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Abstract

This paper presents a novel method for surface profile determination
using multiple sensors. Our approach is based on morphological
processing techniques to fuse the range data from multiple sensor
returns in a manner that directly reveals the target surface profile.
The method has the intrinsic ability of suppressing spurious read-
ings due to noise, crosstalk, and higher-order reflections, as well as
processing multiple reflections informatively. The approach taken
is extremely flexible and robust, in addition to being simple and
straightforward. It can deal with arbitrary numbers and configura-
tions of sensors as well as synthetic arrays. The algorithm is verified
both by simulations and experiments in the laboratory by process-
ing real sonar data obtained from a mobile robot. The results are
compared to those obtained from a more accurate structured-light
system, which is, however, more complex and expensive.

KEY WORDS—sonar sensing, range sensing, morphological
processing, mathematical morphology, surface-profile extrac-
tion, map building, pattern recognition, mobile robots

1. Introduction

Perception of its surroundings is a distinguishing feature of
an intelligent mobile robot. An inexpensive, yet efficient and
reliable approach to perception is to employ multiple simple
sensors coupled with appropriate data processing.

Sonar sensors, robust and inexpensive devices that are ca-
pable of providing accurate range data, have been widely used
in robotics applications. However, because of their large
beamwidth, the angular resolution of sonar sensors is low,
resulting in uncertainty in the location of the object encoun-
tered. Furthermore, data from these sensors are often consid-
ered difficult to interpret due to specular reflections from most
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objects, especially when multiple or higher-order reflections
are involved.

In robotics, most of the research on sonar has concen-
trated on surfaces with fixed or piecewise-constant curvature,
primarily composed of target primitives such as planes, cor-
ners, edges, and cylinders. Brown (1986) described an ana-
lytical approach to surface-curvature extraction that employs
differential geometry. The echoes received from planes, cor-
ners, and edges were first modeled by Kuc and Siegel (1987).
Planes and corners were differentiated by using both am-
plitude and time-of-flight information by Barshan and Kuc
(1990). In addition to planes and corners, edges and cylin-
ders were used as natural beacons for mobile-robot localiza-
tion (Leonard and Durrant-Whyte 1991). Peremans, Aude-
naert, and Van Campenhout (1993) and Kleeman and Kuc
(1995) processed the full echo waveform using matched filter-
ing for more accurate target differentiation. Hong and Klee-
man (1997a, 1997b) treated the classification and localization
of 3-D room features using maximum-likelihood estimation.
The work reported by Ayrulu and Barshan (1998) employed
evidential reasoning to fuse the results of multiple sonar sen-
sors for improved target differentiation. Apart from these
works on target-primitive differentiation, an acoustic imag-
ing system that combines holography with neural networks
for the recognition of 3-D objects was described by Watanabe
and Yoneyama (1992). Kuc (1997) reported differentiation
of O-rings and coins using an adaptive sonar configuration
mounted on the end of a robot arm.

Sonar sensors have also been extensively used for map
building and obstacle avoidance in robotics. The different
geometric approaches in map building basically fall into two
primary categories:feature basedandgrid based. In feature-
based approaches, the geometry of the environment is ex-
tracted from sensor data as the first step in data interpreta-
tion (e.g., edge detection, or straight line or curve fitting to
obstacle boundaries). Important issues to consider are the
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representation of uncertainty, suitability of the selected fea-
ture to the environment and type of data, the reliability of
feature extraction, and the speed with which the model can be
constructed. Crowley employed a feature-based approach to
world modeling with sonar using line segments as features,
and matching the local line-segment map to a global map
(Crowley 1985). Straight lines are extracted from time-of-
flight (TOF) measurements, then matched and incorporated
into a composite modelof the environment. The results are
then Kalman filtered to estimate and update the positions and
orientations of the line segments (Crowley 1989). A different
approach for robot localization in a known environment was
presented by Drumheller (1987). In this method,sonar seg-
mentswere generated from range readings that were pairwise
matched to the environment model by employing the inter-
pretation tree of Grimson and Lozano-Pérez (1984). Possible
interpretations were passed through asonar barrier test. If
multiple interpretations existed after the test, their number
was reduced bymaximum-contact heuristics. Cox used a
positioning system based on matching a local grid map to a
global line-segment map (Cox 1991).

Many researchers have reported the extraction of line seg-
ments from sonar data as being difficult and brittle (Leonard
1990). Experimental results have indicated that straight lines
obtained from TOF measurements do not necessarily match
and/or align with the world model, and may yield many spu-
rious and erroneous line segments. Improving the algorithms
for detecting line segments and including heuristics does not
really solve the problem. Leonard advocates another feature-
based representation using regions of constant depth (RCD)
as features, extracted directly from raw sonar data (Leonard
and Durrant-Whyte 1991; Leonard, Durrant-Whyte, and Cox
1992). Regions of constant depth are circular arcs that are
natural features of sonar readings from specularly reflecting
surfaces, first reported by Kuc and Siegel (1987). Approaches
based on physical model-based reasoning, including classi-
fication of environmental features into target primitives dis-
cussed earlier (Barshan and Kuc 1990; Bozma 1992; Kleeman
and Kuc 1995; Hong and Kleeman 1997a, 1997b; Ayrulu and
Barshan 1998), can also be considered feature-based methods.

An alternative representation is thecertaintyor occupancy
grid. In certainty-grid methods, the environment is dis-
cretized into a 2-D array of cells. A “certainty” measure is
associated with each cell by assigning the cell a single value,
between 0 and 1, representing the probability of that cell be-
ing occupied. For each range reading, the values of the cells
within the sensor-beam profile are updated to reflect current
occupancy. Grid-based methods are particularly useful for ob-
stacle avoidance, since free and occupied regions of space are
explicitly represented. The difficulty of line-segment-based
feature extraction was an important factor in the development
of the grid concept. This representation was first proposed by
Moravec and Elfes (Moravec and Elfes 1986; Moravec 1989),
and further developed by Elfes and his coworkers (Elfes 1987,

1990; Elfes and Matthies 1987). Although grid-based meth-
ods have their limitations in terms of memory and resolution,
they are advantageous in that they do not commit to making
difficult geometric decisions early in the data-interpretation
process. On the other hand, since different target types are not
explicitly represented, it is not as easy to predict what sonar
data will be observed from a given position and to give an ac-
count of individual sonar readings. Typically, when sufficient
sensor data have been collected in the grid cells, the data are
matched or correlated with a global model. This process can
be computationally intensive and time consuming, depending
on the cell resolution of the grid.

Borenstein and Koren (1991) also employed a grid-based
approach to represent sonar data in their work on obstacle
avoidance. The vector-field histogram method used a simpli-
fied grid-update procedure that allowed in-motion sampling
of the ultrasonic range sensors and a very rapid sensor-firing
rate. Initially, a 2-D Cartesian histogram grid was used as
a world model, which was then reduced to a 1-D polar his-
togram centered at the robot. Instead of updating all the cells
in the sensor-beam profile (as in the original occupancy grid of
Elfes), only a single cell, which was along the line of sight and
at the distance corresponding to the range reading, was up-
dated. Sufficient grid coverage was obtained by the extremely
fast firing and update rate, and the most suitable steering di-
rection was selected from the resulting polar map for real-time
obstacle avoidance. A measure for judging map accuracy was
proposed by Raschke and Borenstein (1990), where improved
mapping results were reported with this method.

Gilbreath and Everett (1988), Zelinsky (1988), Becker-
man, and Oblow (1990) have all used variations of the grid-
based approach to construct sonar maps for path planning.
The use of grids has been extended to 3-D sonar-range sens-
ing for under water by Auran and Silven (1996). Pagac,
Nebot, and Durrant-Whyte (1998) examined the problem of
constructing and maintaining a 2-D occupancy-grid map of
a robot environment using evidential reasoning. New sonar
readings were incorporated in the map using Dempster’s rule
of combination. Recently, fuzzy logic has been introduced
to represent uncertainty in map building (Gasos and Martin
1996; Oriolo, Ulivi, and Vendittelli 1997, 1998). Kurz (1996)
partitioned free-space into regions in which a specific situation
could be recognized based on sonar ranging. These regions
were then attached to graph nodes, generating a map of the
environment in the form of a graph representation.

In the work of Wallner and Dillman (1995), a hybrid
method was presented for updating the local model of the
perceivable environment of a mobile robot. Local grids could
be used in dynamic environments, which was not possible
with the earlier grid-based approaches. The method com-
bined the advantages of feature- and grid-based environment-
modeling techniques. More detail on the different approaches
to map building can be found in Borenstein, Everett, and
Feng’s (1996) work.
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The approaches described above are often limited to ele-
mentary target types or simple sensor configurations. On the
other hand, the method presented in this paper is aimed at the
determination of arbitrary surface profiles that are typically
encountered in mines, rough terrain, or under water. The ap-
proach is completely novel in that morphological processing
techniques are applied to sonar data to reconstruct the profile
of anarbitrarily curved surface. It can also be looked at as a
novel method for solving a class of nonlinear reconstruction
(inverse) problems. It is important to emphasize that morpho-
logical processing is employed here to process the sonar map
of the surface being constructed in the robot’s memory, rather
than conventional camera images. The method has sufficient
generality to find application in other ranging systems such
as radar, optical sensing and metrology, remote sensing, and
geophysical exploration.

From a map-building perspective, this method can also
be considered as a hybrid of feature- and grid-based meth-
ods: initially, the environment is discretized into rectangular
grids. After accumulation of a sufficient amount of data, a
curve-fitting procedure is employed to extract the geometry
of the surface under investigation. The present approach is
advantageous over probability-based grid methods since it al-
lows the use of a much finer physical grid. This is because
the approach does not rely on the accumulation of multiple
measurements in each cell. From a different perspective, al-
though it is possible to interpret this method as a spatial voting
scheme where cells are locally supported by their neighbors,
we find it more appropriate to look at it from a nonlinear
signal-reconstruction perspective, where morphological pro-
cessing is used to extract reinforced features in the arc map.

The method is extremely flexible in that it can equally eas-
ily handle arbitrary sensor configurations and orientations as
well as synthetic arrays obtained by moving a small number of
sensors. As mentioned above, a commonly noted disadvan-
tage of sonar sensors is the difficulty associated with handling
spurious readings, crosstalk, and higher-order and multiple re-
flections. The method proposed is capable of effectively sup-
pressing spurious readings, crosstalk, and most higher-order
reflections. Furthermore, it has the intrinsic ability to make
use of echo returns beyond the first one (i.e., multiple reflec-
tions) so that echoes returning from surface features further
away than the nearest one can also be processed informatively.

This paper is organized as follows: in Section 2, basic
principles of sonar sensing are reviewed. The morpholog-
ical processing and curve-fitting algorithms are introduced
and applied in Section 3. After describing the system setup,
experimental results are presented and discussed in Section 4.

2. Basics of Sonar Sensing
The ultrasonic sensors used in this work measure time-of-
flight (TOF), which is the round-trip travel time of the pulse
from the sonar to the object and back to the sonar. Using
the speed of ultrasonic waves in air (c = 343.3 m/sec at

room temperature), the ranger can be easily calculated from
r = ct◦/2, wheret◦ denotes the TOF. Many ultrasonic trans-
ducers operate in this pulse-echo mode (Hauptman 1993).
The transducers can function both as receiver and transmitter.

The objects are assumed to reflect the ultrasonic waves
specularly. This is a reasonable assumption, since most
systems operate below a resonance frequency of 200 kHz
so that the propagating waves have wavelengths well above
several millimeters. Details on the objects that are smaller
than the wavelength cannot be resolved (Brown 1986). The
sonars used in our experimental setup are Polaroid 6500 se-
ries transducers (Polaroid 1997) operating at a resonance fre-
quencyf◦ = 49.4 kHz, which corresponds to a wavelength
of λ = c/f◦ = 6.9 mm at room temperature.

The major limitation of sonar sensors comes from
their large beamwidth. Polaroid transducers have a half-
beamwidth angle ofθ◦ = ± 12.5◦. Although these devices
return accurate range data, they cannot provide direct infor-
mation on the angular position of the object from which the
reflection was obtained. Thus, all that is known is that the
reflection point lies on a circular arc whose radius is deter-
mined byr = ct◦/2, as illustrated in Figure 1a. More gen-
erally, when one sensor transmits and another receives, it is
known that the reflection point lies on the arc of an ellipse
whose focal points are the transmitting and receiving trans-
ducers (Fig. 1b). Notice that the reflecting surface is tangent
to these arcs at the actual point(s) of reflection. The angular
extent of these arcs is determined by the sensitivity regions of
the transducers.

If multiple echoes are detected for the same transmit-
ting/receiving pair, circular or elliptical arcs are constructed
to correspond to each echo. (However, not all systems com-
monly in use are able to detect echoes beyond the first one.)

Most commonly, the large beamwidth of the transducer
is accepted as a device limitation that determines the angu-
lar resolving power of the system. In this naive approach, a
range reading ofr from a transmitting/receiving transducer is
taken to imply that an object lies along the line of sight of the
transducer at the measured range. Consequently, the angular
resolution of the surface-profile measurement is limited by
the rather large beamwidth, which is a major disadvantage.
Our approach, as will be seen, turns this disadvantage into an
advantage. Instead of restricting oneself to an angular reso-
lution equal to the beamwidth by representing the reflection
point as a coarse sample along the line of sight, circular or
elliptical arcs representing the uncertainty of the object loca-
tion are drawn. By combining the information inherent in a
large number of such arcs, angular resolution far exceeding
the beamwidth of the transducer is obtained.

3. Processing of the Sonar Data

Structured configurations such as linear and circular arrays as
well as irregular sensor configurations have been considered.
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Fig. 1. For the same sonar transmitting and receiving, the reflecting point is known to be on the circular arc shown (a). An
elliptical arc is drawn if the wave is transmitted and received by different sensors (b). The intersection of the individual
sensitivity regions serves as a reasonable approximation to the joint-sensitivity region.

(The mobile robot used in the experiments has a circular array
of sonar sensors.)

Figure 2a shows a surface whose profile is to be deter-
mined. Figure 2b shows the circular and elliptical arcs ob-
tained from circular arrays of sensors, which both rotate and
translate to increase the number of arcs generated from the
available number of sensors. Further sonar maps obtained
using a circular configuration are presented in Section 3.3.2.

Notice that although each arc represents considerable un-
certainty as to the angular position of the reflection point,
nevertheless one can almost extract the actual curve shown
in Figure 2a by visually examining the arc map in Figure 2b.
Each arc drawn is expected to be tangential to the surface at
least at one point. At these actual reflection point(s), several
arcs will intersect with small angles at nearby points on the
surface. The many small segments of the arcs superimposed
in this manner create the darker features in Figure 2b, which
tend to cover and reveal the actual surface. The remaining
parts of the arcs, not actually corresponding to any reflec-
tions and simply representing the angular uncertainty of the
sensors, remain more sparse and isolated.

Morphological processing is employed to achieve what is
natural for the human visual perception system: the extraction
of Figure 2a from Figure 2b. Morphological erosion and di-
lation operators are used to weed out the sparse arc segments,
leaving us with the mutually reinforcing segments which will
reveal the original surface.

3.1. Morphological Processing

The main application of morphological operations is in mod-
ifying regions and shapes of images (Low 1991). Therefore,
they are widely used in image processing to accomplish tasks

such as edge detection, enhancement, smoothing, and noise
removal (Dougherty 1992; Myler and Weeks 1993).

In this study, morphological processing is used to eliminate
the sparse and isolated spikes and segments in the sonar arc
map, directly revealing the surface profile.

Erosionanddilation (also referred as Minkowski addition
and subtraction) are the two fundamental morphological op-
erations used to thin or fatten an image, respectively. These
operations are defined according to a structuring element or
template. An example 3× 3-square template is shown in
Figure 3a.

A simple algorithm for erosion is as follows: the template
is shifted over the pixels of the sonar map which take the
value 1 one at a time, and the template’s pixels are compared
with those pixels that overlap with the template (Pitas 1993).
If they are all identical, the central pixel with value 1 will
preserve its value; otherwise, it is set to 0. For the template
shown in Figure 3a, all eight neighbors of the image pixel must
be 1(n = 8), and the image is eroded or shrunk accordingly.
For better insight on the erosion algorithm, an example is
presented in Figures 3b and 3c.

The dilation algorithm is very similar to that for erosion,
but it is used to enlarge the image according to the template.
This time, all eight neighbors of those image pixels which
originally equal 1 are set equal to 1.

In this study, the structuring element for dilation and ero-
sion is chosen to be the 3×3-square template shown in Figure
3a with the central pixel encircled. Since the template is sym-
metric, the image is fattened (dilation) or thinned (erosion) in
all directions by 1 pixel.

The direct use of erosion may eliminate too many points
and result in the loss of information characterizing the sur-
face. For such cases, the compound operations ofopening
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Fig. 2. The original surface (a). The circular sensor array mounted on a mobile robot moves to 20 different locations and
collects data by rotating around its center from 45◦ to 135◦ in 15◦ steps (b). The angles are measured with respect to the
positivex-axis in the counterclockwise direction. The circular array has been shown at the 20 locations at its 90◦ position.

Fig. 3. An erosion example: the template (a), the original image (b), and the image after erosion (c).

andclosingare considered. Opening consists of erosion fol-
lowed by dilation, and vice versa for closing. Opening helps
reduce small extrusions, whereas closing enables one to fill
the small holes in the image (Myler and Weeks 1993). Clos-
ing is applied prior to thinning (described below) in cases
where the points are not closely connected to each other, as
the direct use of thinning may result in the loss of too many
points. Filling the gaps using closing first may prevent this
from happening.

Thinningis a generalization of erosion with a parametern

varying in the range 1≤ n ≤ 8. In this case, it is sufficient
for anyn neighbors of the central image pixel to equal 1 for
that pixel to preserve its value of 1. The flexibility that comes
with this parameter enables one to make more efficient use of
the information contained in the arc map.

In pruning, which is a special case of thinning, at least
one(n = 1) of the neighboring pixels must have the value 1
for the central pixel to remain equal to 1 after the operation.
This operation is used to eliminate isolated points (Dougherty
1992). Thus, pruning and erosion are the two extremes of

thinning withn = 1 andn = 8, respectively.
Since there are many alternatives for morphological pro-

cessing of sonar data, an error measure is introduced as a
success criterion:

e =
√

1
Nk

∑Nk

i=1(mi − yi)2

σy

. (1)

Here,i is the discrete index along thex-direction, andyi is
the discretized function representing the actual surface profile

with varianceσ 2
y = 1

N

∑N
i=1(yi − 1

N

∑
i yi)

2. The total num-
ber of columns isN , whereasNk represents those columns left
with at least one point as a result of some morphological oper-
ation. The vertical position of the median (centermost) point
along theith column of the map matrix ismi (e.g., Fig. 4a).
If there are no points in a particular column, that column is
excluded from the summation. If the number of columns thus
excluded is large; that is, if the morphological operations have
eliminated too many points, the remaining points will not be
sufficient to extract the contour reliably, even ife is small.
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Fig. 4. The result ofn = 3 thinning: e = 0.052,fc = 0.341, tCPU = 1.11 sec (a); the original surface (dashed line) and the
polynomial fit of orderm = 9 (solid line), withE1 = 3.18 cm andE2 = 0.036 (b).

We denote byfc = Nk/N the fraction of columns left with at
least one point at the end of a morphological operation. This
factor must also be taken into account when deciding which
method provides a better result.

Additionally, the CPU times of the algorithms(tCPU) are
measured. These represent the total time the computer takes
to realize the morphological operations starting with the raw
TOF data. Morphological operations are implemented in the
C programming language, and the programs are run on a 200-
MHz Pentium Pro PC.

The result of applyingn = 3 thinning to the sonar arc map
shown in Figure 2b is presented in Figure 4a, and the results of
various morphological operators applied to the same map are
summarized in Table 1. Error measuresE1 andE2, given in
the same table, are defined and are discussed in Section 3.2.
Since simple erosion results in very small values offc, we
have considered thinning with parametern. The errore tends
to decrease with increasingn. However, larger values ofn
tend to result in smaller values offc so that a compromise
is necessary. For the time being, we note that the thinning
parametern allows one to trade off betweene andfc.

3.2. Curve Fitting

As a last step, curve fitting is applied to achieve a compact
representation of the surface profile in the robot’s memory.
Since our aim is to fit the best curve to the points, not neces-
sarily passing through all of them, least-squares optimization
(LSO) is preferred to interpolation. Using LSO, we find the
coefficients of the best-fitting polynomialp(x) of orderm
(which is predetermined) by minimizing

E2
p =

N∑
i=1

Mi∑
j=1

[p(xi) − fij ]2, (2)

whereE2
p is the sum of the squared deviations of the polyno-

mial valuesp(xi) from the data pointsfij , xi is the horizontal
coordinate corresponding to theith column of the map matrix,
andfij is the vertical coordinate of thej th point along theith
column. The indexj runs through theMi points along column
i, andN is the number of columns. IfMi = 0 for a certain
column, the inner summation is not evaluated, and is taken as
zero for that column. The coefficients of the polynomial are
determined by solving the linear equations obtained by set-
ting the partial derivatives equal to zero (Lancaster and Salka-
uskas 1986). Once an acceptable polynomial approximation
is found, the surface can then be represented compactly by
storing only the coefficients of the polynomial. Although
polynomial fitting has been found to be satisfactory in all of
the cases considered, other curve-representation approaches
such as the use of splines might be considered as alternatives
to polynomial fitting.

To assess the overall performance of the method, two fi-
nal error measures are introduced, both comparing the final
polynomial fit with the actual surface:

E1 =
√√√√ 1

N

N∑
i=1

[p(xi) − yi]2, (3)

E2 = E1

σy

. (4)
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Table 1. Results of Various Morphological Operations and Curve Fitting of Order m= 9a

Morphological Operation e fc E1 (cm) E2 tCPU (sec)

Thinning(n = 1: pruning) 0.168 0.924 7.83 0.089 1.15
Thinning(n = 2) 0.074 0.637 4.42 0.050 1.12
Thinning(n = 3) 0.052 0.341 3.18 0.036 1.11
Thinning(n = 4) 0.045 0.160 5.37 0.061 1.10
Thinning(n = 5) 0.012 0.063 16.21 0.183 1.09
Thinning(n = 6) 0.014 0.021 464.30 5.246 1.10
Thinning(n = 7) 0.007 0.003 1915.45 21.641 1.10
Thinning(n = 8: erosion) — 0.000 — — 1.10
Closing and thinning(n = 3) 0.121 0.760 6.72 0.076 7.10
Closing and thinning(n = 4) 0.122 0.641 6.88 0.078 7.09

a. Sincefc = 0 for n = 8 thinning, reflecting the fact that all points are eliminated, the values ofe, E1, andE2 are undefined for this case

The first is a root-mean-square absolute-error measure,
with dimensions of length, which should be interpreted ei-
ther with respect to the pixel size or with respect to the wave-
lengthλ, which serves as a natural reference for the intrinsic
resolving power of the system. The second is a dimensionless
relative-error measure which can be interpreted as the error
relative to the variation of the actual surface.

The curve fitted to the surface map after the thinning shown
in Figure 4a is presented in Figure 4b. Table 1 shows that in-
creasingn improvese but worsensfc, and thatE1 andE2
achieve a minimum at some value ofn (which in this case
happens to occur atn = 3 for both E1 and E2). In the
simulations, where the actual surface is known, it is possi-
ble to choose the optimal value ofn, minimizing E1 or E2.
In real practice this is not possible, so that one must use a
value ofn judged appropriate for the class of surfaces under
investigation.

In the simulations, higher-order reflections1 are ignored,
since they are difficult to model, although they almost always
exist in practice. The key idea of the method is that a large
number of data points coincide with the actual surface (at least
at the tangent points of the arcs), and the data points off the
actual curve are more sparse. Those spurious arcs caused by
higher-order reflections and crosstalk also remain sparse, and
lack reinforcement most of the time. The thinning algorithms
eliminate these spurious arcs together with the sparse arc seg-
ments resulting from the angular uncertainty of the sensors.

3.3. Simulation Results

The approach taken in this paper is very general in that arbi-
trary configurations and orientations of sensors can be handled
equally effectively. We begin by considering the special cases
of linear and circular arrays, which might be typical of delib-
erately designed array structures. Following these, we also
consider arrays where the sensors are situated and oriented

1. A higher-order reflection refers to an echo detected after bouncing off of
object surfaces more than once.

randomly. This not only exemplifies the general case where
the array structure is irregular, but might also have several ap-
plications: for instance, it may correspond to the case where
arcs are accumulated by any number of randomly moving
and rotating sensors, perhaps mounted on mobile robots as in
swarm robot applications. Another potential area of applica-
tion of the random configuration is in array signal processing,
where the individual sensor positions of a regular array are
perturbed by wind or waves.

3.3.1. Linear Arrays

First, we consider arrays of sensors configured linearly. The
first linear array considered has a horizontal extension of 5 m
with 10-cm spacing between the sensors (51 sensors, as shown
in Fig. 5). Given the beamwidth of the sensors(25◦), the
number of arcs collected is relatively small. The situation
gets even worse as the array is brought closer to the surface,
since interaction between an even smaller number of sensor
pairs becomes possible. This is a consequence of the fact that
the angular beamwidth subtends a smaller arc on the surface.
It is interesting to note that whereas narrow beamwidths are
esteemed for their high resolving power in conventional usage
of such sonar sensors, here it would have been desirable to
have sensors with larger beamwidths. This would enable a
greater number of sensor pairs to produce more elliptical arcs,
thereby revealing the surface better and faster. However, since
we restrict ourselves to the parameters of the most widely
available transducer (i.e., the Polaroid), rotating the sensors
is considered instead to make up for their limited beamwidth,
as shown in Figures 6a and 6b.

A further consideration is that in practice the number of
sensors may be limited. One way to overcome this limitation
is to move a smaller array much in the same spirit as syn-
thetic aperture radar (SAR) techniques (Skolnik 1985). How-
ever, this is not completely equivalent to the full array, since
those elliptical arcs corresponding to pairs of sensors not con-
tained within the actually existing array are missing. A further
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Fig. 5. The actual surface, linear sensor array with 10-cm spacing, and sonar arc map are shown for three locations of the
array: the sensor array aty = 50 cm (a); the sensor array aty = 200 cm (b); and the sensor array aty = 350 cm (c).

extension is the combination of such movement and rotation
as was the case in our first example in Figure 2.

We now return to Figures 6a and 6b, where the sensors
are not translated but are only rotated. The results of mor-
phological processing are presented in Figures 7a and 7b, and
the curves fitted to them are shown in the Figures 7c and 7d.
In these and later simulations, the values ofn andm chosen
are those that give the smallest errorE1, unless otherwise
indicated.

3.3.2. Circular Arrays

The circular configuration corresponds to the arrangement of
sonar sensors on the Nomad200 mobile robot in our labora-
tory. Only the five sensors facing the surface are activated,
since the others cannot see the surface. Again, the surface
shown in Figure 2a is considered. In addition to the array
locations in Figure 2b, two further examples are presented
in Figures 8a and 8b. The result of applying morphological
processing and curve fitting to the sonar map in Figure 8b is
presented in Figures 9a and 9b.

3.3.3. Arbitrarily Distributed Sensors

In this section, the locations and the line-of-sight orientations
of the sensors are generated randomly, and do not conform to
any special structure. In Figure 10a, a surface is shown whose
profile is to be determined with such a configuration. Figures
10b and 10c show the sonar arcs obtained using different num-
bers of sensors. The sensor positions and orientations shown
in this figure may correspond to different physical sensors or
to different locations and orientations of a smaller number of
moving sensors. In Figure 11a, the surface features obtained
after applyingn = 2 thinning to the sonar arcs in Figure 10b
are shown. Similarly, applyingn = 5 thinning to the arc map
in Figure 10c yields the result in Figure 11b. The curves fitted
to the surface features extracted are presented in Figures 11c
and 11d.

In Figure 12a, a surface with a sinusoidal profile is shown.
Thinning the arc map given in Figure 12b withn = 6 results

in Figure 12c. The curve-fit result is presented in Figure 12d.

Although structured arrays such as linear or circular ones
are often preferred in theoretical work for their simplicity
and ease of analysis, the method presented here is capable
of equally easily handling arbitrary arrays. In fact, the large
number of simulations we have undertaken indicates that ar-
rays consisting of irregularly located and oriented sensors tend
to yield better results. This seems to result from the fact that
the many different vantage points and orientations of the sen-
sors tend to complement each other better than in the case
of a uniform array. Although the question of optimal com-
plementary sensor placement is a subject for future research,
the results imply that it is preferable to work with irregular or
randomized arrays rather than simple-structured arrays such
as linear or circular ones.

3.3.4. Robustness to Noise

To investigate the robustness of the method to noise, zero-
mean white Gaussian noise was added to the TOF readings.
Figure 13 gives an example of a noisy arc map and the result of
morphological processing. The noise standard deviation (σn)
was varied logarithmically to cover a broad range of noise
levels, shown in Figure 14. As expected, forσn smaller than
1 pixel (1 cm), the performance is approximately the same
as for the noiseless case. This is expected, since the system
has a resolution of 1 pixel, so that the effect of smaller per-
turbations is insignificant. This performance can be further
improved by reducing the pixel size until it becomes compa-
rable to the TOF measurement accuracy, at the cost of greater
computation time.

The error increases significantly as the noise level increases
beyond 1 pixel (Fig. 14). Since the method relies on the mu-
tual reinforcement of several arcs to reveal the surface, larger
amounts of noise are expected to have a destructive effect
on this process by moving the various arc segments out of
their reinforcing positions. Consequently, the arc segments
that lack each other’s mutual reinforcement tend to be elim-
inated by the morphological operations (Fig. 13). A larger
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Fig. 6. Two linear arrays where the sensors are individually rotated from 40◦ to 140◦ in 10◦ steps: an array of 11 sensors with
50-cm spacing (a); and an array of 21 sensors with 25-cm spacing (b).

proportion of the arcs is eliminated, resulting in a loss of in-
formation characterizing the original curve. Nevertheless, the
error-growth rate is not as high as might be suggested by these
arguments, and the method seems to be reasonably robust to
noise. In Figure 14, the performance is comparable to the
noiseless case up toσn = 10 cm. This is partly because the
least-squares polynomial fit helps eliminate some of the noise.

4. Experimental Verification

In this section, the method is verified using the sensor systems
on the Nomad200 mobile robot in our laboratory.

4.1. System Description

The Nomad200 mobile robot, shown in Figure 15, has been
used in the experiments. It is an integrated mobile robot in-
cluding tactile, infrared, sonar, and structured-light sensing
systems, with dimensions of 76.2 cm (height) by 45 cm (di-
ameter). The mechanical system of the robot uses a non-
holonomic, three-servo, three-wheel synchronous drive with
zero gyro radius. The control of the base translation, base
rotation, and turret rotation is performed by three separate
motors. The robot can translate only in the forward and back-
ward directions, but not sideways without rotating first. Servo
control is achieved by a MC68008/ASIC microprocessor sys-
tem. The maximum translational and rotational speeds of the
Nomad200 are 60 cm/sec and 60◦/sec, respectively. The No-
mad200 is powered by an 840-Wh removable battery package
(Nomadic Technologies 1997).

The Nomad200 has an onboard computer for sensor and
motor control and for host-computer communication. The
communication is managed with a radio link and a graphics

interface (server). The robot can be run from a C-language
program either through the server or directly.

We next give a brief description of the two sensor mod-
ules used in the experiments: the Sensus 200 and Sensus 500
systems.

The Sensus 200 Sonar Ranging System consists of 16
sonars that can yield range information from 15 cm to 10.7
m with ±1% accuracy. The sensors are Polaroid 6500 series
transducers (Polaroid 1997), which determine the range by
measuring the TOF. The transducer beamwidth is 25◦. The
carrier frequency of the emitted pulses is 49.4 kHz. The sys-
tem can be interfaced with any type of microcontroller. The
power requirements of the system are 100 mA at 5 V or 12 V
(Nomadic Technologies 1997).

The Sensus 500 Structured-Light System basically consists
of a laser diode (as its light source) and a CCD-array camera.
The laser beam is passed through a cylindrical lens to obtain
planar light. The operating range of the system is from 30.5
cm to 3.05 m. Within this range, the intersection of the plane
of light with the objects in the environment can be detected by
the camera. The range is determined by (laser line striping)
triangulation, characterized by decreasing accuracy with in-
creasing range (Everett 1995). The power requirement of the
system is 2000 mA at 12 V (Nomadic Technologies 1997).

In the experiments, both sonar and structured-light data
are collected from various surfaces constructed in our labora-
tory. The structured-light system is much more expensive and
complex, requiring higher power and sufficient ambient light
for operation. Since it reveals an accurate surface profile, the
surface detected by this system is used as a reference in the
experimental calculation of the errors using sonar data.

To prevent any crosstalk between consecutive pulses,
the sonars should be fired at 62-msec intervals, since the
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Fig. 7. (a) The result of closing andn = 5 thinning applied to Figure 6a:e = 0.276;fc = 0.772; andtCPU = 4.51 sec. (b)
The result ofn = 3 thinning applied to Figure 6b:e = 0.353;fc = 0.864; andtCPU = 1.28 sec. (c) The solid line indicates
the polynomial fit of orderm = 8 to part a; the dashed line shows the actual surface;E1 = 3.03 cm; andE2 = 0.127. (d) The
polynomial fit of orderm = 7 to part b is shown by solid line; the actual surface is indicated by dashed line;E1 = 7.85 cm;
andE2 = 0.329.
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Fig. 8. (a) The robot is located at 70 locations, and the front sonar is oriented at 135◦ with respect to the positivex-axis; no
rotation. (b) The robot rotates at 35 locations, from 45◦ to 135◦ in 15◦ steps.

Fig. 9. The result ofn = 5 thinning applied to Figure 8b:e = 0.050; andfc = 0.464 (a). The polynomial fit of orderm = 11
(solid line) and the actual surface (dashed line);E1 = 3.57 cm, andE2 = 0.040 (b).
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Fig. 10. The original surface (a). The arcs corresponding to the sonar TOF data collected from the surface using 100 sensors
scattered and oriented randomly (not shown) (b). Thex- andy-coordinates of each sensor are independent and uniformly
distributed in the intervals[0, 500] and[0, 360], respectively. The orientation is uniformly distributed in[40◦, 140◦]. 150
sensors are used (not shown) (c).

Fig. 11. (a) The result ofn = 2 thinning applied to Figure 10b:e = 0.296,fc = 0.566, andtCPU = 0.49 sec. (b) The result
of n = 5 thinning applied to Figure 10c:e = 0.133,fc = 0.610, andtCPU = 0.73 sec. (c) The polynomial fit of orderm = 6
to part a (solid line), and the actual surface (dashed line);E1 = 3.92 cm, andE2 = 0.164. (d) The polynomial fit of order
m = 6 to part b (solid line), and the actual surface (dashed line);E1 = 2.30 cm, andE2 = 0.090.
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Fig. 12. The sinusoidal surface with a peak-to-peak amplitude of 30 cm and a period of 125 cm (a). The arcs corresponding
to the sonar TOF data collected from the surface using 400 sensors scattered and oriented randomly (not shown) (b). The
x- andy-coordinates of each sensor are independent, and are uniformly distributed in the intervals[−100, 500] and[0, 160],
respectively. The orientation is uniformly distributed in[40◦, 140◦]. The result ofn = 6 thinning (c):e = 0.245,fc = 0.777,
and tCPU = 0.51 sec. The polynomial fit of orderm = 10 to part c (solid line), and the actual surface (dashed line) (d):
E1 = 2.88 cm, andE2 = 0.283.
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Fig. 13. The 35 sensors with an arbitrary configuration: the arc map obtained from TOF measurements when zero-mean
Gaussian noise withσn = 5 cm is added (a); the fitted curve (solid line) aftern = 3 thinning and the original surface (dashed
line) (b);E1 = 3.28 cm, andE2 = 0.322.

Fig. 14.E1 (a) andE2 (b), as the standard deviation of the noiseσn on the TOF readings is increased.
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maximum range of operation of Polaroid transducers is 10.7
m. In the experiments, the sonars were fired at 40-msec in-
tervals. This prevented much of the crosstalk, and in the
few cases where erroneous readings were obtained due to
crosstalk, these false readings were readily eliminated by the
algorithm. This is another aspect in which the algorithm ex-
hibited its robust character.

4.2. Experimental Results

The sonars on the Nomad200 were in a circular configura-
tion. Since the robot had a limited number of sensors that
could detect the surface, by moving the robot and rotating
its turret, the equivalent of a much larger number of sensors
was created synthetically. First, the robot remained stationary
and collected data by rotating its turret. However, there were
many locations on the surface that could not be detected by the
robot if only the turret rotated. On the contrary, pure trans-
lation alongside the surface generally provided satisfactory
results.

First, several surfaces were constructed in our laboratory
with different curvature and dimensions, using thin cardboard
of height 1.05 m and length 3.65 m. In these experiments, only
the front five sensors were activated.

The structured-light data obtained from one of the card-
board surfaces constructed are presented in Figure 16a. The
sonar data presented in Figure 16b were obtained by trans-
lating the mobile robot horizontally over a distance of 1.5 m
along the liney = 0 and collecting data every 2.5 cm. The
turret was oriented such that both the structured-light and the
front five sonars were directed toward the surface, and it did
not rotate throughout the translational movement.

If the sonar data in Figure 16b are examined, it can be ob-
served that there are many points on the surface that were not
detected by the sonars. Since the surface reflected specularly,
segments of the surface that were relatively perpendicular to
the transducer lines of sight were easily detected, whereas
those segments that were more-or-less aligned with the lines
of sight could not be sensed.2 This is less of a problem when
the surface is relatively smooth and its curvature is small. The
extent to which this becomes a problem depends on the ra-
dius of curvature, as is evident when we consider a second
example (below) with less curvature.

As expected, the structured-light data provided a very ac-
curate surface profile. In the arc map obtained by sonar, there
were some arcs that were not tangent to the actual surface at
any point (e.g., the isolated arcs in the upper-right and upper-
left parts of Fig. 16b). These correspond to spurious data due
to higher-order reflections, readings from other objects in the

2. Since specular reflections involve negligible scattering and mirrorlike re-
flections, the transmitted waveform could be received back at the tranducer
only if some of the rays emerging from the transducer were perpendicular
to the surface. For the case of a separate transmitter and receiver, the sur-
face must be perpendicular to the normal determined by the transmitting and
receiving elements.

Fig. 15. The Nomad200 mobile robot. The ring of sonars can
be seen close to the top rim of the turret, and the structured-
light system is seen pointing rightward on top.

environment, or totally erroneous readings. These points are
readily eliminated by morphological processing (Fig. 17a). If
the final curve in Figure 17b is compared with the structured-
light data (Fig. 17c), it can be observed that a close fit to
the original surface is obtained. The errors in this case were
E1 = 3.59 cm andE2 = 0.263, and the CPU time was
tCPU = 0.27 sec.

Next, a surface with smaller maximum curvature (hence
with larger minimum radius of curvature), shown in Figure
18a, was considered. The results of morphological process-
ing and curve fitting are shown in Figure 19, resulting in
E1 = 1.41 cm,E2 = 0.156, andtCPU = 0.39 sec. It was
indeed observed thatE1 andE2 were reduced significantly
with respect to the previous case, as was also evidenced by
the much better fit seen in Figure 19c.

Several results obtained for this surface are summarized
in Table 2. All polynomials were of degreem = 10. The
minimum estimation errorE1 was not much larger than the
wavelengthλ = 6.9 mm.

It is worth noting that the present approach was aimed to-
wardestimationof a curve, as opposed todetectionof target
primitives. When corners or edges are encountered in the en-
vironment, the method does not fail, but the results slightly
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Fig. 16. The surface profile revealed by the structured-light data (a) and the sonar data (b). The data in both parts were collected
from the surface at every 2.5 cm by translating the mobile robot from(−75, 0) to (75, 0).

Fig. 17. The result of erosion(n = 8) followed by pruning(n = 1) (a); the polynomial fit of orderm = 10 (b); and Figure
17(a) superimposed with part b to demonstrate the fit obtained (c);E1 = 3.59 cm,E2 = 0.263, andtCPU = 0.27 sec.

Table 2. Experimental Results for the Surface Given in Figure 19a for Different Morphological Operations

Morphological Operation E1 (cm) E2 tCPU (sec)

Thinning(n = 1: pruning) 4.98 0.554 0.41
Thinning(n = 2) 4.84 0.539 0.41
Thinning(n = 3) 4.07 0.452 0.40
Thinning(n = 4) 3.28 0.364 0.39
Thinning(n = 5) 2.58 0.287 0.37
Thinning(n = 6) 1.96 0.218 0.36
Thinning(n = 7) 1.63 0.182 0.35
Thinning(n = 8: erosion) 1.42 0.158 0.34
Erosion and pruning(n = 1) 1.41 0.156 0.39
Erosion and thinning(n = 2) 1.50 0.167 0.39
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Fig. 18. The surface profile revealed by the structured-light data (a) and the sonar data (b). The data in both parts were collected
from the surface at every 2.5 cm by translating the mobile robot from(−75, 0) to (75, 0).

Fig. 19. The result of erosion(n = 8) followed by pruning(n = 1) (a); the polynomial fit of orderm = 10 to part a (b); Figure
19a superimposed with part b to demonstrate the fit obtained (c);E1 = 1.41 cm,E2 = 0.156, andtCPU = 0.39 sec.
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deteriorate, since the method exploits neighboring relation-
ships and local continuity (i.e., smoothness). Experimental
results for 60◦ and 90◦ corners and a 90◦ edge are presented
in Figure 20. These objects were made of smooth wood and
were 1.20 m in height. The results indicate that the method
works acceptably in such cases as well, the net effect being
that the vertices of the sharp edges are rounded or smoothed
(i.e., low-pass filtered) into curved edges. This corresponds
to the spatial-frequency resolving power of the system, as
determined by the chosen grid spacing.

Finally, we present experimental results obtained by using
the front three sonars of the Nomad200 robot, following the
walls of the room in Figure 21a. The room comprised smooth
wooden (top and left) and plastered (right) walls, and a win-
dow shade with vertical flaps of 15-cm width (bottom). Some
of the corners of the room were not perfect (e.g., where the
shade and the right wall made a corner).

In Figure 21b, the path of the robot and the resulting arc
map are given. In Figure 21c, the result of morphological
processing is shown. It is clear from this figure that since
spurious arc segments were fairly well eliminated, we can ex-
pect a good polar polynomial fit (or line-segment matching).

In Figure 22, we also show similar results when a cylindri-
cal object of radius 15 cm was added to the room at a distance
of 30 cm from the center of the right wall. It was observed
that despite the potential for many higher-order reflections,
once again a good polar fit could be expected for Figure 22c.

Even though the method was initially developed and
demonstrated for specularly reflecting surfaces, subsequent
tests with Lambertian surfaces of varying roughness indicate
that the method also works for rough surfaces, with errors
slightly increasing with roughness.

Closing operations were not needed in processing the ex-
perimental data, because the points were sufficiently dense.
If this were not the case, one would first apply closing to add
extra points to fill the gaps between the points of the original
map.

4.3. Computational Cost of the Method

The average CPU times are in general on the order of several
seconds, indicating that the method is viable for real-time ap-
plications. These represent the total time the computer took
to realize the morphological operations starting with the raw
TOF data. (The morphological processing was implemented
in C language, and ran on a 200-MHz Pentium Pro PC.) For
comparison, the time it took for an array of 16 sonars to collect
all the TOF data was 16×40 msec= 0.64 sec, which was on
the same order of magnitude as the processing time. It should
be noted that the actual algorithmic processing time was a
small fraction of the CPU time, as most of the CPU time was
consumed by file operations, reads and writes to disk, matrix
allocations, etc. Thus, it seems possible that a dedicated sys-
tem could determine the surface profile even faster, bringing
the computation time below the data-collection time.

Another important factor is memory usage. In the simula-
tions, the objects were relatively large, and a relatively large
number of sensors were employed. This led to memory us-
age ranging between 100–750 kB. In the experiments, the
targets were smaller and relatively close, so that the data files
consumed about 50–100 kB of memory. Although memory
usage depends on the number of sensors used, the size of the
object, and the grid size, these figures are representative of
the memory requirements of the method.

5. Discussion and Conclusions

A novel method is described for determining arbitrary surface
profiles by applying morphological processing techniques to
sonar data. The method is extremely flexible, versatile, and
robust, as well as being simple and straightforward. It can
deal with arbitrary numbers and configurations of sensors in
addition to synthetic arrays obtained by moving a relatively
small number of sensors. Accuracy increases with the num-
ber of sensors used (actual or synthetic), and was observed to
be quite satisfactory. The method is robust in many aspects: it
was seen that it has the inherent ability to eliminate most of the
undesired TOF readings arising from higher-order reflections
as well as the ability to suppress crosstalk when the sensors
are fired at shorter intervals than that nominally required to
avoid crosstalk. In addition, the method can effectively elim-
inate spurious TOF measurements due to noise, and process
multiple echoes informatively.

The processing time is small enough to make real-time ap-
plications feasible. For instance, the system can be used for
continual real-time map-building purposes on a robot navi-
gating in an environment with vertical walls of arbitrary cur-
vature. Two extensions immediately come to mind. First,
it is possible for the robot to continually add to and update
its collection of arcs and reprocess them as it moves, effec-
tively resulting in a synthetic array with more sensors than the
robot actually has. Second, the method can be readily gener-
alized to three-dimensional environments with the arcs being
replaced by spherical or elliptical caps and the morphologi-
cal rules extended to three dimensions. The method was also
found successful in determining the profile of surfaces com-
pletely surrounding the sensing system. In this case, it may
be preferable to reformulate the method in polar or spherical
coordinates.

Although the structured-light system was used mainly as
a reference in this study, the fact that its strengths and weak-
nesses are complementary to the sonar system suggests the
possibility of fusing the output of the two systems. The
structured-light system provides a very accurate surface pro-
file, but introduces errors increasing with range, as a result
of the triangulation technique it employs. On the other hand,
sonars yield better range information over a wider range of
operation, but are less adept at recognizing the contour de-
tails due to their large beamwidth. Despite the possibility of



806 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / August 1999

Fig. 20. In all three parts, the result of curve fitting (solid line) was compared to the original surface profile as revealed by
the structured-light data. Data were collected by rotating the turret of the robot from−30◦ to 30◦, taking 1◦ steps. (a) A 90◦
corner at 80 cm: polynomial fit of orderm = 6, resulting inE1 = 1.90 cm andE2 = 0.217. (b) A 60◦ corner at 80 cm:
polynomial fit of orderm = 10, resulting inE1 = 1.96 cm andE2 = 0.243. (c) A 90◦ edge at 60 cm: polynomial fit of order
m = 8, resulting inE1 = 3.83 cm andE2 = 0.414.

Fig. 21. Structured-light data collected from a room comprised of planar walls, corners, an edge, and a doorway (a); the sonar
arc map for the same room and the robot’s path (b); and the result ofn = 3 thinning (c).

Fig. 22. Structured-light data collected from the room in Figure 21, when a cylinder was added (a); the sonar arc map and the
robot’s path (b); and the result ofn = 3 thinning (c).
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fusion, the method described in this paper may be preferable
in many circumstances, since the structured-light system is
much more expensive and complex than sonar sensors.

Although not fully reported here, a detailed quantitative
study of the performance of different morphological opera-
tions and the dependence of the error on surface curvature,
spatial frequency, distance, and sensor beamwidth can be
found in the work of Ba¸skent (1998).

The essential idea of this paper—the use of multiple-range
sensors combined with morphological processing for the ex-
traction of the surface profile—can also be applied to other
physical modalities of range finding of vastly different scales
and in many different application areas. These may include
radar, underwater sonar, optical sensing and metrology, re-
mote sensing, ocean-surface exploration, geophysical explo-
ration, and acoustic microscopy. Some of these applications
(e.g., geophysical exploration) may involve an inhomoge-
neous and/or anisotropic medium of propagation. It is en-
visioned that the method could be generalized to this case by
constructing broken or nonellipsoidal arcs.
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