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Abstract
Minimal models of chain complexes associated with free torus actions on spaces have been
extensively studied in the literature. In this paper, we discuss these constructions using the
language of operads. The main goal of this paper is to define a new Koszul operad that has
projections onto several of the operads used in these minimal model constructions.

Keywords Rank conjecture · Operads · Minimal Hirsch–Brown model
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1 Introduction

Let k be an algebraically closed field of characteristic 2 and G an elementary abelian 2-
group of rank r . Considering the chain complexes associated with freeG-spaces, one obtains
an algebraic conjecture stronger than the Halperin–Carlsson rank conjecture about 2-torus
actions (G-actions). For any chain complex C of k-modules, we denote the homology of C
by H(C).

Conjecture 1 If C is a finite chain complex of free kG-modules with H(C) �= 0, then
dimk H(C) ≥ 2r .

Considering the polynomial ring S := k[x1, . . . , xr ], an equivalent algebraic conjecture is
given by Proposition I I .1 and I I .2 in [5]. We say (M, ∂) is a differential graded S-module
(dg-S-module) if M is an S-module, and ∂ is an S-linear endomorphism of M that has degree
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−1 and satisfies ∂2 = 0. Moreover, we say a dg-S-module is free if its underlying graded
S-module is free.

Conjecture 2 [6, Conjecture II.8] Let S = k[x1, . . . , xr ] be the polynomial algebra in r
variables of degree −1 with coefficients in an algebraically closed field of characteristic
2. If (M, ∂) is a free, finitely generated dg-S-module with 0 < dimk H(M) < ∞, then
rankS M ≥ 2r .

In the literature, bounds for the dimension of H(C) in Conjecture 1 and for the rank of
M in Conjecture 2 are obtained by studying minimal models of C and M . In [7], Carlsson
showed the existence of minimal models of certain free differential graded S-modules. Here
we give an explicit construction of these minimal models using operad theory. Again using
operads we construct minimal models of chain complexes of Borel constructions of spaces
with a freeG-action. These minimal models are equivalent to minimal Hirsch-Brownmodels
given by Allday-Puppe [1].

Note that Conjecture 1 holds if we further assume that the Euler characteristic of C is
non-zero. More precisely,

χ(C) = |G| χ(k ⊗kG C) = χ(H(C)) =
∑

i≥0

(−1)i dimk Hi (C) �= 0.

Hence the dimension of total homology dimk H(C) ≥ |G| = 2r . Due to the equivalence of
conjectures one could ask if a similar result holds for Conjecture 2. We prove the conjecture
in the following case:

Theorem 1 Conjecture 2 holds if every integer n, m have the same parity whenever
Hn(M) �= 0 and Hm(M) �= 0. In fact, χ(H(M)) := ∑

i≥0
(−1)i dimk Hi (M) �= 0 implies

Conjecture 2.

When the characteristic of the field is odd, a result analogous to Theorem 1 is proved by
Walker [15], [16].

Puppe [14] asserted that, given a certain multiplicative structure on the minimal Hirsch-
Brownmodel for the equivariant cohomology of a spacewith a free torus action, these bounds
can be tightened to verify the Halperin–Carlsson rank conjecture. The main goal of this paper
is to put a multiplicative structure on minimal Hirsch-Brown models of G-spaces. Note that
the group algebra kG is an exterior algebra since k is a characteristic 2 field. First we consider
the group algebra kG and the polynomial algebra S = k[x1, . . . , xr ] as algebraic operads
where all non-trivial operations are unary operations. Then to put multiplicative structures
on our minimal models we define a new Koszul operad.

Theorem 2 Let k be an algebraically closed field of characteristic 2 and G an elementary
abelian 2-group of rank r. Then there exists an algebraic operad P in the category of
differential graded modules over k such that P has the following properties:

(i) The unary operations ofP with the composition ofP considered as multiplication is
isomorphic to the group algebra kG;

(ii) P has an associative binary operation μ;
(iii) P is a Koszul operad;
(iv) The Koszul dual operad of P has projections onto the associative operad As and the

polynomial algebra S = k[x1, . . . , xr ] where we consider S as an operad whose all
nontrivial operations are unary;
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(v) For everyG-space X the singular cochain complexC•(X; k)hasaP-algebra structure
whose restriction to unary operations ofP gives the natural kG-module structure on
C•(X; k) and the action of μ is same as the dual of the Alexander-Withney diagonal
map.

Let P be the operad in Theorem 2 and ι : P → ΩP be the universal twisting mor-
phism. Given a space X that admits a free G-action, we will consider the bar construction
Bι H(C•(X; k)) as the minimal Hirsch-Brown model of X ; see Sect. 4.2.

Throughout this paper, k is an algebraically closed field of characteristic 2 and all
(co)operads are non-symmetric (co)operads in the category of dg-modules over k. In Sect. 2,
we recall Puppe’s method to find lower bounds on total homology dimension of complexes
with a free G-action and give an outline of our method. In Sect. 3, we recall definitions,
notation, and well-known results about algebraic (co)operads. In Sect. 4, we discuss con-
structions of minimal models and prove Theorem 1. In Sect. 5, we prove the our main result
Theorem 2 and its applications.

2 The outline of an application of Theorem 2

Assume that r is a positive integer and m is a nonnegative integer. Let S denote the poly-
nomial algebra k[x1, . . . , xr ] with deg(xi ) = −1 and Λm denote the exterior algebra
Λ(z(m)

1 , . . . , z(m)
r ) with deg(z(m)

i ) = −m for all i in {1, . . . , r}. Note that according to our
degree conventions Puppe [14] defines the Koszul complex Kr (m) corresponding to the regu-
lar sequence (xm+1

1 , . . . , xm+1
r ) in S as the differential graded algebra Kr (m) = (

S⊗̃Λm, ∂
)
,

where the differential ∂ determined by ∂(xi ⊗ 1) = 0 and ∂(1⊗ z(m)
i ) = xm+1

i . Then Puppe
considers dg-S-module morphisms γ : Kr (m) → Kr (0) which lift the projection

ε : H(Kr (m)) ∼= S/(xm+1
1 , . . . , xm+1

r ) −→ S/(x1, . . . , xr ) ∼= H(Kr (0)).

Puppe denotes the rank of γ by rank(γ ) which is the rank of the localization of F ⊗γ where
F is the field of fraction of S. In [14, Lemma 2.1.a], Puppe shows that if γ also preserves
the multiplicative structure, then rank(γ ) = 2r . In [14, Lemma 2.1.b], Puppe asserts that
rank(γ ) ≥ 2r without the assumption about the multiplicative structure.

Let G be an elementary abelian 2-group of rank r generated by g1, g2, . . . , gr . Puppe
defined a minimal Hirsch-Brown model M = S⊗̃H•(X; k) associated to a free action of G
on X , where X is a finite dimensional CW -complex. Then in [14, Proposition 4.1], Puppe
showed that there exists a map α : Kr (m) → M that induces a surjective map on the zeroth
homology of these complexes for large enoughm. Moreover, in [14, Proposition 4.2], Puppe
showed that there exists a map β : M → Kr (0) that induces a surjective map on the zeroth
homology. Now notice that the rank of γ = β ◦ α is less than or equal to the total homology
dimension

∑∞
i=0 dimk Hi (X; k) of X . Hence Puppe used this idea to put lower bounds on

the total cohomology dimension of complexes with a free G-action.
We will use an idea similar to Puppe’s idea discussed above. In our setting Koszul com-

plexes are dual of the ones considered by Puppe. Now we give the definitions in our setting.
Assume G acts on the product of r equidimensional spheres Sm × . . . × S

m such that gi acts
on the i th sphere with the antipodal action. Then we will denote the minimal Hirsch-Brown
model Bι H(C•(X; k)) associated to this action by K̃r (m) and call it a Koszul complex for
our operad in Theorem 2. We use this terminology because when the above bar construction
is done using the suboperad ofP generated by its unary operations, we obtain the usual dual
Koszul complex S∗⊗̃Λm which we still denote by Kr (m) by abuse of notation. Hence from
now on,
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Kr (m) = (
S∗⊗̃Λm, ∂

)
,

where the differential ∂ determined by ∂(xi ⊗ 1) = 0 and

∂(xni ⊗ z(m)
i ) =

{
0 if n < m + 1
xn−m−1
i if n ≥ m + 1.

For the rest of the paper im will denote the natural inclusion ofS0×. . .×S
0 inSm×. . .×S

m

where each S0 is sent to the south and north poles of the corresponding Sm . This continuous
function induces coalgebra morphisms i∗m : K̃r (m) → K̃r (0) and i∗m : Kr (m) → Kr (0).
Hence, in [14, Lemma 2.1.a] and [14, Lemma 2.1.b], Puppe gave lower bounds on the rank
of certain maps between Koszul complexes Kr (m) and Kr (0) which induces the same map
as im does between the homology of these complexes. Puppe in [14, Corollary 5.2] asserted
that if the minimal Hirsch-Brown model of a finite dimensional space X with a free G-action
carries differential graded algebra structure, then

∑∞
i=0 dimk Hi (X; k) ≥ 2r . Note that the

multiplicative structure is not considered in [14, Proposition 4.1] and [14, Proposition 4.2].
However, in the proof of [14, Corollary 5.2] one needs extensions of [14, Proposition 4.1 and
4.2] to differential graded algebras. More precisely, the morphism α must be constructed in
a way compatible with the multiplicative structure. However, the almost random selections
of images of α in the homological proofs given in the literature for these results do not take
the multiplicative structure into consideration. For example, some selections of α fail for the
associated minimal model of the free Z/2Z × Z/2Z action on RP3 induced by quotienting
out the center of the free action of Q8 on Sp(1) ∼= S

3 by the left multiplication. Here we
partially fill the gap by the following Proposition.

Proposition 1 Let G be an elementary abelian 2-group and act freely on a finite-dimensional
simplicial set X. Assume P is the operad in Theorem 2. Let M̃ denote the minimal Hirsch-
Brownmodel of X; in other words M̃ = Bι(H(C•(X; k))). Then there exists a positive integer
m and P¡-coalgebra morphisms α, β such that the composition

K̃r (m)
α→ M̃

β→ K̃r (0),

sends Kr (m) to Kr (0) and which induces the same map from H(Kr (m)) to H(Kr (0)) as i∗m
does.

However, using the above proposition we cannot confirm the main result of Puppe using [14,
Lemma 2.1.a] as our multiplicative structure does not have all the properties Puppe used in
the proof of [14, Lemma 2.1.a]. On the other hand [14, Lemma 2.1.b] is proved by only using
the differential graded S-module structure on these Koszul complexes. Hence to improve the
results about bounds for the total dimension of the cohomology of a space that admits a free
G-action, it is enough to consider maps between K̃r (m) and K̃r (0) and prove analogs of [14,
Lemma 2.1.b]. The following proposition is similar to [14, Lemma 2.1.b] but proved using
our setting where we fix an isomorphism K̃r (m) ∼= P¡ ◦Λm with the composition ◦ defined
as in [11, Section 5.9.1].

Proposition 2 Let P denote the operad in Theorem 2, m be a positive integer and γ :
Kr (m) → Kr (0) be a S∗-coalgebra morphism which induces the same map from H(Kr (m))

to H(Kr (0)) as i∗m does. Assume γ extends to a P¡-coalgebra morphism γ̃ : K̃r (m) −→
K̃r (0) whose restriction to P¡ ◦ 1 is induced by the identity on P¡. Then the linear map
F ⊗S γ ∗ has rank at least 2r where F denotes the field of fractions of the ring S.

As discussed above Proposition 2 can be used to give lower bounds for the total homology
of the finite dimensional complexes with a free G-action.
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3 Definitions and Notation

We will take most of definitions and notation from [11] and [9].

3.1 Free (co)Operads

A dg-N-module M is a sequence of differential graded k-modules
M = (M(0), M(1), M(2), . . . ).

A free operad over the dg-N-module M is an operadT (M) together with a dg-N-module
morphism i : M → T (M) such that ifP is an operad and f : M → P is an dg-N-module
morphism then there exists a unique operad morphism f̃ : T (M) → P with f = f̃ ◦ i .

There exists a free operad T (M) over every dg-N-module M , see [11, Section 5.9.6]. Let
n(v) denote the number of leaves of a vertex v in a tree and τ(M) be the tensor product of
M(n(v))’s as v ranges over the vertices of a tree τ . As a dg-N-module, T (M) is the direct
sum of τ(M)’s where τ ranges over all planar trees. The operad composition of T (M) is
given by grafting trees. Hence, as an operad T (M) is generated by BT (M), that is,

{
b

∣∣∣ b ∈ B0

} ⋃
{

b
∣∣∣ b ∈ B1

}
⋃

{
b

∣∣∣ b ∈ B2

}
⋃

. . .

whereB j is a basis forM( j) as a k-vector space. The dg-N-moduleT (M) is always equipped
with an extra grading, called the weight-grading. If M itself has no such extra grading, then
the trees inT (M)with exactly n-vertices are said to have weight-grading n. If M already has
weight-grading, then the sum of weight-grades of elements in M used to label the vertices of
a tree in T (M) is the weight-grade of that tree. Hence we have a decomposition of T (M)

indexed by the weight-grading

T (M) =
⊕

n≥0

T (M)(n) ,

where each T (M)(n) is a dg-N-module.
Dually, we let T c(M) denote the cofree cooperad over M . T c(M) is isomorphic to

T (M) as a weight-graded k-vector space, while as a cooperadT c(M) is cogenerated by the
generators of T (M) mentioned above.

Let sM denote the dg-N-module M whose degree is shifted by 1, i.e., sMi (n) = Mi−1(n)

for n ∈ N and i ∈ Z. More generally, for any integer m, smM denotes the dg-N-module M
whose degree is shifted by m.

3.2 Quadratic (co)Operads

A pair (M, R) is called an operadic quadratic data pair if M is a dg-N-module and R is a
sub-dg-N-module of T (M)(2). The quadratic operad associated to the quadratic data pair
(M, R) is

P(M, R) := T (M)/(R),

where (R) is the operatic ideal generated by R ⊆ T (M)(2). In other words,P(M, R) is the
largest quotient operad P of T (M) for which the composite

R � T (M)(2) � T (M) � P

is zero.
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Dually, the quadratic cooperad C (M, R) associated to the quadratic data pair (M, R) is
the largest subcooperad of T c(M) for which the composite

C � T c(M) � T c(M)(2) � T c(M)(2)/R

is zero, see [11, Section 7.1] and [3, Section 6.3.1].
The Koszul dual cooperad of a quadratic operad P = P(M, R) is

P¡ := C (sM, s2R),

where s2R is the image of R under the natural map T (M)(2) → T (sM)(2). Similarly, the
Koszul dual operad of a quadratic cooperad C = C (M, R) is

C ¡ := P(s−1M, s−2R),

where s−2R is the image of R under the map T (M)(2) → T (s−1M)(2) induced by the
natural degree 1 dg-N-module morphism M to sM , see [11, Section 7.4.7].

3.3 The (co)Bar Construction

For an operad P , let P be the cokernel of the unit map I → P . If P = I ⊕ P as dg-
N-modules, the bar construction BP of P is the dg-cooperad T c( sP) with differential
d1 + d2, where d1 and d2 are as in [11, Section 6.5.1].

Similarly, for a cooperad C , let C denote the kernel of the counit map C → I . If C =
I ⊕ C as dg-N-modules, the cobar construction ΩC of C is the dg-operad T ( s−1 C ) with
differential d1 + d2, where d1 and d2 are as in [11, Section 6.5.2].

Let (M, R) be an operatic quadratic data pair. The quadratic operad P = P(M, R)

is Koszul if the natural dg-cooperad morphism P¡ → BP is a quasi-isomorphism of dg-
cooperads, see [11, Theorem 7.4.2]. WhenP is Koszul, we define the operadP∞ := ΩP¡.

3.4 (Co)Algebras Over (co)Operads

Let P be an operad. A P-algebra is a differential graded k-module A together with an
operad morphism P → EndA, where EndA(n) = Hom(A⊗n, A). Dually, for a cooperad
C , a C -coalgebra is a differential graded k-module C together with an operad morphism
C ∗ → coEndC , where C ∗ is the dual of C and coEndC (n) = Hom(C,C⊗n). For differential
graded k-module C , we define an operad morphism

ψC : coEndC → EndC∗

which sends α : C → C⊗n to the composition (C∗)⊗n iC→ (C⊗n)∗ α∗→ C∗ where iC is
defined by

iC ( f1 ⊗ · · · ⊗ fn)(v1 ⊗ · · · ⊗ vn) = f1(v1) . . . fn(vn)

for every f1, . . . , fn ∈ C∗ and v1, . . . , vn in C . Given a dg-C -coalgebra C , we get dg-C ∗-
algebra structure on C∗ by the composition C → coEndC

ψC→ EndC∗ .
A cooperad C is called coaugmented if its counit map has a right inverse. Let C be a

coalgebra over coaugmented cooperad C . For x ∈ C , we define x1, x2, . . . by

ΔC (x) = (x1, x2, . . .) ∈
∏

n≥1

(
C (n) ⊗ C⊗n) ,
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whereΔC denotes the structure map of the coalgebraC . We filter the coalgebraC by FrC :=
{x ∈ C | xi = 0 for any i > r} for r ≥ 1. If C = ⋃

r≥1 FrC , then C is conilpotent, see [11,
Section 5.8.4].

Let C be a dg-cooperad,P a dg-operad, and ϕ : C → P a twisting morphism as in [11,
Section 11.1.1]. The bar construction Bϕ is a functor from the category of dg-P-algebras to
the category of conilpotent dg-C -coalgebras, defined on a dg-P-algebra A by

Bϕ A := (C ◦ϕ P) ◦P A,

where ◦ϕ denotes the right-twisted composite product and ◦P denotes the relative composite
product over P , see [11, Sections 6.4.7 and 11.2.1 ].

Dually, the cobar construction Ωϕ is a functor from the category of conilpotent dg-C -
coalgebras to the category of dg-P-algebras, defined on a conilpotent dg-C -algebra C by

ΩϕC := (P ◦ϕ C ) ◦C C,

where ◦ϕ denotes the left-twisted composite product and ◦C denotes the relative composite
product over C , see [11, Sections 6.4.7 and 11.2.1].

Let W , V be two P∞-algebras. Then an ∞-morphism f : W → V is a dg-N-module
morphism P¡ → EndWV , where EndWV (n) = Hom(W⊗n, V ). Moreover, f is an ∞-quasi-
isomorphism if f sends the counit in P¡ to a quasi-isomorphism in EndWV (1).

3.5 Homotopy Operadic Algebras

Let (W , dW ) and (V , dV ) be chain complexes that are dg-k-modules. Assume i and p are
chain maps and h is chain homotopy as in the diagram

(V , dV )h

p

(W , dW )
i

.

W is a homotopy retract of V if IdV −i ◦ p = dV ◦ h + h ◦ dV and i is a quasi-isomorphism.
Moreover, W is a deformation retract of V if we also have IdW = p ◦ i .

Theorem 3 [11, Theorem 10.3.1] LetP be a Koszul operad and (W , dW ) a homotopy retract
of (V , dV ). Any P∞-algebra structure on V can be transferred to a P∞-algebra structure
on W such that i extends to an ∞-quasi-isomorphism.

This theorem, known as the Homotopy Transfer Theorem, is a generalization of [10,
Theorem 1] and will be used in Sects. 4 and 5 to construct minimal Hirsch-Brown models
and minimal models discussed by Carlsson. In these constructions, we also use the following
property of the bar construction:

Theorem 4 [11, Proposition 11.2.3] Let ϕ : C → P be an operadic twisting morphism
and A, A′ dg-P-algebras. If f : A → A′ is a quasi-isomorphism, then f induces a quasi-
isomorphism between the dg-C -coalgebras Bϕ A and Bϕ A′.

The bar and cobar constructions form adjoint functor pair.

Proposition 3 [11, Corollary 11.3.5] Let P be a Koszul operad with canonical twisting
morphism κ : P¡ → P . For every dg-P-algebra A, the counit of the adjunction

εκ : Ωκ Bκ A → A

123
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is a quasi-isomorphism of dg-P-algebras. Dually, for every conilpotent dg-P¡-coalgebra
C, the unit of the adjunction

νκ : C → Bκ ΩκC

is a quasi-isomorphism of dg-P¡-coalgebras.

The relation between ∞-quasi-isomorphisms and quasi-isomorphisms is given by the
following:

Theorem 5 [11, Theorem 11.4.9] Let P be a Koszul operad and A, A′ dg-P∞-algebras.
There exists an ∞-quasi-isomorphism of dgP∞-algebras A → A′ if and only if there exists
a zigzag of quasi-isomorphisms of dg-P∞-algebras A ← • → • ← • → • . . . → A′.

Such a zigzag of quasi-isomorphism will be written A � A′.

3.6 The Poincaré-Birkhoff-Witt Basis

We already defined Koszul duality for an operad by using bar construction. The non-derived
Koszul duality was introduced by Priddy [13] for algebras and generalized by Hoffbeck [9]
for operads by considering the existence of a certain basis, called Poincaré-Birkhoff-Witt
(PBW) basis. Hoffbeck’s criterion asserts that an operad is Koszul if it admits a PBW basis.

In order to define a PBW basis for an operadP , we consider the path sequence of the tree
monomials ofP as in [3,Definition 3.4.1.2]. Thenweorder the path sequences corresponding
to the trees by the graded path lexicographic order [3, Definition 3.4.1.7]. Briefly, given two
path sequences p and p′ of the same arity, we have p ≺ p′ if and only if either

(i) the longer sequence is bigger, or
(ii) if they have the same length, then we compare the first (leftmost) letters where they differ.

For instance, suppose that we have tree monomials a , b , c equipped with a

monomial order a ≺ b ≺ c. Let us consider the following tree monomials:

b

a

, b

a a

and b

c

, c

b

.

The path sequences correspond to the tree monomials have the order (ba, b) ≺ (ba, ba) and
(bc, bc, b) ≺ (cb, cb, c). In other words, (b; a, 1) ≺ (b; a, a) and (b; c, c, 1) ≺ (c; b, b, 1).
For more details, see [3, Chapter 2.3, 3.4].

For the next notion, we refer the reader to [9]. For every tree τ , let BT (M)
τ be a monomial

basis of τ(M) such that each element is a tensor product of elements in BM . A PBW basis
of a non-symmetric quadratic operad P is a set BP ⊂ T (M) of representatives of a base
of the module P , containing 1 and BM and for all tree τ a subset BP

τ ⊂ BT (M)
τ satisfying

the following conditions:

– For α ∈ BP
σ and β ∈ BP

τ , either the partial composition product α ◦i β is in BP
σ◦i τ or

the elements of the basis γ ∈ BP which appear in the unique decomposition α ◦i β =
Σγ cγ γ , satisfy γ � α ◦i β in T (M).
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– Suppose that α|τe denotes the restriction of a treewise tensor α to a subtree τe generated
by an edge e; in other words α|τe is the smallest piece of tree that includes the edge e and
so it has 2 vertices. A treewise tensor α is in BP

τ if and only if for every internal edge e
of τ , the restricted treewise tensor α|τe lie in BP

τe

Moreover, by the second condition, a treewise tensor is in the basis if and only if every
subtensor generated by an edge is in the basis. Hence, it is enough to set the quadratic part
of the basis to determine the basis completely. Then we have the following result:

Theorem 6 [9, Theorem 6.6]A non-symmetric operad endowed with a non-symmetric PBW
basis is Koszul.

We use this fact in the proof of Koszulness of the operad in Theorem 2.

4 Minimal Models

In this section, r denotes a positive integer. Here we discuss Hirsch-Brown Models in view
of the Homotopy Transfer Theorem.

4.1 Unary Quadratic (co)Operads

Let (M, R) be the quadratic data pair

M = ( 0 , kv1 ⊕ kv2 ⊕ · · · ⊕ kvr , 0 , 0 , . . . )

and

R = { vi ⊗ vi | 1 ≤ i ≤ r } ∪ { vi ⊗ v j + v j ⊗ vi | 1 ≤ i < j ≤ r }.
We define a quadratic operad W and a quadratic cooperad S as follows:

W := P(M, R) and S := C (sM, s2R).

Then considering the identifications

ti = vi
and x∗

i = svi

for i in {1, 2, . . . r}, the operad W is isomorphic to (0,Λ, 0, 0, . . . ) where Λ is the exterior
algebra Λ(t1, t2, . . . , tr ) and the cooperad S is isomorphic to (0, S∗, 0, 0, . . . ) where S is
the polynomial algebra k[x1, . . . , xr ].

4.2 Minimal Hirsch–BrownModels

First note that we consider cochain complexes as chain complexes after multiplying the
grading by −1. In other words, there exists a categorical isomorphism between the category
of chain complexes and the category of cochain complexes by identifying a chain complex
(C, ∂) and a cochain complex (D, ζ ) ifC−i = Di and ∂−i = ζ i . From now on we only work
with chain complexes. The cohomology of a simplicial set X will be denoted by H•(X; k)
which corresponds to

⊕∞
m=0 H

m(X; k) under the isomorphism mentioned above. Hence,
H•(X; k) is trivial in all positive degrees.
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Let G be an elementary abelian 2-group of rank r with generator set {g1, . . . , gr }. Then
we can identify the group algebra kG with the exterior algebra Λ by identifying 1+ gi with
ti . Moreover, the group cohomology H•(BG; k) is isomorphic to the polynomial algebra
S as graded k-algebras. Assume that G acts freely on a simplicial set X . The goal of this
section is to use the techniques discussed in the previous section to give a construction of
the minimal Hirsch-Brown model of X which is equivalent to the one constructed in [1]. In
other words, we define a differential graded S-module denoted by H•(BG; k)⊗̃H•(X; k)
so that H•(BG; k)⊗̃H•(X; k) is isomorphic to H•(BG; k)⊗H•(X; k) as a left S-module,
and there exists a zig zag of quasi-isomorphisms between H•(BG; k)⊗̃H•(X; k) and a
differential graded S-module which is chain homotopy equivalent to the cochain complex of
the Borel construction EG ×G X .

The chain complex C = C(X; k) is a dg-W -algebra by the morphism from kG ⊗ C
to C which sends g ⊗ σ to gσ for any g ∈ G, σ ∈ C . Moreover, we have S = W ¡ and
W∞ = ΩS . Let j denote the inclusion of dg-W -algebras into dg-ΩS -algebras. Since H(C)

is a deformation retract of j(C) as dg-k-modules, by Theorem 3 there exists a ΩS -algebra
structure on H(C) such that H(C) and j(C) are ∞-quasi-isomorphic as ΩS -algebras. We
know that W is also a Koszul operad. Then by Theorem 5, there exists a zigzag of quasi-
isomorphisms of dg-ΩS -algebras H(C) � j(C).

Note thatS is a connected cooperad, so it is conilpotent. Let ι : S → ΩS be the universal
twisting morphism. By Theorem 4, there is a zigzag of quasi-isomorphisms Bι H(C) �
(Bι ◦ j)(C) as S -coalgebras. As graded N-modules, we have the following isomorphism:

Bι H(C) = (S ◦ι ΩS ) ◦ΩS H(C) ∼= S∗⊗H(C).

This isomorphism induces a differential on S∗⊗H(C).We denote the new differential graded
N-module by S∗⊗̃H(C).

We consider theS ∗-algebra (Bι H(C))∗ as a version of the minimal Hirsch-Brownmodel
because

(Bι H(C))∗ ∼= (S∗⊗̃H(C))∗
∼= S⊗̃(H(C))∗
∼= H•(BG; k)⊗̃H•(X; k).

Let κ : S → W be the canonical twisting morphism. Note that C(EG; k) is kG-chain
homotopy equivalent to S∗⊗̃kG := S ◦κW , where both are considered as differential graded
right kG-modules. Also we have (Bι ◦ j) = Bκ . Hence

((Bι ◦ j)(C))∗ ∼= (S∗⊗̃kG ⊗kG C)∗

� (C(EG; k) ⊗kG C)∗

� C(EG ×G X; k)∗
= C•(EG ×G X; k)

where the last equality is due to our conventions about cochain complexes and the sec-
ond homotopy equivalence follows from the homotopy equivalence C(EG ×G X; k) �
C(EG; k) ⊗kG C proved in [1, proof of Theorem 1.2.8] and [8, VI.12].

We can also consider the chain complex C = C(X; k) as a dg-W ∗-coalgebra by the
morphism from C to kG ⊗ C which send σ to

∑
g∈G g∗ ⊗ g−1σ . Hence C∗ is a dg-W -

algebra as discussed in Section 3.4. Hence the S -coalgebra Bι H(C∗) is another version of
the minimal Hirsch-Brown model. In fact this second version is what we use in Sect. 5.
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4.3 TheMinimal Model of Carlsson

Let N be a differential graded S-module, so it is a dg-S ∗-algebra. We view N as a dg-S -
coalgebra. The goal of this section is to construct Carlsson’s minimal model [7] for N . We
construct a dg-S -coalgebra that is quasi-isomorphic to N and has zero differential when
tensored with k over S .

We have F = F2(N ) in the filtration from Sect. 3.4, so the coalgebra N is conilpotent.
As a dg-k-module H(N ) is a deformation retract of N . We obtain the following deformation
retract of dg-k-modules by applying the functor Ωκ , where κ : S → S ¡ is the canonical
twisting morphism

(ΩκN )Ωκ(h)

Ωκ (p)

(Ωκ H(N ))
Ωκ(i)

.

By Theorem 3, ΩκN
Ωκ(i)←−−− Ωκ H(N ) extends to an ∞-quasi-isomorphism of dg-ΩS -

algebras. Furthermore, we have another deformation retract

(Ωκ H(N ))(h′)
p′

(H(Ωκ H(N )))
i ′

and so Ωκ H(N )
i ′←− H(Ωκ H(N )) extends to an ∞-quasi-isomorphism of dg-ΩS -algebras

by Theorem 3. Combining these two ∞-quasi-isomorphisms, we have an ∞-quasi-
isomorphism of dg-ΩS -algebras ΩκN ← H(Ωκ H(N )). Thus by Theorem 5, there is a
zigzag of quasi-isomorphisms as dg-ΩS -algebras

ΩκN � H(Ωκ H(N )).

Then by Theorem 4, we have a zigzag of quasi-isomorphisms of dg-S -coalgebras

Bκ ΩκN � Bκ H(Ωκ H(N )).

There is a quasi-isomorphism of dg-S -coalgebras N → Bκ ΩκN by Proposition 3. There-
fore, we obtain a zigzag of quasi-isomorphisms of dg-S -coalgebras

N � Bκ H(Ωκ H(N )).

Note that k ⊗S Bκ H(Ωκ H(N )) has zero differential. Hence we call the dg-S -coalgebra
Bκ H(Ωκ H(N )) the Carlsson minimal model of N .

4.4 A Special Case of Carlsson’s Conjecture

The following is equivalent to Theorem 1:

Theorem 7 Let k be an algebraically closed field of characteristic 2 and S the polynomial
algebra in r variables of degree −1 with coefficients in k. Assume (M, ∂) is a free dg-S-
module and 0 < dimk H(M) < ∞. Further assume that χ(H(M)) := ∑

i≥0
(−1)i dimk Hi (M)

is non-zero. Then 2r ≤ rankS M.

Proof We can consider M as a dg-S -coalgebra. As in Sect. 4.3, we have a zigzag of quasi-
isomorphism of dg-S -coalgebras

M � Bκ H(Ωκ H(M)),

where each middle term in this zigzag is free.

123



7 Page 12 of 18 B. Şentürk, Ö. Ünlü

If f : K → L is a quasi-isomorphism of bounded-below complexes of free modules, then
the mapping cone of f is a bounded-below acyclic complex of free modules. Therefore, the
mapping cone is contractible and f is split, so f is a homotopy equivalence [4, Proposition 0.3,
Proposition 0.7]. This implies the following zigzag of quasi-isomorphism:

k ⊗S M � k ⊗S Bκ H(Ωκ H(M)) ∼= H(Ωκ H(M)).

Also notice that

χ(H(Ωκ H(M))) = χ(Ωκ H(M)) = 2rχ(H(M)) �= 0,

Thus,

2r ≤ dimk(H(Ωκ H(M))) = dimk(H(k ⊗S M)) ≤ dimk(k ⊗S M) = rankS(M).

��

5 Multiplicative Structures onMinimal Hirsch–BrownModels

In this section, we will prove that the operad W̃ defined in Sect. 5.2 is an operad that satisfies
the properties listed in Theorem 2.

5.1 The Operad W̃ in the Case r = 1

Consider the associative operad that is generated by a binary operation μ0, that satisfies the
associativity relation (μ0;μ0, 1) = (μ0; 1, μ0). In terms of trees, we have

μ0 = μ0 with the relation

μ0

μ0 =
μ0

μ0
.

Similarly, for an exterior algebra of a single variable, we have an unary operation t ;

t = t
with the relation

t

t
= 0.

In the case r = 1, we define a quadratic operad W̃ by setting generating operations as

t = t , μ0 = μ0 and μ1 = μ1

The relations of W̃ are as follows :

R1:
t
t = 0, R2 :

μ1

t = 0 ,

R3 :
μ0

μ0 =
μ0

μ0
, R4 :

μ1

μ1 =
μ1

μ1
,
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R5:
t

μ0 =
μ0

t +
μ0

t +
μ1

t
,

R6 :
μ0

μ1 =
μ1

μ0
, R7:

t
μ1 =

μ1

t
,

R8 :
μ1

μ0 =
μ0

μ1 +
μ0

μ1 +
μ1

μ1
.

Please see Lemma 1 in Sect. 5.4 to understand where these relations come from.
Now consider the graded path lex order on all quadratics; firstly there is only one 1-ary

quadratic operation and it is represented by
t
t . Secondly, we sort all 2-ary operations:

μ0

t ≺
μ1

t ≺
t

μ0 ≺
t

μ1 ≺
μ0

t
.

Correspondingly, path sequences of the planar rooted trees are

(μ0, μ0t) ≺ (μ1, μ1t) ≺ (tμ0, tμ0) ≺ (tμ1, tμ1) ≺ (μ0t, μ0).

Then we sort all 3-ary operations:

μ0

μ0 ≺
μ0

μ1 ≺
μ1

μ0 ≺
μ1

μ1 ≺
μ0

μ0 ≺
μ0

μ1 ≺
μ1

μ0 ≺
μ1

μ1
.

Correspondingly, path sequences of the planar rooted trees are

(μ0, μ
2
0, μ

2
0) ≺ (μ0, μ0μ1, μ0μ1) ≺ (μ1, μ1μ0, μ1μ0) ≺ (μ1, μ1

2, μ1
2)

≺ (μ2
0, μ

2
0, μ0) ≺ (μ0μ1, μ0μ1, μ0) ≺ (μ1μ0, μ1μ0, μ1) ≺ (μ1

2, μ1
2, μ1) .

Hence, the quadratic part of a non-symmetric PBW basis is given by

μ0

t
,

μ1

t
,

t

μ0
,

μ0

μ0
,

μ0

μ1
,

μ1

μ0
,

μ1

μ1
.

Correspondingly, path sequences of the quadratic part of the basis is given by

(μ0, μ0t) ≺ (μ1, μ1t) ≺ (tμ0, tμ0) ≺ (μ0, μ
2
0, μ

2
0) ≺ (μ0, μ0μ1, μ0μ1)

≺ (μ1, μ1μ0, μ1μ0) ≺ (μ1, μ1
2, μ1

2).

The other way around those trees correspond to the elements;

(μ0; 1, t) ≺ (μ1; 1, t) ≺ (t;μ0) ≺ (μ0; 1, μ0) ≺ (μ0; 1, μ1) ≺ (μ1; 1, μ0) ≺ (μ1; 1, μ1).
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5.2 The Operad W̃ in General

For a positive integer r , let (M, R) be the quadratic data pair consists of

M =
⎛

⎝0,
r⊕

i=1

kvi ,
⊕

L⊆T

kμL , . . .

⎞

⎠

and

R = { R1
i , R

2
i, j , R

3
K ,L , R4

i,K | i, j ∈ T and K , L ⊆ T } ∪ { R5
i,K | i ∈ K ⊆ T }

∪ { R6
i, j,K | j ∈ K ⊆ T and i /∈ K }

where T = {1, . . . , r} and for i, j ∈ T and K , L ⊆ T with

R1
i : ti

ti = 0 ,

R2
i, j : t j

ti =
ti

t j
,

R3
K ,L :

μL

μK =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

μK

μL
if L = ∅ or K ∩ L �= ∅

μ0

μK∪L +
μK

μL +
μK∪L

μL
if L �= ∅ and K ∩ L = ∅ ,

R4
i,K :

ti

μK =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

μK

ti
if i ∈ K

μK

ti +
μK

ti +
μ0K∪{i}

ti
if i /∈ K ,

R5
i,K :

μK

ti = 0 if i ∈ K ,

R6
i, j,K :

μK

ti =
μ{K\{ j}}∪{i}

t j
if i /∈ K , j ∈ K .

We define a quadratic operad and a quadratic cooperad as follows:

W̃ := P(M, R) and S̃ := C (sM, s2R).

5.3 The PBW Basis of W̃

In order to define a PBW basis for the operad W̃ , we consider the graded path lexicographic
order given in Sect. 3.6. It is straight forward to check that the quadratic part of the basis of

123



Minimal Models of Some... Page 15 of 18 7

W̃ is given by the following set of trees:
⎧
⎪⎨

⎪⎩
μK

t j

∣∣∣∣∣∣

j ∈ T
and

K ⊆ T

⎫
⎪⎬

⎪⎭

⋃
⎧
⎪⎪⎨

⎪⎪⎩ t j

μK

∣∣∣∣∣∣

j /∈ K
and

K ⊆ T

⎫
⎪⎪⎬

⎪⎪⎭

⋃
⎧
⎪⎨

⎪⎩
μK

μL

∣∣∣∣∣∣
K , L ⊆ T

⎫
⎪⎬

⎪⎭
.

Note that every composition of the above operations can be rewritten by a unique basis
element.

5.4 Multiplicative Structure onMinimal Hirsch–BrownModels

Let G, X , and C be as in Sect. 4.2. Let Δ : C → C ⊗ C denote the Alexander-Whitney
diagonal map. For g in G, let g : C → C denote the multiplication by g from the left. The
map Δ is coassociative as in [12] and by naturality we have

Δ ◦ g = (g ⊗ g) ◦ Δ

for any g in G. Hence for g in G, if t = 1 + g then we have

Δ ◦ t = Δ ◦ (1 + g) = (Δ ◦ 1) + (Δ ◦ g) = (1 ⊗ 1) ◦ Δ + (g ⊗ g) ◦ Δ

= ((1 ⊗ 1) + (g ⊗ g)) ◦ Δ = ((t ⊗ 1) + (1 ⊗ t) + (t ⊗ t)) ◦ Δ.
(1)

Hence, we have a operad morphism defined as follows

W̃ −→ coEndC
ti → 1 + gi

μI →
(

∏

i∈I
(1 + gi ) , 1

)
◦ Δ

(2)

for i in T and I ⊆ T . By abuse of notation, we will denote the image of ti and μI under this
operad morphism by ti and μI . Hence ti and μI will be considered as operations in coEndC .

In the following lemma, we assume r = 1, and hence T = {1}. In this case instead of
g1, t1, μ∅, μT we write g, t, μ0, μ1 respectively.

Lemma 1 Assume that r = 1. Then the operations t, μ0 and μ1 in coEndC satisfy the
relations R1, . . . , R8 in Sect. 5.1.

Proof We need to prove the following equations:

R1 : (t; t) = 0,
R2 : (μ1; t, 1) = 0,
R3 : (μ0;μ0, 1) = (μ0; 1, μ0),

R4 : (μ1;μ1, 1) = (μ1; 1, μ1),

R5 : (t;μ0) = (μ0; t, 1) + (μ0; 1, t)) + (μ1; 1, t),
R6 : (μ0;μ1, 1) = (μ1; 1, μ0),

R7 : (t;μ1) = (μ1; 1, t),
R8 : (μ1;μ0, 1) = (μ0;μ1, 1) + (μ0; 1, μ1) + (μ1; 1, μ1).

First notice we haveμ1 = ((1+g), 1)◦Δ = (μ0; t, 1) in coEndC . We will call this equation
R0.

The first equation (t; t) = 0 holds since t = 1+g, g2 = 1 and (1+g)2 = 1+2g+g2 = 0
in characteristic 2 field. The second equation (μ1; t, 1) = ((μ0; t, 1); t, 1) = (μ0; t2, 1) = 0
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follows from R0 and R1. By associativity of the operation μ0, we have the equation R3. The
equation R5 is given by the Eq. 1.

The equation R4 follows from R0, R5, R1 and R3. More precisely, one can obtain
(μ1;μ1, 1) = (μ0; (t;μ1), 1) = (μ0; (t; (μ0; t, 1)), 1) by R0. Then

(μ1;μ1, 1) = (μ0; (μ0; t2, 1), 1) + (μ0; (μ0; t, t), 1)) + (μ0; (μ0; t2, t), 1) by R5,

= (μ0; (μ0; t, t), 1)) by R1,

= ((μ0;μ0, 1); t, t, 1),
= ((μ0; 1, μ0); t, t, 1) by R3,

= (μ0; t, (μ0; t, 1)) = (μ1; 1, μ1).

The equation R6 can be seen as

(μ0;μ1, 1) = (μ0; (μ0; t, 1), 1) = ((μ0;μ0, 1); t, 1, 1) by R0;

= ((μ0; 1, μ0); t, 1, 1) by R3,

= (μ0; t, (μ0; 1, 1)),
= ((μ0; t, 1); 1, μ0) = (μ1; 1, μ0).

The equation R7 follows from R0, R5 and R1:

(t;μ1) = (t; (μ0; t, 1)) = (μ0; t2, 1) + (μ0; t, t) + (μ0; t2, t) = (μ0; t, t) = (μ1; 1, t).
The last equation R8 follows from R0, R5, R7, R3 and R4. More precisely,

(μ1;μ0, 1) = ((μ0; t, 1);μ0, 1) by R0,

= (μ0; (t;μ0), 1),

= (μ0; (μ0; t, 1), 1) + (μ0; (μ0; 1, t), 1) + (μ0; (μ1; 1, t), 1) by R5,

= (μ0; (μ0; t, 1), 1) + ((μ0;μ0, 1); 1, t, 1) + (μ0; (t; (μ0; t, 1)), 1) by R7,

= (μ0; (μ0; t, 1), 1) + ((μ0; 1, μ0); 1, t, 1) + (μ0; (t; (μ0; t, 1)), 1) by R3,

= (μ0;μ1, 1) + (μ0; 1, μ1) + (μ1;μ1, 1) by R0,

= (μ0;μ1, 1) + (μ0; 1, μ1) + (μ1; 1, μ1) by R4.

��
Lemma 2 The operations t1, t2, . . . , tr and μL for L ⊆ T = {1, . . . , r} in coEndC satisfy
the equations R1

i , R
2
i, j , R

3
K ,L , R4

i,K , R5
i,K and R6

i, j,K listed in Sect. 5.2.

Proof In the operad coEndC , we have μL =
(
μ0;

∏

i∈L
ti , 1

)
. Hence Lemma 1 can be repeat-

edly applied for ti at a time to prove this lemma. ��
Note that by Eq. 2, we can consider C as a dg-W̃ -coalgebra and hence C∗ as a dg-W̃ -

algebra. We will call the S̃ -coalgebra Bι H(C∗) the minimal Hirsch-Brown model as at the
end of Sect. 4.2. Now, note that the inclusion As � W̃ , induces As¡ � S̃ , and so it induces
S̃ ∗ � (As¡)∗ = As. We also have surjective morphism W̃ � As obtained by sending ti
to 0 for i in T and μL to 0 for ∅ �= L ⊆ T . This induces S̃ � As¡, and so it induces
As = (As¡)∗ � S̃ ∗. Notice that the composition

As � S̃ ∗ � As
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is the identity morphism on As. So this means we have a multiplicative structure on duals
of these minimal Hirsh-Brown models. Unfortunately, this multiplicative structure does not
have all the properties of the multiplicative structure used by Puppe, therefore we cannot
repeat the proof of [14, Lemma 2.1.a] to obtain an equivalent result. We hope that results
stronger than [14, Lemma 2.1.b] can be proved to tighten the bounds mentioned in Sect. 1.
The reason for this hope is because we also know that the composition

S ∗ � S̃ ∗ � S ∗

is the identity morphism on S ∗ where the first morphism is induced by sending μL to 0
for L ⊆ T and the second morphism comes from inclusion As � W̃ . Hence we have a
S-module structure which is enough to prove [14, Lemma 2.1.b].

Proof of Theorem 2 TakeP = W̃ where W̃ is the operad constructed in Sect. 5.2. HenceP
is a Kozul operad by Theorem 6 and Sect. 5.3. Notice that the Koszul dual operad of P is
S̃ ∗. Hence the other properties of P are proved in Sect. 5.4. ��

Proof of Proposition 1 Let X be a finite-dimensional free G-simplicial set. Notice that the
group G acts freely on products of r many equidimensional spheres where gi acts on the i th
sphere by the antipodal action. Hence G acts freely on S

0 × . . . × S
0 and S

m × . . . × S
m

wherem = dim(X)+1. Let x0 be a point in X . First, we can define an equivariant map from
S
0 × . . . × S

0 to X by sending the south poles s := (−1, . . . ,−1) to x0 and extending the
map equivariantly. Second, we can construct a map from X to Sm × . . . × S

m by sending x0
to im(s) then extending the map by using equivariant obstruction theory; see [2, Chapter II].
Since the associated minimal models of products of equidimensional spheres are Koszul
complexes, we obtain the result of the proposition by naturality of our constructions. ��

Proof of Proposition 2 LetP denote the operad in Theorem 2,m be a positive integer and γ :
Kr (m) → Kr (0) be a S∗-coalgebra morphism which induces the same map from H(Kr (m))

to H(Kr (0)) as i∗m does. Assume γ extends to a P¡-coalgebra morphism γ̃ : K̃r (m) −→
K̃r (0) whose restriction toP¡ ◦ 1 is induced by the identity onP¡. Set T = {1, . . . , r}. For
U ⊆ T and n ∈ {0,m}, let z(n)

U denote
∏

i∈U
z(n)
i and xU denote

∏

i∈U
xmi . Since γ induces the

same map from H(Kr (m)) to H(Kr (0)) as i∗m does, γ ∗ sends [1⊗ z(0)T ] to [xT ⊗ z(m)
T ]. Since

γ extends to P¡-coalgebra map whose restriction to P¡ ◦ 1 is induced by the identity on
P¡, we can say that γ ∗ sends xU ⊗ z(0)T−U to xT ⊗ z(m)

T−U + e where e contains only terms in
the form f ⊗ zL such that T −U is a proper subset of L and L is a subset of T . Hence F⊗γ ∗
sends z∅, z{1}, . . . , z{r}, z{1,2}, . . . , z{1,r} to linearly independent vectors in F ⊗S (Kr (m))∗.
Then the linear map F ⊗S γ ∗ has rank at least 2r where F denotes the field of fractions of
the ring S. ��
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