

 European J. Industrial Engineering, Vol. 1, No. 2, 2007 223

 Copyright © 2007 Inderscience Enterprises Ltd.

Climbing depth-bounded discrepancy search for
solving hybrid flow shop problems

Abir Ben Hmida*
Université de Toulouse,
LAAS-CNRS,
7 avenue du Colonel Roche,
Toulouse, France

Ecole Polytechnique de Tunisie,
Unité ROI, La Marsa, Tunisia
E-mail: abenhmid@laas.fr
*Corresponding author

Marie-José Huguet and Pierre Lopez
Université de Toulouse,
LAAS-CNRS,
7 avenue du Colonel Roche,
Toulouse, France
E-mail: huguet@laas.fr
E-mail: lopez@laas.fr

Mohamed Haouari
Ecole Polytechnique de Tunisie,
Unité ROI, La Marsa, Tunisia

Faculty of Business Administration
Bilkent University, Ankara, Turkey
E-mail: mohamed.haouari@ept.rnu.tn

Abstract: This paper investigates how to adapt some discrepancy-based search
methods to solve Hybrid Flow Shop (HFS) problems in which each stage
consists of several identical machines operating in parallel. The objective is to
determine a schedule that minimises the makespan. We present here an
adaptation of the Depth-bounded Discrepancy Search (DDS) method to obtain
near-optimal solutions with makespan of high quality. This adaptation for the
HFS contains no redundancy for the search tree expansion. To improve the
solutions of our HFS problem, we propose a local search method, called
Climbing Depth-bounded Discrepancy Search (CDDS), which is a
hybridisation of two existing discrepancy-based methods: DDS and Climbing
Discrepancy Search (CDS). CDDS introduces an intensification process around
promising solutions. These methods are tested on benchmark problems. Results
show that discrepancy methods give promising results and CDDS method gives
the best solutions.
[Received 27 October 2006; Revised 27 February 2007; Accepted
8 March 2007]

 224 A. Ben Hmida et al.

Keywords: scheduling; hybrid flow shop; HFS; discrepancy search
methods; climbing depth-bounded discrepancy search; CDDS; lower bounds;
LBs; heuristics.

Reference to this paper should be made as follows: Ben Hmida, A.,
Huguet, M-J., Lopez, P. and Haouari, M. (2007) ‘Climbing depth-bounded
discrepancy search for solving hybrid flow shop problems’, European J.
Industrial Engineering, Vol. 1, No. 2, pp.223–240.

Biographical notes: Abir Ben Hmida is pursuing her PhD in the University of
Tunis El Manar (Tunisia). Currently, she is pursuing her dissertation on
scheduling problems with resource flexibility (Hybrid Flow Shop, Flexible Job
Shop and Resource-Constrained Project Scheduling). She received her
Bachelor’s Degree (2001) from Monastir University, Tunisia and also received
her MSc from Tunis El Manar University (2004). Her research interests are in
the areas of production planning and scheduling.

Marie-José Huguet is an Assistant Professor in Computer Science at the
University of Toulouse (INSA), France. Her research works deal with
scheduling problems, constraint propagation and tree search procedures. She
teaches in the area of combinatorial optimisation, graphs and algorithms.

Pierre Lopez received an MS and a PhD in Control Engineering from the
University Paul Sabatier, Toulouse, France. During his Doctoral thesis he
developed methods of energy-based reasoning applied to task scheduling.
Since 1992, he has held a research position at the ‘Laboratoire d'Analyse
et d'Architecture des Systèmes’ of the French Center of Scientific Research
(LAAS-CNRS). His research area includes constraint programming and
temporal reasoning under resource constraints applied to scheduling problems.

Mohamed Haouari is a Professor of Operations Research at the Tunisia
Polytechnic School. He received a PhD in Industrial Engineering from the
Ecole Centrale de Paris (France). His research interests include the design and
analysis of exact and approximate solution procedures for combinatorial
optimisation problems, with applications in: scheduling and planning, network
design, airline operational planning, vehicle routing and supply chain
management.

1 Introduction

In this paper, we consider the Hybrid Flow-Shop (HFS) scheduling problem which
can be stated as follows. Consider a set J = {J1, J2, …, JN} of N jobs and a set
E = {1, 2, …, L} of L stages, each job is to be processed in the L stages. Solving the HFS
problem consists in assigning a specific machine to each operation of each job as well as
sequencing all operations assigned to each machine. Machines used at each stage are
identical and let M(s) be the number of machines in the stage s. Successive operations of a
job have to be processed serially through the L stages. Job preemption and job splitting
are not allowed. The objective is to find a schedule which minimises the maximum
completion time, or makespan, defined as the elapsed time from the start of the first
operation of the first job at stage 1 to the completion of the last operation of the last job
at stage L.

 Climbing DDS for solving HFS problems 225

The HFS problem is NP-hard even if it contains two stages and when there is,
at least, more than one machine at a stage (Gupta, 1988). Using popular three-field
notation (see e.g. Hoogeveen et al., 1996), this problem can be denoted by FL(P)||Cmax.
Detailed reviews of the applications and solution procedures of the HFS problems are
provided in Gupta (1992), Kis and Pesch (2005), Lin and Liao (2003) and Moursli and
Pochet (2000).

Most of the literature has considered the case of only two stages. In Lin and Liao
(2003), authors presented a case study in a two-stage HFS with sequence-dependent
setup times and dedicated machines. For more general cases (i.e. with more than two
stages), some authors developed a Branch and Bound (B&B) method for optimising
makespan, which can be used to find optimal solutions of only small-sized problem
instances (Brah and Hunsucker, 1991). Later, this procedure has been improved in
Portmann et al. (1992). In this latter study, several heuristics have been developed to
compute an initial upper bound and a genetic algorithm improves the value of this upper
bound during the search. In order to reduce the search tree, new branching rules are
proposed in Vignier (1997). Another B&B procedure for this problem is proposed by
Carlier and Néron (2000). They proved that their algorithm is more efficient than
previous exact solution procedures.

Different heuristic methods were developed to solve HFS problems. Brah and Loo
(1999) expanded five standard flow shop heuristics to the HFS case and evaluated them
with respect to Santos et al.’s (1995) Lower Bounds (LBs). Recently, a new heuristic
method based on Artificial Immune System (AIS) has been proposed to solve HFS
problems (Engin and Döyen, 2004) and proves its efficiency. Results of AIS algorithm
have been compared with Carlier and Néron’s LBs.

LBs are developed in the literature which can be used to measure the quality of
heuristic solutions when the optimal solution is unknown. Various techniques were
proposed for obtaining LBs. In Lee and Vairaktarakis (1994), authors reduce the HFS
problem to the classical one and the optimal makespan of the latter one is a LB on the
optimal makespan of the original problem. In Linn and Zhang (1999), authors defined
LBs based on the single-stage subproblem relaxation. The aggregation of the work yields
a very rich class of LBs based on computing the total amount of work on some stages or
machines (Guinet et al., 1996). Brah and Hunsucker proposed two bounds for the HFS
problem, one based on machines and another based on jobs (Gupta, 1988). Their LBs
have been improved, later, by Portmann et al. (1992).

The rest of this paper is organised as follows. Section 2 gives an overview of
discrepancy-based search methods. Section 3 presents how to adapt some of these
methods to solve the HFS problem and details the LBs used. Section 4 is dedicated to an
illustrative example to explain the proposed search methods. In Section 5, evaluations of
the proposed methods on usual benchmarks are detailed. Finally, we report some
conclusions and open issues to this work.

2 Discrepancy-based search methods

Discrepancy-based methods are tree search methods developed for solving combinatorial
problems. These methods consider a branching scheme based on the concept of
discrepancy to expand the search tree. This can be viewed as an alternative to the
branching scheme used in a Chronological Backtracking method.

 226 A. Ben Hmida et al.

The primal method, Limited Discrepancy Search (LDS), is instantiated to generate
several variants, among them, Depth-bounded Discrepancy Search (DDS) and Climbing
Discrepancy Search (CDS).

2.1 Limited discrepancy search

The objective of LDS proposed by Harvey (1995) is to provide a tree search method for
supervising the application of some instantiation heuristics (variable and value ordering).
It starts from an initial variable instantiation suggested by a given heuristic and
successively explores branches with increasing discrepancies from it, that is, by changing
the instantiation of some variables. This number of changes corresponds to the number of
discrepancies from the initial instantiation. The method stops when a solution is found
(if such a solution does exist) or when an inconsistency is detected (the tree is entirely
expanded).

The concept of discrepancy was first introduced for binary variables. In this case,
exploring the branch corresponding to the best Boolean value (according a value
ordering) involves no discrepancy while exploring the remaining branch implies one
discrepancy. It was then adapted to suit to non-binary variables in two ways. The first
one considers that choosing the first ranked value (rank 1) leads to 0 discrepancy while
choosing all other ranked values implies 1 discrepancy. In the second way, choosing
value with rank r implies r − 1 discrepancies.

Dealing with a problem defined over N binary variables, an LDS strategy can be
described as shown in Algorithm 1.

Algorithm 1 Limited discrepancy search

k ← 0 -- k is the number of discrepancies

kmax ← N -- N is the number of variables

Sref ← Initial_solution() -- Sref is the reference
solution
while No_Solution() and (k < kmax) do

 k ← k+1
 -- Generate leaves at discrepancy k from Sref
 -- Stop when a solution is found

 Sref’ ← Compute_Leaves(Sref, k)

 Sref ← Sref’
end while

In such a primal implementation, the main drawback of LDS is to be too redundant:
during the search for solutions with k discrepancies, solutions with 0 to k − 1
discrepancies are revisited. To avoid this, Improved LDS method (ILDS) was proposed
by Korf (1996). Another improvement of LDS consists in applying discrepancy first at
the top of the tree to correct early mistakes in the instantiation heuristic; this yields the
DDS method proposed by Walsh (1997). In the DDS algorithm, the generation of leaves
with k discrepancies is limited by a given depth.

All these methods (LDS, ILDS, DDS) lead to a feasible solution, if it exists and are
closely connected to an efficient instantiation heuristic. These methods can be improved

 Climbing DDS for solving HFS problems 227

by adding local constraint propagation such as Forward Checking (Haralick and Elliot,
1980). After each instantiation, Forward Checking suppresses inconsistent values in the
domain of not yet instantiated variables involved in a constraint with the assigned
variable.

2.2 Climbing discrepancy search

CDS is a local search method which adapts the notion of discrepancy to find a good
solution for combinatorial optimisation problems (Milano and Roli, 2002). It starts from
an initial solution suggested by a given heuristic. Then nodes with discrepancy equal to
one are explored first, then those at discrepancy equal to 2 and so on. When a leaf with
an improved value of the objective function is found, the reference solution is updated,
the number of discrepancies is reset to 0 and the process for exploring the neighbourhood
is again restarted (see Algorithm 2).

Algorithm 2 Climbing discrepancy search

k ← 0 -- k is the number of discrepancies

kmax ← N -- N is the number of variables

Sref ← Initial_Solution() -- Sref is the reference
solution
while (k < kmax) do

 k ← k+1
 -- Generate leaves at discrepancy k from Sref

 Sref’ ← Compute_Leaves(Sref, k)
 if Better(Sref’, Sref) then
 -- Update the current solution

 Sref ← Sref’

 k ← 0
 end if
end while

The aim of CDS strategy is not to find only a feasible solution, but rather a high-quality
solution in terms of criterion value. As mentioned by their authors, the CDS method is
close to the Variable Neighbourhood Search (VNS) (Hansen and Mladenovic, 2001).
VNS starts with an initial solution and iteratively explores neighbourhoods more and
more distant from this solution. The exploration of each neighbourhood terminates by
returning the best solution it contains. If this solution improves the current one, it
becomes the reference solution and the process is restarted. The interest of CDS is that
the principle of discrepancy defines neighbourhoods as branches in a search tree. This
leads to structure the local search method to restrict redundancies.

2.3 Example

As an example to illustrate the above exploration processes, let us consider a decision
problem consisting of three binary variables x1, x2, x3. The value ordering heuristic orders
nodes left to right and, by convention, we consider that we descend the search tree to the
left with xi = 0, to the right with xi = 1, ∀ i = 1, 2, 3. A solution is obtained with

 228 A. Ben Hmida et al.

the instantiation of the three variables. Initially the reference solution Sref is reached with
the instantiation [x1 x2 x3] = [0 0 0]. The solutions with 1 discrepancy from Sref are those
with one digit of [x1 x2 x3] equal to 1, for example, [0 0 1]. To graphically represent the
discrepancies that are performed to reach a solution (and also to be more homogeneous
in the explanation of the different strategies), we associate a black circle to an
instantiation which follows the value ordering heuristic whilst an open circle designates a
discrepancy. In particular, following this semantics, Sref is then associated to ●●● and the
solution with one discrepancy on x3 is associated to ●●○. Finally, the value of a given
objective function f (suppose a minimisation problem) is associated to a solution.

Figure 1 illustrates the search trees obtained using LDS (a), DDS (b) and CDS (c).
For all these three methods, the search starts from a reference solution Sref of value fref
obtained with [x1 x2 x3] = [0 0 0]. We see in Figure 1(a) that the eight leaves that are
obtained with LDS correspond to the different solutions that are reachable from ●●●.
In Figure 1(b), the tree contains four leaves only since the depth d is fixed at two and
thus discrepancies can solely be made over x1 and x2. Figure 1(c) illustrates the search
tree obtained with CDS. The first reached solution from Sref is of value f1 with a
corresponding discrepancy equal to 1. Since f1 is greater than fref, then a second solution
of value f2 is generated. Again, its cost is compared with fref and this process is repeated
until a solution of value f4 having an improved cost is obtained. Thus, f4 becomes the new
reference solution. Therefore, the next solution (of criterion value f5) is only at one
discrepancy from this new reference solution.

Figure 1 Three discrepancy search methods: (a) LDS; (b) DDS (d = 2) and (c) CDS

 Climbing DDS for solving HFS problems 229

3 Discrepancy-based methods to solve the hybrid flow shop problem

3.1 Problem variables and constraints

To solve the HFS problem under study, at each stage, we have to select a job, to allocate
a resource for the operation of the selected job and to fix its start time. Since the start
time of each operation will be fixed as soon as possible to reduce the makespan, we only
consider two kinds of variables: job selection and resource allocation. The values of
these two kinds of variables are ordered following a given instantiation heuristic
presented below.

At each stage s, we denote by Xs the job selection variables vector and by As the
resource allocation variables vector. Thus, s

iX corresponds to the ith job in the sequence

and s
iA is its affectation value (1,...,i N∀ = , with N the number of jobs). The domain of

s
iX variable is {J1, J2,…, JN}, 1,...,i N∀ = and 1,...,s L∀ = which corresponds to the

choice of job to be scheduled. The values taken by the s
iX variables have to be all

different. The s
iA domains are {1,…, M(s)}, 1,...,i N∀ = . Moreover, we consider

precedence constraints between two consecutive operations of the same job and duration
constraints for each operation at a given stage.

3.2 Discrepancy for HFS

Despite the fact we have two kinds of variables, we only consider here just one kind of
discrepancy: discrepancy on job selection variables. Indeed, our goal is to improve the
makespan of our solutions and since all resources are identical, discrepancy on allocation
variables cannot improve it. Thus, only the sequence of jobs to be scheduled may have
an impact on the total completion time. More precisely, we aim at finding a good job
order selection on the first stage. Next, stages 2, …, L are sequenced in turn. Each stage
being sequenced using a specified priority rule. Hence a job selection order is defined for
stage 1 and then a complete schedule is obtained through propagation. Clearly, an
alternative strategy would require defining a specific job order selection for each stage.
However, we have performed some preliminary computational experiments and we
found that this latter strategy requires very long computer times without yielding
significant better solutions.

Therefore, doing a discrepancy consists in selecting another job to be scheduled than
the job given by a value ordering heuristic. Job selection variables are N-ary variables.
The number of discrepancy is computed as follows: the first value given by the heuristic
corresponds to 0 discrepancy, all the other values correspond to 1 discrepancy (see
Figure 2).

Figure 2 Discrepancies on job selection (stage s)

 230 A. Ben Hmida et al.

To obtain solutions of k + 1 discrepancies directly from a solution with
k discrepancies (without revisiting solutions with 0,…, k − 1 discrepancies), we consider
the last instantiated variable having the kth discrepancy value and we just have to choose
a remaining variable for the k + 1th discrepancy value.

At each stage s, the maximum number of discrepancy is N − 1 which leads to develop
a tree of N! leaves (all the permutations of jobs are then obtained).

3.3 Instantiation heuristics and propagation

Variable ordering follows a stage-by-stage policy. The exploration strategy firstly
consider job selection variable to choose a job, secondly consider resource allocation
variable to assign the selected job to a resource.

We have two types of value ordering heuristics: the first one ranks jobs whilst the
second one ranks resources.

Type 1: job selection Several priority lists have been used. We first give the priority
to the job with the Earliest Start Time (EST) and in case of equality, we consider three
alternative rules: Smallest Processing Time (SPT) rule on the first stage Longest
Processing Time (LPT) rule on the first stage and Critical Job (CJ) rule. The latter rule
gives the priority to the job with the longest total duration.

We also consider all different combinations between these three heuristics. So, we
give priority to the job having the EST and, in case of equality, we consider SPT
(respectively LPT/CJ) rule on the first stage and LPT or CJ (respectively SPT or CJ/SPT
or LPT) in the second and so on. The idea behind these combinations has the aim to
mitigate the various configurations of machines.

Type 2: assignment of operations to machines The operation of the job chosen by
the heuristic of Type 1, is assigned to the machine such that the operation completes as
soon as possible, that is, following an ECT rule. This latter rule is dynamic; the machine
with the highest priority depends on the machines previously loaded.

After each instantiation of Type 2, we use a Forward Checking constraint
propagation mechanism to update the finishing time of the selected operation and the
starting time of the following operation in the job routing. We also maintain the
availability date of the chosen resource.

3.4 Proposed discrepancy-based methods

In our problem, the initial leaf (with 0 discrepancy) is a solution since we do not
constrain the makespan value. Nevertheless we may use discrepancy principles to
expand the tree search for visiting the neighbourhood of this initial solution. The
only way to stop this exploration is to fix a limit for the CPU time or to reach a
given LB on the makespan. To limit the search tree, one can use the DDS method
which considers in priority variables at the top of the tree (job selection at the
initial stages).

Thus, we first propose an adaptation of the initial DDS method based on the use of
the variable ordering heuristics of types 1 and 2, joined with a computation of LBs at
each node according to Portmann et al.’s (1992) rules (see below).

Furthermore, to improve the search we may consider the CDS method which goes
from an initial solution to a better one and so on. The idea of applying discrepancies
only at the top of the search tree can be also joined with the CDS algorithm to limit the

 Climbing DDS for solving HFS problems 231

tree search expansion. We have then developed a new strategy called CDDS method.
With this new method, one can restrict neighbourhoods to be visited by only using
discrepancies on variables at the top of the tree (see Algorithm 3).

Algorithm 3 Climbing depth-bounded discrepancy search

k ← 0 -- k is the number of discrepancy

kmax ← N -- N is the number of variables

Sref ← Initial_Solution() -- Sref is the reference
solution
while (k < kmax) do

 k ← k+1
 -- Generate leaves at discrepancy k from Sref

 -- and at d-depth value from the top of the tree with 1 ≤
d ≤ k
 Sref’← Compute_Leaves(Sref, k)
 if Better(Sref’, Sref) then
 -- Update the current solution

 Sref ← Sref’

 k ← 0
 end if
end while

Figure 3 shows the tree obtained by CDDS from the examples depicted in Figure 1(b)
and (c).

Figure 3 The CDDS method

We can further enhance the CDDS strategy through the calculation of a LB at each node.
So, we have the idea of introducing the LBs developed in Gupta (1988) and improved in
Portmann et al. (1992) which can be presented as follows (see also Kis and Pesch (2005)
as a survey presentation).

Suppose all jobs are sequenced on stages 1 through L − 1 and a subset Y of jobs is
already scheduled at stage s. Let consider Sch(s)(Y) a partial schedule of jobs Y at stage s
and let C[Sch(s)(Y)]m be the completion time of the partial sequence on machine m.

 232 A. Ben Hmida et al.

Having fixed the schedule of jobs on the first L − 1 stages and that of the jobs in Y at
stage s, the average completion time of all jobs at stage s, ACT[Sch(s)(Y)], can be
computed as follows:

() ()()
() 1

() ()

[Sch ()]
ACT[Sch ()]

sM ss
jm j J Ys m

s s

pC Y
Y

M M
∈ −== +

∑∑
 (1)

The expression of the maximum completion time of jobs in Y at stage s,
MCT[Sch(s)(Y)], is given by

()

() ()

1
MCT Sch () max Sch ()

s

s s

m M
Y C Y m

≤ ≤
⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ (2)

The machine-based LB, LBM, is defined by

{ }

{ }

() (')

' 1

() () ()

() (')

' 1

ACT Sch () min

LBM Sch () if ACT Sch () MCT Sch ()

MCT Sch () min otherwise

Ls s
is si J Y

s s s

Ls s
is si Y

Y p

Y Y Y

Y p

= +∈ −

= +∈

⎧⎪ ⎡ ⎤+⎪ ⎢ ⎥⎣ ⎦⎪⎪⎪⎪⎪⎡ ⎤ ⎡ ⎤ ⎡ ⎤= ≥⎨⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪⎪⎪⎪ ⎡ ⎤+⎪ ⎢ ⎥⎣ ⎦⎪⎪⎩

∑

∑

 (3)

The job-based LB, LBJ, is given by

{ }()

() () (')

1 '

LBJ Sch () min Sch () min
s

L
s s s

ii J Ym M s s

Y C Y m p
∈ −≤ ≤ =

⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤ ⎡ ⎤= + ⎨ ⎬⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎪ ⎪⎪ ⎪⎩ ⎭
∑ (4)

Finally, we obtain the composite LB, LBC, which given by

{ }() () ()LBC Sch () max LBM Sch () , LBJ Sch ()⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
s s sY Y Y (5)

The LBM bound (3) is improved in Portmann et al. (1992). Namely, when
ACT[Sch(s)(Y)] = MCT[Sch(s)(Y)] and J − Y = Ø then it may happen that

(') (')

' 1 ' 1

min min
L L

s s
i ii Y i J Y

s s s s

p p
∈ ∈ −

= + = +

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪>⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
∑ ∑ (6)

holds, for the processing times of the jobs in Y and J − Y are unrelated. In this case LBM
can be improved by the difference of the left and right hand sides of (6). That is, when
J − Y = Ø the improved LB becomes

{ }

{ }

() (')
' 1

() ()

() (')
' 1()

() ()

()

ACT Sch () min

if ACT Sch () MCT Sch ()

MCT Sch () min
LBM Sch ()

if ACT Sch () MCT Sch ()

ACT Sch () max

= +∈ −

= +∈

⎡ ⎤+⎢ ⎥⎣ ⎦
⎡ ⎤ ⎡ ⎤>⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤+⎢ ⎥⎣ ⎦⎡ ⎤ =⎢ ⎥⎣ ⎦ ⎡ ⎤ ⎡ ⎤<⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤+⎢ ⎥⎣ ⎦

∑

∑

Ls s
is si J Y

s s

Ls s
is ss i Y

s s

s

Y p

Y Y

Y p
Y

Y Y

Y { }(') (')
' 1 ' 1

() ()

min , min

if ACT Sch () MCT Sch ()

= + = +∈ − ∈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ ⎡ ⎤ ⎡ ⎤⎪ =⎪ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪⎩⎪

∑ ∑L Ls s
i is s s si J Y i Y

s s

p p

Y Y

(7)

 Climbing DDS for solving HFS problems 233

It is noteworthy that better bounds are available in the literature (see Haouari and Gharbi,
2004). However, we have chosen to implement LBM for the sake of simplicity and
efficiency.

In order to explain the global dynamics of the CDDS method with the computation of
LBs, Section 4 is dedicated to the description of an illustrative example. With this new
method, one can restrict neighbourhoods to be visited by using the evaluation of each
visited node. This evaluation is ensured by the calculation of the LBs (see Algorithm 4).

Algorithm 4 Complete CDDS (with LBs)

k ← 0 -- k is the number of discrepancy
kmax ← N -- N is the number of variables
Sref ← Initial_Solution() -- Sref is the reference solution
UB ← C0 -- C0 is the value of the initial makespan
while (k ≤ kmax) do
 k ← k+1
 -- Generate leaves at discrepancy k from Sref
 -- and at d-depth value from the top of the tree with
1 ≤ d ≤ k
 -- Each node such that LB(node) > UB is pruned
 Sref’ ← Compute_leaves (Sref, k, UB)
 if Better(Sref’, Sref) then
 -- Update the current solution
 Sref ← Sref’
 k ← 0
 end if
end while

4 An illustrative example

Let consider a HFS of dimension 4 × 2 (i.e. 4 jobs and 2 stages) with the first stage
composed of only one machine M1, the second stage of two machines M21 and M22
(Table 1). The allowed depth (d) is fixed at 2.

Table 1 Processing times of a 4 × 2 hybrid flow shop

Jobs Stage 1 Stage 2

1 O11 8 O12 7

2 O21 7 O22 8

3 O31 8 O32 8

4 O41 7 O42 8

Figure 4 shows the initial solution (0-discrepancy) provided by EST-SPT rule (in the first
stage) which gives the following order for the job selection: (J2, J4, J1, J3)
(the lexicographical order is applied for ties breaking). The makespan of the obtained
solution is equal to 38. This latter value of makespan is considered as the first upper
bound value of the problem: UB = 38.

 234 A. Ben Hmida et al.

The neighbourhood associated to 1-discrepancy of this initial solution, as seen in
Figure 5, consists of the following sequences (in bold the job upon which is done the
discrepancy):

d = 1 d = 2

J4, J2, J1, J3

J1, J2, J4, J3

J3, J2, J4, J1

J2, J1, J4, J3

J2, J3, J4, J1

Figure 4 Initial solution

All resource allocation variables take the same value 1
1iA M= because we have only one

machine at the first stage.

Figure 5 The neighbourhood of the initial solution

For each of these subsequences, the next iteration of our algorithm schedules all the jobs
and computes at each node the value of the LB. We use the LBC bound presented in
Section 3. We start by the first sequence {J4, J2, J1, J3} and we calculate the LB at each
node. Consider the subset Y = {J4, J2, J1}, one has:

() (1)22 8ACT Sch () 30; MCT () 22
1

s Y S Y+⎡ ⎤ ⎡ ⎤= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 Climbing DDS for solving HFS problems 235

Thus,

()LBM Sch () 30 8 38s Y⎡ ⎤ = + =⎢ ⎥⎣ ⎦

and

()LBJ Sch () 22 16 38s Y⎡ ⎤ = + =⎢ ⎥⎣ ⎦

Consequently

()LBC Sch () max(38,38) 38s Y⎡ ⎤ = =⎢ ⎥⎣ ⎦

This value of LB is equal to the initial upper bound. So, we prune this branch
(see Figure 6). The same strategy is applied for the second sequence {J1, J2, J4, J3} and
we obtain at the first node LB = 38. So, we stop the exploration of this branch.

Figure 6 Neighbourhood’s exploration

The third sequence{J3, J2, J4, J1} gives a schedule of which the cost is Cmax = 37
(Figure 7). This latter will be considered as the new reference solution and the number of
discrepancy is reset to zero. So, we stop the exploration of the neighbourhood of the
sequence {J2, J4, J1, J3} and we define a new reference solution’s neighbourhood. This
later is shown in Figure 8. The upper bound is updated and it will be equal to 37
(UB=37).

Figure 7 The third sequence solution

 236 A. Ben Hmida et al.

The neighbourhood associated to 1-discrepancy of the (new) reference solution is
composed of the following sequences:

d = 1 d = 2

J2, J3, J4, J1

J4, J3, J2, J1

J1, J3, J2, J4

J3, J4, J2, J1

J3, J1, J2, J4

Figure 8 The neighbourhood of the new reference solution

The calculation of LBs at each node will guide the method for searching in promising
branches (see Figure 9). The search will be stopped when there are no more branches to
explore. The best solution is given in Figure 7 (Cmax = 37).

Figure 9 Neighbourhood’s exploration for the new reference solution

5 Computational experiments

5.1 Test beds

We compare our adaptation of the DDS method and our proposed CDDS method for
solving a set of 77 benchmarks instances which are presented in Carlier and Néron

 Climbing DDS for solving HFS problems 237

(2000) and Néron et al. (2001). In Néron et al. (2001), all the problems have been solved
using a B&B method operating with use of satisfiability tests and time-bound
adjustments. They calculated LBs of the problems and they limited their search within
1800 sec (thus, several instances were not solved to optimality). We also, compare DDS
and CDDS methods with AIS strategy (Engin and Döyen, 2004) which is, to the best of
our knowledge, the most recent and best solution approach developed so far for solving
the HFS.

In our study, we propose to compare our solutions with these LBs. We also run our
algorithm within 1800 sec. If no optimal solution was found within 1800 sec, then the
search is stopped and the best solution is output as the final schedule. The depth of
discrepancy in our methods varies between 3 and 8 from the top of the tree. We have
carried out our tests on a Pentium IV 3.20 GHz with 448 Mo RAM. DDS and CDDS
algorithms have been programmed using C language and run under Windows XP
Professional.

5.2 Results

In Table 2, for all considered problems, we present the best makespan values max(Best)C

obtained by DDS and CDDS methods among the different value ordering heuristics
(SPT, LPT, CJ, SPT-LPT, SPT-CJ, LPT-SPT, LPT-CJ, CJ-SPT, CJ-LPT) and the B&B
algorithm of Néron et al. (2001) within 1800 sec. Deviation from LBs is calculated as
follows:

maxBest LowerBound
%deviation 100

LowerBound

C −
= ×

LBs and deviations from such LBs are given in the last four columns.
In Néron et al. (2001), some of the problems are grouped as hard problems.

Hard problems consist of the c and d types of 10 × 5 and 15 × 5 problems where
for configuration c, machines of the centre are critical and there are two machines
in the central stage, while in configuration d there are three machines at all stages.
The rest of the problems (all a, b types and 10 × 10 c type problems) are identified
as easy problems. In configuration a, the machine of the central stage is critical and
there is only one machine at this stage, while in configuration b the first stage is
critical with only one machine. As given in Table 2, for a and b type problems better
results have been found than for c and d type problems. Indeed, the machine
configurations have an important impact on problems complexity that affects solution
quality (Engin and Döyen, 2004).

Easy problems instances rapidly converge compared with hard ones. CDDS method
takes 5 min in average to obtain all the solutions for easy problems, while DDS method
takes 10 min in average. For hard problems, DDS algorithm takes 30 min and CDDS
methods takes 25 min in average. Both of B&B and AIS algorithms take 4 min in
average when resolving easy problems, while for hard problems B&B algorithm takes
25 min and AIS algorithm takes 10 min. Finally, note that both DDS and CDDS methods
have been evaluated in the same computational environment while execution times of
B&B and AIS are just reported from Néron et al. (2001) and Engin and Döyen (2004),
respectively.

 238 A. Ben Hmida et al.

Table 2 Solutions of test problems (italic problems have been identified as hard problems)

Cmax % deviation (from LBs) Problem

B&B DDS CDDS AIS

LB

B&B DDS CDDS AIS

J10c5a 111.6 111.6 111.6 111.6 111.6 0.0 0.0 0.0 0.0

J10c5b 122.7 122.7 122.7 122.7 122.7 0.0 0.0 0.0 0.0

J10c5c 71.0 72.8 71.0 71.2 71.0 0.0 2.6 0.0 0.2

J10c5d 66.8 68.5 66.8 66.8 66.8 0.0 2.5 0.0 0.0

J10c10a 149.8 150.8 149.8 149.8 149.8 0.0 0.7 0.0 0.0

J10c10b 163.0 163.2 163.0 163.0 163.0 0.0 0.1 0.0 0.0

J10c10c 128.0 118.8 116.5 117.0 108.0 19.1 10.5 6.7 8.8

J15c5a 161.8 162.3 161.8 161.8 161.8 0.0 0.4 0.0 0.0

J15c5b 161.2 161.5 161.2 161.2 161.2 0.0 0.2 0.0 0.0

J15c5c 87.8 92.0 86.2 86.2 85.8 2.7 7.5 0.4 0.4

J15c5d 105.5 102.5 96.7 96.7 88.8 24.8 20.0 11.9 11.9

J15c10a 207.0 207.5 206.8 206.8 206.8 0.1 0.3 0.0 0.0

J15c10b 211.8 211.8 211.8 211.8 211.8 0.0 0.0 0.0 0.0

Average 3.68 3.58 1.62 1.68

In Table 3, we compare the efficiency of the four methods for easy and hard problems.
As it can be noticed from the table, for easy problems, DDS and CDDS algorithms
provide better results than B&B, but for hard problems B&B algorithm and AIS strategy
are better than DDS algorithm. Moreover, we observe that CDDS performs remarkably
well on both problem classes since it yields better solutions than those provided by B&B
and AIS methods.

Table 3 Relative efficiency of the four methods

Method Easy problems Hard problems

 % deviation % deviation

B&B 2.21 6.88

AIS 1.01 3.12

DDS 1.42 8.01

CDDS 0.96 3.06

We found that both CDDS and AIS methods give optimal solutions for 61 instances out
of 75. Moreover, for the remaining 14 instances, CDDS outperforms AIS for 3 instances,
while AIS outperforms CDDS for only one instance.

If all problems are considered, the average deviation from LBs for DDS algorithm is
3.58%, while the average deviation of B&B is 3.68% and for AIS is 1.68%. For CDDS
the average is only of 1.63%.

Table 4 presents a comparison between the value ordering heuristics efficiency. For
both DDS and CDDS methods, the third rule (CJ) gives always better solutions in a fixed
running time.

 Climbing DDS for solving HFS problems 239

Table 4 Efficiency of value ordering heuristics

Heuristics SPT LPT CJ SPT-LPT SPT-CJ LPT-SPT LPT-CJ CJ-SPT CJ-LPT

% deviation 4.00 4.93 2.30 2.85 3.23 2.85 3.10 4.00 3.01

Our discrepancy-based methods (DDS and CDDS) prove their contributions in terms of
improvement of the initial makespan. Within 1800 sec of CPU time, the deviation of the
initial makespan has been reduced with DDS algorithm by nearly 14.7% for hard
problems and 9.7% for easy ones. If we consider all problems, the initial makespan has
been reduced with DDS algorithm by nearly 10.4%. For CDDS, the initial makespan
reduction is about 12%. This percentage is distributed as 20.2% for hard problems and
8.25% for easy ones.

Enhancing CDDS with LBs computation has an important impact. Thus, CDDS
method without integration of LBs has been developed and presented in a previous work
(Ben Hmida et al., 2006) and its percentage deviation value from LBs was 2.32%.

6 Conclusion and future research

In this paper, two discrepancy-based methods are presented to solve HFS problems with
minimisation of makespan. The first one is an adaptation of DDS to suit to the problem
under study. The second one, CDDS, combines both CDS and DDS. The two methods
are based on instantiation heuristics which guide the exploration process towards some
relevant decision points able to reduce the makespan. These methods include several
interesting features, such as constraint propagation and LBs computations to prune the
search tree, that significantly improve the efficiency of the basic approach.
Computational results attest to the efficacy of the proposed approaches. In particular,
CDDS outperformed the best existing methods.

Future work needs to be focused on improving the efficiency of the CDDS method.
In particular, we expect that the use of the energetic reasoning (Lopez and Esquirol,
1996) would significantly reduce the CPU time. But, this needs to be investigated
thoroughly. Moreover, a second research avenue that requires investigation is the
implementation of the CDDS method for other complex scheduling problems.
In particular, we have already obtained promising results with CDDS for solving the
flexible job shop problem.

References

Ben Hmida, A., Huguet, M-J., Lopez, P. and Haouari, M. (2006) ‘Adaptation of discrepancy-based
methods for solving hybrid flow shop problems’, Proceedings of IEEE-ICSSSM’06,
pp.1120–1125.

Brah, S.A. and Hunsucker, J.L. (1991) ‘Branch and Bound algorithm for the flow shop with
multiprocessors’, European Journal of Operational Research, Vol. 51, pp.88–89.

Brah, S.A. and Loo, L.L. (1999) ‘Heuristics for scheduling in a flow shop with multiple
processors’, European Journal of Operational Research, Vol. 113, pp.113–122.

Carlier, J. and Néron, E. (2000) ‘An exact method for solving the multiprocessor flowshop’,
RAIRO-Operations Research, Vol. 34, pp.1–25.

 240 A. Ben Hmida et al.

Engin, O. and Döyen, A. (2004) ‘A new approach to solve hybrid flow shop scheduling problems
by artificial immune system’, Future Generation Computer Systems, Vol. 20, pp.1083–1095.

Guinet, A., Solomon, M., Kedia, P.K. and Dussauchoy, A. (1996) ‘A computational study of
heuristics for two-stage flexible flowshops’, International Journal of Production Research,
Vol. 34, pp.1399–1415.

Gupta, J.N.D. (1988) ‘Two-stage hybrid flowshop scheduling problem’, Journal of the Operations
Research Society, Vol. 39, pp.359–364.

Gupta, J.N.D. (1992) ‘Hybrid flowshop scheduling problems’, Production and Operational
Management Society Annual Meeting.

Hansen, P. and Mladenovic, N. (2001) ‘Variable neighborhood search: principles and applications’,
European Journal of Operational Research, Vol. 130, pp.449–467.

Haouari, M. and Gharbi, A. (2004) ‘Lower bounds for scheduling on identical parallel machines
with heads and tails’, Annals of Operations Research, Vol. 129, pp.187–204.

Haralick, R. and Elliot, G. (1980) ‘Increasing tree search efficiency for constraint satisfaction
problems’, Artificial Intelligence, Vol. 14, pp.263–313.

Harvey, W.D. (1995) ‘Nonsystematic backtracking search’, PhD Thesis, CIRL, University of
Oregon.

Hoogeveen, J.A., Lenstra, J.K. and Veltman, B. (1996) ‘Preemptive scheduling in a two-stage
multiprocessor flowshop is NP-hard’, European Journal of Operational Research, Vol. 89,
pp.172–175.

Kis, T. and Pesch, E. (2005) ‘A review of exact solution methods for the non-preemptive
multiprocessor flowshop problem’, European Journal of Operational Research, Vol. 164,
pp.592–608.

Korf, R.E. (1996) ‘Improved limited discrepancy search’, Proceedings of AAAI-96, pp.286–291.

Lee, C.Y. and Vairaktarakis, G.L. (1994) ‘Minimizing makespan in hybrid flow-shop’, Operations
Research Letters, Vol. 16, pp.149–158.

Lin, H.T. and Liao, C.J. (2003) ‘A case study in a two-stage hybrid flow shop with setup time and
dedicated machines’, International Journal of Production Economics, Vol. 86, pp.133–143.

Linn, R. and Zhang, W. (1999) ‘Hybrid flow shop scheduling: a survey’, Computers and Industrial
Engineering, Vol. 37, pp.57–61.

Lopez, P. and Esquirol, P. (1996) ‘Consistency enforcing in scheduling: a general formulation
based on energetic reasoning’, Proceedings of PMS’96, pp.155–158.

Milano, M. and Roli, A. (2002) ‘On the relation between complete and incomplete search:
an informal discussion’, Proceedings of CPAIOR’02, pp.237–250.

Moursli, O. and Pochet, Y. (2000) ‘A branch and bound algorithm for the hybrid flow shop’,
International Journal of Production Economics, Vol. 64, pp.113–125.

Néron, E., Baptiste, P. and Gupta, J.N.D. (2001) ‘Solving an hybrid flow shop problem using
energetic reasoning and global operations’, Omega, Vol. 29, pp.501–511.

Portmann, M-C., Vignier, A., Dardihac, D. and Dezalay, D. (1992) ‘Branch and bound crossed
with G.A. to solve hybrid flow shops’, International Journal of Production Economics,
Vol. 43, pp.27–137.

Santos, D.L., Hunsucker, J.L. and Deal, D.E. (1995) ‘Global lower bounds for flow shops with
multiple processors’, European Journal of Operational Research, Vol. 80, pp.112–120.

Vignier, A. (1997) ‘Contribution à la résolution des problèmes d’ordonnancement de type
monogamme, multimachines (flow shop hybride)’, PhD Thesis, University of Tours, France
(in French).

Walsh, T. (1997) ‘Depth-bounded discrepancy search’, Proceedings of IJCAI-97, pp.1388–1395.

