4.75) which is not of Painlevé type.
Substituting y = "?’ in (4.81) gives

1 I/ /ll 3 1 (u//)?z
@) = 3(1 - =)= —24 - 4.82
Substituting u' = v in (4.83) gives
"' =0 (4.83)

(4.83) has the solution v(z) = ky2z2+kyz+k;. The zeros z, of v are singularities
of v’ when « < 0. For u’ not to contain the term ;_l—zo, i.e for 4 and consequently
y to be of Painlevé type, it is necessary and sufficient that o > 0.

In particular, if & = 2, then the only solution of (4.80) such that the

resonances are distinct integers is (p1, p2,p3) = (2,15,—3). The simplified
equation and the resonances for this case are as follows

Yo1 = —2—27 : (ri1,m21) = (1,2),
25
Yoo = — o= ! Toy, To2) = (=5, =3
Yo2 2{,} (ra1,m22) = ( ), (4.84)
Yos = —30r 0 (mnra2) =(=3,1),
/ // /\3 .
y" = 300 2 palyy' + §(4) - Far’y + maly’]

IT11.2.b: B =1. Then (4.69) has the form

g o 1) (4.85)"

Since it is not possible to solve (4.85), for all v, we will consider a say 1, £2.
I11.2.b.i: a = 1. Then equation (4.85) has the solutions

(p1,p2,p3) = (3,24, -8), (3,132, -11), (4, —n, n), (5, 16, —80), (5, 19, —380),

(6,10, —60), (7,8, —56);n € Z
(4.86)
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Only for the following cases out of 7 cases given in (4.86) one has distinct

integer resonanes
III.2.b.i.1:  (p1,p2,p3) = (3,24, —8)

Yor = —% : (r11,7m12) = (1, 3),
Yoz = — o (r31,m32) = (=2,4),

y" =00+ oy (yy" + tay?y — jalyt).
Replacing y by Ay such that a;A = —2, then (4.87.d) has one of the following
first integrals

1, -
y'=osyt Y = —uy et Y =Sy (4.88)

which are of Painlevé type [6] [3].
111.2.b.1.2: (pl,pg,pg) = (4, —’fl,TI/).

Since p; = 4, one has (r1,712) = (1,4) and hence a;y5; = —1. On using the
system (4.70), one finds that a;yes = 2% and a;y03 = —2. So that the
resonances 7o; and 73; satisfy the following equations
44 +n
o = g Tutn= 0 (4.89)
44 —n
T3~ 3 T3 —n =0 (4.90)

respectively. The simplified equation has the form

y'y" n? — 144 512 256 .
=5 o =2l — et 4 et (491

"
1

(4.91) does not pass the Painlevé test unless n = 12 since the compatibility
condition at 71 = 4 is not satisfied identically unless n = 12. Then (4.89) and
(4.90) give that (ro1,792) = (3,4) and (r3y,732) = (—2,6) respectively. Thus

one has the equation

yor=—5:  (ru,me) = (1,4),
yor =g ¢ (ra,Te) = (3,4), (4.92)
yos =—2 1 (ra1,732) = (=2,6),

y" = 1/_';/_” + al(yy" + 4a1y2y’ - Qa%y‘l)

Replacing y by Ay such that a;A = —1, then (4.92) has one of the following

first integrals

=20 =y 4+, Y =<3y -y (4.93)

<
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which are of Painlevé type [6] [3].

I11.2.b.ii: o = —2. Then (4.85) takes the form Y ;_; p; = 1 which has the
only solution (py,p2,p3) = (1,n,—n) such that p3 < 0. But then one has
71, = T2 = £1 that is one has double resonanse at +1.

I11.2.b.ii: a = 2. Then (4.85) has the form

? 1
> op= 3 (4.94)
j=1

The only solution of (4.94) that might yield an equation with distinct reso-
nances is (p;,p2,p3) = (3,n, —n), where n € Z,. The resonances of the first
branch are (r11,712) = (1,3) and the equation is of the form

yly” (y/)B " nz — 117 2 1)2 216 2,2,/ 108 3,4
-—27— 7 +a1yy —T_—nz—(!/) ooV Ty Y (4.95)

(4.95) does not pass the Painlevé test since the compatibility condition at

712 = 3 is not satisfied identically for any value n.

I11.2.c: B =2. Then (4.69) takes the form

2

Z e — (4.96)

(p1,p2,p3) = (2,12 — 6, —3a — 3) is a particular solution of (4.96). For this
triple, one has k = £6a both of which yield the same simplified equation such
that the resonances of all branches are distinct integer. The resonances and

the simplified equation are

yor =~ (ru,mi2) = (1,2)
Yo2 = ('aa—Tla)— o (rayr) =(3,—a—1)
yop = — LAY (g ) = (6,20~ 1)

! v 3 : 3— 2
y" = (3= 5 (<24 L+ 2V - ) + pREeivy
— ———(afl)sa%y4; a#0,—-1,-4.

(4.97)
Substituting y = 1‘;’ in (4.97) gives
1 // /II 1 1 (ull)(i
S = (3 2 F(=24 -+ = 4.98
¢ ( a) u (=24 a az) (u')? (4.98)
Substituting u' = v®, gives the following equation for v
v = 20" (4.99)

Integrating (4.99) gives v" = kiw? Thus v = kez + ky if Ky = 0, or v =
5% o Vsi(z — 20)%7%, where 2 is a double pole of v. Since
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u' = v%, v’ does not contain the term '—ITO That is u, and consequently y, 1s

of Painlevé type if and only if o # 0, —1, —4.

Since it not possible to solve (4.96) for all o, we will cover the case a = 1.
When o =1 (4.96) has the solutions (py, ps, p3) = (3,5, —30), (2,1, —n) where
n € Z,. When (py,ps,p3) = (3,5, —30), one has k£ = £15. There is one case ,
k = —15, such that the resonances for all branches are distinct integers. The
resonances and the simplified equation for this case are

II1.2.c.l:  (p1,p2,p3) = (3,5,-30)

Yor = —El; : (Tll,TIZ) = (1 3)
Yo2 = i : (ra1,m22) = (1, 5), (4.100)
Yos = —=:  (ra1,732) = (=5,6),

y" =25 +alyy” - 3(V) + e’y — jalv’].

Replacing y by Ay such that a; A = —1, then(4.100.d) has the first integral

3(y)* 1
M Sl = 4.1

which can be integrated in terms of elliptic functions [6].

I11.2.c.2:  (p1,p2,p3) = (2,n,n) The case k = n gives that yo; = 0. The

case k = —n gives the following equation
y'y" n? +19 2 16 5 5, 4 34
=2=— + a1 —a,(1 T ayy®, (4.102
; Wyt s ay) - ey ey, (4102)
where a1yo; = =2, a1yo2 = 25_2’ 1Yoz = —%'—2', (r11,712) = (1,2) and the
resonances of the second and the third branches satisfy the following equations
respectively
n+38
Toi — ——Tratn=0 (4.103)
8§—-n
r5+—5—Ts—n=0 (4.104)

The compatibility condition at r1, = 2 is not satisfied identically unless n = 6.
Then the roots of (4.103) and (4.104) are (rq1,7r92) = (1,6) and (r3;,732) =
(=2, 3) respectively. Thus the resonances and the simplified equation become

Yor = —% : (711)T12) (1 9)
Yo2 = 0—21- . (7”21;7'22) = (1’6)’ (4 105)
Yo3 = —ﬁ : (r31,732) = (=2, 3)

y/u u 1/ + al[yy %(J )2 a Zj J %Jﬂ
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I11.2.d: B = 3. The Diophantine equation (4.69) becomes

3 2
oY
= L (4.106)
P 2(a? — 1)
(p1,p2,p3) = (2,4c — 4, —4da — 4) is a particular solution of equation (4.106).
For this particular one has kK = +£4«a. There is only one case, k¥ = —4«, such

that the resonances of all branches are distinct integers. The resonances and
the simplified equation for this case are

Yor =~ (ri,mi2) = (1,2),

Yoo = aT_ll : (7'21, T22) = (4) Q= 1)7 (4107)
Yo3 = “aa_J:l (s, == (4,—a — 1),

,ym — 3% _ 2(02_2_1) + a1 "o_ %al(y/)Q + %a%@ﬂy’ _ j—za%yzi

Substituting y = %’ in (-1.107) gives that

", m 2 ma3
(4) _ U 2’ =1) (u)
U 3 = () (4.108)

Substituting v’ = v* in (4.108) gives the following equation for v
v = 3u'v” (4.109)

Integrating (4.109) gives v"” = k;v3. Then either v = kyz + k3 if k&, = 0, or
v =Y, va(z — z0)*!, where z is a simple pole of v. Since v’ = v®, then
in order that u,and consequently ¥, be of Painlevé type, it is necessary and

sufficient that u' does not contain the term z_lzo. That is @ # 0, £(1 + 4m)

where m € Z..

Particularly if o = +2, then equation (4.106) becomes Zf.:lpj = %, which
has the only solution (p1, ps,p3) = (2,4, —12). This solution yields the partic-
ular case of (4.106) when o = £2. That is

Yo1 = —% : (r11,712) = (1,2),

Yor=—3 ¢ (ra,72) = (=3,4), (4.110)
yos = 3= ¢+ (ra,me) = (1,4),

y" =38 — 300 4y — 3(y)2 + Jawyy' — Sady’]

To find the canonical forms of the equations one should add non-dominant
terms with coefficients that are locally analytic functions of 2. When ¢, = 0
multiply both sides of (4.5) by v and add the non dominant terms of weight
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greater than —5. That is , one should consider the following equation when

02=0

yy" = ay'y’ + ay®y" + ay(v')? + asy®y’ + agy® + A (2)yy” + Ao (2)(Y)?
+ Az (2)y*y + Ag(2)y* + As(2)y" + As(2)yy’ + A7(z)y3 + As(2)y’

+ Ag (z)y2 + .410(2)@/ + All(Z).
(4.111)

When ¢, # 0 multiply both sides (4.5) by y? and add the non-dominant
terms of weight —6. That is one should consider this equation

3,1

vy = ayy'y" + e(y)? + e’y + et (y)? + asyty + aay® + Ai(2)y*y”
+ A2(2)y(y)? + As(2)y°y + Aa(2)y® + As(2)yy” + As(2) (v')?
+ A7 (2)0%Y + As(2)y* + Ao(2)y" + A (2)yy + Ay’ + An(2)y

+ A13(z)y2 + A14(z)y + A15(Z).
(4.112)

The coefficients A; can be determined by using the compatibility condi-
tions at the resonances r;; and the compatibility conditions corresponding to

parametric zeros; that is the compatibility conditions at the resonances of the

equations obtained by the transformation y = th

I.b.iii: The transformation
y=pu(z)j(z), z=p(2) (4.113)

allows one to take
a; = 1, Al -+ AQ = 0 (4114)

The compatibility conditions at the resonances 7, = 1 and ry = 3 give that

2A1 + Ay — Ay + Ay = 0,
2.41 + .4'_)_ - ‘43 - %.44 = 0,
As + Ag — Ag = 0,

2AL+ A — AT+ AL+ 249 — A+ A — A (245 + Ag — A7+ Ag) = 0.
(4.115)
(4.114) and (4.115.a-b) give that Ay = 0, 43 = -4y, = 4,. To find the
conditions corresponding to movable zeros one has to substitute y = }L in

(4.112) to get

wiu" = duu'u” — 3(u')® — wu” + 3(u)? + A (utu” — u(u')? + un') + Asudy”
+ Aulu’ — (245 + Ag)u?(v)? — Agu? + Ag(utu” — 2ud(u')?)
+ Apudy’ — Apud + Aputy’ - Ajput — Au® — A
(4.116)
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Substituting

u=> uw(z—-2)", peZ_ (4.117)

=0
in (4.116), give that the term Ag(u'u” — 2u3(uw')?) is dominant for all p < 0.
Then Ag = 0. There are two possibilities for the leading order p
(a) p=—1. Then A5 #0, A5 = Ag = A;5 = 0 and

Ap(a)ug =1,  (F1,7p) = (1,2), j=1,2 (4.118)
Then the compatibility conditions at the resonances 7;;, 1 = 1,2, 7 = 1, 2, give
that

A =0, Ay =24412, Ay=-AAn, A=A,
A7 = Al) Ail - Alll - AlAll

(4.119)

The canonical form of the equation in this case is

vy =2y = (V) - vy - () + Aty - )+ ) + Aty

+ (A] = A AD Y + Ap(y + y?) — A1 A1,
(4.120)

where A}, = 24145 and A,, is an arbitrary analytic function of z. (4.120) has
the first integral

N2 A
Y = (v) —yy + Aly - _£_+B, (4.121)
Y Y

where B' — A|B = Ajp. (4.121) is of Painlevé type if and only if 4; = 0.
That is, A;p = k) and B = kjz + ky. Replacing y by py, z by vz such that
pv =1 and kv = 1, (4.121) becomes of the form of an equation considered

by Bureau [6]. That is

N2
1
y" = Wy _ yy' — = +z (4.122)
Yy

Y
(b) p = —2. Then A5 = As = A9 = A2 = A5 = 0. v is arbitrary and
the resonances are (7, 72) = (0,2). Then the compatibility condition at 7, = 2

gives that
A? = —4117 ‘48 = O; All = AII/ - AllAl) ‘413 =0 (4123)

The canonical form in this case is
vy =2yy'y" = (V) - v - v Y)? + Aty - y()? + Y + Al

+ (14’1’ - 44’1441)?/3,
(4.124)

where A, is an arbitrary function of z. (4.124 has the first integral

//_(_yl_)_z__, / Al -
y' = vy + Aly + B, (4.125)
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where B’ + A1 B = 0. (4.125) is of Painlev’e type if and only if A} = 0. That
is A, = k; and B = k.e*?. Then applying the transformation y = 5 gives an
equation of the form

v = M _v_ e T (4.126)

(4.126) was considered in [6].

IT.a.i: The transformation (4.113) allows one to assume that

3
a = —¢ 2A1 + Ag - 5A3 -+ 2514.4 =0. (4127)

9)

<

The compatibility conditions at r;; = 1, 712 = 3 and 793 = 3 and (4.127) give
that

Ay = —§A), As=1A,, Ay=1A, As=As+ 4,

(2145 + As - .47 + Ag)/ - A1(2A5 + AG - A7 + Ag) + 2A9 - Am + A]_]_ =0
(4.128)

To find the conditions produced by the movable zeros, one should substitute
y =1 in (4.112) to get

u2um — 8’11,7./’1// _ lf(u/)’& _ %(uuu _ 3(7.&')2) _ %u/ + Al(u2u” . gu(u/)z + %uu/
- %U) + A5U3'LL/I - 2A5 + As)uz(u’)z + A7’LL2’LL/ - AgUQ + Ag (’U,4’LL”

- 2'&L3 ('U/)Q) + AIDUSUI - A11U3 + Algu‘lu’ - A13U4 - AMUS - A15u6
(4.129)

Substituting (4.117) in (4.129) implies that there is only one possibility for the
leading order p = —2 such that

A5 = A(; = .49 - AIO = Alg = A14 = 1415 = O, (’;‘l,’izg) = (0, 1), (4130)

where ug is arbitrary. The compatibility condition at 7o = 1 together with ,
equations (4.128) and (4.130) give that

A]_ = Ag = A13 == O, All = A/7 (4131)

The canonical form of the equation in this case is

3 3, .3 3 3
vy =Sy = V) - 50 )7 -yl + Aty + Aryt, (4132)
where A7 is an arbitrary analytic function of z . (4.132) has the first integral
3(y)? 3 1
y' = 3WY ~yy' = =y’ + Ay + ki, (4.133)

4 y 2 4

where k; is an integration constant. (4.133) possesses the Painlevé property
[6] {3].
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IT.b.i.1: The transformation (4.113) allows one to assume
a, = —3, 2A1 + Ag - 2A3 + 4A4 = 0. (4134)
The compatibility conditions at r1; = 1, 710 = 2 and 79 = 2 give

24, + Ay — A3+ Ay =0, A — A3+ 24, =0, 245 — Ag+ A7 =0

A5 - -46 + A7 =0
(4.135)

To find the conditions corresponding to movable zeros, one should substitute

y = = in (4.111) to get

w?u = Suu'u" — 4(u')® — 3(wu" — 2(u')?) — 2u’' + APy’ — (24, + Ay)u(w)?
+ Asun’ = Aqu + As(udu” — 2u?(u)?) + Asulu’ — Aqu? + Aguy/

- Ag’u3 - 1410’&4 - Auus.
(4.136)

Substituting (4.117) in (4.136) gives that p = —1 is a possible leading order

with
A5 = 07 (flny) = (OJ 2) (4137)

where wug is arbitrary. The compatibility condition at 7o = 2 gives
(Al +A2)Ag - ."110 - Aé - 0, AQ(Al + Ag) - A/2 - AG == 0, All = O (4138)
(4.134), (4.135), (4.137) and (4.138) imply that

Ay =0, A3 =34), Ay=A1, As=As=A7=0, Ajp = 443 — 45, Au =0.
(4.139)

The canonical form of the equation for this case is

vy = y'y" = 3yR (¥ =20y + A (yy” +3v%Y +yt) + Asy + Aoyt + (A1 As — Ab)y,
(4.140)

where A;, Ag and Ay are arbitrary functions of z. (4.140) has the first integral
y" = =3yy' —y® — Ag + By, where B’ — A\ B = Ag (4.141)
(4.141) is of Painlevé type (6] [3].
I1.b.i.2: The transformation (4.113) allows one to take

a, = 4, 2A1 + A2 -+ A4 = O (4142)
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The compatibility conditions at rj; = 2 and ;o =2, j = 1,2 give

— AL+ 2(64; +445) + 245+ A7 =0, Ag=0
—Ay 4+ 347 + (54, +44)4; =0, AL+ Al + (A1 + A) (A1 +24y) =0,
éAgAg’ - é(?fh + A,) A% — %AgAg + A + %ASAQ(AL +24,)
— A4, + 42)(941 + o) = Ay Ar(Ar + 249) + Ao (A1 +242) = 0,
-ﬂL La2Ay + 41(347 + 24%) + 108(9,11 + Ag) + Al
-Q-A’{ - Ag 43A9 + A+ AQA/ =t (A1 +2A4,)
+42(4; + 2A2)(6A’1 +4AY) + (2A’5 + AL — Ag)(A; +24,5) = 0.
(4.143)
To find the compatibility conditions corresponding to movable zeros one should
substitute y = £ to in (4.111) get equation with the same simplified equation
of (4.136) with the same possible leading order p = —1, resonances and com-
patibility conditions (4.138). Equations (4.138), (4.142) and (4.143) give that

A,QI -+ A2A,2 == 0,

A+ A2=0, if Ay =0, (4.144)
Ay =222 4, #0.

The following cases can be considered
(a) A=A, =0: Onehas

Ay=As=A43=Ar=A4A1 =0, A3=k, ASZ—%hkzZ-i'ks,

(4.145)
Ay =ky, A= élﬁkz
The canonical form of the equation in this case is
k1ko kik
v =y'y" + 4’y + iyt + (——é—z + k3)y' + kay® + —16—2 (4.146)
(4.146) has the first integral
7 3 2 kiks :
y' = 2y" + kyyt 4 (kez + ky)y + g 2t ks (4.147)

Replacing y by y — & (4 147) can be reduced to an equation of the form
y' = 2% + (kiz + ko)y + ks, (4.148)

which is of Painlevé type [6] [3].
(b) A, =0, A;=2: One has

Ak i 2 A — _ 2k ka
Ay =5, Ay=-% A;=4=4A1=0, 4, = zl> Ay = —35 +z0’

Z’
Ag = AL kike - KL g o4 = ﬂu_,__u _1
8 = 3,3 6z 10823 3 10 = 2724 +

(4.149)
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The canonical form of the equation in this case is

. 2
W =YY Ly - 20 + B = B (o

ko . dk ki ks
+(3z~‘+_1_‘ 10823 +1"3)y +(§‘]f+ fliz 2_7Jz—+—i)'/'

(4.150)
(4.150) has the first integral
, K % ke ks K
" 98 M2 —l—k‘ k y — L Rh2 l_ _ &k 4.151
v vy (622 2+ ke?) 33 6z 1082 Y ( )

which can be transformed to an equation of the form (4.148) if one replaces y
.k

by y— &

(c) A; =2 One has

Al = _%> A = kiz, Ay= As = A(; Apn = 0, A; = kl:

Z
Bk 0 P (4152)
Ag:T?LZ-f-%, Ag —-1—41223 kigz—i-’“, Ao—%-z +k1k
The canonical form of the equation in this case is
. 1,0 3,/+1 n 2,2, 4 8 3
yy" =YY+ 4y (= 3yy +2(y')° + k1 22y%Y + 4yt + SkizyP) (4.153)
3 .
+ (47‘ +2)y7 + (- 144 2 - BRa 4+ By + (%ZQ + B2y
I1.b.i.3: Using the transformation (4.113) one can assume that
a, = —1, 2A1+A2 —A3+A4 = 0. (4154)

If one applies the transformation y = % to (4.11) then u satisfies an equation
with the same simplified equation as in (4.136) with the same possible leading
order, resonances and compatibility conditions (4.138). Then the compatibility

conditions at the resonances 7, = 2 and 5 = 3 give
Ag=A;, Ag=Ag, 24, -24, - A3+44,=0 (4155)

Using the conditions (4.138), (4.154) and (4.155), the compatibility conditions
at the resonances ro) = 2 and 99 = 6 give that A; =0,7=1,2,...,11. That is

the canonical form of the equation is
yy" =y = vy + 2%y (4.156)
(4.156) has the first integral
v = —yy' +9° + ki, (4.157)

where £ is an integration constant. (4.157) is of Painlevé type [6] [3].
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IT.b.ii.1: The transformation (4.113) allows one to assume that
a; = —2, 2‘41 + Ag - 3‘43 + 9A4 =0 (4158)

The compatibility condition at the resonances r;; = 1, 712 = 2 and 799 = 2

give that

4A, + 45 — 343 + 544 = 0, 245+ As — A7 + 43 =0,

(4.159)
2441+.42-A3+A11:0, 2A5+AG—A7+A3:O.

To find the compatibility conditions corresponding to parametric zeros, one
should substitute y = 1 in (4.112) to get the equation

wiu" = dun'v” — 3(u)? — 2(uu” — 2(v)?) — ' + AjuPu” — (24; + A)u(u')?
+ Asuu’ — Agu + Asudu” — (245 + Ag)u?(u)? + Aruu’ — Agu?
+ Ag(uu” — 2u2(u)?) + Apudy’ — A11u® + Aputu’ — Ajzut

— A14’LL5 — A15U6.

(4.160)
Painlevé analysis of (4.160) gives that p = —1 is a possible leading order such
that
As=Ag=Ag=A5=0, A 0.
5 6= Ag 15 12 # (4.161)

Ap(z)ud =1, (fi,72) =(1,2), 1=1,2
The compatibility conditions at the resonances 7;; = 1, 7i, ¢ = 1,2 on using

the conditions (4.158), (4.159) and (4.161) give that
Ay=—2A, Ay=24, Ay=1A, A;=Ag=Ap=A;3=0,
Ap =k (#0), Au=3zk4

The canonical form of the equation in this case is

2,1

y2y = Zyy’y” _ ('3/’)3 _ 2'!/3’!/” _ y4y/ + Al (yzy// _ %y(y/)Q + any/ + %yS)

+Any  + k' + BA,
(4.163)

where A; and A;, are arbitrary functions of z. If A, = A%, then (4.163) has

the first integral

1(y")? y® ky
" — /) ., r g 9 ; 2 M
Y= y 2yy 5 + 24y % + By, (4.164)

where B’ — A B = Ay,. (4.164) possesses the Painlevé property if and only if
A =01[6] (3]

II.b.ii.2: The transformation (4.113) allows one to assume that
az = 3, 2‘41 + Ag + ‘44 =0 (4165)
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The compatibility conditions at the resonances r;; = 2 and 50 = 3, j = 1,2
and (4.165) give that
Ay =Ay=—A;, A;=0, 245+ A5+ As— A+ 3434, =0,
— AL+ S AZAL + 2A + Af — A =0, (4.166)
1314314{3 - %Ag.“h - %A3A5 — AzAg + 244 + A10.
Substituting y = 1 in (4.112) gives the equation

wiu” = dur'u” — 3(u)® + 3u' + A (v — u(u)? + u) + Asuu’ + Asuu”
— (245 + As)u?(u')? — Agu® + Ag(utu” — 20 (u)?) + Ajeuy’
4

— Auu + 412'11 u — A]_3U - A14u - A15UG.
(4.167)

Painlevé analysis of (4.167) gives that p = —1 is a possible leading order with
A5=A6=A92A15=0, Alz#o,
AIQ(ZO)’U% = 1, (fil,fig) = (1,2), — 1, 2
The compatibility conditions corresponding to parametric zeros by using
(4.166) and (4.168) give

Al = 1{31, A10 == 0, Alm = 2A.1A12, A13 = 0, AM = —A1A12. (4169)

(4.168)

Thre following cases have to be considered
(a) k; = 0; then one has

2

k 1
A3 - kgz + k4, Ag = /1,'3, All = ZS'Z -+ Zkg/&;, Alg = k‘Q(?é 0) (4170)

The canonical form of the equation in this case is

ky
vy =2y — (V)° + 3%+ (ksz + ka)y’y + kayt 4+ = 1 (ksz + ka)y® + kay/

(4.171)
If k3 = 0, then (4.171) has the first integral
k4 k
y' = W) +9° + - J — =2 + ks, (4.172)
Y Y
which is of Painlevé type [6] [3].
(b) k; # 0; then one has
Ay = =5 4 fyehs, Ag = by ks 003
3 kl + 46 ? 8 2 + e ) (4-173)

> Ve 2k 2k
All = %ek“(—k;; + [\lklle’“‘z), A12 = kge"klz, AM = —klkge“klz
The canonical form of the equation in this case becomes

vy = 2uy'y" = () + 3% + Ry - () — 00) + (Rae®E — 2000
+ (%1 <+ k—‘.‘z&lew“'lz)y4 + -’ife’““’( l‘u; + k koeklz)J + k 62"12 ! A, L;ezkl".
(4.174)
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If k4 =0, then (4.174) has the first integral
2k1z

" (y) k3 o Kz ket
_ 8 ek 22 4.175
V== +y° ok Y T . (4.175)
which, within the transformation y = e- 3 v(‘%e%L ), becomes
1y %%k, ke 2%
V= ———-0U+v° — ———“— 4.176
v Tt it (4.176)

where ¢t = ,%ek+ . (4.176) has a special form of the third Painlevé equation

Prir.
IL.b.iii: The transformation (4..113) allows one to assume that
a3=1 A =0 (4.177)

The compatibility conditions at the resonances rj; = 1 and 75, = 2, j = 1,2
and (4.177) give that,

A=Ay =A3=A;=4,=0, 24;+ As+ As=0. (4.178)
Substituting y = = in (4.112) give the equation

wihu = 2uuu” — (u)? +u' 4+ Asudu” — (245 + Ap)uP(v)? — Agu?
+ Ag(utu” — 2u3(u)?) + Al0ud — Aju® + Aputu’ — Ajzut

— Aldud — Ajsub
(4.179)

Painlevé analysis of (4.179) gives that there are three possibilities according to
the number of Painlevé branches
(a) The leading order is p = —1 with
A=A, =415=0, d6=-34;5, A5 #0,
As(Zo)Uo =-1: (flyfl) = (1,3)
The compatibility conditions corresponding to movable zeros at the resonances
71 and 7, (4.178) and (4.180) give that

(4.180)

Ag = .'-15, AIO = 3Ag, A13 = —Ag, All = .414 = 0 (4181) :
The canonical form of the equation in this case is
y2y" = dyy'y" =3y +y'y + As(yy" - 3(y)7 + ) + 345y — Agy®, (4.182)

where As is an arbitrary function of z.
(b) The leading order is p = —1 with two branches

AS—AG AQ_AIO—O AIQ#O
Al =3 (fu,7e) = (2,3), i=1,2
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The compatibility conditions corresponding to movable zeros at the resonances
i1, Tiz, © = 1,2, (4.178) and (4.183) give that

A/

Ag = O,AAle'fz = (415)?% A= -341, As=-A+ 7340 (4.184)
1" ; /.) ! All A All : AI«; )
Ay = H2 o+ HE) A =0, Au = —Fe s 2y,
One should consider the following cases:
(i) A1z = ki (#0). (4.184) gives that
. 3k3
Ay =0, Ap=-K; Apn=kz+Ky An= —E-(/C;az +ky). (4.185)
1
The canonical form of the equation in this case is
vy = dyy'y" = 3(y)° +yty + (kaz + kayy' + Ky’ (4.186)
- i—%(k;z + k4)y3 - k3y2. .
If k3 = 0, then (4.186) has the first integral
. )P 1 Ky 2 3
=" — —ky— —+k y°. 4.187
y ” 5 3y +KsY" + Y ( )

(4.187) is of Painlevé type [6] [3].

(i) Ayp = koe*'?; kiky # 0. (4.185) gives that
= b, Ay =~ ek ke ) s
Ajo = kseb'® + koe D2, Apy = =B (3kyeks + kye??). '

The canonical form of the equation in this case is

kiks K12

k
y2y" = dyy'y" — 3(y) + (kseh* + ke 7)yy' + kpefrey — BERTY (4.189)
. k k .
— ks (g ehrz 4 kaeT 7)Y — B (3ksefr? + kye )y

If k3 = 0, then (4.189) has the first integral

21Y2 ki k eklz
=Wl B Bl o (4190)
Y 2 3y
which, under the transformation eélzv(t), t= &efﬁlz becomes
) . 2
. ( v 3 kg 4k‘5’U - 2k4
,Uz____’_rv'__._!_——-—— 4191
v t 3v kit ( )

(4.191) is of the form of the third Painlevé equation Pry;.
(c) The leading order is p = —1 with

Ag = .415 = O, AG = —2A5, .412 = —%‘45, A5 ;é 0,
As(zo)uor = =2 (F11,712) = (1,2), (4.192)
.4,3(20)’&02 =—6: (f21,f22) = (—3, 2)
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The compatibility conditions corresponding to movable zeros at 7;; = 1, 715 =

2, Toy = 2 give by using (4.178) and (4.192) that
3 / 1 1" g 1 !
Ag = 0, AIO = §A5, A13 = —"2—A5, A14 = ZASAS (4193)

The canonical form of the equation in this case is

yhy" = dyy'y" = 3y + vty + As(vy” - ()7 + FAsuy + Any’ - LAY
(4.194)
where Aj, A;; are arbitrary functions of z. If A, = BB’, where B’ = —%A5,

then (4.194) has the first integral

N2 a,!
y// — (Z/) _ B/Q_ + y3 + By2 - B (4195)
Y Y
Replacing y by —y(—2), (4.195) becomes
n2 !
Y = (v') _ B/?/_ +vy®— By? + B” (4.196)
Y Y

(4.196) is of Painlevé type [6] [3].
IT.c.2: The transformation (4.113) allows one to take
as = 2, Al =0. (4197)

The compatibility conditions at ;; = 1, 7 = 4, j = 1,2 by using (4.197) give
that

1
A2 = Ag = A4 = A7 = 0, Ag = '9- /6, .4/5, + AIO = Ag (4198)

Substituting L in (4.111) gives

wiu" = dun'u” — 2(u')? + 20’ + As(udu” — 2u(v)?) — Agutu’
() X W) - At

+ Agu3u’ - .4911,3 e A10u4 - AMUS
Painlevé analysis of (4.199) gives that p = —1 is a possible leading order with
As; =0, wy arbitrary, (71,72) = (0,3) (4.200)

Then the compatibility conditions corresponding to movable zeros at 7o = 3
by using (4.198) and (4.200) give

Ag = Ag = AIO = Au = 0, AG = kl (4201)
The canonical form of the equation in this case is
yy" = 2y'y" + 20y + kyyy. (4.202)
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(4.202) has the first integral

k
y" = 2% + ko’ - 5 (4.203)

where £, is an integration constant. (4.203) can be solved in terms of elliptic
functions [6] [3].

I1.d.2: The transformation (4.113) allows one to assume

a3 = 5 A =0. (4.204)

The compatibility conditions at the resonances r;; = 1, rjp =3, j = 1,2 on
using (4.204) give
AQ :A3 =A4 =O, Ag =A5+A6, AIO =Ag+Ag+A/, AI7=2A9+A11
(4.205)
Substituting y = & in (4.112) gives
wPu = 3un'u” — (u)? + du' + Asudu” — (245 + Ag)u(u)?
+ Ay’ — Agu? + Ag(utu” — 2u3(u')?) + Appudy’ — Apu® (4.206)
+ /‘112'&4UI - A13U4 - A14U5 - A15'U,6.
Painlevé analysis of (4.206) implies the following possible cases:
(a) p= —11is a leading order with
As=As=Ag=A;5=0, A 0
5 6 9 15 12 75 (4.207)
Ap(zo)ui =2 (fa,72) = (1,3), i=1,2

The compatibility conditions corresponding to movable zeros at 7;; = 1, Ty =
2, 1=1,2 by using (4.205) and (4.207) give

Ag = Al() - Au = A13 = A14 - O, A7 = kg, Alg = kl (75 O) (4208)

The canonical form of the equation in this case is

3 3
vy =3uy'y" = S) + 5yt Ry + kY (4.209)
(4.209) has the first integral
7 (2/)2 3 3 2 kl
— Z kat? — koy — —. 4.210
e TR LA Ul w (4.210)

(4.210) is of Painlevé type [6] [3].
(b) p = —1is a leading order with
Ag = 0, AG = —%Ag,, A12 = %Ag, A15 = —%Ag,
.-15(20)U01 =—-1: ~(7‘:111f12) = (1,2), (4211)
.-15(20)’11,02 1 : (7‘21,7‘22) = (1,4),
As(z0)ugs = =3 (F31,732) = (=3,4)
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Then the compatibility conditions corresponding to movable zeros by using
(4.205) and (4.211) give that

A, =0, m=12..15 (4.212)
That is the equation attains only dominant terms.
III.1.c: The transformation (4.113) allows one to assume that
ag =2, 2414+ A+ A3+ Ay =0. (4.213)

The compatibility conditions at the resonances rj; = 2, rj =3, 7 = 1,2,3
and (4.213) give
An=0 m=12.,09. (4.214)

Substituting y = £ in (4.111) give the equation
wi” = dun'n” - 2(u)? + 2u — Aput — At (4.215)
Painlevé analysis (4.215) implies that p = —1 is a possible leading order with
up arbitrary, (71, 72) = (0, 3). (4.216)
Then the compatibility condition at 7, = 3 gives
Ajp = Ay = 0. (4.217)

The canonical form of the equation in this case is

11

yy" = 2y'y" + 2y° (4.218)
(4.218) was considered by Martynov [12].

II1.2.a: The transformation (4.113) allows one to assume that

5
a, = —5, A1 = 0. (4219)

The compatibility conditions at the resonances 7;; = 1,719 = 2,731 = 1 give

that
Ay=A3=A4,=0, 245+ 4 - A, + A3 =0. (4.220)

Substituting y = £ in (4.112) gives the equation
W = Juu'n” - B(u) - Suu” + B(u)? - I + L+ Aguu”
(245 + Ag)ut(u)? + AruPul — Agu? + Ag(ute’ — 2u2(w)?)  (4.221)

+ Alou"‘u’ - A11U3 + A12'U:4U/ - -’/‘1131L4 - AH’U,S - A15U6.
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Painlevé analysis of (4.221) implies that p = —2 is the only possible leading
order such that the resonances are distinct integers with

As=As = Ag = Ay = A = Ay = A5 =0,

(4.222)
up arbitrary, (71,7e) = (0,1).

The compatibility condition corresponding to movable zeros at the resonance
on using 7, = 1 (4.220) and (4.222) gives that

.47 = Ag, A13 = 0. (4223)
The canonical form of the equation in this case is
3 3, n3 D 3 9 1
vy = sy = W) = 5vY - W) - v - 0+ A0 ) + Any
(4.224)

where A7, Ay, are arbitrary functions of z. If A}, = A7, then (4.224) has the
first integral

"

3(y)? 3 1

where B = A); — A} (4.225) is of Painlevé type [6] [3].

ITI.2.b.i.1: The transformation (4.113) allows one to assume that
a, = —2, 2A1 + Ag -+ 2A3 + 4A4 =0. (4226)

For the sake of simplicity, one first finds the compatibility conditions corre-
sponding to movable zeros. Substituting y = < in (4.111) gives an equation
with the same simplified equation as of (4.136) with the same possible leading
order p = —1, resonances (4.137) and compatibility conditions (4.138). Then
the compatibility conditions at the resonances 71y =1, 110 =3, 79; =4, 792 =
6 by using (4.137), (4.138) and (4.226) give that

Am = 0, m= 1, 2, 6, Ag = k‘l (constant), AIO = —Ag,

(4.227)
Ag - A/7 + kl, A;’” + A7AI7/ + (A’7 - kl)(A; + 2/€1) = 0

One should note that the equation which A7 satisfies, is a special form of (2.52)
a member of P7. One may consider the following cases:

a) k; =0,4;, = —12 Then Ag = %, Ay = 2. The canonical form of the
z r4 P4

equation in this case is

12 24 72
w" = vy = 20%" + 0%+ - v+ Sy + (4.228)

2 z 2

(4.228) has the first integral
12 24

y// — _yy/ + ,y3 _ Z_gy _ 7_3’ (4.229)
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which is of Painlevé type [6] [3].
(b) A7 =0, A5 = k;. Then Ag = 2k;, Ay = 0. The canonical form of the

equation in this case
vy =Yy = 200" Y 00+ (hz + k)Yt + 2k + kit (4.230)
(4.230) has the first integral

y' = =3y — y* — (ka2 + ka)y — 2k, (4.231)
which is of Painlevé type [6] [3].
(c) A7 =0, A7 = —2k,. Then Ag = —k;, Ay = 0. The canonical form of the

equation in this case is

vy =o'y — 2% + %y v+ (=2kiz + k)Y — ki + iyt (4.232)
(4.232) has the first integral

1 k
y// — '2'7,/3 + (—k‘lz + _QZ)y + kl; (4233)

which can be solved in terms of elliptic functions if £; = 0, or can be trans-
formed to the second Painlevé equation Py if k; # 0 [6] [3].

ITI.2.b.i.2: The transformation (4.113) allows one to assume
a) = '—1, 2A1 + Ag + Ag + A4 = 0. (4234)

For the sake of simplicity one first obtains the compatibility conditions corre-
sponding to movable zeros. Substituting y = 5 in (4.111) gives an equation
with the same simplified equation as of (4.136), the same possible leading or-
der p = —1, the same resonances (4.137) and same compatibility conditions
(4.138). Then the compatibility conditions at the resonances 7;; = 1, 72 =
4, r9) =3, 79y = 4 on using (4.137), (4.138) and (4.234) give that

Apy=A1=4,=0,m=1,2,...,6, Ag=Ag =k, A; =2k z+k,, (4.235)
where k|, ky are constants of integration. The canonical form of the equation
in this case is

y" =y = vy 40+ 20+ kit )y k(Y ). (4.236)
(4.236) has the first integral

y" =2y° + (2k1z + ko)y — ki, (4.237)

which can be solved in terms of elliptic functions if &; = 0 or it can be trans-

formed to the second Painlevé equation Py if k) # 0.
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ITI.2.c.1: The transformation (4.113) allows one to take
a) = —1, AQ =0. (4238)

The compatibility conditions at the resonancesr;; = 1710 =3, 191 =1, 192 =5
give

Ay = A3 = A =0, As — As + 247 =0, Fr 4 1de - 1387 = 0,

10345 — 89475 — 10345 — 55 49 =0,

(As + Ag — 2AL — Al — AD)(—4s _ 54 4 Aoy _ 2104, 4 Ao+ A)
+1(24g — Ag)(24s + As+ A7) — B A AL L B A 4+ A =0

(4.239)

To find the compatibility conditions corresponding produced by the movable

zeros one should substitute y = 1 in (4.111) to get the equation

wu = duu'n” - 2(w)P —wu” — L(W)? + 20 — § + As(uPu” — 2u(u)?)

+ A5U2UI — A7U2 + Agu’ u' — Agu - Alou - A11U
(4.240)

Painlevé analysis of (4.240) implies that p = —1 is a possible leading order

with
As =0, wup arbitrary, (7,72) = (0,3). (4.241)

The compatibility condition at 7, = 3 by using (4.239) and (4.241) gives
Ag =47 =43 =Ag= A1 =0, Ajp =k, (constant). (4.242)
The canonical form of the equation in this case is
yy" =2y — %" + gy(y’)2 + 2%y + %yf’ + k. (4.243)
(4.243) has the first integral

3(y)° 1 ki
" 3
2 iy B 4.244
) 2y 23/ ” ( )

which can be solved in terms of elliptic functions [6].
II1.2.c.2: The transformation (4.113) allows one to assume
ar =2, Ay=0. (4.245)
The compatibility conditions at 73 = 1, 710 = 2, 797 =1 give

.41 = A3 = A4 = 0, 2A5 - AG + A7 =0 (4246)
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For the sake of simplicity one can find the compatibility conditions correspond-
ing to movable zeros before obtaining the compatibility condition corresponding
to movable poles at 79, = 6. Substituting y = 1 in (4.111) gives the equation

wu” = dun'u” — 2(u')? — uu” + (w')? + 20’ — 1+ As(udu” — u?(u')?)

+ Agudu’ — Aqu? + Agudu’ — Agud — 4j0ut — Ajud.
(4.247).

Painlevé analysis of (4.247) implies that p = —1 is a possible leading order

with
As =0, wug arbitrary, (7,,79) = (0, 3). (4.248)

The compatibility condition produced by movable zeros at the resonance on
using (4.246) and (4.248) give

As = A7, Ag = Au = 0, Ag = —Ag, AIO = kl (constant). (4249)

Then the compatibility condition at the resonance r9, = 6 on using (4.249)

gives
As =A7=A43=0 (4.250)

The canonical form of the equation in this case is
vy = 2y = 2y%" + 3y(y)? + 2%y + 90 + k. (4.251)
(4.251) has the first integral

2
1
Y = §(TJ) ooy L (4.252)
which can be solved in terms of elliptic functions [6].

II1.2.d The transformation (4.113) allows one to assume that
a=-1, A =0 (4.253)
The compatibility conditions at ry) =1, 119 = 2, rq; = 1, 799 = 4 give that
Ay =A;=A,=0, 245+ As— A7+ 45 =0,
(4As + 346 + A7 — Ag)' — 64y — 2419 =0,

(245 + Ag + A7 + Ag)" — (249 + Ao — An)' — S(245 + Ag + A7 + Ag)?

+é(2A5 + AG + A7 + Ag)(2A5 - 2A6 + .47 -+ 4"48) =0
(4.254)

Substituting y = + in (4.112) gives the equation
wu = Juw'n” — $(u)? — wu” + 5(u)? + 3u — § + Asudu”
- (2445 + A5>u2(’u/)2 + A7U2U, - A8u2 + Ag('u4’L6” - 2u3(u’)2) (4255)
+ A10u3u’ - A11U3 + 1‘112'&4’&, - .413’&4 - A14U5 - A15u6.
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Painlevé analysis of equation (4.255) shows that p = —1 is a possible leading

order with one of the following choices

(a)

A5 = As = A9A15 = 0, A12 7é 0,A12(Zo)'ug = % . (7'11, ) (1 3) = 1, 2
(4.256)
where u is the leading coefficient of the series (4.117). The compatibility

conditions corresponding to movable zeros at the resonances 7;; = 1, 7y =
2, 1=1,2 by using (4.254) and (4.256) give

A; = Ag = 22 + koz + ks, Ayg= A

B (4.257)
Ap = (ZIAZ + k), A=k, A= %L,

where k) # 0, ko, k3 are constant of integration. The canonical form of the

equation in this case is

yiy" = 3yy'y" — 2(y')® — Py + 2p2(y)? + Bty + Ly £.258)

+ (828 + kaz + k) (y%Y +yf) = (B5tz + ko)’ + by’ + By
(4.258) has the first integral

"

N2 1 k k
g =2 gy L Bk - i (4.259)

Y 2 3

| —

which possesses the Painlevé property [6] [3].

(b)
Ag = "%As, Ap = %Ag) A = —lAa, As #0,

As(zg)ugy = —1: (~11 F1o) = (1,2),
As(zg)uge =1 @ (Fay, = (1,4),
As(zp)upz = =3 : ('r31,r32) = (-3,4),
where ug is the leading coeficient in the series (4.117). The compatibility
conditions at the resonances 71; = 1, T19 = 2, 7o; = 1 on using (4.254) and
(4.260) give

(4.260)

As =k (constant), A=A =0, gki? — kA + A =0. (4261)

But then the compatibility condition at the resonance 79y = 4 gives k; = 0.
That is the equation attains the dominant terms only.
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Chapter 5

Conclusion

In the procedure followed to obtain higher order Painlevé-type ordinary dif-
ferential equations, we have imposed the existence of at least one principal
branch for the sake of applicability of the singular point analysis. However,
the compatibility conditions at the positive resonances of the second branches
are identically satisfied in all cases. Besides, following this procedure one can
also obtain equations with negative resonances only like Chazy equation (3.23),
which has three negative distinct integer resonances.

Since the simplified versions of P; and P;; are constant coefficient
polynomial-type equations, starting from these two equations higher-order
polynomial-type simplified equations with constant coefficients were consid-
ered. However, non polynomial-type simplified equations with constant coeffi-
cient were obtained starting from the constant coefficient non polynomial-type
simplified equation of P;;;. One can also obtain non polynomial-type higher
order equations having the Painlevé property if one follows the procedure start-

ing from Py and Py;.
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