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Abstract--An O(T) heuristic procedure for a single-item dynamic lot sizing problem is intro- 
duced in this paper. The algorithm tries to establish the regeneration points of the problem 
whether either the production or the beginning inventory must be equal to zero. The proposed 
algorithm is very easy to implement and compares very favourably with the existing heuristic 
procedures. 

1. INTRODUCTION 

Single-item dynamic lot sizing (SIDLS) problems have been the focus of numerous 
researchers in recent years [1-24]. This is due partly to their importance as production 
planning tools in materials requirements planning as well as being a crucial part in the 
development of multi-item production planning models. 

The SIDLS problem can be expressed as follows: for each period t = 1, 2 , . . . ,  T, let 
D, be the known demand, Xt be the number of units produced, Ft be the on hand 
inventory, and I t  be the units backordered at the end of the period. Also let ft(Xt), 
h~+(l+), h7(17) be the cost functions associated with production, inventory, and back- 
ordering at period t, respectively. The objective is to determine a production schedule X 
= (Xt,)(2,  • . . ,  Xr) that minimizes the total production, inventory, and backordering 
costs over T periods while satisfying all demands. 

As an optimization problem SIDLS can be formulated as follows: 

minimize f(  X , l  ÷, I - )  = 
T 

E [f,(X,) + h,+(l, ÷) + h,-(l ,-)] (1) 
t = l  

subject to X, + 1, +_ ~ - 1, + + I,- - I,_Z1 = D,, t = 1,2 . . . . .  T (2) 

I o-=1o + = I ~ = I  r = 0  (3) 
X,,It+,It->~O, t = 1 , 2  . . . .  T (4) 

When h7 and h7 are linear and ft is piecewise linear convex for all t, then the 
corresponding SIDLS problem may be cast into a transportation problem [1-5]. Several 
greedy algorithms have been developed for this variation of the SIDLS problem. 
Johnson [4] treated the problem with no backorders allowed. Posner and Szwarc [5] 
treated the problem with backorders where holding and backorder costs are assumed to 
be constant over time. Erenguc and Tufekci [3] treated the problem with time varying 
costs. All these algorithms are based on transportation formulation of the SIDLS 
problem. 

For the case where the system costs are convex, Veinott [6] formulated the SIDLS 
problem as a convex cost network flow problem. The optimum solution can be obtained 
by satisfying each unit of demand through the current cheapest route in this network. 

When the cost functions are concave the SIDLS problem becomes an NP-hard 
problem. Wagner and Whitin [7] formulated the problem as a dynamic programming 
problem. Numerous extensions of the concave cost SIDLS problem have been analyzed 
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by a number of researchers [8-10] since the seminal paper of Wagner and Whitin. Many 
of these algorithms require a considerable knowledge of optimization, branch-and- 
bound procedures and integer programming. 

The desire to obtain reasonably good solutions in a very short time period, without 
indulging into optimization techniques, have led to the development of numerous 
heuristic procedures. Among the most prevailing ones, we can list Gaither [11], Silver- 
Meal [12], Groff [13], Part Period Balancing [14], Least Unit Cost [15], Periodic Order 
Quantity and Economic Order Quantity [16]. All these heuristics are one pass pro- 
cedures on the SIDLS problems with constant production, setup and inventory costs with 
no backorders. Some have look-ahead and/or look-back features. They all start with a 
current period and accumulate the demands of succeeding periods to be satisfied with the 
planned production in the current period until a prescribed rule is met. This procedure is 
then repeated for the remaining periods whose demands are not yet satisfied. A general 
scheme of these heuristics is presented in Fig. 1. 

X 1 = D I 

X 2 = O 2 

~ X 1 - D I 

is stopping rule 
sat is f ied? 

X 1 = O 1 + D 2 
X~ -0 

Ye.~ ~1o k~13  Ye/ 
/12 "D 2 12 - D 2+ D 3 -D I +D 2 X 1 =DI+D2÷D3 

'X*~ =0 

Yes/ ~No 

Fig. 1. A general scheme for lot-sizing heuristics. 

f 

It is shown by Axsater [17] that the solution obtained by Silver-Meal heuristic can be 
arbitrarily bad for sharply decreasing demand patterns. That is, the ratio of the cost of 
the solution from this algorithm to the ratio of the optimal solution can be arbitrarily 
large. Axsater also showed that the same ratio for Part Period Balancing heuristic can 
never exceed 2. Another demand pattern which causes poor performance in Silver-Meal 
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heuristic is a pattern with frequent zeroes which is quite common in materials require- 
ment planning. To overcome these shortcomings Silver and Miltenburg [18] have pro- 
posed a modified heuristic. However the proposed heuristic is no longer a one-pass 
algorithm. It is more complicated and requires additional computational time. 

Gaither's original algorithm [11] performs quite well for problems with low ordering 
costs and high carrying costs. However, as indicated by Silver [19] the algorithm 
degenerates quickly as the ratio of ordering cost to carrying cost increases. To overcome 
this problem Gaither [20] proposed a "correction factor" for the carrying cost. This 
factor considers the coefficient of variation of the demand data and the ratio of ordering 
cost to carrying cost. This new modified algorithm is compared favorably to Silver-Meal 
[12] and Groff [13] algorithms. 

In this paper we propose a new one-pass heuristic for the SIDLS problem treated by all 
the heuristics presented above. In Section 2 we present this heuristic. The comparison of 
the proposed heuristic to other heuristics is presented in Section 3. Section 4 concludes 
our work. 

2. DEVELOPMENT OF THE PROPOSED HEURISTIC 

The SIDLS problem considered in this paper and all other heuristics has the following 
functions, for t = 1, 2 . . . . .  T: 

ht_(lt_)= { ofOr I t- > 0  
for/ , -  = 0 '  

h,+ (It ÷) =hlt÷,for lt + >10, (5) 

K if X t > 0 (6) 
f,(X,) : if X, = 0 

Note that since the unit production cost is assumed to be constant for all periods and 
since the total demand must be met, the total variable cost of production is constant for 
the planning horizon. Therefore, ft reflects only the setup costs. Moreover, the model 
assumes backordering is not allowed. 

In the case of concave costs, one of the most important properties of the SIDLS 
problem, as stated in [7], is that there exists an optimal solution such that, at any period, 
either the production or the beginning inventory must be equal to zero. In literature [21], 
a period t is called a regeneration point if It-~ "X~t = 0. This implies that if a production 
takes place in a given period, the amount of production (or the lot size) must equal the 
sum of the demands for an integral number of periods. 

If these regeneration points can be identified, then the corresponding lot sizes can 
easily be determined by simply summing the demand between the regeneration points. 

The proposed heuristic starts from the first period with non-zero demand. It scans each 
successive period by adding that period's demand to the current lot-size until next 
regeneration point is reached. Once such regeneration point is established, the same 
procedure is repeated for the remaining periods. Let j t> 1 be the earliest period with 
non-zero demands. The algorithm sets t = j and X~/ = Dr. It then considers whether 
period t+ 1 is a regeneration point or not. This is accomplished by a rule to be established 
in the next section. If the answer is "yes" then j is set to t+ 1 and t=j and the argument 
starts anew. If the answer is "no" then Dt+t is added to X; and t is increased by 1. The 
question of whether t+ 1 is a regeneration point or not is asked again and the argument 
continues until the last period is considered. A general scheme of the proposed heuristic 
is presented in Fig. 2. 

In what follows we will develop the necessary criteria for testing if, for a given 
scheduled production in period j, and the demands of periods j to t, t ~> j already 



184 0. S. BENLI er al. 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

. . 

I3 = 01 a Yes No 

4 4 
. . 
. . 
. . 
. . 
. . 

D2 +D2+D3 

I3 = D? 

Yes No n 4 4 

. . 

. . 

. . 

. . 

. . 

Fig. 2. Schematic procedure of the proposed heuristic. 

committed to this production, if period t+l is a regeneration point or not. Since at any 
time three successive periods t, t+l, and t+2 will be considered, this will be called a 3- 
period criteria. 

j-Period criteria 

Suppose the last scheduled production is in period j, and the demands of periodsj to I, 
c 2 j already committed to this production. Concerning periods t+ 1 and t+2 we have four 
possible states based on whether they are regeneration points or not. 

Knowing the last production point j, and the states of periods t+l and t+2, we can 
determine the incremental cost to be incurred if any of these four states is accepted. 
Table 1 below presents these four states and their incremental cost contributions to the 
total cost function. The algorithm accepts the state Si for which 

C(S,) = minimum { C(SJ} for j = 1,2, 3,4. 

Once the state of period t+ 1 is determined the process starts anew in period t+ 1. 
Let M = K/h. For the period t+l to be a regeneration point we must have 

(i) C(S3) < C(&) and C(Ss) < C(&) and/or 
(ii) C(S,) G C(Sr) and C(&) G C(&). 
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Table 1. Possible states of periods t + l  and t + 2  and corresponding partial solution and incremental etnt 
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Explanation 
State regarding Partial Incremental 
S~ t + l  and t+2  solution cost C(S~) 

t+2 t+2 
1 None are regeneration X~ = ~" D, h ~ (i -I')D, 

points i-  i , -  t 

x,+l =x,+2 =o 
t + l  t + l  

2 O n l y t + 2 i s a  X~= ~D, ,  K + h  )~ ( i - j ) D  i 
regeneration point , - ,  

s -  1 

X,+l = 0. X,.2 = D,+2 

3 O n l y t + l i s a  X/= i D,. 
regeneration point , - i  K + h(D,+ 2 + (t -j)D,) 

X,+ 1 = D,. ,  + Dr+2, X,+ 2 : 0 

4 Both are regeneration X/= i D,. 
points i .  j 2K + h(t - j)D, 

X , + t = D , . t . X , + 2 = D , + 2  

To satisfy (i) we must have 

K + h[D, + 2 + (t - ]) Dr] <~ h[(t - j) D, + (t - j + 1) D,+ l + (t - ] + 2) Dr+ 2] 

and 

K + h[Dt+2 + ( t - j )  Dt]<~K + h [ ( t - j )  Dt+ ( t - j  + 1) Dr+z]. 

We can simplify (7) and (8) to" 

(7) 

(8) 

and 

M <~ (t + 1 - j) (O t+~ + D t+ 2) 

D,+ 2 ~< (t + 1 - j) D,+ t. 

Similarly, to satisfy (ii) we must have 

K + h ( t - ] )  D,~ h[(t-j)/9, + ( t - y  + 1) D~+~ + ( t - j  + 2)/9,+2] 

and 

2 K +  h ( t - j )  D,<<. K +  h [ ( t - j )  D, + ( t - j +  1) D,+ ~]. 

Equations (11) and (12) may he simplified to 

(9) 

(10) 

(11) 

(12) 

and 

M ~<~ [(t - j  + 1) Dr+ 1 -~- (t --j-~- 2) D,+2] 

M <<- ( t - j +  1) D,+ 1. 

(13) 

(14) 

CAZg 14: : -H 
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From (9), (10), (13) and (14) we can establish the following: 

RULE 1. If (t + 1 - j) D,+ ~ >>- Dr+ 2 and M ~< (t + 1 - j) (Dr+ 1 + Dr+2) and/or 
( t - j +  1) D,+~MandM~<a 2 [ ( l - j +  1) D,+I + ( t - j + 2 )  D,+2] 
then period t + 1 is a regeneration point. Otherwise t + 1 
is not a regeneration point. 

We now give the statement of the algorithm. 

ALGORITHM 3-PERIOD 

INPUT: K, h, Dr, t= l ,  2 , . . . ,  T 
OUTPUT: production schedule X~, t= 1, 2 . . . . .  T. 
INITIALIZATION: 

BEGIN 
S e t X k = X k = O ,  k = l ,  2 . . . . .  T, M = K / h , j = I ,  
t = l ,  X j = O j  
REPEAT UNTIL Xj > 0 
j = j + l ,  t = / + l ,  Xj = Dj 
END REPEAT 

END 
WHILE t < T DO 

BEGIN 
By applying RULE 1 determine the status 
of period t+l .  
If (t+ 1) is a regeneration point THEN 

SetX~ = X  i, j = /+ l ,  X i = D i, t = /+ l 
REPEAT UNTIL Xj > 0 

j = j + I , t = / + I ,  X j =  Dj 
END REPEAT 

ELSE 
Set Xj = gj-t-Ot+l, t = t + l  

ENDIF 
END 

ENDWHILE 
print the schedule X~, j = 1, 2 . . . . .  T, and STOP. 

3. COMPUTATIONAL COMPARISON OF THE PROPOSED HEURISTIC 

We first compared the performance of the proposed heuristic with other lot sizing 
heuristics, by using the standard data sets from Kaimann [22] and Berry [23]. Table 2 
displays these data sets. For each data set we used five values of M= K/h. Namely, 24, 46, 
60, 103 and 150. 

Table 3 exhibits the results of a comparative study of nine lot sizing procedures using 
the end of period cost criterion. In this table we abbreviated each heuristic by their initial 
letters. We used GR for Groff's heuristic and G for Gaither's heuristic. 3P represents the 
proposed algorithm. All algorithms are programmed in FORTRAN and run on Bur- 
roughs B6900 machine using B7000/B6000 FORTRAN compiler. 

The results in Table 3 show that the proposed heuristic outperforms all the other 
heuristic procedures over the 35 data sets used. The cumulative percent cost deviation 
from optimum cumulative costs for all 35 problems is 0.02% with the proposed heuristic. 
The cumulative percent cost deviations from the optimum cumulative costs for other 
heuristics are 0.35% for Gaither, 1.0% for Groff and Silver-Meal and considerably 
higher for the other heuristics. In 34 of 35 problems the proposed heuristic achieved the 
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Table 2. Demand data sets (Kaimann [22] and Berry [23]) 
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Demand sets 

Period 1 2 3 4 5 6 7 

1 92 80 50 10 0 0 80 
2 92 100 80 10 0 0 100 
3 92 125 180 15 0 0 125 
4 92 100 80 20 0 25 100 
5 92 50 0 70 0 100 270 
6 92 50 0 180 1105 300 50 
7 92 100 180 250 0 400 230 
8 92 125 150 270 0 250 0 
9 92 125 10 230 0 30 50 

10 92 100 100 40 0 0 0 
11 92 50 180 0 0 0 40 
12 93 100 95 10 0 0 60 

Total 1105 1105 1105 1105 1105 1105 1105 

Standard 
deviation 0.0 27.0 66.1 130.0 305.0 136.2 79.2 

Co¢ff. of 
variation 0.0 0.293 0.718 1.410 3.310 1.480 0.870 

optimum solution whereas Gaither achieved 31, Groff achieved 28 and Silver-Meal 
achieved 27 optimal solutions. The other heuristics were considerably inferior. 

Also in Table 3 we have shown the cumulative CPU seconds for 35 problems. As 
expected all the heuristics being one-pass algorithms require approximately same time. 
However, as expected, the time required for Wagner and Whitin algorithm was 3-5 times 
higher than all heuristics considered. 

As indicated by Silver [19] and Gaither [20] the quality of solutions of many heuristics 
deteriorates as M=K/h and T become large. We have observed the similar results in our 
proposed heuristic as well. The algorithm tends to accumulate more than necessary 
number of periods for each production run. To help overcome this deficiency we have 
used the following modified criterion for testing of period t+ l  is a regeneration point: 

RULE 2. If K ~> 2 ( t - j+1)  Dt+l + ( t - j+2 )  Dt+2 or if RULE 1 is satisfied then period 
t+ l  is a regeneration point. Otherwise, period t+ l  is not a regeneration 
point. 

Considering the success of modified Gaither's heuristic [20] over Silver and Meal [12] 
and Groff [13], we decided to compare our modified algorithm to modified Gaither's on 
24,000 randomly generated problems. We designed the experiments as follows: for the 
decision Horizon T, we have used 12, 24, 36 and 48 periods. For M=K/h we have used 
24, 46, 125,250, 500, 1000, 2000, 2500, 3000 and 3500. Demand is generated uniformly 
between 0 and 100 and also between 0 and 250. Moreover, for each problem, after the 
demand data is generated we have randomly set P x 100% periods demands to zero. We 
have used 0.0, 0.2 and 0.4, for P values. For each combination of T, M, D and P we have 
replicated the experiment 100 times. All algorithms are coded in FORTRAN and tests 
on a VAX 11/750 computer. 

Tables 4, 5, 6, and 7 summarize the results of these experiments. In these tables MG 
represents "modified Gaither" and M3P represents "modified 3P" and WW represents 
Wagner and Whitin algorithms. The last two columns in these tables represent the 
maximum deviation of MG and M3P from WW (in terms of objective function value) out 
of 300 problems solved (100 replication for each P-value). Columns 9, 10 and 11 
represent cumulative CPU times in seconds of 100 problems in the given D and M 
combination. (Cumulative CPU seconds of 300 problems divided by 3.) All times 
reported are on VAX 11/750 by using FORTRAN compiler in a time sharing mode. 
Columns 3-8 represent the cumulative percent deviation of each algorithm from WW 
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Table 3. Comparison of eight heuristic algot~thml and Wagner-Whit in  Algori thm on 35 demand s e a  taken from 
Xmmann [22] and Berry [23] 

Algoritlum Demand Setup to 
set holding 
number cost ratio 

(M=K/h) E O Q  P O Q  LUC PPB SM G R  G 3P WW 

24 0% 0% 0% 0% 0% 0% 0% 0% 0% 
46 0 0 0 41.7 0 0 0 0 0 

1 60 74.0 0 0 26.8 0 0 0 0 0 
103 38.0 0 0 0 0 0 0 0 0 
150 38.1 0 0 0 0 0 0 0 0 

Worst ease 38.1 0 0 41.7 0 0 0 0 0 

24 24.0 0 0 0 0 0 0 0 0 
46 63.9 0 0 14.5 0 0 0 0 0 

2 60 41.4 0 7.1 24.3 0 0 0 0 0 
103 67.6 6.1 0 6.1 8.4 4.2 4.2 0 0 
150 46.8 0 3.4 3.4 0 0 0 0 0 

Worst case 67.6 6.1 7.1 24.3 8.4 4.2 4.2 0 0 

24 51.3 6.2 39.8 0 0 0 0 0 0 
46 76.4 8.5 21.2 16.0 0 0 0 0 0 

3 60 97.3 9.1 20.0 13.6 0 0 0 0 0 
103 49.6 15.5 13.7 15.5 0 0 0 0 0 
150 65.1 7.7 13.3 7.7 0 0 0 0 0 

Worst case 97.3 15.5 39.8 16.0 0 0 0 0 0 

24 63.6 9.1 1.7 8.3 1.7 1.7 0 0 0 
46 85.4 21.0 14.4 12.9 4.8 7.2 1.0 1.0 0 

4 60 92.3 26.9 13.5 3.8 1.9 7.7 11.5 0 0 
103 67.6 44.4 16.5 9.8 1.3 1.3 0 0 0 
150 75.7 33.6 21.5 0 0 0 0 0 0 

Worst case 92.3 44.4 21.5 12.9 4.8 7.7 11.5 1.0 0 

24 0 0 0 0 0 0 0 0 0 
46 0 0 0 0 0 0 0 0 0 

5 60 0 0 0 0 0 0 0 0 0 
103 0 0 0 0 0 0 0 0 0 
150 0 0 0 0 0 0 0 0 0 

Worst case 0 0 0 0 0 0 0 0 0 

24 138.2 0 0 4.2 0 0 0 0 0 
46 150.0 6.2 26.9 0 0 0 0 0 0 

6 60 150.0 18.2 21.2 12.1 0 0 0 0 0 
103 98.0 54.8 13.5 0 0 0 0 0 0 
150 102.2 14.9 78.1 30.1 0 0 0 0 0 

Worst case 150.0 54.8 78.1 30.1 0 0 0 0 0 

24 60.8 0 0 0 0 0 0 0 0 
46 28.7 0 3.0 8.3 0 0 0 0 0 

7 60 45.8 1.7 30.5 20.3 0 0 0 0 0 
103 65.8 0.3 59.8 0 0.3 0.3 0 0 0 
150 57.6 4.3 20.7 0 4.3 6.0 0 0 0 

Worst case 65.8 4.3 59.8 20.3 4.3 6.0 0 0 0 

Cumulative 
objective value 
(35problems) 65568 44790 46266 44416 41148 41134 4 ~ 8 8  40754 40746 

% deviation 
from optimum 
(35 problems) 60.9 9.9 13.5 9.0 1.0 1.0 0.35 0.02 0.0 

CPU seconds* 
(35problems) 0.045 0.045 0.036 0.042 0.036 0.046 0.048 0.037 0.149 

No. of optimal 
solutions 
(35 problems) 7 16 15 15 27 28 31 34 35 

" All times are on Burroughs B6900 Machine us/n 8 B7000/Bt000 F O R T R A N  Compiler. 
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Table 4. Results of 12 period problen~. (Entries in columns 3--8 represent cumulative percent deviation of total costs of each 
heurhtic from the WW optimal costs for 100 replications) 

Range of Setup to Probability of zero demand Cumulative Maximum % 
uniform holding (100 replications) CPU time" deviation 
demand cost ratio (zec) from WW 
distri- ( M = K I h )  P = 0.0 P = 0.2 P = 0.4 100 problems 
bution 

MG M3P MG M3P MG M3P MG M3P WW MG M3P 

DE[0,100] 

24 
46 0.6 0.2 

125 1.6 1.3 
250 5.4 2.3 
500 11.1 3.7 

11300 4.9 2.7 
2000 5.8 5.0 
2500 7.1 1.4 
3000 5.2 0.0 
3500 6.3 0.0 

0.1% 0.0% 0.2% 0.0% 0.2% 0.0% 0.30 0.32 0.60 9.4% 0.0% 
0.5 0.1 0.5 0.1 0.29 0.31 0.55 8.7 5.7 
1.5 1.2 1.1 0.8 0.34 0.32 0.63 !1.2 11.2 
4.6 1.7 2.5 1.4 0.28 0.33 0.62 46.4 11.9 

11.4 3.3 9.7 2.0 0.30 0.32 0 . 6 1  43.6 20.4 
5.2 2.6 5.0 4.0 0.32 0.30 0.58 33.0 19.5 
5.5 3.9 3.1 2.1 0.29 0.33 0.64 31.4 25.3 
5.0 0.7 2.6 0.2 0.30 0.32 0.62 29.1 11.5 
3.1 0.0 1.0 0.0 0.31 0.30 0.60 34.6 0.0 
1.4 0.0 0.0 0.0 0.32 0.33 0.61 36.4 0.0 

Combined 6.9 2.9 5.5 2.2 2.5 1.0 0.31 0.32 0 . 6 1  46.4 25.3 

24 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.29 0.35 0.64 2.9% 0.0% 
46 

125 
250 
5OO 

1000 
200O 
250O 
3000 
350O 

D~[0,250] 

0.1 0.0 
0.5 0.1 
4,0 0.8 
5.0 1.9 
8.3 5.3 
8.7 3.3 

10.3 2.2 
11.1 3.5 
11.2 4.8 

1.5 1.2 0.1 0.0 0.31 0.32 0.66 7.4 0.0 
0.3 0.0 0.1 0.0 0.32 0.30 0.57 9.9 2.5 
1.6 0.8 1.3 0.5 0.34 0.34 0.55 15.8 11.3 
3.1 0.2 2.0 0.9 0.30 0.32 0 . 6 1  22.7 16.9 
7.8 4.4 8.0 5.0 0.30 0 . 3 1  0.62 33.0 23.9 
8.4 3.4 9.5 3.1 0.32 0.34 0.63 39,4 16.5 
7.5 2.7 8.0 3.0 0.28 0 . 3 1  0.60 36.0 20.0 
7.3 3.7 4.6 4.0 0.31 0.33 0.66 39.9 27.5 
7.3 4.4 3.2 5.4 0.33 0.32 0.57 41.5 24.6 

Combined 6.6 3.0 5.8 2.5 6.3 2.7 0.31 0.32 0.61 39.9 27,5 

* All times are on VAX 11/750 using FORTRAN Compiler. 

TaMe 5. Results of 24 period problems. (Entries in columns 3--8 represent cumulative percent deviation of total costs of each 
heuristic from the WW optimal costs for 100 replications) 

Range of 
uniform 
demand 
distri- 
bution 

Setup to Probability of zero demand Cumulative Maximum % 
holding (100 replications) CPU time* deviation 
cost ratio (see) from WW 
( M = K / h )  P - 0.0 P = 0.2 P = 0.4 100 problems 

MG M3P MG M3P MG M3P MG M3P WW MG M3P 

DEI0,100] 

24 
46 

125 
250 
500 

1000 
2000 
3000 
3500 

0.1% 0.0% 0.1% 0.0% 0.1% 0.0% 0.30 0.40 1 . 4 9  4.1% 0.5% 
0.6 0.1 0.4 0.1 0.4 0.1 0.32 0.35 1.29 4.1 4.3 
2.0 1.7 1.4 1.5 1.0 0.9 0.35 0.37 i.15 11.3 6.3 
6.7 2.7 5.4 2.1 4.0 1.9 0.28 0.33 1.20 26.6 11.4 

14.7 4.8 13.6 3.6 10.3 3.2 0.32 0.36 1.30 39,7 19.2 
4.0 2.5 6.4 2.5 13.6 3.0 0.31 0.37 1.17 57.5 13.7 
5.8 5.0 6.4 3.9 23.6 3.0 0.36 0.39 1.22 62,5 19.8 
7.1 1.4 5.7 3.9 17.2 5.2 0.33 0.32 1.30 46.0 31.8 
4.0 6.8 3.9 8.7 11.4 g.l 0.29 0.35 1.32 37.0 31.8 
5.2 13.4 5.9 14.3 8.1 10.2 0.34 0.34 1,20 41.3 38.9 

Combined 6.6 3.0 6.5 3.2 13.0 5.8 0.32 0.36 1.26 62.5 38.9 

D~[0,250i 

24 
46 

125 
250 
500 

1000 
200O 
25O0 
30O0 
3500 

0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.34 0.36 1.19 1.2% 0.7% 
0.1 0.0 0.1 0.0 0.1 0.0 0.33 0.35 1.23 3.6 1.0 
0.6 0.2 0.5 0.1 0.3 0.1 0.27 0.39 1.35 4.4 2.2 
3.4 1.1 1.7 0.8 1.5 0.5 0.36 0.32 1.42 13.2 8.0 
5.7 2.5 3.6 1.7 2.4 1.3 0.35 0.34 1.12 16.5 10.3 
7.3 5.7 8.6 6.2 8.1 6.0 0.29 0,35 1.21 24.4 18.0 
7.7 2.3 8.0 3.4 12.7 3.3 0.33 0.32 1.30 38.9 13.9 
8.1 2.2 8.3 3.0 14.2 3.0 0.34 0.34 1.26 58.7 17.1 
9.2 3.3 9.5 2.9 17.8 2.5 0.30 0.37 1.30 57.7 14.3 
9.4 2.9 9.0 2.7 21.0 3.1 0.36 0.39 1.20 66.6 14.9 

Combined 6.1 2.9 6.0 3.3 12.4 3.1 0.33 0.35 1.26 66.6 18.0 

* All times are on Vax 11/750 using FORTRAN Compiler. 
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Table 6. Results of 36 period problems. (Entries in columns 3--8 represent cumulative percent deviation of total costs of each 
heuristic from the WW optimal costs for 100 replications) 

Range of Setup to Probability of zero demand Cumulative Maximum % 
uniform holding (100 replications) CPU time" deviation 
demand cost ratio (sec) from WW 
distri- ( M = K / h )  P = 0.0 P = 0.2 P = 0.4 100 problems 
bution 

MG M3P MG M3P MG M3P MG M3P WW MG M3P 

DEI0,000] 

24 0.1% 0.0% 0.4% 0.0% 0.1% 0.0% 0.36 0.41 2.57 2.3% 1.2% 
46 0.6 0.2 0.4 0.1 0.3 0.1 0.38 0.42 2.39 4.1 1.9 

125 2.0 1.8 1.6 1.4 1.3 0.9 0.40 0.40 2.15 9.5 5.8 
250 6.1 3.3 5.6 2.2 3.7 1.6 0.37 0.39 2.21 17.1 8.9 
500 15.5 5.4 13.6 4.4 9.6 3.4 0.37 0.38 2.31 33.4 15.4 

I000 4.1 1.9 4.8 2.3 17.6 2.6 0.40 0.40 2.24 50.3 12.4 
2000 4.2 5.1 6.9 3.8 31.2 3.6 0.36 0.41 2.31 85.9 21.6 
2500 5.2 5.1 7.1 5.7 38.0 5.6 0.36 0.45 2.35 91.7 26.3 
3000 5.1 9.2 3.9 8.7 44.5 6.1 0.34 0.37 2.14 90.4 28.7 
3500 5.9 10.7 10.0 7.3 39.3 6.1 0.39 0.36 2.41 77.1 26.9 

Combined 5.7 4.1 6.8 3.8 31.4 4.7 0.37 0.40 2.31 91.7 28.7 

DE[0,250] 

24 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.39 0.44 2.22 1.0% 0.5% 
46 0.1 0.0 0.1 0.0 0.1 0.0 0.37 0.42 2.17 3.5 0.7 

125 0.5 0.2 0.5 0.1 0.4 0.1 0.36 0.35 2.35 3.7 2.3 
250 3.1 1.2 1.7 0.9 1.4 0.6 0.41 0.34 2.24 13.6 6.1 
500 6.0 2.6 3.9 1.4 3.3 1.5 0.40 0.39 2.16 16.6 7.3 

1000 7.6 3.7 8.0 6.0 8.6 6.2 0.37 0.38 2.30 34.7 18.1 
2000 7.7 2.6 7.7 2.9 15.4 3.0 0.38 0.36 2.33 37.5 11.9 
2500 8.2 2.0 7.4 2.5 15.9 2.7 0.33 0.40 2.22 44.1 9.9 
3000 9.0 2.3 8.1 2.3 19.9 2.5 0.41 0.44 2.14 56.1 12.5 
3500 8.8 2.8 8.6 2.9 22.5 3.0 0.36 0.34 2.26 58.9 12.7 

Combined 6.2 2.5 5.8 3.0 13.8 3.0 0.38 0.39 2.24 58.9 18.1 

* All times are on VAX 11/750 using F O R T R A N  Compiler. 

Table 7. Results of 48 period problems. (Entries in columns 3-8 represent cumulative percent deviation of total costs of each 
heuristic from the W W  optimal costs for 100 replications) 

Range of 
uniform 
demand 
distri- 
bution 

Setup to Probability of zero demand Cumulative Maximum % 
holding (100 replications) CPU time* deviation 
cost ratio (sec) from WW 
( M = K / h )  P = 0.0 P = 0.2 P = 0.4 100 problems 

MG M3P MG M3P MG M3P MG M3P WW MG M3P 

DE[0,2501 

24 0.1% 0.2% 0.1% 0.0% 0.1% 0.0% 0.48 0.53 4.33 1.9% 0.9% 
46 0.5 0.2 0.4 0.1 0.3 0.1 0.42 0.54 4.17 4.1 4.1 

125 2.1 1.8 1.7 1.4 1.2 1.0 0.46 0.44 3.97 7.7 5.7 
250 6.1 3.3 5.2 2.4 3.9 2.0 0.50 0.47 4.25 14.8 8.0 
500 16.5 4.8 13.8 4.3 10.6 3.6 0.47 0.49 4.13 32.3 14.4 

1000 4.0 1.8 4.1 2.4 20.6 3.3 0.52 0.60 4.24 56.2 12.9 
2000 4.8 4.7 4.3 4.8 31.9 4.1 0.44 0.59 3.95 69.4 18.3 
2500 4.9 5.5 7.3 5.2 33.9 5.7 0.43 0.47 4.30 98.9 24.6 
3000 5.0 8.7 8.6 7.2 41.7 6.6 0.46 0.49 4.40 96.8 21.2 
3500 6.2 9.1 11.1 8.7 51.8 7.7 0.48 0.52 4.30 122.9 35.3 

Combined 5.8 4.0 6.0 4.0 33.2 5.3 0.47 0.52 4.20 122.9 35.3 

DE[0,2501 

24 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.50 0.62 3.95 1.1% 0.8% 
46 0.1 0.0 0.1 0.0 0.1 0.0 0.49 0.44 4.17 3.2 0.5 

125 0.6 0.2 0.5 0.1 0.3 0.1 0.55 0.51 4.32 3.2 1.8 
, 250 2.6 1.2 1.6 0.9 1.3 0.5 0.40 0.49 4.26 10.7 4.4 

500 5.9 2.7 4.4 1.7 3.6 1.8 0.43 0.46 3.89 15.9 8.3 
1000 8.0 6.6 8.7 6.6 8.9 6.1 0.44 0.52 4.41 22.5 15.3 
2000 7.0 2.3 9.0 2.8 16.0 3.0 0.47 0.57 4.17 45.0 11.0 
2500 7.1 1.9 8.3 2.4 18.9 2.9 0.50 0.47 3.98 47.27 11.8 
3000 7.9 2.3 8.6 2.7 22.8 2.7 0.46 0.49 4.22 65.8 10.5 
3500 7.6 2.5 8.5 2.6 25.6 2.9 0.40 0.56 4.31 68.8 11.3 

Combined 5.9 3.1 6.6 3.1 15.0 3.0 0.46 0.51 4.17 68.8 15.3 

" All times are on VAX 11/750 using F O R T R A N  Compiler. 
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algorithm for 100 replications. The rows designated as "combined" shows the cumulative 
percent deviation of each algorithm from WW algorithm for a given D and P combin- 
ation. We note here that each entry in the combined row under columns 3--8 represents 
the cumulative deviation of 1000 problems. 

We can summarize some of the important results of this experimentation as follows: 

• Both algorithms MG and M3P require approximately same CPU time, whereas WW 
algorithm requires 2 (for 12 period problems) to 5 (for 48 period problems) times 
more CPU time. This result was expected since both MG and M3P are O(T) 
algorithms whereas WW is an O(T 2) algorithm. 

• The proposed M3P algorithm is clearly superior to MG algorithm. 
• Out of 24,000 problems solved by each algorithm in the worst case MG deviated from 

WW solution by 122.9% whereas M3P deviated from WW solution by 38.9%. 
• The cumulative percent deviation of M3P from WW for 1000 problems (for a given T, 

D and P combination and for all M values) ranged between 1% (for DE[0,250], T = 
12, P = 0.0 and for all M values) and 5.8% (for DE[0,100), T = 24, P = 0.4, and for 
all M values). This range was between 2.5% (for D~[0,100], P = 0.4, T = 12 and for 
all M values) and 33.2% (for DE[0,100], P = 0.4, T = 48 and all M values) for the 
MG algorithm. 

• No dramatic degradation is observed for both algorithms for 12 period problems for 
all values of D, P, and M. 

• Slight degradation is observed for both algorithms for 24 period problems. This 
degradation became more visible for P = 0.4 in both algorithms. However, degrada- 
tion was more severe for MG than M3P. 

• The degradation of MG became quite serious for 36 period problems with P = 0.4 and 
M I> 2000. In contrast, no further degradation is observed in M3P. 

• The degradation of MG continued for 48 period problems, especially for P = 0.4 and 
M >I 2000. In contrast, no further degredation is observed in M3P. 

4. CONCLUSIONS 

A simple heuristic procedure for SIDLS problems is introduced in this paper. The 
algorithm compares very favorably with the existing heuristic procedures. The algorithm 
is based on the concept of regeneration points in an optimal solution. The algorithm tries 
to establish these regeneration points by using a simple rule obtained from a 3-period 
analysis. 

Since the proposed algorithm is a one-pass algorithm and since for each t = 1, 2 . . . .  , 
T a constant number of operations are performed, the complexity of the proposed 
algorithm is of O(T). 

The proposed algorithm compares quite favorably with Modified Gaithers heuristic. 
Out of 24,000 problems solved, in the worst case the deviation of the proposed heuristic 
from the optimal Wagner-Whitin solution was 38.9%. The results of the proposed 
algorithm indicated that it is robust. No serious degradation occurs in overall perform- 
ance with increased P, T, or K/h values. 
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