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Genetics and epigenetics of liver cancer
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Hepatocellular carcinoma (HCC) represents a major form of primary liver cancer in adults. Chronic

infections with hepatitis B (HBV) and C (HCV) viruses and alcohol abuse are the major factors leading to

HCC. This deadly cancer affects more than 500,000 people worldwide and it is quite resistant to

conventional chemo- and radiotherapy. Genetic and epigenetic studies on HCC may help to understand

better its mechanisms and provide new tools for early diagnosis and therapy. Recent literature on whole

genome analysis of HCC indicated a high number of mutated genes in addition to well-known genes such

as TP53, CTNNB1, AXIN1 and CDKN2A, but their frequencies are much lower. Apart from CTNNB1

mutations, most of the other mutations appear to result in loss-of-function. Thus, HCC-associated

mutations cannot be easily targeted for therapy. Epigenetic aberrations that appear to occur quite

frequently may serve as new targets. Global DNA hypomethylation, promoter methylation, aberrant

expression of non-coding RNAs and dysregulated expression of other epigenetic regulatory genes such as

EZH2 are the best-known epigenetic abnormalities. Future research in this direction may help to identify

novel biomarkers and therapeutic targets for HCC.
Introduction
The most frequent primary liver cancers are hepatocellular carci-

noma (HCC) and cholangiocarcinoma in adults, and hepatoblas-

toma in children. More than 80% of liver tumours are HCCs [1]. This

review will focus primarily on HCC, one of the most frequent

cancers worldwide with more than 500,000 new cases observed

each year. Almost the same number of deaths is observed because

of this cancer could not be easily treated. The most efficient treat-

ment for HCC is liver transplantation, provided that it is detected

early enough. Surgical removal and chemo-embolisation of tumour

nodules are other alternatives. These tumours are usually resistant to

chemo- or radiotherapy [1–3]. Targeted therapy of HCC is in its

infancy. The only clinically relevant drug is a kinase inhibitor,

Sorafenib, has only a modest effect on patient survival [4].

The aetiology of HCC is well known. Chronic liver injury asso-

ciated primarily with hepatitis B (HBV) and C (HCV) virus infection
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constitutes the most important cause of HCC. Other factors, such as

alcohol abuse and dietary exposure to aflatoxins, are also established

causes, but their contribution to the disease aetiology is much less

than the contributions of viral agents. The unprecedented increase

in obesity rates in both developed and developing countries is a

rising concern for HCC risk that may account for the unexpected

increase in HCC incidence in the Western world [1].

Molecular mechanisms of hepatocellular carcinogenesis remain

ill-defined, mainly due to disease heterogeneity. The heterogene-

ity of agents that cause chronic liver injury (HBV, HCV, aflatoxins

and alcohol) and the ways they interact with the host DNA and

epigenetic players are the most probable parameters contributing

to HCC heterogeneity.

Chromosomal aberrations and hepatitis B virus
integration into the host genome
Chromosomal aberrations such as deletions and copy number

gains are frequent in HCC. Initial studies identified that HCC
1.007 www.elsevier.com/locate/nbt 381
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FIGURE 1

Most frequently mutated genes in hepatocellular carcinoma.
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harbours multiple chromosomal abnormalities, predominantly

losses, with increased chromosomal instability in tumours asso-

ciated with HBV infection. Common alterations include gain of

chromosomes 1q, 8q and 17q, and loss of 4q [5]. Recently, data

from whole genome analysis techniques showed that chromo-

somes 1q, 5, 6p, 7, 8q, 17q and 20 display chromosomal gains,

while 1p, 4q, 6q, 8p, 13q, 16, 17p and 21 exhibit losses in HCC [6].

In addition, HBV DNA is often integrated into the host genome

in patients with HBV-related HCCs [7]. This integration may have

cis and trans effects. Viral DNA integration into or near gene

sequences may alter gene expression as well as gene integrity.

In addition, integrated viral DNA may encode wild-type or trun-

cated viral proteins acting in trans on the host genome, either by

deregulating gene expression or by interacting with host proteins

[8]. Recently reported whole genome studies indicated that the

viral integration is associated with breakpoints within the HBV

genome that primarily localised to the downstream region of the

HBX gene. HBV genome integration was observed within or

upstream of the TERT (telomerase reverse transcriptase) gene in

four HBV-related HCCs. However, HBV integration sites within the

same or different tumours did not show specific patterns, suggest-

ing that the virus does not target specific host sequences. [9]. Based

on these findings, it is highly probable that landscape changes in

the structural integrity of chromosomes, as well as random but

multiple integrations of HBV genomes into host genomes, cause

high levels of instability in the chromosomal integrity of HCC.

Some of these aberrations may hit crucial genes such as TERT,

which may directly contribute to tumour development by inap-

propriate activation or inactivation of the genes themselves. In

addition, the integration of viral enhancer sequences in the vici-

nity of crucial genes may lead to aberrant gene expression in HCC.

Gene mutations
Since the discovery of TP53 as the first mutated gene in HCC over 20

years ago [10] and until very recently, only four genes were known to

display frequent alterations in liver cancers. While TP53, CTNNB1

(encoding b-catenin) and AXIN1 genes usually display point muta-

tions and small deletions, CDKN2A (encoding p16INK4a) undergoes

homozygous deletions and epigenetic silencing [11,12].

During the past two years, the first reports of whole-genome or

exome sequencing data for HCC have appeared [6,9,13]. This is the

beginning of a new era of HCC genetics, because of the fact that

these new techniques will allow the visualisation of the muta-

tional landscape of HCC. Figure 1 shows a summary of primary

findings gathered by ourselves from two recently published reports

[6,9]. Each study first analysed a small set of tumours (n = 20–25)

for a genome-wide search of somatically mutated genes; signifi-

cantly mutated genes were then further tested for mutations using

a larger set of tumours (n > 100).

A close examination of the data of Fig. 1 indicates that TP53 and

CTNNB1 represent the two most frequently mutated genes. A

second group of genes (AXIN1 and ARID1A) was found to present

less frequent mutations, but still present in more than 10% of HCC

samples studied. The third group is the largest with 22 genes dis-

playing recurrent mutations in less than 10% of tumours. Guichard

et al. [6] reported that Wnt/b-catenin, p53, PI3K/Ras signalling,

oxidative, endoplasmic reticulum stress pathways and chromatin

remodelling were frequently affected by these mutations.
382 www.elsevier.com/locate/nbt
Whole genome sequencing allowed the detection of recurrent

somatic mutations in several genes annotated as associated with

chromatin regulation, such as ARID1A, ARID1B, ARID2, MLL,

MLL3, BAZ2B, BRD8, BPTF, BRE and HIST1H4B. Notably, 14 out

of the 27 tumours (52%) had either somatic point mutations or

indels in at least one of these chromatin regulators. In both sets of

experiments (whole genome sequencing and the validation sets),

the number of indels in chromatin regulator genes was signifi-

cantly higher than those in genes belonging to the other cate-

gories. This suggests that loss-of-function mutations are enriched

in these chromatin-regulator genes in HCC genomes [9].

As shown in Table 1, the frequent mutations that identified so

far in HCC are likely to result in loss of function with the notable

exception of CTNNB1 mutations. It will be interesting to study

why loss of function rather than gain of function of crucial genes is

associated with HCC. By contrast, this pattern of mutation does

not offer a broad spectrum of therapeutic intervention applica-

tions. Cancer cells can easily be targeted by blocking genes that are

aberrantly overactive in these cells. The restoration of a lost gene

activity to achieve a therapeutic intervention is difficult to

achieve. Thus, although the genome-wide analyses have been very

helpful in establishing the list of a large set of mutated genes in

HCC, this will most probably serve diagnostic needs while the

chance of their therapeutic use is more limited.

Epigenetic deregulation
Epigenetic regulation of gene expression involves DNA methyla-

tion, post-translational histone modifications, chromatin changes

and non-coding RNAs that are often affected in cancer cells [14,15].

The role of epigenetic deregulation in HCC is being increasingly

recognised [16]. In addition to changes in DNA methylation, micro-

RNA expression, mutations affecting epigenetic regulatory genes

have recently been discovered in HCC [6,9,13].

HCC cells display global hypomethylation as well as promoter

hypermethylation of a large set of genes [17]. Promoter hyper-

methylation appears to affect mainly tumour suppressor and anti-

proliferative genes resulting in downregulation of gene expression

(Fig. 2). Aberrations in microRNA expression have also been

observed with several of them being linked to metabolic and

phenotypic changes in HCC cells [14,18–20].
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TABLE 1

Most frequent gene mutations in hepatocellular carcinoma are predicted to lead to a loss-of-function

Genes % mutation rates Protein function Known/expected outcome

TP53 35 DNA damage response, other Loss-of-function

CTNNB1 19 Positive regulator of Wnt signalling Gain-of-function

AXIN1 13 Negative regulator of Wnt signalling Loss-of-function

ARID1A 12 Chromatin remodelling Loss-of-function

WWP1 9 E3 ubiquitin ligase Loss-of-function?

RPS6KA3 8 Ribosomal protein S6 kinase ?

ATM 8 DNA damage response Loss-of-function?

ARID1B 7 Chromatin remodelling Loss-of-function?

CDKN2A 6 Positive regulator of senescence Loss-of-function

NFE2L2 5 Redox homeostasis? ?

IGSF10 5 ? Loss-of-function

ERRFI1 5 EGFR/ERB2 kinase inhibitor Loss-of-function

ARID2 5 Chromatin remodelling Loss-of-function?
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Several genes encoding epigenetic regulatory proteins are

involved in hepatocellular malignancy. The EZH2 (KMT6) encodes

the catalytic component of the Polycomb Repressive Complex 2

(PRC2), creating the transcriptionally repressive H2K27Me3 his-

tone mark which results in transcriptional silencing [21]. EZH2 is

over-expressed in HCC and mostly associated with the progression

and aggressive biological behaviour of HCC [22,23]. EZH2 protein

silences Wnt pathway antagonists and constitutively activates

Wnt/b-catenin signalling causing cell proliferation in HCC cells

[24]. EZH2 also exerts a prometastatic function through epigenetic

silencing of multiple tumour suppressor miRNAs including miR-

139-5p, miR-125b, miR-101, let-7c and miR-200b [25]. Yang et al.

identified an lncRNA called lncRNA-HEIH (High Expression in

HCC) that associates with EZH2 to repress EZH2 target genes such
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FIGURE 2

The frequency of promoter methylation in hepatocellular carcinoma.
as p16Ink4a and p21Cip1 in HBV-related HCC [26]. BMI1 is another

PRC2 member overexpressed in HCC. Effendi et al. determined

that BMI1 is upregulated in early and well-differentiated HCC and

this expression correlates with ABCB1 expression [27].

Expression of histone deacetylases (HDACs) is deregulated in

different cancers [28], and some of them are also deregulated in

HCC. HDACs-1, -2 and -3 are over-expressed in HCC [29,30].

LC3B-II-induced inactivation of HDAC1 caused regression of

HCC cell proliferation and triggered caspase independent autop-

hagy. p21Cip1 and p2Kip1 were selectively induced while cyclin D1

and CDK2 were suppressed by inactivation of HDAC1. As a result,

HDAC1 inactivation resulted in hypophosphorylation of pRb in the

G1/S checkpoint to inactivate E2F/DP1 transcriptional activity.

Also, p21(WAF1/Cip1) transcriptional activity was suppressed by
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HDAC1by interaction with an Sp1-binding site in the p21(WAF1/Cip1)

promoter [31]. HDAC4 also suppresses the promoter activity of miR-

200a and its expression and interacts with Sp1 in the miR-200a

promoter to attenuate histone H3 acetylation levels. miR-200a

represses HDAC4 expression through targeting the 30-untranslated

region of messenger RNA of HDAC4. In this respect, miR-200a has

an ability to induce its own transcription and increase the levels of

histone H3 acetylation at its promoter. Furthermore, miR-200a

induces up-regulation of the levels of total acetyl-histone H3 and

histone H3 acetylation in the p21Cip1 promoter [32].

DNA methylating enzymes DNMT1, DNMT3A and DNMT3B are

over-expressed in HCC compared to noncancerous liver samples

[33,34]. Finally, CENPA expression was found to be significantly

elevated in HCC tissues, and a positive correlation exists between

CENP-A expression and HBx COOH mutations in HCC tissues.

HBx mutant increases the expression of CENPA mRNA [35].

Future perspectives
Recent advances in genome sequencing technologies will change

radically our capabilities for fine mapping of hepatocellular cancer

genomes. It is expected that patient tumours will be fully analysed

in a short time at a moderate cost. Therefore, the genomic and
384 www.elsevier.com/locate/nbt
epigenomic status of the patient’s own tumour will be a crucial

element for decision making in terms of disease prognosis, ther-

apeutic choices and prediction of patient survival. However, most

of the known mutations observed in HCC are associated with a loss

of function. Apparently, targetable genes found in other cancers

such as growth factor receptors and intracellular protein kinases

are not mutated at significant levels in HCC. Therefore, we need to

find other targets for the treatment of liver cancers. Epigenetic

characterisation of HCC has allowed the discovery of many epi-

genetic players in this disease. However, these studies are far from

being complete. The rarity of targetable mutations in HCC justifies

a systematic study of epigenetic changes to identify new targets for

the therapy of this disease.
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