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Abstract – We study the entropic considerations on the Universe system and the Universe-black
hole system, filled by cosmological constant or exotic quintessence-like and phantom-like fields
having negative pressure, using their relevant entropic bounds. It turns out that for both systems
these considerations single out the cosmological constant, among the negative pressure candidate
fields, as the viable cosmological field.
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Introduction. – The cosmological constant, as a con-
stant energy density in space and time, is the simplest
candidate for dark energy. Actually, the Λ-Cold Dark
Matter (ΛCDM) model is consistent with the current ob-
servations, however, this model suffers from the cosmo-
logical constant problem [1] and coincidence problem [2].
These problems have been tackled by introducing some
models of dark energy, the most relevant of which are
quintessence and phantom fields. The quintessence, with
the equation of state −1 < ωq < − 1

3 , as a canonical
scalar field with a particular potential can describe the
late-time cosmic acceleration [3]. What is considerable
about the quintessence field is that its equation of state
dynamically changes with time. Quintessence field has a
prominent role in cosmological dynamics in the presence
of matter and radiation [4–7]. The other candidate for
dark energy is the phantom field, with the equation of
state ωp < −1, which can also describe the current cosmo-
logical dynamics [8–10]. The equation-of-state parameter
for the phantom field, when approaches a constant value,
results in a big-rip singularity which itself is a new prob-
lem. Although all these three models of dark energy are
capable of predicting an accelerating cosmological dynam-
ics, their imperfection for a perfect description of current
cosmic dynamics motivates one to revisit these dark en-
ergy models from a non-cosmic point of view. Here, it
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is worth mentioning that there are also other attempts
suggesting an extension of Einstein’s general relativity in
order to explain the current accelerating expansion of the
Universe [11]. What is known as an extended theory of
general relativity is a semi-classical theory with a modi-
fication in the Einstein-Hilbert action. For instance, this
modification is done by considering higher-order curvature
invariant terms or by adding terms where a scalar field is
coupled non-minimally to geometry [12,13]. In this frame-
work, f(R) gravity [14] is one of the most popular models
addressing both dark energy and dark matter problems.
In [11], the possibility of testing the framework of extended
theory of gravity using gravitational waves is anticipated.
This may be considered as an important step forward in
the framework of extended theories of gravity because of
the recent progresses in the gravitational wave astronomy
through the famous LIGO detections.

Another point of view is the powerful thermodynamical
approach and the entropic considerations for the study
of dark energy models. It is well known that in prin-
ciple the equations of motion can predict the future of
time-reversible physical systems, however, in reality, time-
reversibility is not seen for thermodynamical systems due
to the entropic consideration. Two relevant examples
of such thermodynamical systems in the present study
are the Padmanabhan’s emergent paradigm and Universe-
black hole system surrounded by cosmological fields. In
explicit words, we explore the cosmological fields by en-
tropic considerations and investigate which cosmological
field as a candidate for dark energy model can be preferred
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by such entropic considerations in the study of the Uni-
verse system and Universe-black hole system.

The idea that gravity behaves as an emergent phe-
nomenon is referred to the proposal made by Sakharov
in 1967 [15]. In this proposal, named the induced grav-
ity, the spacetime background emerges as a mean-field
approximation of some underlying microscopic degrees
of freedom, very similar to hydrodynamics or continuum
elasticity theory from molecular physics [16]. Current re-
search works on the relation between gravity and thermo-
dynamics support this point of view [17], where the major
attention is focused on how the gravitational field equa-
tions can be derived from the thermodynamical point of
view.

In a pioneering work of Jacobson, the Einstein field
equations were obtained, using the equivalence principle
and Clausius relation dQ = TdS where Q, T and S are
the heat, temperature and entropy, respectively [18]. The
key point in this work was to demand that the Clausius
relation should hold for all local Rindler causal horizons
with Q and T interpreted as the energy flux and Unruh
temperature, as seen by an accelerated observer located
inside the horizon. In this thermodynamic approach, the
Einstein field equations appear as the equations of state
of spacetime. The Clausius relation also arises when one
treats the gravitational field equations as an entropy bal-
ance law across a null surface, i.e., Sm = Sgrav [19].

In another work by Padmanabhan, as a new approach
to show a relation between gravity and thermodynamics,
the gravity was shown not to be a fundamental interac-
tion [20]. In this approach, Newton’s law of gravitation
was derived by combining the equipartition law of energy
for the horizon degrees of freedom with the thermody-
namical relation S = E

2T where S, T and E are entropy,
horizon temperature and active gravitational mass, re-
spectively [21]. It was also argued that the current ac-
celerated expansion of the Universe may be derived from
the discrepancy between the surface and bulk degrees of
freedom through the relation ΔV/Δt = Nsur − Nbulk,
where Nbulk and Nsur are the degrees of freedom re-
lated to matter-energy content inside the bulk and surface
area, respectively [22]. These studies magnify the impor-
tance of thermodynamic approach to gravity as well as
the corresponding thermodynamical quantities, even for
cosmological systems. The entropy and its bounds play
the key roles in these kinds of studies.

The application of Bekenstein’s bound to suffi-
ciently small regions of the Universe can be found
in [23–29]. Moreover, Fischler and Susskind have pro-
posed a bound [24] which can formulate the holographic
principle [30–32]. They have carefully exposed the difficul-
ties that arise when such bounds are pushed beyond their
range of validity [24,25,28]. On the other hand, Bousso has
proposed the D-bound for systems with cosmological hori-
zon, like asymptotically non-flat Schwarzschild-de Sitter
black hole [33]. Of course, one can look for the D-bound
for other solutions which are not asymptotically flat and

include a cosmological apparent horizon. A general pro-
posal was then suggested by Bousso [34] for entropy
bound, the so-called covariant entropy bound, which has
been shown to comply with Bekenstein’s entropy bound
and the Fischler and Susskind bound.

In this paper, we will consider the system “Universe”
and the system “Universe-black hole” filled by some ex-
otic fields, and investigate those fields that can be pre-
ferred by imposing the relevant entropy bounds on these
systems. First, for the system “Universe”, we will ap-
ply the covariant entropy bound on the light-like cosmo-
logical horizon and the entropy bound arising from the
Padmanabhan’s emergent paradigm. These two entropy
bounds should be identified on the light-like cosmologi-
cal horizon. The identification of the D-bound and the
Bekenstein bound, in the framework of the surrounded
Universe-black hole system, can be considered as a suit-
able criterion by which one can single out the exotic cos-
mological fields in agreement with this criterion and rule
out the other cosmological fields in disagreement with this
criterion. In doing so, for the system “Universe-black
hole” we will apply the D-bound and the Bekenstein en-
tropy bound on the black hole. These two entropy bounds
should also be identified on the black hole. From the men-
tioned identifications, we will obtain the preferred exotic
fields as the viable cosmological fields. In the next sec-
tion, we shall find an entropy bound which is resulted by
means of Padmanabhan’s emergent paradigm and we at-
tempt to identify the maximum entropy bound coming
from the covariant entropy conjecture, on the one hand,
and the entropy of Padmanabhan’s emergent paradigm
on the other hand for the Universe system. In the third
section, the D-bound and Bekenstein bound are studied
for the exotic quintessence-like and phantom-like fields,
respectively, and their identifications are investigated for
the Universe-black hole system. Finally, in the fourth sec-
tion, we give our concluding remarks.

Entropy bounds for the Universe system. – The
relevant entropy bounds which are of particular impor-
tance in the present study for the Universe system are
“entropy bound of Padmanabhan’s emergent Universe”
and Bousso’s “covariant entropy bound”, as is described
in the following argument. From observational evidences
we know that the universe is almost flat, namely k = 0,
for which the Hubble horizon in Padmanabhan’s paradigm
becomes exactly the same as the apparent horizon for a
flat Universe. The covariant entropy bound is introduced
based on the “light-sheets” (null surfaces) [34], and, on the
other hand, the Hubble horizon in the Padmanabhan’s
emergent paradigm becomes a “null apparent horizon”
specifically for a flat Universe. Therefore, the Hubble hori-
zon in the Padmanabhan’s emergent paradigm for a flat
universe can be considered as a system for which one can
ascribe the covariant entropy bound. In other words, if
k = 0 is provided, then the Hubble horizon in Padmanab-
han’s paradigm plays the role of null surface enclosing the
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Universe and the covariant entropy bound becomes appli-
cable to this system. For details of discussion, refer to the
cosmological corollary of covariant entropy bound in [34].

Entropy bound for Padmanabhan’s emergent flat
Universe. In this subsection, we show that how Padman-
abhan’s emergent paradigm for an expanding flat universe
can be written as an “emergent lower entropy bound” for
the Universe system.

According to Padmanabhan’s proposal, the difference
between the surface degrees of freedom and the bulk
degrees of freedom in a region of space may result in
the accelerated expansion of the Friedmann-Robertson-
Walker (FRW) Universe through the relation ΔV/Δt =
Nsur − Nbulk, where Nbulk and Nsur are referred to the
degrees of freedom related to matter and energy content
inside the bulk and surface area, respectively [22].

For an expanding Universe, we have the following con-
dition for the Padmanabhan’s formula:

ΔV

Δt
� 0, (1)

which demands
Nsur − Nbulk � 0. (2)

On the other hand, we know that the relation between
surface entropy Ssur and surface degrees of freedom is as
follows:

4Ssur = Nsur, (3)

where the entropy of the surface is A
4 , A being the area

of the surface enclosed by the Hubble horizon rH . One
can also write the bulk degrees of freedom in terms of its
energy E and temperature T as

Nbulk =
2E

T
, (4)

where the thermodynamic temperature of our cosmo-
logical system is H/2π. So, one can rewrite the
equations (2), (3) and (4) as follows:

πrHE � Ssur, (5)

which can be interpreted as a definition of the “emergent
lower entropy bound”. The reason why we call (5) as the
emergent lower entropy bound is that it is a trivial rewrit-
ing of the Friedmann equation in terms of non-standard
variables rH , E and S, and has no independent content.
For example, unlike S in the covariant bound, Padman-
abhan’s Nbulk is not defined as the von Neumann entropy
or the thermodynamic entropy of an actual bulk matter
system, rather it is just a suggestive name given to a quan-
tity that is directly defined in terms of quantities like H, ρ,
and p that appear in the Friedmann equation. So, there
is no non-trivial content to the statement that the Fried-
mann equation can be expressed in terms of such quanti-
ties. That is why the relation (5) cannot be considered as
a definition of a “lower entropy bound” for the surface en-
tropy Ssur, so it merely can be interpreted as a definition

of “emergent lower entropy bound” of a cosmological sys-
tem in the framework of the emergent Universe scenario.
Therefore, it is meaningless to compare in general the “co-
variant upper entropy bound” with “πrHE as the emer-
gent lower bound of Ssur”, unless some specific conditions
are provided in order for this comparison to become mean-
ingful. In the following section, we shall discuss that there
is one specific possibility providing a meaningful compar-
ison which corresponds to a spatially flat universe, i.e.,
k = 0.

Covariant entropy bound for the flat Universe. In or-
der to apply the covariant entropy bound on the flat Uni-
verse, one should study the relevant energy contents of the
flat Universe, namely Misner-Sharp energy and Komar en-
ergy, and investigate which of these two is successful in
matching the covariant entropy bound with the entropy
bound of Padmanabhan’s emergent paradigm, for the flat
Universe.

Misner-Sharp energy: Let us start with the Misner-
Sharp energy [35]

E =
∫

TμνuμuνdV, (6)

where uμ = δμ
0 , Tμν and V are the energy-momentum

source and the volume of the bulk space, respectively.
Then, the total Misner-Sharp energy inside the Hubble
horizon reads

M(rH) =
∫ rH

0
4πr2ρdr =

4π

3
r3
Hρ, (7)

where rH is the Hubble horizon radius and M = E. More-
over, for the apparent horizon we have r = 2M(r) in which
for our cosmological case with a flat spatial geometry the
apparent and Hubble horizons coincide and consequently
this formula takes the form of rH = 2M(rH). Also, using
the Friedmann equations for k = 0, we have rH =

√
3

8πρ .
Then, using (5) and (7), we obtain

πr2
H

2
� Ssur. (8)

On the other hand, the maximum of Bousso’s covariant
entropy bound for k = 0 and the null surface to be defined
by rH is given by

S =
A

4
= πr2

H . (9)

We demand that the inequality (5) to be saturated for
k = 0 and the null surface defined by rH as

Ssur = πrHE, (10)

such that it can be compared with (9) on the null surface
defined by rH . In doing so, if we put the Misner-Sharp
energy E = rH

2 in (10), we arrive at the result that the
Misner-Sharp energy has no capability for having the equal
values of entropy bounds (9) and (10) on the “null surface
of cosmological apparent horizon”. Therefore, this energy
definition fails in matching two entropy bounds.
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Komar energy: In this subsection, we show that Ko-
mar energy is capable for removing the above-mentioned
inconsistency for the Misner-Sharp energy. To begin with,
we consider the Komar energy [36]

E =
∫

(2Tμν − Tgμν)uμuνdV, (11)

where T is the trace of the energy-momentum source Tμν .
Then, the total Komar energy in the bulk space enclosed
by the surface of the Hubble horizon is given by [22]

E(rH) =
∫ rH

0
4πr2|ρ + 3p|dr =

4π

3
r3
Hρ|1 + 3ω|, (12)

where we have considered the barotropic equation of state
p = ωρ (see footnote 1). Then, from the inequality (5), we
obtain

4πrH

(
4π

3
r3
Hρ

)
|1 + 3ω| � A = 4S, (13)

where the L.H.S. becomes maximum (equality case) at
rH as

A = 4Ssur = 2πrH(2M(rH))|1 + 3ω|. (14)

Then, using (14), we obtain

Ssur =
πr2

H |1 + 3ω|
2

. (15)

This shows that, unlike the Misner-Sharp energy, the Ko-
mar energy has capability for having the equal values of
entropy bounds (9) and (15) on the cosmological apparent
horizon null surface for two specific values of ω as ω = 1/3
and ω = −1 corresponding to radiation and de Sitter uni-
verses, respectively.

It is interesting to note that without comparison be-
tween the covariant entropy bound and entropy bound
which comes from Padmanabhan’s emergent paradigm,
one cannot reach the correct relation (15) between the en-
tropy of the enclosing surface and the physical quantities
within the bulk space. This relation indicates the holo-
graphic behaviour of the system in a beautiful way and
shows that the holographic principle demands the Komar
energy as the correct energy content of the cosmological
bulk space.

In the following section, based on what we obtained,
we discuss that one may obtain the current accelerating
expansion of the Universe as a matching condition of two
cosmological entropy bounds resulting from the covariant
bound and emergent paradigm.

1Regarding that both the degrees of freedom and entropy are pos-
itive definite quantities, the absolute value in the integrand in (12) is
considered for the positivity of the bulk degrees of freedom in eq. (4)
as well as for the entropy in eq. (15). In fact, one has to consider the
absolute value of energy or follows Padmanabhan [22] by introduc-
ing the ε parameter to assure the positivity of the bulk degrees of
freedom for both the positive or negative values of ρ+3p, see eq. (8)
in [22].

Entropy bounds for the Universe-black hole sys-
tem filled by cosmological fields. – The relevant en-
tropy bounds which are of particular importance in the
present study for the Universe-black hole system filled
by cosmological fields are the D-bound and Bekenstein
bound. This is because both the D-bound and Bekenstein
bound are applicable on this system having both event
horizon and cosmological apparent horizon. This feature
lets us to compare the D-bound with the Bekenstein bound
for the Universe-black hole system filled by cosmological
fields.

The black hole inside the Universe-black hole system
filled by cosmological field is considered as a solution sur-
rounded by the cosmological field. The metric of this so-
lution is given by [37]

ds2 = −
(

1 − rg

r
−

(rs

r

)3ωs+1
)

dt2

+
dr2

(1 − rg

r − ( rs

r )3ωs+1)
+ r2dΩ2. (16)

Note that the metric (16) is an exact and a general solu-
tion for the Universe-black hole system in the sense that
the equation of state of the surrounding cosmological field
ps = ωsρs is generic. Going through [37] which specif-
ically studies the exotic quintessence-like field, one finds
that the derivation of the solution is completely general
and not specific to the quintessence-like field; it can re-
duce to its specific limits, like the black hole in the radi-
ation or de Sitter background, by the particular choices
of the equation-of-state parameter ωs. The main origin
and motivation for the Kiselev solution [37] is the current
acceleration of the Universe. This implies that such a so-
lution is important from a cosmological point of view, like
the Schwarzschild-de Sitter solution, in the sense that it
describes a black hole embedded in a cosmological field
governing the current accelerating expansion phase of the
Universe. This fact motivated us to investigate this so-
lution as a model for the Universe-black hole system. In
the Kiselev solution, each arbitrary choice of ωs repre-
sents an arbitrary cosmological background field, and so
the solution (16) describes a black hole embedded in that
cosmological background field. For example:

– The cases ωs = 0 and ωs = 1/3 represent the dust and
radiation backgrounds, see, for example, [38]. These
particular limits are also mentioned in [37] at the be-
ginning of section 3, and by following its derivation
one can recognize the generality of this solution.

– By setting ωs = −1, the general solution in [37] re-
duces to the Schwarzschild-de Sitter solution, the en-
tropy D-bound of which is obtained in [33].

– The case −1 < ω < −1/3 represents the background
exotic quintessence-like field with a negative pressure
which is a candidate for dark energy as the source
for the current accelerating expansion of the Uni-
verse [39]. It is worth mentioning that we name
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this field “quintessence-like” since it has no dynam-
ics, and its energy-momentum source is not a perfect
fluid.

– The range ω < −1 corresponds to exotic phantom-
like fields with super-negative pressures as other can-
didates for the dark energy [40]. The final fate of a
Universe dominated by a dynamical phantom field is
Big Rip [41]. The same argument on the name of
quintessence-like field applies for this case.

D-bound and Bekenstein bound for the Universe-black
hole system filled by exotic quintessence-like field. In the
case of a neutral black hole surrounded by quintessence
with wq = −2/3 [37] the metric (16) becomes

ds2 = −
(

1 − rg

r
−

(rq

r

)−1
)

dt2

+
dr2

(1 − rg

r − ( rq

r )−1)
+ r2dΩ2. (17)

The inner and outer horizons are obtained by the equation
grr = 0 as follows:

rin =
1
2

(
rq −

√
r2
q − 4rqrg

)
, (18)

rout =
1
2

(
rq +

√
r2
q − 4rqrg

)
, (19)

where rq > 4rg and rg < rin < rout < rq. For constructing
the D-bound [33] we take the following procedure. The D-
bound is derived by assuming a matter system inside the
apparent cosmological horizon of an observer inside a Uni-
verse, with a future de Sitter asymptotic space, which is
then converted into an empty pure de Sitter space through
a thermodynamical process by which the matter system
is pushed outward the cosmological horizon. The total
entropy of the asymptotic de Sitter space, including the
matter system, as the initial thermodynamical system is
given by

S = Sm +
Ac

4
, (20)

where Sm is the entropy of the initial matter inside the
cosmological horizon and Ac/4 is the Bekenstein-Hawking
entropy of the apparent cosmological horizon, enclosing
the matter system, with surface area Ac. The final entropy
of the system, after matter evacuation, will be S0 = A0/4
in which A0 is the area of cosmological horizon of the pure
de Sitter space. Considering the generalized second law of
thermodynamics S ≤ S0, we obtain [33]

Sm � A0

4
− Ac

4
, (21)

which is the so-called D-bound on the matter system.
In the case of Universe-black hole system filled by ex-

otic quintessence-like field, A0 and Ac are the area of
the horizons enclosing the quintessence-like field and the

quintessence-like plus matter fields, respectively. Using
r0 = rout |m=0= rq and rc = rout, the D-bound becomes

Sm � π

(
r2
q

2
+ rqrg − rq

2

√
r2
q − 4rqrg

)
. (22)

For rq � rg, the D-bound leads to

Sm � 2πrqrg. (23)

On the other hand, the Bekenstein bound is given by [33]

Sm � πrinR, (24)

where rin is the gravitational radius of the system and R =
rout is the geometric radius of the system. For rq � rg

the Bekenstein bound becomes

Sm � πrqrg. (25)

Therefore, it turns out that in this case the Bekenstein
bound and the D-bound are not the same for the dilute
system. Indeed, the Bekenstein bound is tighter than the
D-bound.

D-bound and Bekenstein bound for the Universe-black
hole system filled by exotic phantom-like field. In the
case of a neutral black hole surrounded by exotic phantom-
like field with wp = −4/3, the metric (16) reads

ds2 = −
(

1 − rg

r
−

(rp

r

)−3
)

dt2

+
dr2

(1 − rg

r − ( rp

r )−3)
+ r2dΩ2. (26)

Because of grr = 0 the inner and outer horizons for rp �
rg are as follows:

rin = rg + r4
gr−3

p + O(r−6
p ), (27)

rout = rp − rg

3
− 2rg

9rp
− 20

81
r3
gr−2

p − 1
3
r4
gr−3

p + O(r−4
p ).

(28)

To derive the D-bound for this system we use the same
equation (21). In this case A0 and Ac are the areas of the
horizons enclosing the exotic phantom-like field and the
phantom-like plus matter fields, respectively. For rp � rg,
using r0 = rout |m=0= rp and rc = rout, the D-bound is
obtained as

Sm � 2
3
πrgrp. (29)

The Bekenstein bound (24) for this case is given by

Sm � πrgrp. (30)

For this case, the D-bound bound is tighter than the
Bekenstein bound. It turns out that, as for the exotic
quintessence-like field, for the exotic phantom-like field
also the Bekenstein bound and the D-bound are not the
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same for dilute systems. Then, regarding the gravita-
tional nature of both the quintessence-like and phantom-
like fields in which both of them are violating the strong
energy condition but they lead to the looser and tighter
D-bounds relative to Bekenstein bound, a question rises
up here. Is there any particular field violating the strong
energy condition but providing the same result for both
these entropy bounds? In other words, what is the match-
ing condition for these two bounds? It is shown by Bousso
that for the case of a cosmological constant, both these en-
tropy bounds coincide [33]. Then, regarding our obtained
results for the exotic quintessence-like and phantom-like
fields along with [33], it is seen that the D-bound and
Bekenstein bound coincide for the Universe-black hole sys-
tem only for the cosmological constant. These findings
prove that although all the quintessence-like, cosmological
constant and phantom-like fields are motivated for deriv-
ing the current accelerating expansion of the Universe, the
cosmological constant is the only viable cosmological field
from the entropic point of view.

Discussion and concluding remarks. – By apply-
ing Bousso’s covariant entropy conjecture for the cosmo-
logical spatial region, on the one hand, and the entropy
bound which comes from the Padmanabhan’s emergent
paradigm, on the other hand, we have shown that these
two entropy bounds are in agreement just for the flat
(k = 0) FRW Universe and are equal to the maximal en-
tropy on the “null surface” defined by the Hubble horizon
rH , provided that

– inside of the apparent horizon they be filled by the
radiation, namely ω = 1

3 ,

or

– inside of the apparent horizon they be a pure de Sitter
space subject to the cosmological constant, namely
ω = −1.

In other words, the maximal entropy inside the apparent
horizon of the flat FRW Universe occurs when it is filled
completely just by the radiation field or cosmological con-
stant. However, considering the fact that the ω = 1

3 case
cannot describe the accelerating behavior of the Universe,
in the context of Padmanabhan’s emergent paradigm, we
can leave this case and just keep the ω = −1 case. We
arrive at the conclusion that the cosmological fields with
ω �= −1, such as phantom-like and quintessence-like ones,
are ruled out because of the non-compatibility of the co-
variant entropy bound and the entropy bound coming from
Padmanabhan’s emergent paradigm2.

The same result is obtained for the Universe-black hole
system filled by the cosmological fields as follows. We
know that the D-bound and Bekenstein bound are the di-
rect results of GSL. Therefore, we conclude that both of

2The weirdness of the phantom fluid, which seems to violate the
second law of thermodynamics in many ways has been considered
in [42–48] and may turn out to be completely un-physical.

them must lead to the same entropy bound when impos-
ing on a certain matter system. The cosmological constant
is known to contribute to the metric as the r2 term and
for this contribution the D-bound is identified with the
Bekenstein bound in dilute systems, in complete agree-
ment with the above-mentioned conclusion. Any devia-
tion from the r2 term corresponding to the contributions
of exotic quintessence-like and phantom-like fields such
as r and r3 terms leads to D-bounds looser and tighter
than the Bekenstein bound, respectively. Therefore, the
quintessence-like and phantom-like fields are ruled out
again because of the non-agreement of the D-bound and
the Bekenstein bound. These features turn out to be a
consequence of weakness and strongness of repulsion forces
corresponding to quintessence-like and phantom-like fields
in comparison to the repulsion force corresponding to the
cosmological constant.
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