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Abstract—An O(T) heuristic procedure for a single-item dynamic lot sizing problem is intro-
duced in this paper. The algorithm tries to establish the regeneration points of the problem
whether either the production or the beginning inventory must be equal to zero. The proposed
algorithm is very easy to implement and compares very favourably with the existing heuristic
procedures.

1. INTRODUCTION

Single-item dynamic lot sizing (SIDLS) problems have been the focus of numerous
researchers in recent years [1-24]. This is due partly to their importance as production
planning tools in materials requirements planning as well as being a crucial part in the
development of multi-item production planning models.

The SIDLS problem can be expressed as follows: for each period¢t=1,2,..., T, let
D, be the known demand, X, be the number of units produced, I; be the on hand
inventory, and I, be the units backordered at the end of the period. Also let f(X)),
ht(1}), hy (I7) be the cost functions associated with production, inventory, and back-
ordering at period ¢, respectively. The objective is to determine a production schedule X
= (X}, Xy, . . ., X7) that minimizes the total production, inventory, and backordering
costs over T periods while satisfying all demands.

As an optimization problem SIDLS can be formulated as follows:

T

minimize f(X,I*,17) = ¥ [{(X) + k> (L) + b~ (17)] 1)
=1

subjectto X, + 17, -1* +1- -1_, =D, t=12,...,T )

Iy =1 =1} =17 =0 (3)

X, 17,1-=0, =12,...T 4)

When h' and h, are linear and f, is piecewise linear convex for all ¢, then the
corresponding SIDLS problem may be cast into a transportation problem [1-5]. Several
greedy algorithms have been developed for this variation of the SIDLS problem.
Johnson [4] treated the problem with no backorders allowed. Posner and Szwarc [5]
treated the problem with backorders where holding and backorder costs are assumed to
be constant over time. Erenguc and Tufekci [3] treated the problem with time varying
costs. All these algorithms are based on transportation formulation of the SIDLS
problem.

For the case where the system costs are convex, Veinott [6] formulated the SIDLS
problem as a convex cost network flow problem. The optimum solution can be obtained
by satisfying each unit of demand through the current cheapest route in this network.

When the cost functions are concave the SIDLS problem becomes an NP-hard
problem. Wagner and Whitin [7] formulated the problem as a dynamic programming
problem. Numerous extensions of the concave cost SIDLS problem have been analyzed
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by a number of researchers [8-10] since the seminal paper of Wagner and Whitin. Many
of these algorithms require a considerable knowledge of optimization, branch-and-
bound procedures and integer programming.

The desire to obtain reasonably good solutions in a very short time period, without
indulging into optimization techniques, have led to the development of numerous
heuristic procedures. Among the most prevailing ones, we can list Gaither [11], Silver-
Meal [12], Groff [13], Part Period Balancing [14], Least Unit Cost [15], Periodic Order
Quantity and Economic Order Quantity [16]. All these heuristics are one pass pro-
cedures on the SIDLS problems with constant production, setup and inventory costs with
no backorders. Some have look-ahead and/or look-back features. They all start with a
current period and accumulate the demands of succeeding periods to be satisfied with the
planned production in the current period until a prescribed rule is met. This procedure is
then repeated for the remaining periods whose demands are not yet satisfied. A general
scheme of these heuristics is presented in Fig. 1.
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is stopping rule
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Fig. 1. A general scheme for lot-sizing heuristics.

It is shown by Axsater [17] that the solution obtained by Silver-Meal heuristic can be
arbitrarily bad for sharply decreasing demand patterns. That is, the ratio of the cost of
the solution from this algorithm to the ratio of the optimal solution can be arbitrarily
large. Axsater also showed that the same ratio for Part Period Balancing heuristic can
never exceed 2. Another demand pattern which causes poor performance in Silver-Meal
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heuristic is a pattern with frequent zeroes which is quite common in materials require-
ment planning. To overcome these shortcomings Silver and Miltenburg [18] have pro-
posed a modified heuristic. However the proposed heuristic is no longer a one-pass
algorithm. It is more complicated and requires additional computational time.

Gaither’s original algorithm [11] performs quite well for problems with low ordering
costs and high carrying costs. However, as indicated by Silver [19] the algorithm
degenerates quickly as the ratio of ordering cost to carrying cost increases. To overcome
this problem Gaither [20] proposed a “correction factor” for the carrying cost. This
factor considers the coefficient of variation of the demand data and the ratio of ordering
cost to carrying cost. This new modified algorithm is compared favorably to Silver-Meal
[12] and Groff [13] algorithms.

In this paper we propose a new one-pass heuristic for the SIDLS problem treated by all
the heuristics presented above. In Section 2 we present this heuristic. The comparison of
the proposed heuristic to other heuristics is presented in Section 3. Section 4 concludes
our work.

2. DEVELOPMENT OF THE PROPOSED HEURISTIC

The SIDLS problem considered in this paper and all other heuristics has the following
functions, fort=1,2,..., T:

oy [wforlm>0
hoUn) = [0 forl,” =0’

h*(L*)=hI* forl* =0, (5)
K ifX,>0

Note that since the unit production cost is assumed to be constant for all periods and
since the total demand must be met, the total variable cost of production is constant for
the planning horizon. Therefore, f, reflects only the setup costs. Moreover, the model
assumes backordering is not allowed.

In the case of concave costs, one of the most important properties of the SIDLS
problem, as stated in [7], is that there exists an optimal solution such that, at any period,
either the production or the beginning inventory must be equal to zero. In literature [21],
a period ¢ is called a regeneration point if /,_;- X; = 0. This implies that if a production
takes place in a given period, the amount of production (or the lot size) must equal the
sum of the demands for an integral number of periods.

If these regeneration points can be identified, then the corresponding lot sizes can
easily be determined by simply summing the demand between the regeneration points.

The proposed heuristic starts from the first period with non-zero demand. It scans each
successive period by adding that period’s demand to the current lot-size until next
regeneration point is reached. Once such regeneration point is established, the same
procedure is repeated for the remaining periods. Let j = 1 be the earliest period with
non-zero demands. The algorithm sets ¢t = j and X; = D,. It then considers whether
period ¢+1 is a regeneration point or not. This is accomplished by a rule to be established
in the next section. If the answer is “yes” then j is set to t+1 and t=j and the argument
starts anew. If the answer is “no” then D,,, is added to X; and ¢ is increased by 1. The
question of whether r+1 is a regeneration point or not is asked again and the argument
continues until the last period is considered. A general scheme of the proposed heuristic
is presented in Fig. 2.

In what follows we will develop the necessary criteria for testing if, for a given
scheduled production in period j, and the demands of periods j to ¢, t = j already
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X1=DI+DZ+D3

Fig. 2. Schematic procedure of the proposed heuristic.

committed to this production, if period r+1 is a regeneration point or not. Since at any
time three successive periods ¢, t+1, and t+2 will be considered, this will be called a 3-
period criteria.

3-Period criteria

Suppose the last scheduled production is in period j, and the demands of periods j to f,
t = j already committed to this production. Concerning periods ¢+1 and ¢+2 we have four
possible states based on whether they are regeneration points or not.

Knowing the last production point j, and the states of periods ¢+1 and ¢+2, we can
determine the incremental cost to be incurred if any of these four states is accepted.
Table 1 below presents these four states and their incremental cost contributions to the
total cost function. The algorithm accepts the state S; for which

C(S;) = minimum {C(S)} forj=1,2, 3, 4.

Once the state of period r+1 is determined the process starts anew in period ¢+1.
Let M = K/h. For the period t+1 to be a regeneration point we must have

(i) C(S5) < C(S;) and C(S3) < C(S;)  and/or
(i) C(S4) < C(S,;) and C(Sy) < C(Sy).
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Table 1. Possible states of periods ¢+1 and ¢+2 and corresponding partial solution and incremental cost

Explanation
State regarding Partial Incremental
S; t+1 and ¢+2 solution cost C(S;)

t+2 t+2

1 None are regeneration X,=% D, hY (i-j)D,

points i ime

XI+ 1= Xl» 2= 0
i (.l t+1 . .

2 Onlyr+2isa X,= LD, K+h 3T (i-))D,

regeneration point

1=
1=y

X:+|=0v’¥1‘2=D

1+2

3 Onlyr+1lisa X=3% D,
regeneration point i= K+hD,,,+(t~j)D)

4 Both are regeneration L
points = 2K + h(t - )D,
XMI = le [ Xl+2 = DMZ

To satisfy (i) we must have
K+h[D, ,+(~)D)<h[(t=)D,+ (¢ =j+1)D, ,+(—j+2)D,.,] (7)
and
K+ h[Dl+2 + (t_j) Dr] sK+ h[(t_]) Dx+ (t—j+ 1) D:+1]' (8)
We can simplify (7) and (8) to:
M$(I+l—j) (Dr+1+Dt+2) (9)
and
Dr+2$(t+l_j)D:+1' (10)

Similarly, to satisfy (ii) we must have

K+h(t=j)D,<h[(t—j)D,+(t—j+1)D,,,+(t—j+2)D,,,] (11)
and

2K+h(t—j)D,<K+h[(t—j)D,+(t—j+1)D,, ] (12)
Equations (11) and (12) may be simplified to

MS—;[(I_]"*'l)Dr+1+(t_j+2)Dt+2] (13)
and

M<(t-j+1)D,,,. (14)

CAIB 14:2-H
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From (9), (10), (13) and (14) we can establish the following:
RULEL. If(¢t+1-j)D,,,=D,, ,andM=< (t+1-j)(D,,, + D,,,) and/or
(t_j'*' 1) Dr+1MandMs_%[(t_j+ 1)D1+1 +(t_j+2)Dt+2]

then period ¢ + 1 is a regeneration point. Otherwise ¢ + 1
is not a regeneration point.

We now give the statement of the algorithm.

ALGORITHM 3-PERIOD

INPUT: K,h,D,t=1,2,..., T
OUTPUT: production schedule X;, t=1,2, ..., T.
INITIALIZATION:
BEGIN
Set X,=X;=0, k=1,2, ..., T, M=K/h, j=1,
t=1, /Y/=D]

REPEAT UNTIL X; >0
]=]+1, t=f+1, X, = Dl

END REPEAT
END
WHILE ¢ < TDO
BEGIN
By applying RULE 1 determine the status
of period ¢t+1.
If (¢+1) is a regeneration point THEN
Set X; = X;,j=1t+1,X;=Dj, t = t+1
REPEAT UNTIL X; >0
j=jtl,t=t+1, X; = D;
END REPEAT
ELSE
Set X; = X;+D,4y, t=t+1
ENDIF
END
ENDWHILE
print the schedule X;,j=1,2, ..., T, and STOP.

3. COMPUTATIONAL COMPARISON OF THE PROPOSED HEURISTIC

We first compared the performance of the proposed heuristic with other lot sizing
heuristics, by using the standard data sets from Kaimann [22] and Berry [23]. Table 2
displays these data sets. For each data set we used five values of M=K/h. Namely, 24, 46,
60, 103 and 150.

Table 3 exhibits the results of a comparative study of nine lot sizing procedures using
the end of period cost criterion. In this table we abbreviated each heuristic by their initial
letters. We used GR for Groff’s heuristic and G for Gaither’s heuristic. 3P represents the
proposed algorithm. All algorithms are programmed in FORTRAN and run on Bur-
roughs B6900 machine using B7000/B6000 FORTRAN compiler.

The results in Table 3 show that the proposed heuristic outperforms all the other
heuristic procedures over the 35 data sets used. The cumulative percent cost deviation
from optimum cumulative costs for all 35 problems is 0.02% with the proposed heuristic.
The cumulative percent cost deviations from the optimum cumulative costs for other
heuristics are 0.35% for Gaither, 1.0% for Groff and Silver-Meal and considerably
higher for the other heuristics. In 34 of 35 problems the proposed heuristic achieved the
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Table 2. Demand data scts (Kaimann [22] and Berry [23])

Demand sets
Period 1 2 3 4 5 6 7
1 92 80 50 10 0 0 80
2 92 100 80 10 0 0 100
3 92 125 180 15 0 0 125
4 92 100 80 20 0 25 100
5 92 50 0 70 0 100 270
6 [/ 50 0 180 1105 300 50
7 92 100 180 250 0 400 230
8 92 125 150 270 0 250 0
9 9 125 10 230 0 30 50
10 92 100 100 40 0 0 0
11 92 50 180 0 0 0 40
12 93 100 95 10 0 0 60
Total 1105 1105 1105 1105 1105 1105 1105
Standard
deviation 0.0 27.0 66.1 130.0 305.0 136.2 79.2
Coeff. of
variation 0.0 0.293 0.718 1.410 3.310 1.480 0.870

optimum solution whereas Gaither achieved 31, Groff achieved 28 and Silver-Meal
achieved 27 optimal solutions. The other heuristics were considerably inferior.

Also in Table 3 we have shown the cumulative CPU seconds for 35 problems. As
expected all the heuristics being one-pass algorithms require approximately same time.
However, as expected, the time required for Wagner and Whitin algorithm was 3-5 times
higher than all heuristics considered.

As indicated by Silver [19] and Gaither [20] the quality of solutions of many heuristics
deteriorates as M=K/h and T become large. We have observed the similar results in our
proposed heuristic as well. The algorithm tends to accumulate more than necessary
number of periods for each production run. To help overcome this deficiency we have
used the following modified criterion for testing of period +1 is a regeneration point:

RULE 2. If K = 2(¢t—j+1) D,y + (t—j+2) D, or if RULE 1 is satisfied then period
t+1 is a regeneration point. Otherwise, period ¢+1 is not a regeneration
point.

Considering the success of modified Gaither’s heuristic [20] over Silver and Meal [12]
and Groff [13], we decided to compare our modified algorithm to modified Gaither’s on
24,000 randomly generated problems. We designed the experiments as follows: for the
decision Horizon T, we have used 12, 24, 36 and 48 periods. For M=K/h we have used
24, 46, 125, 250, 500, 1000, 2000, 2500, 3000 and 3500. Demand is generated uniformly
between 0 and 100 and also between 0 and 250. Moreover, for each problem, after the
demand data is generated we have randomly set P X 100% periods demands to zero. We
have used 0.0, 0.2 and 0.4, for P values. For each combination of T, M, D and P we have
replicated the experiment 100 times. All algorithms are coded in FORTRAN and tests
on a VAX 11/750 computer.

Tables 4, 5, 6, and 7 summarize the results of these experiments. In these tables MG
represents “modified Gaither” and M3P represents “modified 3P” and WW represents
Wagner and Whitin algorithms. The last two columns in these tables represent the
maximum deviation of MG and M3P from WW (in terms of objective function value) out
of 300 problems solved (100 replication for each P-value). Columns 9, 10 and 11
represent cumulative CPU times in seconds of 100 problems in the given D and M
combination. (Cumulative CPU seconds of 300 problems divided by 3.) All times
reported are on VAX 11/750 by using FORTRAN compiler in a time sharing mode.
Columns 3-8 represent the cumulative percent deviation of each algorithm from WW
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Table 3. Comparison of eight heuristic algorithms and Wagner-Whitin Algorithm on 35 demand sets taken from
Kaimann [22] and Berry [23)
Demand Setup to Algorithms
set holding
number cost ratio
(M=K/h) EOQ POQ LUC PPB SM GR G 3P wwW
24 0% 0% 0% 0% % 0% 0% 0% 0%
46 0 1] 0 41.7 0 0 0 0 0
1 60 74.0 0 0 26.8 0 0 0 0 0
103 38.0 0 0 0 0 0 0 0 0
150 38.1 0 0 0 0 0 0 0 0
Worst case 38.1 0 0 41.7 0 0 0 0 0
24 24.0 0 0 0 0 0 0 0 0
46 63.9 0 0 14.5 0 0 0 0 0
2 60 41.4 0 7.1 243 0 0 0 0 0
103 67.6 6.1 0 6.1 8.4 4.2 42 0 0
150 46.8 0 34 3.4 0 0 0 0 1}
Worst case 67.6 6.1 7.1 243 8.4 42 4.2 0 1]
24 51.3 6.2 39.8 0 0 0 0 0 0
46 76.4 8.5 21.2 16.0 0 0 0 0 0
3 60 97.3 9.1 20.0 13.6 0 0 0 1} 0
103 49.6 15.5 13.7 15.5 0 0 0 0 0
150 65.1 7.7 13.3 7.7 0 0 0 0 0
Worst case 97.3 155 39.8 16.0 0 0 0 0 0
24 63.6 9.1 1.7 8.3 1.7 1.7 0 0
46 85.4 21.0 14.4 129 4.8 7.2 1.0 1.0 [}
4 60 92.3 26.9 13.5 38 1.9 7.7 115 0 0
103 67.6 4.4 16.5 9.8 1.3 1.3 0 0 0
150 75.7 33.6 21.5 0 0 0 0 0 0
Worst case 92.3 4.4 215 129 4.8 7.7 11.5 1.0 0
24 0 0 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 0 0
5 60 0 0 0 0 0 0 0 0 0
103 0 0 0 0 0 1] 0 0 0
150 0 0 0 0 0 1] 0 0 0
Worst case 0 0 0 0 0 0 0 0 0
24 138.2 0 0 42 0 0 0 0 0
46 150.0 6.2 26.9 0 0 1] 0 0 0
6 60 150.0 18.2 21.2 12.1 0 0 0 0 0
103 98.0 54.8 13.5 0 0 0 0 0 0
150 102.2 14.9 78.1 30.1 0 0 0 0 0
Worst case 150.0 54.8 78.1 30.1 0 1] 0 0 0
24 60.8 0 0 0 0 0 0 0 0
46 28.7 0 3.0 8.3 0 [1] 0 0 0
7 60 45.8 1.7 30.5 20.3 0 0 0 0 0
103 65.8 03 59.8 0 03 0.3 0 0 0
150 57.6 4.3 20.7 0 43 6.0 0 0 0
Worst case 65.8 43 59.8 20.3 43 6.0 0 0 0
Cumulative
objective value
(35 problems) 65568 4790 46266 44416 41148 41134 40888 40754 40746
% deviation
from optimum
(35 problems) 60.9 9.9 13.5 9.0 1.0 1.0 035 002 0.0
CPU seconds*
(35 problems) 0.045 0.045 0.036 0.042 0.036 0.046 0.048 0.037 0.149
No. of optimal
solutions
(35 problems) 7 16 15 15 27 28 k) 34 35

* All times are on Burroughs B6900 Machine using B7000/B6000 FORTRAN Compiler.
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Table 4. Results of 12 period problems. (Entries in columns 3-8 represent cumulative percent deviation of total costs of each
heuristic from the WW optimal costs for 100 replications)

Range of Setup to Probability of zero demand Cumulative Maximum %
uniform holding (100 replications) CPU time* deviation
d¢emand cost ratio (sec) from WW
distri- (M=K/h) P=00 P=02 P=04 100 problems

bution

MG M3P MG M3P MG M3P MG M3P WW MG M3P

24 0.1% 00% 02% 00% 02% 00% 030 032 060 94% 00%
46 06 0.2 05 01 0.5 0.1 029 031 055 8.7 5.7
125 16 1.3 15 1.2 1.1 0.8 034 032 063 112 112
250 54 23 46 1.7 2.5 1.4 028 033 062 464 119
D€g[0,100] 500 1.1 3.7 114 33 9.7 20 030 032 061 436 204
1000 49 27 52 26 5.0 4.0 032 030 058 330 195
2000 58 5.0 55 39 3.1 2.1 029 033 064 314 253
2500 7.1 14 5.0 07 2.6 0.2 030 032 062 29.1 115
3000 52 00 31 00 1.0 0.0 031 030 060 346 0.0
3500 63 0.0 14 00 0.0 00 032 033 061 364 0.0
Combined 69 29 5.5 22 2.5 1.0 031 032 061 464 253

24 0.0% 00% 00% 0.0% 00% 00% 029 035 0.64 2.9% 0.0%
46 0.1 00 1.5 1.2 0.1 0.0 031 032 0.66 74 0.0
125 05 0.1 03 00 0.1 0.0 032 030 057 9.9 25
250 40 08 16 08 1.3 0.5 034 034 055 158 113
D€|0,250] 500 50 19 31 02 20 0.9 030 032 061 227 169
1000 83 53 78 44 8.0 50 030 031 062 330 239
2000 87 33 84 34 9.5 31 032 034 063 394 165
2500 103 2.2 75 27 8.0 3.0 028 031 060 360 2.0
3000 1.1 35 7.3 37 4.6 4.0 031 033 066 399 275
3500 1.2 48 73 44 3.2 54 033 032 057 415 246
Combined 6.6 3.0 58 25 6.3 2.7 031 032 061 399 275

* All times are on VAX 117750 using FORTRAN Compiler.

Table 5. Results of 24 period problems. (Entries in columns 3-8 represent cumulative percent deviation of total costs of cach
heuristic from the WW optimal costs for 100 replications)

Range of Setup to Probability of zero demand Cumulative Maximum %
uniform holding (100 replications) CPU time* deviation
demand cost ratio (sec) from WW
distri- (M=K/h) P=0.0 P=0.2 P=04 100 problems
bution
MG M3P MG M3P MG M3P MG M3P WW MG M3pP
24 0.1% 0.0% 0.1% 00% 0.1% 00% 030 040 149 41% 05%
46 06 0.1 04 0.1 04 01 032 035 129 41 43
125 20 1.7 14 1.5 10 09 035 037 115 113 63
250 67 27 54 21 4.0 19 028 033 120 266 114
D€(0,100] 500 147 48 136 36 103 32 032 036 130 39,7 192
1000 40 25 64 25 136 30 031 037 117 575 137
2000 58 S50 64 39 236 3.0 036 039 122 625 198
3000 7.1 14 57 39 172 52 033 032 130 460 31.8
3500 40 6.8 39 87 14 81 029 035 132 370 318
52 134 59 143 81 102 034 034 120 413 389
Combined 66 30 65 32 130 58 032 036 126 625 389
24 0.0% 00% 00% 00% 00% 00% 034 036 1.19 12% 0.7%
46 0.1 00 0.1 00 01 00 033 03 123 3.6 1.0
125 06 02 05 01 03 01 027 039 135 44 22
250 34 1.1 1.7 08 1.5 05 03 032 142 132 80
D€(0,250) 500 57 25 3.6 1.7 24 1.3 035 034 112 165 103
1000 7.3 5.7 86 62 81 60 029 035 121 244 180
2000 77 23 80 34 127 33 033 032 130 389 139
2500 8.1 22 83 30 142 30 034 034 126 587 17.1
3000 9.2 33 95 29 178 25 030 037 130 577 143
3500 94 29 90 27 210 31 036 039 120 66.6 149
Combined 6.1 29 60 33 124 31 033 035 126 666 18.0

* All times are on Vax 11/750 using FORTRAN Compiler.
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Table 6. Results of 36 period problems. (Entries in columns 3-8 represent cumulative percent deviation of total costs of each
heuristic from the WW optimal costs for 100 replications)

Range of Setup to Probability of zero demand Cumulative Maximum %
uniform holding (100 replications) CPU time® deviation
demand cost ratio (sec) from WW
distri- (M=KI/h) P=0.0 P=02 P=04 100 problems

bution

MG M3P MG M3P MG MP MG M3P WW MG M3P

24 0.1% 00% 04% 00% 0.1% 0.0% 036 041 2.57 23% 12%
46 0.6 0.2 04 0.1 03 01 038 042 239 4.1 1.9
125 2.0 1.8 1.6 14 1.3 09 040 040 215 9.5 5.8
250 6.1 33 56 22 37 16 037 039 221 171 8.9
D€|0,000) 500 15.5 54 136 44 96 34 037 038 231 334 154
1000 4.1 1.9 48 23 176 2.6 040 040 224 503 124
2000 4.2 5.1 69 38 312 36 036 041 231 859 2.6
2500 52 5.1 71 57 380 5.6 036 045 235 91.7 263
3000 5.1 9.2 39 87 4.5 6.1 034 037 214 904 287
3500 59 107 100 73 393 6.1 039 036 241 771 269
Combined 57 4.1 68 38 314 47 037 040 231 917 287

24 00% 00% 00% 0.0% 0.0% 00% 039 044 222 1.0% 0.5%
46 0.1 0.0 0.1 0.0 01 0.0 037 042 217 3.5 0.7
125 0.5 0.2 05 01 04 0.1 036 035 235 37 23
250 3.1 1.2 1.7 09 14 06 041 034 224 136 6.1
D€[0,250]) 500 6.0 2.6 39 14 33 15 040 039 216 16.6 7.3
1000 7.6 37 80 6.0 86 6.2 037 038 230 347 181
2000 7.7 2.6 77 29 154 3.0 038 036 233 375 119
2500 8.2 2.0 74 25 159 27 033 040 222 4.1 9.9
3000 9.0 23 81 23 199 25 041 044 214 S56.1 125
3500 8.8 2.8 86 29 25 30 036 034 226 589 127
Combined 6.2 2.5 58 3.0 13.8 3.0 038 039 224 589 181

* Al times are on VAX 11/750 using FORTRAN Compiler.

Table 7. Results of 48 period problems. (Entries in columns 3-8 represent cumulative percent deviation of total costs of each
heuristic from the WW optimal costs for 100 replications)

Range of Setup to Probability of zero demand Cumulative Maximum %
uniform holding (100 replications) CPU time* deviation
demand cost ratio (sec) from WW
distri- (M=K/h) P=00 P=02 P=04 100 problems
bution
MG M3P MG M3P MG M3P MG M3P WW MG M3pP
24 01% 02% 0.1% 0.0% 0.1% 0.0% 048 053 433 1.9% 0.9%
46 0.5 0.2 04 0.1 03 01 042 054 417 41 41
125 21 1.8 1.7 14 12 10 046 044 397 77 57
250 6.1 33 52 24 39 20 050 047 425 148 8.0
D€(0,250) 500 16.5 4.8 13.8 43 106 3.6 047 049 413 323 144
1000 40 1.8 41 24 206 33 052 060 424 56.2 12.9
2000 48 4.7 43 48 31.9 41 044 059 395 69.4 183
2500 49 55 73 52 339 57 043 047 430 98.9 24.6
3000 50 87 86 72 417 6.6 046 049 4.40 96.8 21.2
3500 62 9.1 1.1 87 51.8 7.7 048 052 430 1229 353
Combined 58 4.0 6.0 4.0 332 s3 047 052 420 1229 353
24 0.1% 00% 0.0% 00% 00% 00% 0.50 062 3.95 1.1% 0.8%
46 0.1 00 01 00 01 00 049 044 417 3.2 0.5
125 06 0.2 05 0.1 03 01 055 051 432 3.2 1.8
. 250 26 1.2 16 09 1.3 05 040 049 426 10.7 44
D€(0,250) 500 59 27 44 17 36 138 043 046 389 159 83
1000 80 6.6 87 6.6 89 6.1 044 052 441 225 153
2000 70 23 9.0 28 160 3.0 047 057 417 450 1.0
2500 71 19 83 24 189 2.9 050 047 398 4727 118
3000 79 23 86 2.7 228 2.7 046 049 422 658 105
3500 76 25 85 26 256 29 040 056 431 688 11.3
Combined 59 31 6.6 3.1 15.0 3.0 046 051 417 688 153

* All times are on VAX 11/750 using FORTRAN Compiler.
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algorithm for 100 replications. The rows designated as “combined” shows the cumulative
percent deviation of each algorithm from WW algorithm for a given D and P combin-
ation. We note here that each entry in the combined row under columns 3-8 represents
the cumulative deviation of 1000 problems.

We can summarize some of the important results of this experimentation as follows:

® Both algorithms MG and M3P require approximately same CPU time, whereas WW
algorithm requires 2 (for 12 period problems) to 5 (for 48 period problems) times
more CPU time. This result was expected since both MG and M3P are O(T)
algorithms whereas WW is an O(7?) algorithm.

® The proposed M3P algorithm is clearly superior to MG algorithm.

® QOut of 24,000 problems solved by each algorithm in the worst case MG deviated from
WW solution by 122.9% whereas M3P deviated from WW solution by 38.9%.

® The cumulative percent deviation of M3P from WW for 1000 problems (for a given T,
D and P combination and for all M values) ranged between 1% (for DE[0,250], T =
12, P = 0.0 and for all M values) and 5.8% (for D€[0,100), T = 24, P = 0.4, and for
all M values). This range was between 2.5% (for DE[0,100}, P = 0.4, T = 12 and for
all M values) and 33.2% (for DE[0,100], P = 0.4, T = 48 and all M values) for the
MG algorithm.

® No dramatic degradation is observed for both algorithms for 12 period problems for
all values of D, P, and M.

® Slight degradation is observed for both algorithms for 24 period problems. This
degradation became more visible for P = 0.4 in both algorithms. However, degrada-
tion was more severe for MG than M3P.

® The degradation of MG became quite serious for 36 period problems with P = 0.4 and
M = 2000. In contrast, no further degradation is observed in M3P.

® The degradation of MG continued for 48 period problems, especially for P = 0.4 and
M = 2000. In contrast, no further degredation is observed in M3P.

4. CONCLUSIONS

A simple heuristic procedure for SIDLS problems is introduced in this paper. The
algorithm compares very favorably with the existing heuristic procedures. The algorithm
is based on the concept of regeneration points in an optimal solution. The algorithm tries
to establish these regeneration points by using a simple rule obtained from a 3-period
analysis.

Since the proposed algorithm is a one-pass algorithm and since foreacht=1,2, .. .,
T a constant number of operations are performed, the complexity of the proposed
algorithm is of O(7).

The proposed algorithm compares quite favorably with Modified Gaithers heuristic.
Out of 24,000 problems solved, in the worst case the deviation of the proposed heuristic
from the optimal Wagner—Whitin solution was 38.9%. The results of the proposed
algorithm indicated that it is robust. No serious degradation occurs in overall perform-
ance with increased P, T, or K/h values.

Acknowledgements—The authors wish to thank the referees for their valuable input. Especially one referee’s
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considerably.
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