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Abstract. In this paper we consider a zero-sum Markov stopping game on a general state space
with impulse strategies and infinite time horizon discounted payoff where the state dynamics is a
weak Feller–Markov process. One of the key contributions is our analysis of this problem based
on “shifted” strategies, thereby proving that the original game can be practically restricted to a
sequence of Dynkin’s stopping games without affecting the optimalty of the saddle-point equilibria
and hence completely solving some open problems in the existing literature. Under two quite general
(weak) assumptions, we show the existence of the value of the game and the form of saddle-point
(optimal) equilibria in the set of shifted strategies. Moreover, our methodology is different from the
previous techniques used in the existing literature and is based on purely probabilistic arguments.
In the process, we establish an interesting property of the underlying Feller–Markov process and
the impossibility of infinite number of impulses in finite time under saddle-point strategies which is
crucial for the verification result of the corresponding Isaacs–Bellman equations.
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1. Introduction. The subject of zero-sum stochastic games with optimal stop-
ping was initiated by Dynkin in [7]. The results therein were extended to the contin-
uous time case by Krylov in [14], [15]. Such games were later studied by Bensoussan
and Friedman in [2] for diffusion processes using variational inequalities and by Bismut
[3] using convex-analytic methods. These so-called Dynkin games were studied in [22]
in a general Markov setting with infinite horizon and fixed discount rate under rea-
sonably general assumptions (conditions) as introduced by Robin in [21] for Markov
stopping problems. Cvitanic and Karatzas [5] studied such games using a backward
stochastic differential equation (BSDE) approach. More recently, the analysis of the
existence of value of such games in continuous time and corresponding mixed optimal
strategies were studied in [8], [16], [26], and the references therein.

Besides being important from a game theory point of view, such stopping games
with impulsive strategies have quite important applications in the mathematics of
the finance-like pricing of American options and game (Israeli) options (see, e.g., [10],
[11], and [13] and references therein) and pricing of Israeli swing options with multiple
exercises of derivatives as in [12] (see also [4] for other applications).

Zero-sum impulse games were first considered in [22], where fixed execution delay
for the impulses was considered (see also [24]). In this paper we consider so-called
decision lag. The assumption (A1) imposed in this paper (see the next section) states
that after an impulse the next one is allowed only after some lag depending on the
values of the process before and after this shift. As we have shown in Example 1
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this kind of assumption is necessary to avoid an infinite number of shifts at the same
time point. Looking for minimal assumptions we introduce a weaker assumption (A2)
which imposes decision lag after the impulse of the maximizer assuming that the
immediate previous impulse was made by the minimizer. A related assumption was
introduced in [4] to guarantee a finite number of impulses in a finite interval and it
was used therein to study impulse games with diffusion process and viscosity solutions
to corresponding quasivariational inequalities.

In this paper we have a more general state process and use purely probabilistic
arguments which are different from the previous methodology used in the existing
literature. In particular, herein we are interested in a Markov game where the payoffs
are functionals of the current values of a given Markov process {X(s)}s≥0. The values
of the Dynkin games exist in a general setting when these functionals are only right
continuous processes (see, e.g., [17], [25], and also [16], [26] for games with randomized
stopping). In his paper [22], the second author addressed this problem under so-called
fixed execution delay, i.e., when shift at time τ was decided to be ξ but it was executed
at time τ + h to ξ (which was Fτ measurable), where h > 0 is fixed beforehand. In
this work, we consider a generalization of that zero-sum stopping game as in [22]
and show the existence of the value of such a game and the form of saddle-point
(optimal) strategies under two quite general (weaker) assumptions (A1) and (A2) as
mentioned above and described in the next section. As is shown, this game can be
practically restricted to a sequence of Dynkin’s stopping games. We also provide
a counterexample (Example 1) to prove their necessity for the value function to be
unique. As is shown in this counterexample the game with impulses makes sense only
when there is some kind of assumption which enables us to restrict an infinite number
of immediate impulses. Such a condition assumed in [22] has fixed execution delay.
In this paper we first have decision lag (after a shift without any execution delay
the next shift is allowed only after some lag depending on the state of the process
before and after the shift) required for both players (Assumption (A1)). By relaxing
this assumption we introduce (A2), which seems to be the minimal assumption under
which we still have the value of the game. This assumption says that after the impulse
of the minimizer if we have the impulse of the maximizer, then thereafter a decision
lag follows, i.e., for the next shift we have to wait h units of time which depend on
the value of the process before and after the shift (of the maximizer).

There are two recent papers [1] and [9] in which a zero sum stochastic differential
game was considered. In [1] one player used impulse controls while the other used
continuous time stochastic control. In [9] both players used impulse controls and under
certain strong set of assumptions it was shown that the value function of the game
was a viscosity solution to a suitable Hamilton–Jacobi–Bellman–Isaacs equation, but
the authors were not able to find saddle-point strategies. In this paper we solve this
open problem completely under a very general set of assumptions and establish the
corresponding saddle-point (optimal) strategies, thereby generalizing in particular [9].

This paper is organized as follows. The next section describes the overall problem
structure and formulation as well as the generic assumptions under which the results of
this paper shall be proved. The Markov version of the continuous-time Dynkin game is
studied in section 3, where we prove the existence of value and saddle-point (optimal)
strategies for such a game. Section 4 describes the dynamic programming formulation
of our game and states the two main theorems of this paper, namely, the existence of
unique continuous bounded solutions to the Isaacs–Bellman equation (Theorem 4.1)
and the verification result that this solution is indeed the value of our game (Theorem
4.2). This section also aptly provides a counterexample (Example 1) to show that
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these weak assumptions made in section 2 are necessary for the uniqueness of the
value function. Restricting to the so-called “shifted” strategies of the players (see the
next section for a description), section 5 proves Theorem 4.1 under the assumption
(A1) of section 2 whereas section 6 does so under the assumption (A2) of section 2. In
this section 6 we also, under the assumption (A2), propose and prove several important
results, namely, that the successive impulses by either player can occur only with very
low probability (Lemmas 6.5 and 6.6) and the crucial fact (Proposition 6.7) that an
infinite number of impulses cannot happen in finite time. To prove these results we
study certain properties of Feller–Markov processes by using Lemmas 5.1 and 6.3
as well as by proposing and proving Proposition 6.4, which can be of independent
interest. Under either of the assumptions (A1) or (A2), section 7 proves Theorem
4.2 in full generality, i.e., the value of the game does not change if the players use
the most general (history-dependent) class of admissible impulse strategies instead of
only shifted strategies. In fact, we prove the existence of a saddle-point equilibrium
within the set of shifted strategies. Finally, we conclude with a few comments and
proposals for future directions of work in section 8.

2. Problem formulation. This section describes our general game framework
as well the (weak) assumptions under which our results shall hold. Given a locally

compact separable metric space E endowed with a metric ρ, let Ω̃
def
= D([0,∞);E)

be the space of cadlag functions from R+ to E and F̃ , {F̃t} are universally completed
σ-fields of the canonical space Ω̃. We consider the state process {Xs}s≥0 to be a

standard Feller–Markov process (Xs(ω) = ω(s), ω ∈ Ω̃) defined on a probability space
(Ω̃, F̃ , {F̃t}, P ) taking values in E with shift operator θt and conditional law Px when
it starts from x. For any space S, we denote by C(S) the space of bounded, continuous,
and real-valued functions on S. Let f ∈ C(E) and c, d ∈ C(E×E) be given. We shall
assume that the transition operator of the Markov process transforms the space C0(E)
of continuous functions vanishing at infinity into itself. Let U1, U2 be compact subsets
of E. We define B(U,R) ≡ {x ∈ E : infy∈U ρ(x, y) ≤ R} for given R > 0 and U a
compact subset of E. In particular, for any x ∈ E if U = {x}, then B(U,R) denotes
the closed ball with radius R and center x. Let {τi}i=1,2,..., {σi}i=1,2,... be stopping
times and {ξi}i=1,2,..., {ζi}i=1,2,... (resp.) be random variables measurable with respect
to available information till τi, σi (resp.) taking values in (resp.) U1, U2. Let τi∧σi :=
ρi and assume that τi+1∧σi+1 ≥ ρi, for i = 1, 2, . . . . Note that here we use somewhat
of a barbarism of notation between the impulse moment and the metric on E and the
usage should be clear from the context. We consider a zero-sum game between two

players I and II, where player I chooses strategy V1
def
= {τ1, ξ1; τ2, ξ2; . . .} to maximize

his payoff (described below) and player II chooses strategy V2
def
= {σ1, ζ1;σ2, ζ2; . . .}

to minimize the same. At time ρi the process is shifted to ξi when τi ≤ σi or to ζi
when σi < τi. The infinite-horizon discounted payoff under strategy-tuple (V1, V2)
starting at time 0 from the point x ∈ E is defined as

J V1,V2(x)
def
= EV1,V2

x

[ ∫ ∞

0

e−αsf(Ys)ds

+
∞∑
i=1

e−α(τi∧σi)
(
1{τi≤σi}c(X

−
τi , ξi) + 1{σi<τi}d(X

−
σi
, ζi)

) ]
,(2.1)

where α > 0 is the discount factor, X− denotes the value of the controlled process
{Xs}s≥0 just before the corresponding impulsive shift is made and to avoid infin-
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itely many shifts for gain by any player c(·, ·) < 0 and d(·, ·) > 0 with the natural
assumptions that for x ∈ E, ξ1, ξ2 ∈ U1 and ζ1, ζ2 ∈ U2

(2.2) c(x, ξ1) > c(x, ξ2) + c(ξ2, ξ1)

and

(2.3) d(x, ζ1) < d(x, ζ2) + d(ζ2, ζ1).

The description of the process Y follows soon. The interpretation is that player I
(resp., player II) chooses a random time τi (resp., σi) and shifts the process fromXτi ∈
E (resp., Xσi ∈ E) to a point ξi ∈ U1 (resp., ζi ∈ U2), thereby incurring a negative
payoff c(Xτi , ξi) (resp., positive payoff d(Xσi , ζi)) and this goes on ad infinitum. There
is a running payoff denoted by a bounded function f(·) which accumulates over the
entire time horizon.

To describe the evolution of the controlled Markov process Y we have to construct
a suitable probability space following [18] and [21] (see in particular Annexes 1 and
2 therein). Denoting by N positive integers define the Cartesian product Ω := Ω̃N

endowed with product σ-field F := F̃N , and analogously F i := F̃ i and Ft := {F̃N
t },

F i
t := {F̃ i

t}, for i = 1, 2, . . . , where to simplify notation we assume that F(F i) and
Ft(F i

t ) are universally completed σ-fields of F̃N (F̃ i) or {F̃N
t }({F̃ i

t}), respectively.
Also define ω := (ω1, ω2, . . .) and [ω]i := (ω1, . . . , ωi) and let τi(ω) = τi([ω]i) and
σi(ω) = σi([ω]i) be F i

t -stopping times. Then the controlled process {Ys}s≥0 can be de-
scribed as follows: Ys(ω) := X1

s ([ω]1) := ω1(s) for s < ρ1, Ys(ω) := X2
s ([ω]2) := ω2(s)

for ρ1(ω1) ≤ s < ρ2(ω1, ω2), and Ys(ω) := X i
s([ω]i) := ωi(s) for ρi−1([ω]i−1) ≤ s <

ρi([ω]i), with i = 3, 4, . . . . Similarly ξi(ω) := ξi([ω]i) (ζi(ω) := ζi([ω]i)) are F i
τi- (resp.,

F i
σi
-) measurable U1(resp., U2) -valued random variables. Let Gi

ρi
:= σ{F i+1

ρi− ,F i
ρi

⊗
{∅, Ω̃}} for i = 1, 2, . . . . For given control strategies V1 and V2 there exists (see [18]
and [21] for the detailed construction) a probability measure PV1,V2

x such that

(2.4) PV1,V2
x

(
θ−1
ρi
A|Gi

ρi

)
= δX1

ρi
⊗ · · · ⊗ δXi

ρi
⊗ PXi+1

ρi
{A} ,

where A ∈ F and θ := {θs}s≥0 is a shift operator on Ω defined as θs : Ω 
 ω �→
ω(s+ ·) ∈ Ω, i.e., Xs(ω) = X0(θs(ω)). Consequently the cost functional (2.1) can be
written as follows:

J V1,V2(x)
def
= EV1,V2

x

[ ∫ ∞

0

e−αsf(Ys)ds

+

∞∑
i=1

e−α(τi∧σi)
(
1{τi≤σi}c(X

i
τi , ξi) + 1{σi<τi}d(X

i
σi
, ζi)

) ]
.(2.5)

We have therefore an impulse game such that the players first choose stopping times
τi and σi and their suggested shifts of the state process to ξi or to ζi, respectively,
and then at ρi = τi ∧ σi the state process is shifted to ξi when τi ≤ σi with cost
c(X i

τi , ξi) while when σi < τi the state process is shifted to ζi with cost d(X i
σi
, ζi).

In this description the first player has a priority in the sense that when both players
decide to shift the process simultaneously, it is shifted according to the first player’s
choice. After each shift of the process the game starts afresh and the players choose
their next stopping times and impulses. With such a game we can associated upper
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v and lower values v defined as follows:

v(x)
def
= inf

V2∈V2

sup
V1∈V1

J V1,V2(x),

v(x)
def
= sup

V1∈V1

inf
V2∈V2

J V1,V2(x)(2.6)

with the meaning that in the case of the upper value of the game the first player
knows the stopping time and impulse of the second player while in the case of the
lower value of the game the second player knows the stopping time and impulse of
the first player. In Definition (2.6) above, V1 (resp., V2) denote the set of general
admissible (dependent on the whole histories) strategies of player I (resp., player II).

To avoid an infinite number of shifts (impulses) at the same time we have to
make one of the following assumptions by introducing a continuous bounded strictly
positive function h:

(A1) There is a decision lag: if an impulse to ξi ∈ U1 or to ζi ∈ U2 is made
at time ρi, then the next stopping times τi+1 and σi+1 should be greater or equal to
ρ̂i := ρi + h(X i

ρi
, ξi) or ρ̂i := ρi + h(X i

ρi
, ζi) depending on whether impulse to ξi or to

ζi was executed.
(A2) After each shift of the minimizer followed by the maximizer there is a decision

lag: if at time σi the shift of the minimizer to ζi ∈ U2 is made and the next stopping
time is τi+1 chosen by the maximizer with shift ξi+1, then the next stopping time
should not be smaller than τi+1 + h(X i+1

τi+1
, ξi+1).

Notice that although decision lag is assumed to be strictly positive we do not
assume that it is bounded away from 0, so that, when x is large, h(x, z), z ∈ U1, U2

may be very small, which corresponds to an almost immediate correction of the state
process when its value is far away from the compact sets U1, U2.

In our construction of strategies we shall restrict ourselves first to shifted strate-
gies, i.e., we assume that for a given ρ̂i−1, i = 1, 2, . . . with ρ̂0 = 0 the strategies of the
players are of the form τi = ρ̂i−1 + τ i ◦ θρ̂i−1 and σi = ρ̂i−1 + σi ◦ θρ̂i−1 , where τ

i and
σi are stopping times and ξi = ξiθρ̂i−1 , ζi = ζiθρ̂i−1 with ξi(resp., ζi) being U1(resp.,
U2)-valued random variables adapted to the σ-fields generated by X i

τi (resp., X i
σi
),

implying they are not dependent on the whole histories F̃τi or F̃σi , respectively, and
where ρ̂i = ρi whenever there is no decision lag.

The purpose of this paper is to show the existence of the value of such a zero-sum
game, i.e., v(x) = v(x) for each x ∈ E, and to determine corresponding saddle-point
strategies. Consequently the game can be restricted to the sequence of Dynkin’s
stopping games. For this purpose we are going to show the existence and regularity
of solutions of suitable Isaacs–Bellman equations. We shall restrict ourselves first to
shifted strategies and then using suitable verification results we shall show that the use
of general admissible impulse strategies (dependent on the whole histories) does not
change the value of the game and that there is a saddle-point (optimal) equilibrium
in the set of shifted strategies.

3. Dynkin’s game revisited. In this section we shall study a Markov version of
the continuous time Dynkin’s stopping game. There are two players choosing stopping
times τ and σ as their strategies. The functional is then of the form

Ix(τ, σ) := Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατψ1(Xτ )

+ 1{σ<τ}e−ασψ2(Xσ)

]
,(3.1)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ZERO-SUM MARKOV GAMES WITH IMPULSE CONTROLS 585

where f, ψ1, ψ2 ∈ C(E), and α > 0. We can define upper and lower values of the
game as follows w(x) = infσ supτ Ix(τ, σ), w(x) = supτ infσ Ix(τ, σ). We prove below
that there is a value of the game and also saddle-point stopping times. We have

Theorem 3.1. For f, ψ1, ψ2 ∈ C(E) and α > 0 we have

(3.2) w(x) = w(x) := w(x) = Ix(τ̂ , σ̂),

where w ∈ C(E) and

τ̂ = inf {s ≥ 0 : w(Xs) = ψ1(Xs)} ,
σ̂ = inf {s ≥ 0 : w(Xs) = ψ1(Xs) ∨ ψ2(Xs)}(3.3)

are saddle-point stopping times. Moreover

(3.4) m1(t) :=

∫ t∧τ̂

0

e−αsf(Xs)ds+ e−α(t∧τ̂)w(Xt∧τ̂ )

is a submartingale while

(3.5) m2(t) :=

∫ t∧σ̂

0

e−αsf(Xs)ds+ e−α(t∧σ̂)w(Xt∧σ̂)

is a supermartingale.

Proof. The case when ψ1(x) ≤ ψ2(x) for x ∈ E was studied in [22] under an
additional condition (A3) stated therein. Since, by the boundedness of the functions
f, ψ1, ψ2, the game can be uniformly approximated by finite horizon games the proof
follows now from Theorem 1 of [23]. It was shown therein that a weaker version of
(A3) of [22], which is the finite-time large excursion probability of the process decays
to 0 uniformly on each compact set, is sufficient and that the assumption is satisfied
by Proposition 2.1 of [19]. Consequently we have the existence of the value of the
game. The form of saddle-point strategies can be obtained in the same way as in [22]
and [23]. The case of arbitrary ψ1, ψ2 ∈ C(E) was considered in Theorem 3 of [22].
We repeat simplifying the arguments of that proof here. Consider the game with cost
functional

I ′x(τ, σ)

:= Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατψ1(Xτ ) + 1{σ<τ}e−ασψ1(Xσ) ∨ ψ2(Xσ)

]
.

This is in fact a game studied in the first part of the proof, so that there is a value w′(x)
of such a game and saddle-point stopping times τ̂ ′ = inf {s ≥ 0 : w′(Xs) = ψ1(Xs)}
and σ̂′ = inf {s ≥ 0 : w′(Xs) = ψ1(Xs) ∨ ψ2(Xs)}. Notice that for any stopping time
σ

(3.6) I ′x(τ̂
′, σ) = Ix(τ̂

′, σ).

In fact, we have that ψ1(x) ≤ w′(x) ≤ ψ1(x) ∨ ψ2(x) so that {ψ2(Xσ) ≤ ψ1(Xσ)} ⊂
{w′(Xσ) = ψ1(Xσ)} ⊂ {τ̂ ′ ≤ σ}. Consequently {σ < τ̂ ′} ⊂ {ψ1(Xσ) < ψ2(Xσ)} from
which (3.6) follows. For any stopping times τ and σ using (3.6) twice and using the
fact that stopping times τ̂ ′ and σ̂′ form a saddle strategy for I ′x we have

(3.7) Ix(τ, σ̂
′) ≤ I ′x(τ, σ̂

′) ≤ I ′x(τ̂
′, σ̂′) = Ix(τ̂

′, σ̂′) ≤ I ′x(τ̂
′, σ) = Ix(τ̂

′, σ),
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which means that we have the same saddle-point stopping times for Ix and I ′x, and
w(x) = w′(x). Sub- and super-martingale properties of (3.4) and (3.5) (resp.) follow
directly from Theorem 2 of [22]. In fact, for t, s ≥ 0, we have

E
[
m1(t+ s)|F̃t

]
:=

∫ t∧τ̂

0

e−αuf(Xu)du+ 1{τ̂≤t}e−ατ̂w(Xτ̂ )

+ 1{t<τ̂}e−αtE

[∫ (t+s)∧τ̂

t

e−α(u−t)f(Xu)du + e−α(τ̂−t)∧sw(Xτ̂∧(t+s))|F̃t

]

≥
∫ t∧τ̂

0

e−αuf(Xu)du+ e−α(t∧τ̂)w(Xt∧τ̂ ),(3.8)

where we use the fact that by Markovianity and Theorem 2 of [22] we have on the set
{t < τ̂}

(3.9) E

[∫ (t+s)∧τ̂

t

e−α(u−t)f(Xu)du + e−α(τ̂−t)∧sw(Xτ̂∧(t+s))|F̃t

]
≥ w(Xt).

This implies that m1(t) is a submartingale. That (3.5) is a supermartingale can be
proved analogously.

Remark 1. As was pointed out in Remark 2 of [23] the value of the game with
the functional

I ′′x (τ, σ)

:= Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ<σ}e−ατψ1(Xτ ) + 1{σ≤τ}e−ασψ1(Xσ) ∨ ψ2(Xσ)

]

coincides with the value w(x) and is the same as in the game with the functionals Ix
and I ′x. This is not true, however, if we consider the functional

I ′′′x (τ, σ)(3.10)

:= Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ<σ}e−ατψ1(Xτ ) + 1{σ≤τ}e−ασψ2(Xσ)

]

since for f ≡ 0, ψ1 ≡ 2, ψ2 ≡ 1 we have w(x) = 2, while w′′′(x) = supσ infτ I
′′′
x (τ, σ) =

infτ supσ I
′′′
x (τ, σ) = 1. One can shown (in a similar way as in the proof of Theorem

3.1) that the game with the functional I ′′′x is equivalent to the game with the functional

(3.11)

I ′′′′x (τ, σ)

:= Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ<σ}e−ατψ1(Xτ ) ∧ ψ2(Xτ ) + 1{σ≤τ}e−ασψ2(Xσ)

]

for which we have saddle stopping times τ̃ ′ = inf {s ≥ 0 : w′′′(Xs) = ψ1(Xs) ∧ ψ2(Xs)}
and σ̃′ = inf {s ≥ 0 : w′′′(Xs) = ψ2(Xs)}.

4. Isaacs–Bellman equation and its solutions. In this section, we describe
the dynamic programming formulation of our game and state the main two theorems
of this paper, namely, the existence of unique continuous bounded solutions to the
Isaacs–Bellman equation (Theorem 4.1) and the verification result that this solution
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is indeed the value of our game (Theorem 4.2). We also provide herein a counterex-
ample to show that the weak assumptions made in section 2 are necessary for the
uniqueness of the value function. We start with the form of Isaacs–Bellman equation
corresponding to the game under (A1). Assuming that there is a value of the impulse
game we have the following equation for the value function of the game:

v(x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMh
1 v(Xτ )

+ 1{σ<τ}e−ασMh
2 v(Xσ)

]
(4.1)

with

(4.2) Mh
1 v(x) := sup

ξ∈U1

[
c(x, ξ) + Eξ

[
e−αh(x,ξ)v(Xh(x,ξ)) +

∫ h(x,ξ)

0

e−αsf(Xs)ds

]]

and

(4.3) Mh
2 v(x) := inf

ζ∈U2

[
d(x, ζ) + Eζ

[
e−αh(x,ζ)v(Xh(x,ζ)) +

∫ h(x,ζ)

0

e−αsf(Xs)ds

]]
,

where h is as in (A1). By compactness of the sets U1 and U2 there are Borel measurable
functions (selectors) ξh : E → U1 and ζh : E → U2 such that
(4.4)

Mh
1 v(x) := c(x, ξh(x))+Eξh(x)

[
e−αh(x,ξh(x))v(Xh(x,ξh(x)))+

∫ h(x,ξh(x))

0

e−αsf(Xs)ds

]

and
(4.5)

Mh
2 v(x) := d(x, ζh(x))+Eζh(x)

[
e−αh(x,ζh(x))v(Xh(x,ζh(x)))+

∫ h(x,ζh(x))

0

e−αsf(Xs)ds

]
.

Under (A2) we consider a system of Isaacs–Bellman equations

v1(x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατM0
1 v1(Xτ )

+ 1{σ<τ}e−ασM0
2 v2(Xσ)

]
(4.6)

and

v2(x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMh
1 v1(Xτ )

+ 1{σ<τ}e−ασM0
2 v2(Xσ)

]
,(4.7)

where M0
1 and M0

2 are operators defined in (4.2), (4.3) (resp.) with function h ≡ 0.
Equation (4.6) corresponds to the value of the game just after shift of the maximizer
to the set U1. The next shift by any player can be made immediately. However, by
using (2.2) we shall later show that, with high probability, the next impulse time of the
maximizer should be after a certain number units of time (Lemma 6.5) while the shift
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of the minimizer can be made immediately. Equation (4.7) corresponds to the value
of the game just after the shift of the minimizer to the set U2. Again the next shift by
any player can be made immediately. If this current shift by the minimizer is followed
by a shift of the maximizer, then we have a decision lag of h (defined in assumption
(A2)) thereafter, whereas if we have another consecutive shift of the minimizer, then
we have no decision lag. However, this next impulse time of the minimizer by (2.3)
should, with high probability, be after a certain number units of time (Lemma 6.6).

With functions v1 and v2 we associate the third Isaacs–Bellman equation of the
form

v(x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατM0
1 v1(Xτ )

+ 1{σ<τ}e−ασM0
2 v2(Xσ)

]
.(4.8)

The main results of the paper can now be formulated as follows.

Theorem 4.1. Under (A1) or under (A2) we have a unique continuous bounded
solution v to (4.1) or unique continuous bounded solutions v1, v2 to the system of
equations (4.6), (4.7) (resp.).

Furthermore, the following holds.

Theorem 4.2. Under (A1) the unique solution v to (4.1) or under (A2) the func-
tion v defined in (4.8) determined by unique solutions to the system of equations (4.6),
(4.7) is the value of the game, i.e.,

(4.9) v(x) = inf
V1

sup
V2

J V1,V2(x) = sup
V2

inf
V1

J V1,V2(x),

and saddle-point strategies are determined as solutions to the Dynkin game formulated
in (4.1) and (4.8), (4.6), (4.7), respectively.

The proof of Theorem 4.2 follows directly from Proposition 7.3, which we prove at
the end of this paper, whereas the proof of Theorem 4.1 is provided under assumption
(A1) in section 5 and under assumption (A2) in section 6.

Notice first that under (A1), when h(x, ξ) ≥ h0 > 0 we have a contraction (in
supremum norm) and therefore a unique solution to (4.1). However, we know that
h is a positive and continuous function and not necessarily bounded away from 0.
Therefore we have considered a finite horizon version of the game.

We now provide the following counterexample to show that the uniqueness of the
value function in (4.1) may not hold without our assumptions in section 2.

Example 1. Let E = {a, b}, U1 = {a}, U2 = {b}, c(x, ξ) = −c, d(x, ζ) = c, c > 0,
f(a) > 0, f(b) < 0. Xs stays at a (b) and enters b (a) at a random time which is
exponentially distributed with parameter λ > 0. Then any function v : {a, b} �→ R
such that c = v(a)− v(b) is a solution to (4.1) with h ≡ 0 which may be written as

v(x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατM0
1 v(Xτ )

+ 1{σ<τ}e−ασM0
1 ∨M0

2 v(Xσ)

]
.(4.10)

In fact, we have M0
1 v(x) = −c + v(a), M0

2 v(x) = c + v(b), and clearly M0
1 v(x) <

M0
2 v(x) for x ∈ E. When the process is in the state a the minimizer shifts it imme-

diately to the state b, while when the process is in the state b the maximizer shifts it
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immediately to the state a. Consequently we have an infinite number of immediate
shifts and there is an infinite number of solutions to (4.10).

Furthermore, let v0(x) = Ex

[∫∞
0
e−αsf(Xs)ds

]
and vi(x) be the value of the

game with at most i impulses. Consider now the case when c < v0(a)− v0(b) < 2c.
Then v1(b) ≥ M1v0(b) > v0(b) and v1(b) = −c+ v0(a) and the maximizer makes

immediately an impulse; moreover, v1(a) ≤ M2v0(a) = c + v0(b) < v0(a) and (since
M1v0(x) < M2v0(x)) v1(a) = c + v0(b) so that the minimizer makes immediately an
impulse.

Moreover, since 0 < v1(a)−v1(b) = c+v0(b)+c−v0(a) < c and v2(b) =M1v1(v) =
−c+ v1(a) = v0(b), and (note that we have M1v1(x) < M2v1(x)), v2(a) =M2v1(a) =
v0(a) and if we do not make any impulse, we obtain the same. Finally by induction
we have v2i(a) = v0(a), v2i(b) = v0(b); v2i+1(a) = c + v0(b), v2i+1(b) = −c + v0(a),
and v2i+1(a) = c+ v2i(b), v2i+1(b) = −c+ v2i(a).

5. Analysis of the impulse game under (A1). Restricting to the shifted
strategies of the players (see section 2 for a description), this section proves Theorem
4.1 under the assumption (A1) of section 2. As a by-product of these proofs, we study
properties of Feller–Markov processes via Lemma 5.1, which can be of independent
interest. Since α > 0 and f is bounded we approximate the original game by the
game with the finite-horizon functional

J V1,V2,T (x)
def
= EV1,V2

x

[ ∫ T

0

e−αsf(Xs)ds

+

∞∑
i=1

e−α(τi∧σi)
(
1{τi≤σi}c(X

−
τi , ξi) + 1{σi<τi}d(X

−
σi
, ζi)

) ]
.

(5.1)

Since c ≤ 0 and d ≥ 0 the players are not interested in continuing the game after
time T . We have the following Isaacs equation,

vT (t, x) = 0 for t ≥ T,

and

(5.2)

vT (t, x) = inf
σ

sup
τ
Ex

[∫ τ∧σ∧(T−t)

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMh
1 v

T (t+ τ,Xτ )

+ 1{σ<τ}e−ασMh
2 v

T (t+ σ,Xσ)

]
,

where the operators Mh
1 , M

h
2 are defined by (4.2), (4.3), respectively.

We shall need the following auxiliary lemmas. The first lemma is based on Propo-
sition 2.1 of [19].

Lemma 5.1. If PtC0 ⊂ C0, then for any ε > 0, compact set U ⊂ E, and T > 0
there is R > 0 such that

(5.3) sup
x∈U

Px

[∃t∈[0,T ]ρ(x,Xt) > R
] ≤ ε.

Lemma 5.2. For given continuous bounded function g the mapping E×(U1∪U2) 

(x, z) �→ Ez [g(h(x, z), Xh(x,z))] is also continuous.
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Proof. Since h is a continuous function it follows directly from Lemma 2.3 of
[19].

For a continuous bounded v such that v(t, x) = 0 for t ≥ T define the operator

ST v(t, x) = inf
σ

sup
τ
Ex

[∫ τ∧σ∧T

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMh
1 v(t+ τ,Xτ )

+ 1{σ<τ}e−ασMh
2 v(t+ σ,Xσ)

]
.(5.4)

Denote by C0([0, T ]×E) the space of continuous functions v such that v(t, x) = 0 for
t ≥ T and x ∈ E. Let

(5.5) hR := inf
x∈B(U1∪U2,R),z∈U1∪U2

h(x, z).

We have now the following.

Proposition 5.3. The operator ST is a contraction on C0([0, T ]× E) with con-
stant ε + (1 − ε)e−αhR , where hR is defined as in (5.5) above and ε,R follows from
(5.3) with U = U1 ∪ U2. Consequently there is a unique v ∈ C0([0, T ]× E) such that
ST v = v. Moreover vT (t, x) is the value of impulse game restricted to shift up to time
T and restricted to shifted strategies defined in section 2.

Proof. Notice first that ST v(t, x) is the value of the stopping game starting from
t from x ∈ E and with functional up to time T with ψ1, ψ2 replaced by Mh

1 v and
Mh

2 v, respectively. From Lemma 5.2 we have continuity of the operatorsMh
1 andMh

2 .
Therefore using Theorem 1 of [23] (for time dependent version withMh

1 v ≤Mh
2 v) and

Theorem 3.1 (which shows that we can have arbitraryMh
1 v andMh

2 v) we see that the
operator ST transforms continuous bounded time space functions into itself for t < T .
There are also no problems with time continuity of ST at time T since, by the fact that
c is negative and d is positive, the players after time T are not interested in stopping
the game before infinity. Therefore taking into account the positive discount factor α
for v ∈ C0([0, T ]×E), the function ST v is in C0([0, T ]×E). For v1, v2 ∈ C0([0, T ]×E)
using Lemma 5.1 with U = U1 ∪U2 for a given ε > 0 we can find R such that we have
(5.3) and then

(5.6)

ST v1(t, x)− ST v2(t, x)

≤ sup
z∈U1∪U2

sup
τ
Ex

{
e−ατ∧T e−αh(Xτ∧T ,z)‖v1 − v2‖

}
≤ sup

τ

(
Px

{
1Bc(U1∪U2,R)(Xτ∧T )

}
+ Ex

{
1B(U1∪U2,R)(Xτ∧T )e

−αhR
}) ‖v1 − v2‖

≤ (
e−αhR + ε(1− e−αhR)

) ‖v1 − v2‖,
where by ‖ · ‖ we denoted the usual supremum norm and from which the required
contraction property (in this norm) follows. The proof that vT (t, x) is the value of
the game within the class of shifted strategies follows in a standard way (see, e.g., [22]
or [21], eventually [19]) using a time-dependent version of Theorem 3.1.

Remark 2. Following arguments shown later in the verification of the solution to
the Isaacs–Bellman equation for the infinite horizon problem, vT (t, x) is also the value
of the game in the case of general admissible strategies although optimal strategies
are in fact in the class of shifted strategies.
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Proof of Theorem 4.1 under (A1). Notice that

(5.7) |J V1,V2,T (x) − J V1,V2(x)| ≤ ‖f‖
α
e−αT

since both functionals differ only in the running integral term after time T . Conse-
quently the solution to the finite horizon impulse game converges uniformly to the
value of the infinite horizon game as T → ∞. So we have that the infinite horizon
game has a value and this value is a continuous function as it is a uniform limit of
continuous finite horizon value functions.

6. Analysis of the impulse game under (A2). In what follows we would
like to show that v given by (4.8) corresponds to the value of the game when we
restrict to the shifted strategies of the players (see section 2 for a description) and
then prove Theorem 4.1 under the Assumption (A2) of section 2. For this purpose
we study properties of Feller–Markov processes by proposing and proving Proposition
6.4, which can be of independent interest. Moreover we also propose and prove herein
two important lemmas, namely, Lemmas 6.5 and 6.6, which show that consecutive
jumps by any player happen with low probability. Last we also propose and prove the
key Proposition 6.7, that an infinite number of jumps is not possible in finite time,
which is crucial for the proof of the verification theorem 4.2 in the next section.

We consider now the following system of Isaacs–Bellman equations with decision
lag κ > 0:

vκ1 (x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMκ
1 v

κ
1 (Xτ )

+ 1{σ<τ}e−ασMκ
2 v

κ
2 (Xσ)

]
:= Sκ

1 (v
κ
1 , v

κ
2 )(x)(6.1)

and

vκ2 (x) = inf
σ

sup
τ
Ex

[ ∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMh∨κ
1 vκ1 (Xτ )

+ 1{σ<τ}e−ασMκ
2 v

κ
2 (Xσ)

]
:= Sκ

2 (v
κ
1 , v

κ
2 )(x),(6.2)

defining also the operators Sκ(v1, v2) := (Sκ
1 (v1, v2), S

κ
2 (v1, v2)), where, for h

′ = κ, h,
the operators Mh′

1 ,M
h′
2 correspond to Mh

1 ,M
h
2 (resp.) with h ≡ h′ (see (4.2), (4.3),

resp.). Notice that we have the following estimates in the supremum norm ‖ · ‖:
(6.3) ‖Sκ

1 (v1, v2)− Sκ
1 (v

′
1, v

′
2)‖ ≤ e−ακ (‖v1 − v′1‖+ ‖v2 − v′2‖)

and

(6.4) ‖Sκ
2 (v1, v2)− Sκ

2 (v
′
1, v

′
2)‖ ≤ e−ακ (‖v1 − v′1‖+ ‖v2 − v′2‖) .

By Theorem 3.1, the operators (Sκ
1 , S

κ
2 ) transform C(E) × C(E) into itself since

Sκ
1 (v1, v2) and Sκ

2 (v1, v2) are values of the stopping games with ψ1, ψ2 replaced by
Mκ

1 v
κ
1 , M

κ
2 v

κ
2 or Mh∨κ

1 vκ1 , M
κ
2 v

κ
2 , respectively. By (6.3) and (6.4) they also form a

contraction in the space C(E)× C(E). Therefore we have the following lemma.

Lemma 6.1. For each κ > 0 there is a unique solution vκ1 , v
κ
2 ∈ C(E)× C(E) to

the system of equations (6.1)–(6.2).
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Further note that v ∈ C(E) and x, y ∈ E and we have

(6.5) |Mκ
1 v(x) −Mκ

1 v(x)| ≤ sup
ξ∈U1

|c(x, ξ)− c(y, ξ)|

and

(6.6) |Mκ
2 v(x) −Mκ

2 v(x)| ≤ sup
ζ∈U2

|c(x, ζ) − c(y, ζ)|,

so that we have uniform (with respect to κ) continuity of Mκ
1 v and Mκ

2 v. Thus we
have the following theorem.

Theorem 6.2. There is a pair of functions (v1, v2) ∈ C(E) × C(E) which are
solutions to the following system of equations:

v1(x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατM0
1 v1(Xτ )

+ 1{σ<τ}e−ασM0
2 v2(Xσ)

]
(6.7)

and

v2(x) = inf
σ

sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMh
1 v1(Xτ )

+ 1{σ<τ}e−ασM0
2 v2(Xσ)

]
.(6.8)

Proof. It is clear that vκ1 and vκ2 are bounded and therefore by (6.5)–(6.6) there
are functions z1, z2 ∈ C(E) and subsequence κn → 0 such that Mκn

1 vκn
1 (x) → z1(x)

and Mκn
2 vκn

2 (x) → z2(x) uniformly in x from compact subsets of E. Consequently

vκn
1 (x) → v1(x) := inf

σ
sup
τ
Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατz1(Xτ )

+ 1{σ<τ}e−ασz2(Xσ)

]
(6.9)

uniformly on compact sets as n → ∞. In fact, for a given ε > 0 there is T such that
for each n

|vκn
1 (x) − inf

σ≤T
sup
τ≤T

Ex

[∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMκ
1 v

κn
1 (Xτ )

+ 1{σ<τ}e−ασMκn
2 vκn

2 (Xσ)]| ≤ ε(6.10)

and

|v1(x)(x) − inf
σ≤T

sup
τ≤T

Ex

[ ∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατz1(Xτ )

+ 1{σ<τ}e−ασz2(Xσ)]| ≤ ε.(6.11)

By Lemma 5.1 and local compactness of the state space E for a given compact
set K1 one can find another compact set K2 such that for x ∈ K1 we have that

Px

[∃t∈[0,T ]Xt) /∈ K2

] ≤ ε. Since ‖vκ1‖, ‖vκ1‖ ≤ ‖f‖
α , functions Mκ

1 v
κn
1 and Mκn

2 vκn
2
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are uniformly bounded and the functions z1 and z2 are also bounded. Consequently
to show the convergence (6.9) it remains to notice that uniformly in σ ≤ T and τ ≤ T
for x ∈ K1

Ex

[ ∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}1Xτ∈K2e
−ατMκ

1 v
κn
1 (Xτ )

+ 1{σ<τ}1Xσ∈K2e
−ασMκn

2 vκn
2 (Xσ)

]
→

Ex

[ ∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}1Xτ∈K2e
−ατz1(Xτ )

+ 1{σ<τ}1Xσ∈K2e
−ασz2(Xσ)

]
,(6.12)

which completes the proof of (6.9).
We also have

(6.13) Mh∨κn
1 vκn

1 (x) →Mh
1 v1(x)

uniformly in x from compact sets as n→ ∞. Repeating the arguments as in (6.9) we
obtain that

(6.14)

vκn
2 (x) → v2(x) := inf

σ
sup
τ
Ex

[ ∫ τ∧σ

0

e−αsf(Xs)ds+ 1{τ≤σ}e−ατMh
1 v1(Xτ )

+ 1{σ<τ}e−ασz2(Xσ)

]

also uniformly on compact sets. Therefore we have that Mκn
1 vκn

1 (x) →M0
1 v1(x) and

Mκn
2 vκn

2 (x) → M0
2 v2(x) uniformly in x from compact sets as n → ∞, which means

that v1 and v2 are solutions to the system of equations (6.7)–(6.8).

We now recall the following result from Theorem 3.7 of [6].

Lemma 6.3. For any compact set K ⊆ E and any ε, δ > 0 there is κ0 > 0 such
that

(6.15) sup
0≤κ≤κ0

sup
x∈K

Px{X(κ) /∈ B(x, δ)} < ε.

Using Lemma 5.1 we obtain a stronger version of the last lemma.

Proposition 6.4. For any compact set K ⊂ E and δ > 0

(6.16) lim
κ→0

sup
x∈K

Px

{∃s∈[0,κ] : ρ(x,Xs) ≥ δ
} → 0.

Proof. Let x ∈ K a compact set and δ > 0. By Lemma 5.1 for a given ε > 0
there is R > 3δ such that supx∈K Px

[∃t∈[0,T ]ρ(x,Xt) > R
] ≤ ε. By Lemma 6.3

there is κ0 such that for κ ≤ κ0 we have supx∈B(K,R) Px{X(κ) /∈ B(x, δ)} < ε. Let
τ := inf {s ≥ 0 : ρ(x,Xs) > 3δ}. Then we have

1− ε ≤ Px {ρ(x,Xκ) ≤ δ} ≤ Px {ρ(x,Xκ) ≤ δ, τ ≤ κ}+ Px {τ > κ}
≤ ε+ Ex

{
1τ≤κ1ρ(x,Xτ )≤RPXτ {ρ(x,Xκ−τ ) ≤ δ}}+ Px {τ > κ}

≤ ε+ εPx {τ ≤ κ}+ Px {τ > κ} = ε+ ε+ Px {τ > κ} (1 − ε)
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since {ρ(x,Xκ) ≤ δ} ⊂ {ρ(Xτ , Xκ) ≥ 2δ} ⊂ {ρ(Xτ , Xκ) > δ}, so that on {τ ≤ κ}
1ρ(x,Xτ )≤RPXτ {ρ(x,Xκ−τ ) ≤ δ} ≤ ε

and consequently Px {τ > κ} ≥ 1−3ε
1−ε , which taking into account that ε could be

chosen arbitrarily small completes the proof.

Fix r > 0. By (2.2) and (2.3), respectively, there is ε > 0 such that, respectively,

(6.17) ∀x∈B(U1,r)∀ξ,ξ′∈U1 c(x, ξ) + c(ξ, ξ′) < c(x, ξ′)− 3ε

and

(6.18) ∀x∈B(U2,r)∀ζ,ζ′∈U2 d(x, ζ
′) + 3ε < d(x, ζ) + d(ζ, ζ′).

There is δ > 0 such that δ ≤ r and for x ∈ B(U1, r)

(6.19) ∀ξ,ξ′∈U1∀ξ′′∈B(ξ,δ) c(x, ξ) + c(ξ′′, ξ′) < c(x, ξ′)− 2ε

while for x ∈ B(U2, r)

(6.20) ∀ζ,ζ′∈U2∀ζ′′∈B(ζ,δ) d(x, ζ
′) + 2ε < d(x, ζ) + d(ζ′′, ζ′).

For if, say, (6.19) is not true, then there are sequences xn ∈ B(U1, r), ξ
(1)
n , ξ

(2)
n ∈

U1, ξ
′′
n ∈ B(ξ

(2)
n , 1

n ) such that c(xn, ξ
(2)
n + c(ξ′′n, ξ

(1)
n )+ 1

n ≥ c(xn, ξ
(1)
n ) and hence choos-

ing suitable convergent subsequences we have that xnk
−→ x, ξ

(1)
nk −→ ξ′, ξ(2)nk −→

ξ, ξ′′nk
−→ ξ, thus obtaining c(x, ξ) + c(ξ, ξ′) ≥ c(x, ξ′), which is a contradiction to

(2.2). Similarly (6.20) holds, otherwise contradicting (2.3).
By the continuity of v1(·) and v2(·) (see Theorem 6.2) we have that there is δ′ > 0

such that δ′ ≤ δ and

(6.21) sup
ξ∈U1

sup
z∈B(ξ,δ′)

|v1(ξ)− v1(z)| ≤ ε

and

(6.22) sup
ζ∈U2

sup
z∈B(ζ,δ′)

|v2(ζ)− v2(z)| ≤ ε.

Let h̄ = infx∈B(U2,r),ξ∈U1
h(x, ξ). By Proposition 6.4 for each ε̃ > 0 there is h̃ > 0

such that h̃ ≤ h̄ and

(6.23) sup
x∈U1∪U2

Px

{
∃s∈[0,h̃]ρ(Xs, x) ≥ δ′

}
< ε̃.

In what follows we shall assume, without loss of generality, that ε̃ < 1
2 . Denote by

ξ : E → U1 and ζ : E → U2 Borel measurable functions (selectors) such that for
z ∈ E

(6.24) M0
1 v1(z) = c(z, ξ(z)) + v1(ξ(z)) and M0

2v2(z) = d(z, ζ(z)) + v2(ζ(z)).

Let
(6.25)
Γ1 =

{
z ∈ E : v1(z) =M0

1 v1(z)
}

and Γ2 =
{
z ∈ E : v2(z) =M0

2 v2(z) ∨Mh
1 v1(z)

}
.

The next two important lemmas show that two successive impulses by the minimizer
or the maximizer can happen only with a small probability.
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Lemma 6.5. Assume that z ∈ Γ1 ∩ B(U1, r) and τ∗ = inf
{
s ≥ 0 : X̄1

s ∈ Γ1

}
,

where (X̄1
s ) is a copy of Markov process (Xs) starting from X̄1

0 = ξ(z). Then for h̃ as
in (6.23) we have

(6.26) Pξ(z)

{
τ∗ ≤ h̃

}
< ε̃.

Proof. Assuming ρ(X̄1
0 , X̄

1
τ∗) < δ′ we have using (6.21) and (6.19)

v1(z) =M0
1 v1(z) = c(z, ξ(z)) + v1(ξ(z)) ≤ c(z, ξ(z)) + v1(X̄

1
τ∗) + ε

= c(z, ξ(z)) + c(X̄1
τ∗ , ξ(X̄1

τ∗)) + v1(ξ(X̄
1
τ∗)) + ε

≤ c(z, ξ(X̄1
τ∗))− 2ε+ v1(ξ(X̄

1
τ∗)) + ε ≤M0

1v1(z)− ε,

which leads to a contradiction since v1(z) =M0
1 v1(z) as z ∈ Γ1. Therefore we should

have ρ(X̄1
0 , X̄

1
τ∗) ≥ δ′ and by (6.23) we have that (6.26) holds, which completes the

proof.

Lemma 6.6. Assume that z ∈ Γ2 ∩ B(U2, r) and σ∗ = inf
{
s ≥ 0 : X̄1

s ∈ Γ2

}
,

where (X̄1
s ) is a copy of Markov process (Xs) starting from X̄1

0 = ζ(z). Then either
at time 0 or at time σ∗ we have impulse with decision lag at least h̄, or for h̃ as in
(6.23) we have

(6.27) Pζ(z)

{
σ∗ ≤ h̃

}
< ε̃.

Proof. When ρ(X̄1
0 , X̄

1
σ∗) < δ′ and v2(z) =M0

2v2(z) we have using (6.22)

(6.28) v2(z) =M0
2 v2(z) = d(z, ζ(z)) + v2(ζ(z)) ≥ d(z, ζ(z)) + v2(X̄

1
σ∗)− ε.

When additionally v2(X̄
1
σ∗) =M0

2 v2(X̄
1
σ∗) then continuing (6.28) and using (6.20) we

obtain

v2(z) ≥ d(z, ζ(z)) + d(X̄1
σ∗ , ζ(X̄1

σ∗)) + v2(ζ(X̄
1
σ∗))− ε

> d(z, ζ(X̄1
σ∗)) + v2(ζ(X̄

1
σ∗ )) + 2ε− ε ≥M0

2 v2(z) + ε,

which leads to contradiction since v2(z) = M0
2 v2(z) as z ∈ Γ2. Therefore either

v2(z) =Mh
1 v1(z) or v2(X̄

1
σ∗) =Mh

1 v1(X̄
1
σ∗) or ρ(X̄1

0 , X̄
1
σ∗) ≥ δ′. In the first two cases

we have impulses with decision lag h ≥ h̄ and in the third case by (6.23) we have
(6.27).

Let ξh be (by analogy to (4.4)) a Borel measurable function (selector) ξh : E → U1

such that
(6.29)

Mh
1 v1(x) := c(x, ξh(x))+Eξh(x)

[
e−αh(x,ξh(x))v1(Xh(x,ξh(x)))+

∫ h(x,ξh(x))

0

e−αsf(Xs)ds

]
.

We recall here that (X̄ i
s) below are copies of the Markov process (Xs) starting at ρi−1

from the state defined by our impulsive strategy, while (X i
s) is our controlled process

between (i− 1)th and ith impulse, introduced at the beginning of the paper when we
constructed our controlled probability space. Define now the sequence ρ∗i of stopping
times inductively by the following formulae:

ρ∗1 := τ1∗ ∧ σ1∗, where
τ1∗ := inf

{
s ≥ 0 : v(X̄1

s ) =M0
1 v1(X̄

1
s )
}
,
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σ1∗ := inf
{
s ≥ 0 : v(X̄1

s ) =M0
2 v2(X̄

1
s ) ∨M0

1 v1(X̄
1
s )
}
,

ρ∗2 := ρ∗1 + (τ2∗ ∧ σ2∗) ◦ θρ∗
1

and when ρ∗1 = τ1∗ ≤ σ∗ we have
X̄2

0 = ξ(X̄1
ρ∗
1
),

τ2∗ := inf
{
s ≥ 0 : v1(X̄

2
s ) =M0

1v1(X̄
2
s )
}
,

σ2∗ := inf
{
s ≥ 0 : v1(X̄

2
s ) =M0

2 v2(X̄
2
s ) ∨M0

1 v1(X̄
2
s )
}
,

while when ρ∗1 = σ1∗ < τ1∗ we have
X̄2

0 = ζ(X1
ρ∗
1
),

where, this time, τ2∗ := inf
{
s ≥ 0 : v2(X̄

2
s ) =Mh

1 v1(X̄
2
s )
}

and σ2∗ := inf
{
s ≥ 0 : v2(X̄

2
s ) =M0

2 v2(X̄
2
s ) ∨Mh

1 v1(X̄
2
s )
}

and finally when ρ∗2 = ρ∗1+τ
2∗◦θρ∗

1
the decision lag of h(X2

ρ∗
2
, ξh(X2

ρ∗
2
)) is executed

so that the next shift is allowed after ρ∗2 + h(X2
ρ∗
2
, ξh(X2

ρ∗
2
)).

In the ith iteration we have the following five cases:
1. Given ρ∗i = ρ∗i−1 + τ i∗ ◦ θρ∗

i−1
, where τ i∗ = inf{s ≥ 0 : v1(X̄

i
s) = M0

1 v1(X̄
i
s)},

which means that we had an impulse of the player I (maximizer) and we are
just after another impulse of the player I and follow (6.7). Define ρ∗i+1 :=

ρ∗i + (τ (i+1)∗ ∧ σ(i+1)∗) ◦ θρ∗
i
, where X̄ i+1 starts from ξ(X i

τ i∗) and τ (i+1)∗ :=

inf
{
s ≥ 0 : v1(X̄

i+1
s ) =M0

1 v1(X̄
i+1
s )

}
and σ(i+1)∗ := inf{s ≥ 0 : v1(X̄

i+1
s ) =

M0
2 v2(X̄

i+1
s ) ∨M0

1 v1(X̄
i+1
s )}.

2. Given ρ∗i = ρ∗i−1 + σi∗ ◦ θρ∗
i−1

, where σi∗ := inf{s ≥ 0 : v1(X̄
i
s) =M0

2 v2(X̄
i
s)∨

M0
1 v1(X̄

i
s)} and v1(X

i
ρ∗
i
) < M0

1 v1(X
i
ρ∗
i
), which means that we had an impulse

of the player I and we are now after the impulse of the player II (minimizer)
and follow (6.8). Define ρ∗i+1 := ρ∗i + (τ (i+1)∗ ∧ σ(i+1)∗) ◦ θρ∗

i
with τ (i+1)∗ :=

inf
{
s ≥ 0 : v2(X̄

i+1
s ) =Mh

1 v1(X̄
i+1
s )

}
, σ(i+1)∗ := inf{s ≥ 0 : v2(X̄

i+1
s ) =

M0
2 v2(X̄

i+1
s ) ∨ Mh

1 v1(X̄
i+1
s )}, where X̄ i+1 starts from ζ(X i

τ i∗) and when

ρ∗i+1 := ρ∗i + τ (i+1)∗ ◦ θρ∗
i
we have decision lag h(X i+1

ρ∗
i+1
, ξh(X i+1

ρ∗
i+1

)) at time

ρ∗i+1, i.e., the next impulse is after ρ∗i+1 + h(X i+1
ρ∗
i+1
, ξh(X i+1

ρ∗
i+1

)).

3. Given ρ∗i = ρ∗i−1 + h(X i
ρi−1

, ξh(X i
ρi−1

)) + τ i∗ ◦ θρ∗
i−1+h(Xi

ρi−1
,ξh(Xi

ρi−1
)), where

τ i∗ = inf
{
s ≥ 0 : v2(X̄

i
s) =Mh

1 v1(X̄
i
s)
}
, which means that after the impulse

of the minimizer we have an impulse of the maximizer and therefore we have
decision lag and then another impulse of the maximizer and follow (6.7).
Define ρ∗i+1 := ρ∗i + (τ (i+1)∗ ∧ σ(i+1)∗) ◦ θρ∗

i
, where τ (i+1)∗ := inf{s ≥

0 : v1(X̄
i+1
s ) = M0

1 v1(X̄
i+1
s )} and σ(i+1)∗ := inf{s ≥ 0 : v1(X̄

i+1
s ) =

M0
2 v2(X̄

i+1
s ) ∨M0

1 v1(X̄
i+1
s )} and where X̄ i+1 starts from ξ(X i

τ i∗).
4. Given ρ∗i = ρ∗i−1 + h(X i

ρi−1
, ξh(X i

ρi−1
)) + σi∗ ◦ θρ∗

i−1+h(Xi
ρi−1

,ξh(Xi
ρi−1

)), where

σi∗ = inf
{
s ≥ 0 : v1(X̄

i
s) =M2v2(X̄

i
s) ∨Mh

1 v1(X̄
i
s)
}
, when v1(X̄

i
σi∗) <

Mh
1 v1(X̄

i
σi∗), which means that after an impulse of the minimizer we have

an impulse of the maximizer and therefore we have decision lag and then
another impulse of the minimizer and follow (6.8). Define ρ∗i+1 := ρ∗i +

(τ (i+1)∗∧σ(i+1)∗)◦θρ∗
i
, with τ (i+1)∗ := inf

{
s ≥ 0 : v2(X̄

i+1
s ) =Mh

1 v1(X̄
i+1
s )

}
and σ(i+1)∗ := inf

{
s ≥ 0 : v2(X̄

i+1
s ) =M0

2 v2(X̄
i+1
s ) ∨Mh

1 v1(X̄
i+1
s )

}
, where

X̄ i+1 starts from the state of Markov process ζ(X i
σi∗) and when ρ∗i+1 :=

ρ∗i + τ (i+1)∗ ◦ θρ∗
i
we have decision lag h(X i+1

ρ∗
i+1
, ξh(X i+1

ρ∗
i+1

)) at time ρ∗i+1.

5. Given ρ∗i = ρ∗i−1 + σi∗ ◦ θρ∗
i−1

, where σi∗ := inf{s ≥ 0 : v2(X̄
i
s) =M0

2 v2(X̄
i
s)∨

Mh
1 v1(X̄

i
s)} and v2(X̄

i
ρ∗
i
) < Mh

1 v1(X̄
i
ρ∗
i
), which means that after an impulse of

the minimizer we have another impulse of the minimizer and follow (6.8). De-
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fine ρ∗i+1 := ρ∗i+(τ (i+1)∗∧σ(i+1)∗)◦θρ∗
i
, with τ (i+1)∗ := inf{s ≥ 0 : v2(X̄

i+1
s ) =

Mh
1 v1(X̄

i+1
s )}, σ(i+1)∗ := inf{s ≥ 0 : v2(X̄

i+1
s ) =M0

2 v2(X̄
i+1
s )∨Mh

1 v1(X̄
i+1
s )},

where X̄ i+1 starts from ζ(X i
σi∗).

We can now define strategies V ∗
1 := (τ̂1, ξ̂1; τ̂2, ξ̂2; . . .), V

∗
2 := (σ̂1, ζ̂1; σ̂2, ζ̂2; . . .) of

the players I and II, respectively, by τ̂1 = τ1∗, ξ̂1 = ξ(X1
τ̂1
), σ̂1 = σ1∗, ζ̂1 = ζ(X1

σ̂1
),

and for i ≥ 0, τ̂i+1 = ρ∗i + τ (i+1)∗ ◦ θρ∗
i
, ξ̂i+1 = ξ(X i+1

τ̂i+1
) or ξ̂i+1 = ξh(X i+1

τ̂i+1
) whenever

at time τ̂i we had an impulse of the minimizer, and σ̂i+1 = ρ∗i + σ(i+1)∗ ◦ θρ∗
i
, ζ̂i+1 =

ζ(X i+1
σ̂i+1

). The following key result will be crucial for verification of the Bellman

system (4.6)–(4.8).

Proposition 6.7. We have that ρ∗n → ∞ as n→ ∞, P
V ∗
1 ,V ∗

2
x almost surely.

Proof. Assume that ρ∗n → ρ∗ ∈ [0,∞], as n → ∞ and for A := {ρ∗ <∞} we

have that P
V ∗
1 ,V ∗

2
x (A) = γ > 0. Let An = {ρ∗ − ρ∗n < h̃} ∩ A. Clearly An ⊂ A,

An ⊂ An+1, and ∪∞
n=1An = A. Therefore there is N such that for n ≥ N we have

that P
V ∗
1 ,V ∗

2
x (An) ≥ γ

2 .
By (6.23) after each impulse the probability that the controlled process leaves

B(U1 ∪ U2, r) within h̃ units of time is less than ε̃. If it does not leave B(U1 ∪ U2, r)
within h̃ units of time, then every repeated impulse by the same player can happen
(within h̃ units of time) with probability at most ε̃. Consequently with probability at
most ε̃+ ε̃ = 2ε̃ < 1 within h̃ units of time we have no two repeated impulses by the
same player. Therefore for each n ≥ N after the nth impulse we have no two repeated
impulses (within h̃ units of time) with probability at most 2ε̃ < 1. If we have k + 1,
k = 1, 2, . . . successive repeated impulses by the same player (all within h̃ units of
time), then it happens with probability at most (2ε̃)k. Therefore after n impulses we
have either another impulse after h̃ units of time, or we have successive shifts of the
same player. When there is a change of the player who exercises impulses then in the
case of an impulse of the change from maximizer to minimizer we have no transaction
lag, while in the case of the change from minimizer to maximizer we have decision
lag which is greater than h̃ with probability at least 1− ε̃ (with such probability the
controlled process does not leave B(U2, r) within h̃ units of time). Summing up we
cannot have γ > 0, since otherwise the probability that we have impulses within h̃
units of time decreases to 0, which gives us a contradiction.

Proof of Theorem 4.1 under (A2). By Theorem 6.2 we are given a solution v, v1, v2
to the system of Bellman equations (4.8), (4.6), (4.7). By Theorem 3.1 each solution
equation corresponds to the value function in the stopping game with suitable func-
tions ψ1 and ψ2, for which we have exact formulae for saddle-point stopping times. In
the case when we are using shifted strategies practically we solve at each random time
ρ∗i a new game with strategies not depending on the past (before ρi). In particular,
when ρ∗i = ρ∗i−1 + τ∗i ◦ θρ∗

i−1
, we have, by Theorem 3.1,

v1(X
i
ρ∗
i
) = EXi

ρ∗
i

[∫ τ (i+1)∗∧σ(i+1)∗

0

e−αsf(X i+1
s )ds

+ 1{τ (i+1)∗≤σ(i+1)∗}e
−ατ (i+1)∗

M0
1 v1(Xτ (i+1)∗)

+ 1{σ(i+1)∗<τ (i+1)∗}e
−ασ(i+1)∗

M0
2 v2(Xσ(i+1)∗ )

]
,(6.30)
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while whenever ρ∗i = σi∗ ◦ θρ∗
i−1

we have

v2(X
i
ρ∗
i
) = EXi

ρ∗
i

[∫ τ (i+1)∗∧σ(i+1)∗

0

e−αsf(X i+1
s )ds

+ 1{τ (i+1)∗≤σ(i+1)∗}e
−ατ (i+1)∗

Mh
1 v1(Xτ (i+1)∗)

+ 1{σ(i+1)∗<τ (i+1)∗}e
−ασ(i+1)∗

M0
2 v2(Xσ(i+1)∗ )

]
.(6.31)

Iterating these equations and using the fact that, by Proposition 6.7, ρ∗n → ∞, as
n → ∞ one can show that J V ∗

1 ,V ∗
2 (x) = v(x). Moreover, similarly as in [22] or [21],

we can show that V ∗
1 and V ∗

2 form saddle-point strategies so that we have the existence
of the value of the game within the class of shifted strategies. When we have other
shifted strategies V1 and V2 then we easily show (using Theorem 3.1) that J V1,V

∗
2 (x) ≤

J V ∗
1 ,V ∗

2 (x) = v(x) ≤ J V ∗
1 ,V2(x) = v(x). We exploit here again Theorem 3.1, which

therefore shows that for shifted strategies we have a sequence of stopping games.

7. Verification theorem and proof of the main result. In the previous sec-
tions 5 and 6 we have proved the existence of the value functions for shifted strategies
under (A1) or under (A2), respectively. We now show that the value of the game is the
same if we consider the most general (history-dependent) class of admissible impulse
strategies. We first consider the case under the assumption (A1). Let v be a solution

to (4.1). For a given strategy V2
def
= {σ1, ζ1;σ2, ζ2; . . .} of the minimizer we shall define

recursively (with a small abuse of notation) the strategy V̂1
def
= {τ̂1, ξ̂1; τ̂2, ξ̂2; . . .} of

the maximizer as follows:
Let ρV1

0 = ρV2
0 = 0 and for i = 1, 2, . . . , ρV2

i = τ̂i ∧ σi and ρ̂V2

i = ρV2

i + h(X i

ρ
V2
i

, ηi),

where ηi = ξ̂i when τ̂i ≤ σi or ηi = ζi otherwise, and where

(7.1) τ̂i := inf
{
s ≥ ρ̂V2

i−1 : v(X i
s) =Mh

1 v(X
i
s)
}

with ξ̂i = ξh(X i
τ̂i
), where ξh is a selector of Mh

1 defined in (4.2). Similarly for a given

V1
def
= {τ1, ξ1; τ2, ξ2; . . .} of the maximizer we shall define recursively the strategy

V̂2
def
= {σ̂1, ζ̂1; σ̂2, ζ̂2; . . .} of the minimizer as follows:

(7.2) σ̂i := inf
{
s ≥ ρ̂V1

i−1 : v(X i
s) =Mh

1 v(X
i
s) ∨Mh

2 v(X
i
s)
}

with ρV1

i = τi ∧ σ̂i and ρ̂V1

i = ρV1

i + h(X i

ρ
V1
i

, ηi), where ηi = ξ̂i when τ̂i ≤ σi or ηi = ζi

and ζ̂i = ζh(X i
σ̂i
), where ζh is a selector of Mh

2 defined in (4.3) and τ̂i > σi.

Lemma 7.1. For a given strategy V2 = {σ1, ζ1;σ2, ζ2; . . .} of the minimizer and
the strategy V̂1 of the maximizer with τ̂i defined in (7.1) we have for i = 1, 2, . . . that

(7.3) mi
1(t) :=

∫ (ρ̂
V2
i +t)∧τ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds+ e−α((ρ̂

V2
i +t)∧τ̂i+1)v(X

(ρ̂
V2
i +t)∧τ̂i+1

)

is a Gi
t := F

(ρ̂
V2
i +t)

submartingale. Similarly for a given strategy V1 = {τ1, ξ1; τ2, ξ2; . . .}
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of the maximizer and the strategy V̂2 of the minimizer with σ̂i defined in (7.2) we have
for i = 1, 2, . . . that

(7.4) mi
2(t) :=

∫ (ρ̂
V1
i +t)∧σ̂i+1

ρ̂
V1
i

e−αsf(X i
s)ds+ e−α((ρ̂

V1
i +t)∧σ̂i+1)v(X

(ρ̂
V1
i +t)∧σ̂i+1

)

is a Gi
t := F

(ρ̂
V1
i +t)

supermartingale.

Proof. We have to show that E
[
mi

1(t+ r)|Gi
t

] ≥ mi
1(t) and E

[
mi

2(t+ r)|Gi
t

] ≤
mi

2(t) for r ≥ 0. It follows in a standard way from the construction of the probability
space given in section 2 and well as (3.4) and (3.5) of Theorem 3.1. In fact for u ≥ 0,
we have using (3.4)

(7.5)

E
[
mi

1(t+ u)|Gi
t

]
= E

[∫ (ρ̂
V2
i +t+u)∧τ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds+ e−α((ρ̂

V2
i +t+u)∧τ̂i+1)v(X

(ρ̂
V2
i +t+u)∧τ̂i+1

)|Gi
t

]

≥
∫ (ρ̂

V2
i +t)∧τ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds+ e−α((ρ̂

V2
i +t)∧τ̂i+1)v(X

(ρ̂
V2
i +t)∧τ̂i+1

) ≡ mi
1(t)

and the proof of (7.4) is similar using (3.5).

In the case under the assumption (A2) we consider solutions v1, v2, v to the Isaacs–
Bellman equation (4.6)–(4.8) and define

(7.6) τ̂1 := inf
{
s ≥ 0 : v(X1

s ) =M0
1v(X

1
s )
}

and

(7.7) σ̂1 := inf
{
s ≥ 0 : v(X1

s ) =M0
1 v(X

1
s ) ∨M0

2 v(X
1
s )
}
.

For a given strategy V2 = {σ1, ζ1;σ2, ζ2; . . .} of the minimizer let ρV2
1 = ρ̂V2

1 := τ̂1∧σ1.
For i = 2 when ρV2

1 = τ̂1,

(7.8) τ̂2 := inf
{
s ≥ ρV2

1 : v1(X
2
s ) =M0

1 v1(X
2
s )
}

while when ρV2
1 = σ1 < τ̂1

(7.9) τ̂2 := inf
{
s ≥ ρV2

1 : v2(X
2
s ) =Mh

1 v1(X
2
s )
}
.

Furthermore for i > 2, when ρ̂V2

i−1 = τ̂i−1 + h(Xτ̂i−1 , ξ̂i) or ρ̂
V 2

i−1 = τ̂i−1 depending

on whether we have or don’t have at time ρV2

i−1 = τ̂i−1 ∧ σi−1 a decision lag of h, we
have

(7.10) τ̂i := inf
{
s ≥ ρ̂V2

i−1 : v1(X
i
s) =M0

1 v1(X
i
s)
}
,

while when ρV2

i−1 = σi−1 < τ̂i−1

(7.11) τ̂i := inf
{
s ≥ ρ̂V2

i−1 : v2(X
i
s) =Mh

1 v1(X
i
s)
}

with ρ̂V2

i−1 = τ̂i−1 ∨ σi−1 in this case.
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For a given strategy V1 = {τ1, ξ1; τ2, ξ2; . . .} of the maximizer let ρV1
1 = ρ̂V1

1 :=
τ1 ∧ σ̂1. For i = 2 when ρV1

1 = τ1,

(7.12) σ̂2 := inf
{
s ≥ ρV1

1 : v1(X
2
s ) =M0

1v1(X
2
s ) ∨M0

2 v2(X
2
s )
}
,

while when ρV1
1 = σ̂1 < τ1

(7.13) σ̂2 := inf
{
s ≥ ρV1

1 : v2(X
2
s ) =Mh

1 v1(X
2
s ) ∨M0

2 v2(X
2
s )
}
.

Furthermore for i > 2, when ρ̂V1

i−1 = τi−1+h(X i−1
τi−1

, ξi), or ρ̂
V 1

i−1 = τi−1 depending

on whether we have or don’t have at time ρV1

i−1 = τ̂i−1 ∧ σi−1 a decision lag of h, we
have

(7.14) σ̂i := inf
{
s ≥ ρ̂V1

i−1 : v1(X
i
s) =M0

1 v1(X
i
s) ∨M0

2 v2(X
i
s)
}
,

while when ρ̂V1

i−1 = σ̂i−1 < τi−1

(7.15) σ̂i := inf
{
s ≥ ρ̂V1

i−1 : v2(X
i
s) =Mh

1 v1(X
i
s) ∨M0

2v2(X
i
s)
}
.

with ρ̂V1

i−1 = ρV1

i−1.
By analogy to Lemma 7.1 we obtain the following.

Lemma 7.2. For a given strategy V2 = {σ1, ζ1;σ2, ζ2; . . .} of the minimizer and

the strategy V̂1 = {τ̂1, ξ̂1; τ̂2, ξ̂2; . . . } of the maximizer we have for i = 1, 2, . . . that
whenever ρV2

i = τ̂i with τ̂i defined in (7.6) and (7.8) then

(7.16) mi
1(t) :=

∫ (ρ̂
V2
i +t)∧τ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds+ e−α((ρ̂

V2
i +t)∧τ̂i+1)v1(X(ρ̂

V2
i +t)∧τ̂i+1

)

is a Gi
t := F

(ρ̂
V2
i +t)

submartingale, while whenever ρ̂V2

i = σi < τ̂i with τ̂i defined in

(7.9) then

(7.17) mi
1(t) :=

∫ (ρ̃
V2
i +t)∧τ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds+ e−α((ρ̃

V2
i +t)∧τ̂i+1)v2(X(ρ̃

V2
i +t)∧τ̂i+1

)

Gi
t := F

(ρ̂
V2
i +t)

submartingale. For a given strategy V1 = {τ1, ξ1; τ2, ξ2; . . .} of the

maximizer and the strategy V̂2 = {σ̂1, ζ̂1; σ̂2, ζ̂2; . . .} whenever ρV1

i = τi with σ̂i defined
in (7.7) and (7.12) we have that

(7.18) mi
2(t) :=

∫ (ρ̂
V1
i +t)∧σi+1

ρ̂
V1
i

e−αsf(X i
s)ds+ e−α((ρ̂

V1
i +t)∧σi+1)v1(X(ρ̂

V1
i +t)∧σi+1

)

is a Gi
t = F

(ρ̂
V1
i +t)

supermartingale, while whenever ρi = σ̂i < τi with σ̂i defined in

(7.13) we have that

(7.19) mi
2(t) :=

∫ (ρ̂
V1
i +t)∧σ̂i+1

ρ̂
V1
i

e−αsf(X i
s)ds+ e−α((ρ̂

V1
i +t)∧σ̂i+1)v2(X(ρ̂

V1
i +t)∧σ̂i+1

)

is a Gi
t = F

(ρ̂
V1
i +t)

supermartingale.
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We shall now formulate and prove the following proposition, which completes the
proof of Theorem 4.2 under all general admissible strategies. In this case the following
holds.

Proposition 7.3. Under (A1) or under (A2) there are saddle-point strategies

V̂1 = {τ̂1, ξ̂1; τ̂2, ξ̂2; . . .} and V̂2 = {σ̂1, ζ̂1; σ̂2, ζ̂2; . . .} for the functional (2.1). These
strategies are of the following form:

• Under (A1), τ̂i and σ̂i are defined in (7.1) and (7.2), respectively, and ξ̂i =

ξh(X i
τ̂i
), ζ̂i = ζh(X i

σ̂i
), where ξh and ζh are selectors for Mh

1 and Mh
2 defined

in (4.2) and (4.3), respectively.

• Under (A2), τ̂1 and σ̂1 are defined in (7.6) and (7.7), respectively, ξ̂1 =

ξ0(X1
τ̂1
), ζ̂1 = ζh(X1

σ̂1
), while for i ≥ 2 when τ̂i−1 ≤ σ̂i−1 stopping times

τ̂i and σ̂i are defined in (7.8) and (7.12), respectively, and ξ̂i = ξ0(X i
τ̂i
),

ζ̂i = ζ0(X i
σ̂i
); when σ̂i−1 < τ̂i−1 stopping times τ̂i and σ̂i are defined in (7.9)

and (7.13), respectively, and ξ̂i = ξh(X i
τ̂i
), ζ̂i = ζ0(X i

σ̂i
), where ξ0, ζ0 are

selectors for M0
1 and M0

2 defined in (4.2) and (4.3), respectively, with h ≡ 0.
Finally, the function v defined as a solution to (4.1) under (A1) or defined as a

solution to (4.8) under (A2) is the value of the game.

Proof. Notice first that for stopping times V̂1 and V̂2 we have function v(x) =
J (V̂1, V̂2) and clearly V̂1 and V̂2 are shifted strategies. Now, under (A1), in the
case of an arbitrary strategy V2 = {σ1, ζ1;σ2, ζ2; . . .} when ρV2

i = τ̂i by letting for

simplicity h̄i := h(X i−1

ρ
V2
i

, ξ̂i) and using (7.3) and taking into account that Mh
1 v(x) ≤

v(x) ≤Mh
1 v(x) ∧Mh

2 v(x) we have

v(X i−1

ρ
V2
i

) =Mh
1 v(X

i−1

ρ
V2
i

)

= c(X i−1

ρ
V2
i

, ξ̂i) + E

[ ∫ ρ
V2
i +h̄i

ρ
V2
i

e−αsf(X i
s)ds+ e−αρ

V2
i +h̄iv(X

ρ
V2
i +h̄i

)|F
ρ
V2
i

]

≤ c(X i

ρ
V2
i

, ξ̂i) + E

[∫ ρ
V2
i +h̄i

ρ
V2
i

e−αsf(X i
s)ds+ E

[ ∫ σi+1∧τ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds

+ e−α(σi+1∧τ̂i+1)v(Xσi+1∧τ̂i+1)|Fρ̂
V2
i

]
|F

ρ
V2
i

]

≤ c(X i−1

ρ
V2
i

, ξ̂i)+E

[ ∫ τ̂i+1∧σi+1

ρ
V2
i

e−αsf(X i
s)ds+1{τ̂i+1≤σi+1}e

−ατ̂i+1Mh
1 v(Xτ̂i+1)

+ 1{σi+1<τ̂i+1}e
−ασi+1(Mh

1 v(X
i
σi+1

) ∨Mh
2 v(X

i
σi+1

))|F
ρ
V2
i

]
.

In the case when ρV2

i = σi < τ̂i, this time with h̄i := h(X i−1

ρ
V2
i

, ζi), we have

v(X i−1

ρ
V2
i

) ≤Mh
2 v(X

i−1

ρ
V2
i

)

= d(X i−1

ρ
V2
i

, ζi) + E

[ ∫ ρ̂
V2
i +h̄i

ρ
V2
i

e−αsf(X i
s)ds+ e−αρ

V2
i +h̄iv(X

ρ
V2
i +h̄i

)|F
ρ
V2
i

]

≤ d(X i

ρ
V2
i

, ζi) + E

[ ∫ ρ
V2
i +h̄i

ρ
V2
i

e−αsf(X i
s)ds+ E

[ ∫ σi+1∧τ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds

+ e−α(σi+1∧τ̂i+1)v(Xσi+1∧τ̂i+1)|Fρ̂
V2
i

]
|F

ρ
V2
i

]
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≤ d(X i−1

ρ
V2
i

, ζi) + E

[∫ τ̂i+1∧σi+1

ρ
V2
i

e−αsf(X i
s)ds+1{τ̂i+1≤σi+1}e

−ατ̂i+1Mh
1 v(Xτ̂i+1)

+ 1{σi+1<τ̂i+1}e
−ασi+1(Mh

1 v(X
i
σi+1

) ∨Mh
2 v(X

i
σi+1

))|F
ρ
V2
i

]

so that by induction we obtain that v(x) ≤ J (V̂1, V2). Similarly, using (7.4), for an
arbitrary strategy V1 = {τ1, ξ1; τ2, ξ2; . . .} whenever ρV2

i = τi by letting for simplicity
h̄i := h(X i−1

ρ
V1
i

, ξi) we have

(7.20)

v(X i−1

ρ
V1
i

) ≥Mh
1 v(X

i−1

ρ
V1
i

)

≥ c(X i−1

ρ
V1
i

, ξi) + E

[ ∫ ρ
V1
i +h̄i

ρ
V1
i

e−αsf(X i
s)ds+ e−αρ

V1
i +h̄iv(X

ρ
V1
i +h̄i

)|F
ρ
V1
i

]

≥ c(X i

ρ
V1
i

, ξi) + E

[∫ ρ
V1
i +h̄i

ρ
V1
i

e−αsf(X i
s)ds+ E

[ ∫ τi+1∧σ̂i+1

ρ̂
V2
i

e−αsf(X i
s)ds

+ e−α(τi+1∧σ̂i+1)v(Xτi+1∧σ̂i+1)|Fρ̂
V2
i

]
|F

ρ
V2
i

]

≤ c(X i−1

ρ
V2
i

, ξi) + E

[ ∫ τi+1∧σ̂i+1

ρ
V1
i

e−αsf(X i
s)ds+1{τi+1≤σ̂i+1}e

−ατi+1Mh
1 v(Xτi+1)

+ 1{σ̂i+1<τi+1}e
−ασ̂i+1(Mh

1 v(X
i
σ̂i+1

) ∨Mh
2 v(X

i
σ̂i+1

))|F
ρ
V1
i
](7.21)

and similarly whenever ρV2

i = σ̂i from which in turn we obtain that v(x) ≥ J (V1, V̂2).
The case under (A2) can be proved in a similar way. The main technical difference
is that we have to use the system of Bellman equations (4.6) and (4.7) and therefore
by Lemma 7.2 we have two submartingales (7.16) and (7.17) depending on the value
of ρV2

i and two supermartingales (7.18) and (7.19) depending on the value of ρV1

i . By
analogy to the proof of the case under (A1) we see that we have two times more cases
to consider, but the structure of the proof is similar and is correspondingly based on
Lemma 7.2. We shall therefore have more technicalities but it does not change the
main idea of the proof. Therefore it is left to the reader.

8. Conclusion and future directions. In this paper a zero-sum Markov game
on general state spaces with impulses and infinite time horison discounted payoff
is considered under very weak assumptions and weak Feller conditions on the state
process. The existence of value and saddle-point (optimal) strategies are proved. One
of the key contributions is our analysis of this problem based on shifted strategies (see
section 2), thereby proving that the original game can be practically restricted to a se-
quence of Dynkin’s stopping games without affecting the optimalty of the saddle-point
equilibria. We also prove the necessity of our assumptions by providing a counterex-
ample (see Example 1) which shows that the game with impulses makes sense only
when there are some kind of assumptions which enable us to restrict an infinite num-
ber of immediate impulses. A point to note is that we have used purely probabilistic
techniques in our proofs which are different from the previous proof methodology used
in the existing literature. As a consequence, we establish an interesting property of
the underlying Feller–Markov process and the impossibility of an infinite number of
impulses in finite time under saddle-point strategies, which is crucial for the verifica-
tion result of the corresponding Isaacs–Bellman equations. Thus, in this paper, we
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completely solve the open problem similar to that in [9] under a very general set of as-
sumptions and establish the corresponding saddle-point (optimal) strategies, thereby
fully generalizing [9]. The study of this problem was motivated by (among others) Is-
raeli swing options with multiple exercises (see [12]). Therefore our general result can
be further used to price this kind of Israeli option assuming Markovian structure of
asset prices, e.g., log-Levy prices, which may be a subject of further finance-oriented
research. Another possible extension of our paper is to consider average cost per unit
time payoff for this kind of game generalizing the paper [20] to the game-theoretic
scenario. Further possible extensions to risk-sensitive payoffs and/or to nonzero-sum
games with impulses seem to be harder at the moment and shall require a number of
preliminary results first.
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