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ABSTRACT

PREDICTION AS THE BASIS OF LOW LEVEL 
COGNITIVE ORGANIZATION

Armağan Yavuz
M.S. in Computer Engineering and Information Science 

Advisor: Asst. Prof. David Davenport 
January, 1998

I suggest that the brain’s low-level sensory-motor systems are organized on 
the basis of prediction. This suggestion differs radically from existing theories of 
sensory-motor systems, and can be summarized as follows. Certain simple 
mechanisms in the brain predict the current or future states of other brain mecha­
nisms. These mechanisms can be established and disposed dynamically. Success­
ful prediction acts as a kind of selection criteria .and new structures are formed 
and others are disposed according to their predictive powers. Simple mechanisms 
become connected to each other on the basis of their predictive power, possibly 
establishing hierarchical structures, and forming large complexes. The complexes 
so formed, can implement a number of functionalities including detecting inter­
esting events, creating high-level representations, and helping with goal-directed 
activity. Faculties such as attention and memory contribute to such processes of 
internal predictions and they can be studied and understood within this setting. 
All of this does not rule out the existence of other mechanisms, but an organiza­
tion driven by prediction serves as the backbone of low-level cognitive activity.

I develop a computational model of a sensory-motor system that works on this 
basis. I also show how this model explains certain interesting aspects of human 
perception and how it can be related to general cognitive capabilities.

Keywords: prediction mechanism, emergent representations, constructivism, per­
ception, cognition, cognitive science.

Ill



ÖZET

BİLİŞSEL DİZGENİN ALT DÜZEY 
ÖĞELERİNİN TAHMİN ETME TEMELİNDE 

ORGANİZASYONU

Armağan Yavuz
Bilgisayar ve Enformatik Mühendisliği, Yüksek Lisans 

Danışman: Yrd. Doç. Dr. David Davenport 
Ocak 1998

Bu tezde beyinin alt düzey duyusal-motor işlevlerinin tahmin etme temelinde 
organize olduğu öne sürülmektedir. Bu öneri duyusal-motor sistemler hakkmdaki 
varolan kuramlardan oldukça farklıdır ve şu şekilde özetlenebilir: Beyindeki 
birtakım basit mekanizmalar diğerlerinin o anki ya da gelecekteki durumlarını 
tahmin ederler. Bu mekanizmalar dinamik olarak joluşabilir ya da yok olabilirler. 
Tahminlerdeki doğruluk derecesi bu süreçte seçim kriteri olarak rol oynar. Basit 
mekanizmalar bu şekilde birbirlerine bağlanır ve hiyerarşik kompleksler 
oluştururlar. Bu kompleksler, ilginç olayları tanıma, yüksek düzey gösterimler 
oluşturma, ve bir hedefe yönelik etkinliklere yardımcı olma gibi bir dizi işlevi 
yerine getirirler. Dikkat ve bellek gibi diğer dizgeler bu işlemlere yardımcı olur 
ve bu sistemden yararlanırlar. Tahmin temelinde gerçekleşen böyle bir 
organizasyon alt-düzey bilişsel etkinliklerin temelini oluşturur.

Bu tezde, tahmin temelinde çalışan bir duyusal-motor sistem modeli 
verilmekte ve bu modelin algıya ilişkin bazı ilginç problemleri nasıl çözümlediği 
ve diğer bilişsel etkinliklerle nasıl ilişkili olabileceği tartışılmaktadır.

Anahtar Sözcükler: tahmin mekanizması, gösterimlerin oluşumları, konstrük- 
tivizm, algı, biliş, bilişsel bilim.
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Chapter 1

Introduction

In a seminar, my thesis supervisor Dr. Davenport had claimed that there are three 
types of fundamental questions: questions regarding the origin and the nature of 
the universe; questions regarding the origin and the nature of life; and questions 
regarding the origin and the nature of the human mind. Like him, 1 am deeply 
interested in the last one of these. In this thesis, I try to explore a new perspective 
for investigating the workings of the mind. Briefly, I claim that the brain is a 
system that (among doing other things) continually predicts its fiiiure states and 
re-adjusts itself for improving its predictions. This basic idea can be exploited to 
study how different levels of the cognitive mechanism can be organized. To begin 
with, I apply it to the low-level perception system and develop a computational 
model. I also discuss how this idea can help in modeling the workings of the 
mind in a broader setting.

1.1 The Motivation

One of the primary theories that claim to account for human intelligence is con­
structivism, the idea that concepts, categories, skills, and the like are not in-born, 
but are actively “constructed” by the agent in an attempt to put an order to the 
seemingly chaotic nature of its interaction with the environment. As yet, there is 
no viable computational model that accounts for a constructivist development. 
As a matter of fact, what such a model would look like is generally unclear. 
However, it seems that the requirements constructivism places on a cognitive 
model are so harsh that a constructivist model must necessarily exploit certain 
fundamental principles and methods, like those typically employed in scientific



research. Of course, what exactly these principles and methods are and how they 
could be applied to cognitive functioning is not evident.

Carrying out predictions seems to be a good candidate to serve as an under­
lying principle of a construction process. So, I try to explore this possibility and 
see how prediction can contribute to a constructivist development process. How­
ever, the framework I present in this thesis should not be regarded as a general 
development theory, but as a precursor to such a theory. The methodology 1 adopt 
in this study is perhaps more relevant to constructivism than the framework it­
self.

1.2 The Principal Statement
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The question “How does the mind work?” has attracted the interest of philoso­
phers and scientists for many centuries. Modern cognitive science tries to answer 
this basic question, but it departs from past endeavors on two important points: 
Firstly, it stresses the importance of interdisciplinary collaboration. Secondly, it 
uses the computer metaphor for analyzing, understanding and modeling the mind. 
However, apart from these two points, there seems to be no single idea within 
cognitive science that is the subject of a general consensus. Researchers and 
philosophers disagree with each other on every possible asj)ect ol’ studying cog­
nition, on matters such as the appropriate level pf analysis, the relevance of 
learning to intelligence, the nature of representations, and so on. However, all 
these disagreements are, really, natural if we consider the difficulty of the 
problem at hand; and in fact, one sometimes feels relieved that the cognitive sci­
ence community is not betting all its money on a single horse.

What I want to do in this thesis is to present a new perspective to studying 
cognition, introduce a new horse to the game, if you like. The basic idea that 1 
base my study on, that prediction is somehow relevant to intelligence, is really an 
old one, but I try to polish it up and re-introduce it by suggesting a new way for 
making use of it. So, here is, what I can call, the principal statement of my thesis:

Certain simple mechanisms in the brain predict the current or future states of 
other brain mechanisms. These mechanisms can be established and disposed tly- 
namically. Successful prediction acts as a kind of selection criteria and new 
structures are formed and others are disposed according to their predictive pow­
ers. Simple mechanisms become connected to each other on the basis of theii 
predictive power, possibly establishing hierarchical structures, and forming large 
complexes. The complexes so formed, can implement a number of functionalities



including detecting interesting events, creating liigh-level representations, and 
helping with goal-directed activity. Faculties such as attention and memory con­
tribute to such processes of internal predictions and they can be studied and un­
derstood within this setting. All of this does not rule out the existence of other 
mechanisms, but an organization driven by prediction serves as the backbone of 
low-level cognitive activity.

What I want to establish in this thesis is that this statement is plausible, and a 
solution to some of the age old problems of cognition may be found along this 
way.

1.3 Why Prediction?
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Prediction is, to put it simply, making guesses about the future. An individual can 
be said to be predicting, if he is not just making up the guesses out of the blue, 
but his guesses are based on some ground. It seems quite intuitive that the power 
to predict has something to do with intelligence. However, this possibility has not 
been fully explored so far within cognitive science research. The reason, 1 be­
lieve, can be found in the following excerpt by McCarthy and Hayes [16:40] that 
shows the typical criticisms towards the idea:

A number of investigators ... have taken the view that intelligence may he 
regarded as the ability to predict the future of a, sequence from observa­
tion of its past. Presumably, the idea is that the e.xperience of a person 
can be regarded as a sequence of discrete events and that intelligent 
people can predict the future. Artificial intelligence is then studied by 
writing programs to predict sequences formed according to some sinqde 
class of laws (sometimes probabilistic laws). ... [However,] what we 
know about the world is divided into knowledge about many aspects of it, 
taken separately and with rather weak interaction.' A machine that 
worked with the undifferentiated encoding of experience into a sequence 
would first have to solve the encoding, a la.sk more difficult than any se­
quence extrapolators are prepared to undertake. Moreover, our knowl­
edge is not usable to predict exact .sequences of experience. Imagine a 
person who is correctly predicting the course of a football game he is 
watching; he is not predicting each visual .sensation (the play of light and 
shadow, the exact movements of the players and the crowd). Instead his 
prediction is on the level of: team A is getting tired; they .should start to 
fumble or have their passes intercepted.

This criticism is fair enough, and if we take the idea of prediction in this sense, it 
is of little interest to the study of cognition. However, there exists another sense 
of prediction, one I can call prediction-in-the-small, that may be helpful in cx-



plaining intelligence. Before going on with that though, 1 would like to look at 
two “inerit.s” of prediction that make it worthwhile of study.

Self-contained Error Criterion

A major difficulty in dealing with knowledge is identifying what is non­
knowledge. The usual practice in the field of machine learning is using separate 
training and test sets, the first set, to teach the machine something, and the sec­
ond to test if it has learned it. Artificial Neural Networks using back-propagation 
learning rule require error signals for their functioning. Similarly, negative ex­
amples are used in many other learning paradigms.

The good thing about predictions is that they contain their own error signals. 
The predicted event either occurs, in which case there is no error, or does not oc­
cur, in which case there is an error. There is no need for external error signals, 
negative examples, or other kinds of error criteria. The act of prediction is unique 
in its simplicity of detecting errors.
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Prediction and Knowledge

Knowledge, at least in its simpler sense, can be reduced to the power to predict. 
Assume I am dealing with some sophisticated system X. If I can correctly predict 
how X is going to behave in all possible circumstances (note that 1 am not speci­
fying how I come to be able to predict those. For my present purposes, the way 1 
do this may be as sophisticated as ever), then this fact may stand in for the fact 
that 1 know the nature of X. These two things are in fact distinct, because may 
have many inner details that are not relevant to the behavior 1 observe. However, 
if I am a practical kind of person, I can just forget about the distinction. After all, 
if I can predict X’s behavior correctly, I can use it for achieving my goals, and 
manipulate it as I see fit. As long as I am interested in the practical aspects of X, 
those aspects that are relevant to my everyday pursuits, the difference does not 
matter.

What about real knowledge of X? I suppose, in order to have a real understanding 
of X, 1 have to, somehow, look into X, and this time observe and be able to pre­
dict the behavior of its components together with its external behavior. If 1 can 
predict the transitions between X’s internal states, I believe, this fact shows that 1 
have some real understanding of X. Obviously, I can repeat the same exercise for 
the components of X, components of components of X, and so on, recursively, 
until 1 hit the quantum level. And even the quantum level is defined in terms of 
prediction, by the impossibility of making accurate predictions about particles.
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1.4 Prediction in the Small

In everyday language, we usually use the word prediction to reler to some con­
scious, deliberate act of guessing the future by using our past memories, experi­
ences, or pieces of knowledge we have obtained in other ways. We predict that 
it’s going to rain when we see black clouds in the sky. We predict that the boss 
will be frustrated when he hears about the delay or that the next world cup will 
go to a south American team. Such predictions are no doubt interesting acts, but 
there seems to be no reason to attribute them any special importance in explain­
ing the mechanisms of cognition. However, just as there are things in the world 
that can add two numbers without attending primary school, there may be things 
that can predict something without having conscious experience or without hav­
ing access to human kind’s accumulated wisdom. It seems that the only con­
straints on calling a guess a prediction are that: (1) the guess is based on a some­
what sound basis (possibly statistical data, but of course, not limited to that) and 
(2) the outcome of the prediction (the success or the failure) is regarded as what 
it is: the outcome of a prediction. If we adopt this weaker sense of the concept of 
prediction, then, it will be obvious that what carries out a prediction can be ex­
tremely simple. A simple-minded machine can predict something about another 
simple-minded machine on the basis of the statistical data it keeps. For example, 
the first machine may continually predict that the second one will display be­
havior B if the second machine displays behavior B more than 50% of the time. 
The failure of the prediction in this case will indicate that the second machine is 
displaying some unusual behavior. I will use the term prediction in this sense 
from now on.

Going back to McCarthy and Hayes’s criticism, it is obvious that the criticism 
loses its power once we take prediction as prediction-in-the-small. Firstly, we do 
not need fantastic sequence extrapolators in order to carry out simple predic­
tions. Extremely simple elements that capture extremely simple statistical rela­
tions will suffice. Then, it will be problematic to explain how intelligent behavior 
comes out of such simple predictions, but that is a problem regarding the theory, 
not the idea of prediction. Secondly, that the information from the world is en­
coded is everybody’s problem and not just prediction’s. Thirdly, simple predic­
tion machines can not predict the outcome of a football match but they can in­
deed predict the play of light and dark and the movements of the players and the 
crowd. (The blob of light over there will continue to exist. That round shape 
moving right will continue to move right.) The predictions carrietl out will be of 
the most simple kind and will fail frequently, but they will still be i)iedictions.



I have, therefore, removed the problems that make the idea of prediction im­
plausible as a basis of cognitive activity. Notice, however, that prediction-in-the- 
small still holds the two merits I described in the previous section, just as pre- 
diction-in-the-large does.

1.5 Organization of the Thesis
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In the next chapter, I will discuss some of the findings of psychology and certain 
models and ideas that have been proposed within cognitive science. In Chapter 3, 
I will try to shov/ that low-level cognitive activities may be implemented by a 
prediction mechanism, a system organized on the basis of predicting sensory 
states. In Chapter 4 I will discuss how prediction can be related to cognition in a 
broader setting. Finally Chapter 5 summarizes my conclusions.



Chapter 2

On Modeling Cognition

In this chapter I wish to present the reasons and the background work that have 
motivated me to develop a model of sensory-motor organization. A thorough 
presentation of all the data related to cognition and all the models of cognitive 
activity can not fit into a book, let alone a single chapter. Therefore I will limit 
this discussion to subjects that I find only directly relevant. Surveys and discus­
sions of the field with better coverage may be found elsewhere [1,12].

In the first part of this Chapter I will enumerate certain problematic issues and 
findings in cognitive science that await solutions, or Just act as constraints on 
possible cognitive models in other ways. In the second part I will discuss some 
existing models and ideas that seem particularly relevant to the content of this 
thesis.

2.1 Problems of Modeling Cognition

Understanding and explaining cognitive activity is a difficult task. However, it 
may not appear to be so at first sight. After all, how we seem to be thinking looks 
introspectively explainable to us. Such an intuition, surely, will fail to prove cor­
rect. Our introspective picture tells us really very little about how we carry out 
cognitive tasks. (Dennett’s “Consciousness Explained” provides a rather rich and 
deep discussion of this topic [8].) If one looks at the wealth of problems encoun­
tered in cognitive science research, it will become apparent that no simplistic 
method can explain the full range of human cognitive activity.

In this section, I will present and discuss a number of problematic issues re­
garding the attempt to model cognition. These arc in no way all the problems one



will encounter. They are probably not even a repre.sentative set of such problems. 
They are only the ones I am most interested in. 'I'his presentation, I hope, will 
hint at certain difficulties, and will give an idea of the kind of problems a cogni­
tive model has to face.

It is, of course, possible to dismiss any or all of these problems as side-issues 
that do not directly relate to the central problems of cognitive science. However, 
I take all of them seriously, and believe that, each one poses serious constraints 
on plausible models of cognition.

Models of cognitive activity can be roughly divided into two classes: those 
that model cognitive activity “on the surface” (or, what is usually called, “the 
phenomenological level”), and those that model it “in the deep”. The first type of 
models concentrate on mental events that are available to consciousness. They 
describe human behavior in terms of concepts such as beliefs, desires, and plans, 
and employ, what is usually called, a folk-psychological vocabulary. The second 
type of models describe cognition in terms of processes and mechanisms that do 
not map directly to (conscious) mental states, but that can perhaps explain how 
such states can come into existence, from the interaction of simpler processes. 
The approach I take is closer to this second type. However, if one opts for the 
deeper level, this means that he will have to do without all tiuit introspective 
picture of the mind that acts as some kind of constraint on possible models. 
Therefore, one needs something else to explain, soinething else that can constrain 
the model. The problems and findings discus.sed in this section serve as my 
“something else”.

The points described below, I hope, will also suggest why the first line of ap­
proach, the one that works with surface-level concepts, will not suffice, and why 
things are a lot more complex than they seem “up there”.
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2.1.1 Epistemic Access

Models of intelligent activities developed by Artificial Intelligence researchers 
are usually criticized on the ground that they really know nothing about the 
world. A computer program can process the predicates motlier(janejoe) and 
mother{maryJane) and infer the predicate grandmolher{niaryJoe). However, un­
like a human being who would do the same inference, a program does not under­
stand what mothers, grandmothers and children are. For it, all these predicate 
symbols are meaningless strings. We could install many thousands of rules and 
facts into the program, but what could possibly make those rules and facts pieces 
of knowledge about the world, rather than just more strings to process?



By the term epistemic access I mean devoidness of any epistemological 
problems (like the problems I mentioned above). For example, a model that sup­
plies a detailed explanation of human behavior in terms of the workings of neu­
rons, etc., would, I believe, be considered to have epistemic access by most con­
temporary philosophers. This would be so, because a computer implementing 
such a model would be doing exactly what the brain is doing and since nobody 
ever suspects that brains can have real knowledge about the world, the same has 
to be true for the computer. (However such a model may not provide solutions to 
problems within epistemology, since it would possibly not explain how human 
beliefs, knowledge, etc., are implemented by the brain’s physiology.)

Not all researchers agree on the relevance of epistemic access to cognitive 
science. Fodor, for example, dismisses the problem by claiming that it is too dif­
ficult to solve as long as there remain problems in other natural sciences that 
await solutions [10].

2.1.2 The Frame Problem
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Another problem suffered by traditional artificial intelligent models is the frame 
problem. The problem arises from the fact that the so-called frame axioms of a 
formal reasoning system seem to be unlimited if the system is meant to captuie 
human-style common sense reasoning. It turns out that, most activities that we 
carry out with ease in our daily life require a huge*amount of background knowl­
edge. For example, as Dennett points out, one has to somehow take into account 
the fact that the friction between a tray and a plate is non-zero, if he wishes to 
carry the plate on the tray [7]. There is simply no end to the amount of knowl­
edge needed to carry out even the simplest real-world tasks and if we try to list 
all the trivial things we know about the world, we will probably never finish the 
list. Moreover, a huge knowledge base will introduce problems of efficiently re­
trieving and using the knowledge. If these problems arc attacked by default rea­
soning methods, this time, it will be problematic to cover the non-default cases 
(for example carrying a plate on a tray made of melting ice). In order to be unaf­
fected by the frame problem, I believe, a system must successfully address at 
least the following issues:

• It must be able to learn new information from the environment and be able 
to learn new ways of learning.

• It must be able to distinguish between relevant and irrelevant aspects of a 
problem effortlessly.
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• When its default behavior fails, it must be able to try new strategies for 
solving the problem.

2.1.3 The Whole and Its Parts

In this category, I take all problems regarding the relation between the whole and 
its parts. The matter has mostly been given importance by Gestalt psychologists 
and while most of their original claims and ideas have since been rejected, prob­
lems regarding the whole-part relation remain as serious as ever. If 1 try to state it 
simply: (1) a whole is not merely a collection of parts and (2) a percept can not 
be analyzed by itself if it is also part of a whole. There are a wealth of experi­
ments in psychology showing that a human’s perception of ‘whole’s and ‘part’s is 
not a simple matter, and the way high-level percepts are composed out of low- 
level percepts ought to be a complex matter. Therefore simplistic formulations 
such as:

triangle = closed + rectilinear + figure + three-sided

do not even approach to capturing the richness of whole-part relations in human 
cognition. The first part (1) of my statement of the problem stresses that parts of 
a whole can be in complex relations with each other in order to make up the 
whole. Fodor and Pylyshyn have used this point to show the inadc(|iiacy of con- 
nectionist models by suggesting that “Mary loves John” can not be rei)resented as 
distinct from “John loves Mary” in a connectionist network III). A note of im­
portance here: such complex relations between constituents are by no means 
unique to language and perhaps appear in their most sophisticated form in visual 
perception.

The second part of the problem states that perceptions are mediated once they 
are recognized as part of a whole (a fact realized by Gestalt, Psychology). There 
exists a large body of psychological evidence in favor of this principle: Subjects 
briefly presented scattered I and S symbols report having seen $ symbols. Simi­
larly, when shown two light sources that successively turn on and off, they report 
seeing a moving light. Higher-level mental representations also seem to follow 
the same scheme: subjects that are told stories with nonsense elements recall the 
stories with nonsense elements transformed to sensible ones. (This problem is 
also related to the problems I discuss in the next sub-section. Interaction Among 
Cognitive Mechanisms.)



2.1.4 Interaction Among Cognitive Mechanisms

Older models of the brain viewed cognition as a feed-forward process: Informa­
tion entered the brain from the senses, was processed by layers of perceptual 
mechanisms, and arrived at high-level cognitive areas. These areas chose appro­
priate actions and sent them to motor mechanisms, which were responsible for 
carrying out those actions. Signals only traveled in one direction, up from the 
senses to the higher levels and then down from the higher levels to the motors. 
However, more recent neurological studies of the brain show that the situation is 
quite different. The presumed pathway of signals contains many loops and evi­
dence suggests that high-level cognitive exercises (like imagery) involve a sig­
nificant amount of processing in low-level areas [19].

This picture of the brain challenges traditional, strictly hierarchical views of 
cognitive activity where low-level processes and high-level thought are neatly 
separated. Such evidence suggests going for cognitive models that study the in­
teraction between different levels of cognitive activity rather than models that are 
based on a notion of “information flow”.

Chapter 2. On Modeling Cognition I I

2.1.5 Learning

Any theory of human cognition has to answer an elemental question regarding 
the nature of intelligence. The question can be posed in multiple ways; Is intelli­
gence a collection of many different tools or is it something simple, regular, and 
principled? Has the evolutionary path that has resulted in the human brain cre­
ated numerous specialized structures, adding, removing and fixing them along 
the way, or has it discovered a group of simple organizing principles that are 
powerful enough to solve any problem? Is the rich mental world we experience 
an outcome of the innate complexity of the brain, or is it a refleciion of the com­
plexity of our physical and social environment? In short; What is the importance 
of learning within cognitive activity?

It is difficult to give an exact answer to these questions, and it is probable that 
both sides of the questions have an element of truth in them. However it would 
not be wrong to say that learning has not been given the credit it deseives within 
existing computational models of cognition, if we compare the learning capabili­
ties of such models with the learning capacity of human beings.

A number of experiments indicate that the role of learning in cognition is 
more significant than it might appear like. For example, congenitally blind peo­
ple (people who are blind from birth, but may gain vision by a surgical opera­
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tion), instead of instantly starting to see upon regaining their siglu, develop their 
ability to see, rather slowly and painstakingly, possibly after several years.

But the most important line of evidence comes from the exj)erimenls of psy­
chologist Jean Piaget. Piaget found out that very young children do not have as 
inborn knowledge, such elemental facts as the permanent existence of objects, 
but rather come to learn this by experience. For example, if a toy is shown to an 
infant and then is hidden under a piece of cloth while the infant is watching, the 
infant can reveal the toy by pulling the cloth away. This is repeated a number of 
times after which the toy is hidden under a second piece of cloth, again while the 
infant is watching. The infant, surprisingly, looks for the toy undei· the first piece 
of cloth.

This experiment and similar ones suggest two important things about the na­
ture of learning. Firstly, children learn even such elemental things as the exis­
tence of objects. Secondly our knowledge about the basic regularities in the 
world is not in the form of declarative rules, but is in the form of piocedures.

2.1.6 Adaptation

Another interesting aspect of human cognition is the incredible adaptive skills 
displayed by humans. For example, subjects wearing special glasses that make 
them see the world upside-down, can adapt to this situation in a few weeks and 
begin to use their sight without any special effort. When the glasses are removed, 
they again have to laboriously adapt to their original state of seeing.

This and similar examples of adaptive skills pose interesting problems for 
cognitive models. The extent of such adaptive skills is not known. However, they 
seem to be important enough to act as constraints on cognitive modeling.

2.2 Models of Cognitive Activity

There has been a vast amount work done on understanding and modeling cogni­
tion. These efforts and studies, however, have not converged on a single, gener­
ally accepted model. We can instead talk about many different, usually conflict­
ing models, theories and ideas. In this section I will discuss certain models and 
ideas that are somehow relevant to the rest of this thesis.



2.2.1 Connectionist Models

The term “connectionist model” brings to mind the image of a model that in­
volves a network of some sort. This is true. However the term is generally used 
in the literature to refer to certain types of networks called parallel distributed 
processes (PDF) or sometimes artificial neural networks (ANN). These models 
are said to involve distributed representations. There is also another class of con­
nectionist models that use local representations instead of distributed ones. How­
ever these have neither received the wide popularity enjoyed by models using 
distributed representations, nor do they have a general framework. Therefore, 1 
will only discuss models with distributed representations in this sub-section.
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Figure 2.1. Components of an artificial neural network.

Figure 2.1 shows a typical ANN. The ANN is composed of an input layer, 
several hidden layers and an output layer. The recurrent connections drawn with 
dashed lines appear only in some of the models. The connections between nodes 
have associated weights. The nodes usually perform a weighted summation of 
their inputs and pass the result through a threshold function to generate their out­
puts. The network is started with a pattern of activation on the input layer. The 
output is then collected at the output layer, either after a single pass, or after 
multiple iterations. Such networks can be “trained” by using certain learning 
rules to approximate certain functions. Typically, they are trained to recognize 
certain classes of patterns.



Chapter 2. On Modeling Cognition 14

It seems important here to discuss why these networks are said to involve 
distributed representations. If we call something in a model a representation, it is 
possible that this representation is naturally defined as a combination of other 
representations. For example, a representation of orangeness, could be somehow 
a combination of representations of redness and yellowness. This much obviously 
does not make a representation a “distributed” one. In PDF models, what gener­
ates distributed representations is the existence of hidden layers. The weights on 
the connections of hidden layer nodes affect all the nodes in the subsequent lay­
ers, and thus, they contribute to the patterns generated at the output layer. How­
ever the contribution of any single hidden layer node does not correspond to an 
observable quality. Therefore, it does not represent anything by itself. But taken 
together, the hidden layer nodes are responsible for accomplishing a certain 
function, and they can be said to be representing something (the class of patterns 
they are trained to recognize, for example). Since this representation is a function 
of many hidden layer nodes, it is called a distributed representation.

A number of problematic issues strike me about Artificial Neural Networks. 
In Chapter 3, I will try to sketch a model of perceptive and motor systems, where 
ANNs are usually considered as the right tools for modeling. Therefore, I would 
like to discuss ANNs in some depth here and try to show that they in fact have 
important shortcomings that make such models implausible. ANN models pro­
posed in the literature differ in many aspects. Therefore I will limit my discus­
sion limited to two important aspects that are share'd by most of these models.

Hidden Layers

The predecessor of current Artificial Neural Networks was the Peiceptron model 
suggested by McCulloch and Pitts. The Perception model consisted of only two 
layers of nodes; an input layer and an output layer. However, the model was se­
verely criticized by Minsky and Papert, who showed that the Perception model 
was unable to compute the XOR function. Therefore, connectionist networks be­
came dismissed for modeling cognitive activities and it was not until the intro­
duction of hidden layer nodes, which incidentally made the computation of the 
XOR function possible, that Artificial Neural Networks re-gained popularity.

It should be clear that the explanatory power of ANNs derives largely from 
the existence of hidden layer nodes. This aspect has been sometimes criticized, 
since it makes the computation carried out by an ANN unintelligible. This is 
really a minor problem since the internal workings of a cognitive mechanism 
does not have to be intelligible to us, the observers. However, it becomes a se­
vere problem once we realize that those workings are also unintelligible to other
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cognitive mechanisms. There is no way the information captured by a liidden 
layer node can be re-used by a system other than the one the node is part of.

Let us consider a network that recognizes alphabetical letters. In order to suc­
cessfully do this, the hidden layer nodes must somehow be processing the way 
line segments that make up the characters are joined with each other, their orien­
tation, etc. (If they are not processing these kinds of relations, they can not relia­
bly recognize letters.) But if this is the case, then it would be nice to use this 
wonderful piece of machinery in other tasks, say face recognition. However, tliis 
is not possible since that information is “hidden”.

The way to work around this problem is simple; represent (and recognize) 
line segments. Junctions and orientations explicitly. Make the letter recognizer 
work on such representations, as well as the face recognizer. Moreover, make the 
face recognizer use the letter recognizer for recognizing v-shapcs o-shapes or T- 
shapes. In short, organize the system in a systematic and hieraichical way to 
maximize the utility. But if we do all of this, then there is very little left of the 
spirit of PDF models that are based on generating the ultimate result from the 
raw input at one big step. If one accepts this picture, then the really interesting 
point becomes the hierarchical organization of mechanisms and the interactions 
between them, rather than the wondrous distributed representations.

Supervised Learning

Most ANN simulations are based on a certain kind of training called supei vised 
learning. In this method, the result computed by the network is compared against 
the correct result. If the output of the network is wrong, then the weights in the 
network are updated according to some learning rule (for example, error back- 
propagation).

What I want to argue is that this is not a correct account of human learning. 
Let us compare the way two agents —a human and a robot controlled by an 
ANN— learn to drive a car. Both of them will make frequent errors to begin 
with. The way the robot learns will be error-driven. For example, if it wrongly 
steers the car left in situation A, it will have to be told something like: “Whoops, 
you should really have steered right in situation A”. The robot will then update 
its weights to take that information into account. After being trained about how it 
should steer in many different situations, and after many weight updates to pro­
duce the correct steering behavior, it will presumably become a skillful driver. 
What about the human? She will probably make similar errors and, for exanijtle, 
will also steer the car left in situation A. Like the robot, she will hear a warning



from the teacher and will try to take it into account. But one more thing: The hu­
man will also record what happens when she steers left in situation A. As a mat­
ter of fact, what the human learns will not be in the form of: “What should 1 do in 
this situation” but rather in the form of: “What hap|)ens when I do that in this 
situation”. Unlike Artificial Neural Networks, human brains record the outcome 
of actions and therefore require, not the correct output, but the outcome of their 
action in order to learn new skills.
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2.2.2 Symbolic Models

In their article entitled “Connectionisrn and Cognitive Architecture”, Fodor and 
Pylyshyn criticized connectionist models of cognition, on the grounds that such 
models were unable to account for representations with combinatorial structure 
[11]. Fodor and Pylyshyn argued that representations we employ can not merely 
be collecliuns of active objects; they should somehow be structured entities 
themselves. For example, the representation of the idea “John loves Mary.” 
should be different from the representation of the idea “Mary loves John.”, al­
though both ideas involve the same active objects (“Mary”, “John” and “loves” 
in this case). A symbol system could represent the two ideas in distinct ways (for 
example with the representations loves{john, niary) vs. love.s(nuiry, john)). How­
ever, a connectionist system could not make this distinction in a systematic and 
productive way, since its representations were essentially vectors of such active 
objects with no additional structure. Connectionist models, therefore, lacked the 
kind of representational power we seem to possess.

Fodor and Pylyshyn’s claims have been answered by authors in the connec­
tionist school, who referred to a number of connectionist systems that processed 
combinatorial representations [21]. 1 do not want to look further into the details 
of this discussion. However, I wish to point out that, in this short history of a re 
cent discussion one can find the reason why the computer metaphor is so critical 
to the study of cognition.

Computers are not only simulation tools for cognitive science. They share 
with human beings, the interesting capacity of employing combinatorial lepre- 
sentations. So, they are in some way different from other, older metaphors, like 
clocks or electric fields that were proposed to serve the same purpose. Moreover, 
this relation between computers and human brains is not one of simple analogy. 
That is, it is not that computers and brains have a common property (the property 
of being sensitive to combinatorial structure) that establishes the relation be­
tween these. Rather, if something is sensitive to combinatorial structure its sucii,
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then its operation with regard to this combinatorial structure can be characterized 
as computation.

This insight has been the basis of a great amount of research in cognitive sci­
ence and artificial intelligence. Symbolic models have been proposed covering a 
wide variety of human skills such as reasoning, problem solving, vision, and lan­
guage, giving rise to many practical systems, frameworks, and fields of study.

However, the symbolic models, I believe, have a number of serious short­
comings. There has been too much emphasis on knowledge installation 
(consequently, too little emphasis on learning), a general reluctance to distinguish 
between what is just a practical system, and what is meant to faithfully model 
human behavior, and too much confusion on problems of epistemic access. In 
general, symbolic models fail to explain almost all the problematic issues I pre­
sented in the previous section, as well as many others.

These shortcomings should not be blamed on the fundamental assumption 
that symbol manipulation is relevant to cognition. They are mostly due to the dif­
ficulty of the problem at hand and the unavailability of a sound methodological 
framework. It is not at this moment evident which aspects of symbolic models 
will prove to be relevant to cognition in the future and which will not. In any 
case, it is not my concern here to make an in-depth analysis of these issues.

2.2.3 Some Other Directions in Cognitive Science

Certain other approaches to cognitive modeling seem to be worthwhile to look at 
here. There exists another class of connectionist models apart from the one 1 dis­
cussed in Section 2.2.1, namely, those that involve local representalions. The first 
exemplar of such models is Hebb’s cell assemblies [14]. .Hebb suggested that the 
simple organizing rule for the brain was the establishment of conneclions be­
tween neurons that got activated simultaneously. This resulted in groups of 
densely connected neurons that Hebb called cell assemblies. Cell assemblies, he 
argued, would act as recognizers for frequently occurring patterns and woukl 
trigger each other to start chains of thought (a phase sequence). Hebb’s theory 
had the exciting character of trying to explain complex mental phenomena with 
an extremely simple rule. However his ideas were rather implausible and lacked 
sufficient explanatory power.

Since the time of Hebb, many connectionist models that employ local repre­
sentations have been proposed and studied. Recently, there has been a good deal 
of interest in networks where synchronization between the activation patterns of
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nodes is used for establishing bindings between them [20]. Such synchronization 
has also been observed to take place between actual neurons in tlie brain [13, 19].

Another interesting line of research is carried out in the field of situated ro­
botics. The practicers of the field try to build robots that act and display skills in 
“real” environments (like crowded offices). An interesting architecture for situ­
ated robots has been proposed by Rodney Brooks, who has given it the name sub­
sumption architecture [2,3,4,5]. Subsumption architecture models an agent with a 
set of hierarchical layers that sit on top of each other (see Figure 2.2). Each layer 
is implemented with a number of simple mechanisms (typically finite automata), 
whose interaction results in a certain type of behavior that corresponds to a level 
of competence for the robot. For example, the bottom-most layer may be respon­
sible for generating some walking behavior, in which case, particular finite 
automata will control the harmony between the legs of the robot. Higher layers 
generate behaviors by modulating the workings of lower layers. For example, a 
collision-avoidance layer can monitor sensors of the robot and adjust the work­
ings of the walking layer such that the robot will not bump into objects. Each 
layer is debugged and made robust in itself so that it can carry out the activity it 
is responsible without the interference of higher layers. As a result, the architec­
ture of higher layers can be kept relatively simple since they do not have to at­
tend to the low-level behaviors.

Brook's subsumption architecture is successfully used in many robots that can 
operate in the real world. However, the important question regarding this line of 
work is whether this approach will scale up to more complicated skills or not. 
Currently, Brooks and his colleagues are working on an android that is planned to 
have a physical structure similar to a human being and a level of cotupetence in 
some low-level tasks comparable to humans.
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Figure 2.2. Traditional vs. behavior-based decomposition of a mobile
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2.2.4 Constructivism: The Search for “Order from Noise”

One of the most important theories on the nature of human intelligence is con­
structivism, which has been developed by Jean Piaget through extensive studies 
of child development. According to constructivism, our knowledge and skills are 
not innate but are actively constructed through our interaction with the world. 
Piaget describes the goals of the constructivist line of research as follows [17]:

Fifty years o f experience have taught us that knowledge does not result 
from a mere recording of observations without a structuring activity on 
the part o f the subject. Nor do any a priori or innate cognitive structures 
exist in man; the functioning of intelligence alone is hereditary and cre­
ates structures only through an organization of successive actions per­
formed on objects. Consequently, an epistemology conforming to the data 
of psychogenesis could be neither empiricist nor preformationist, but 
could consist only o f a constructivism, with a continual elaboration of 
new operations and structures. The central problem, then, is to under­
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stand how such operations come about, and why, even though they result 
from nonpredetermined constructions, they eventually become logically 
necessary.

The two problems of constructivism that await explanation, (I) how we are 
able to put an order to the massive amount of information we have to deal with, 
and (2) how is it that everybody agrees on the same “order”, can be reduced to 
one and the same problem by assuming that order resides in the environment and 
the agent constructs his own version of reality by “transfer of structure” (though 
not all constructivists would agree on this reduction). However by combining the 
two problems, we do not arrive at a fundamentally easier problem. The task that 
awaits constructivism, explaining how order can be constructed out of what 
seems as noise, is still one of the hardest that can be envisaged.

A translation of constructivist ideas into the domain of computer science was 
attempted by Drescher [9]. Drescher represented the knowledge of the agent as 
schemas: rules that consisted of a context, an action, and a result. The context 
and result were conjunctions of “items”, which were the outputs of low-level 
recognizers. A schema encoded the knowledge that when the items in the context 
were active, carrying out the action would result in the activation of the items in 
the result with a better-than-chance probability. Drescher showed that such 
schemas could be found by simple statistical analysis. Once reliable schemas 
were found, they could be used for generating goal directed behavior, by looking 
for chains of schemas that took the agent from Hie current context to a certain 
goal.

Although Drescher’s work contains many interesting ideas, it lacks sulTicieni 
explanatory power to account for human development. First of all, his schema 
mechanism does not contain hierarchical structures and is therefore limited in its 
extent. Moreover, every instance of a rule is treated alone and these are not ag­
gregated into more general schemas. Lastly his system functions in a too simiili- 
fied setting and it is not obvious whether his solutions will scale up or not.

Although I believe that constructivism is correct in its premises, and that the 
elaboration of a constructivist framework should be the primary research goal 
before cognitive science, I will not attempt to sketch such a framework in this 
thesis. My work is related to constructivism in a different manner. In the follow­
ing chapter, I will describe a system that can account for human low-level sen­
sory-motor system that acts as some kind of pre-requisite for higher-level cogni­
tive systems that I believe should have a more “constructivist” flavor. I do not 
regard my system as a constructivist one because there will be relatively little 
stress on “active construction” as opposed to “passive impression”. However my
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work hopefully suggests how order can emerge out of noise and how the devel­
opment of a constructivist model of cognition can be guided by general principles 
and ideas.



Chapter 3

A Prediction Mechanism

This chapter describes a hypothetical system that is meant to be a model of hu­
man low-level sensory-motor mechanisms. The first three sections of this chapter 
are introductory: they lay out a number of intuitions, observations and ideas that 
will hopefully present the rationale behind positing such a system. In Section 3.4, 
I present a number of guiding principles that have aided me in the development 
of the hypothetical prediction mechanism. Section 3.5 describes an abstract set­
ting for the environment and the sensor.s/actuators of an agent. 'I'he remaining 
sections incrementally develop the prediction mechanism, by introducing new 
types of components.

3.1 An Intuitive Opening

Imagine yourself climbing a staircase. When you are about to climb the last few 
steps, the lights suddenly go off. Without bothering yourself too much, you go on 
to climb the stairs in the dark. But just when you climb that last stej) something 
bizarre happens: your foot does not touch the ground when it should have. In 
fact, you have already finished climbing all the steps. Next, imagine that you see 
a very clean window. Unable to stop yourself, you attempt to touch it, knowing 
that this will leave a nice, dirty finger-print. But you feel really strange as your 
finger touches nothing. You realize that the window frame is empty.

Why am I giving these rather trivial examples? Because 1 believe that there is 
something interesting going on here. In both of these examples what we are 
sensing is not the existence of a stimulus, but the absence of one. So what must 
be going on these cases must be something like the following: A mechanism 
within our cognitive system should be predicting the time and the type of the

22
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stimulus we should get if everything went well, and signaling an error when the 
particular stimulus does not arrive at the right time. (That is, I lake it that the 
strange feeling we experience in these cases is somehow related to the error sig­
nal.)

The examples I gave above are not really special in any respect. (In fact I can 
recall many other cases where I had similar experiences.) So, I infer from these 
that predictions are carried out routinely during all our activities and something 
within our mind is constantly keeping track of what we are going lo sense in the 
near future. Of course, only one in a million of such predictions ever fail and we 
are seldom alarmed. The bulk of the predictions are carried out silently without 
us noticing them, but they are needed to ensure that we become aware if anything 
goes wrong.

So, we can say that there exist at least three mechanisms regarding our low- 
level sensory-motor system: one that initiates actions, one that processes sensa­
tions, and one predicting future sensations. (These might, however, be one and 
the same mechanism, but we do not know that yet.) I will call this latter one the 
prediction mechanism. We know that the prediction mechanism, in order lo ful­
fill its function must adapt to new sensory-motor tasks and must be able lo pre­
dict sensory patterns in complicated activities with good precision. This means 
that we are talking about a delicate piece of machinery here. And if there exists 
such a machinery then its functional role must be far beyond providing error sig­
nals in one in a million trials. If I were to design the archilecture of a cognitive 
agent, and if I had such a prediction mechanism at my disposal, I would find 
many important uses for it. Nature is a far better designer than me, and it seldom 
wastes resources. So I conclude that the prediction mechanism has a crucial 
function within human cognition.

3.2 A Hierarchy of Predictions

Predicting the typical feedbacks of our actions is no doubt an important task. 
However, we should realize that we really benefit from such a prediction, not 
when everything goes as predicted, but when the prediction fails. The failure of a 
prediction creates an important piece of information that would not be available 
if the prediction had not been carried out: that there is something atypical, 
strange, and unusual in what happened.

Consider the following example: An organism can sense two pieces of infor­
mation, A and 5, and typically B is sensed right after A is. Now, assume that B



Chapter 3. A Prediction Mechanism 24

starts to be predicted whenever A is sensed. Let us call the failure of this predic­
tion C. Of course, C is just another piece of information, and as a matter of fact, 
it is a “higher-level” piece of information than both /1 and /J. Therefore, instead 
of saying that the prediction has failed, we may simply say that “C is sensed”. 
This means that, the outcomes of predictions are not different from original sen­
sations, and they can themselves be the subjects of yet higher level predictions, 
giving rise to even more high level pieces of information. There is, at least in 
principle, no problem in talking about a hierarchy of preclicUon.s, that is com­
posed of many layers. Information that belongs to the top of the hierarchy, then, 
is the information that is supposed to be the most high-level.

I suggest that, our low-level sensory-motor system implcmenls Just such a hi­
erarchy. At the bottom of the hierarchy lie simple sensory and motor activations, 
where any single piece of information does not carry much importance and can 
be discarded without any serious problems. On the other hand, the top of the hi­
erarchy contains pieces of information that are much closer to the percepts we get 
from the environment.

Notice, how such a picture of perception differs radically from traditional 
views that deal with issues such as recognition, feature detection, and the like. 
Unlike traditional ones, there is no question of what to recognize, and what to 
ignore, which features to detect and which to discard. It, as a primitive picture, 
has the potential to account for interesting properties of human perception such 
as flexibility, plasticity, and interactivity.

3.3 Functions of the Prediction Mechanism

I have claimed that a mechanism that can predict future sensory states would 
have a number of possible usages within a cognitive system. In order to discuss 
this, the idea of ‘predicting future sensory states’ must be somewhat clarified. 
Basically sensory states can be predicted in three ways:

1) As direct feed-backs of motor commands: Almost all muscles in the hu­
man body send acknowledgment signals to the brain when they are acti­
vated. Therefore the arrival of the acknowledgment signal can be predicted 
from the initial motor activation.

2) As indirect feed-backs of motor commands: Motor commands affect the 
sense organs in a systematic way. For example when we are making draw­
ings or writing with a pencil, we move our hand by initiating motor com­
mands and see how our hand (and the pencil) moves in return. The move­
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ments seen by the eyes can be predicted again from the initial motor acti­
vations.

3) As continuations of previous sensory states: Sensory states can be pre­
dicted from previous sensory states. For example, if one is listening to a 
rhythmic beat, he may predict when the next beat is going to be heard.

Predictions of type (2) and type (3) can not be the result of totally innate 
(genetically fixed) mechanisms. Humans continually learn new behaviors and 
skills which result in new feed-back patterns. Therefore, the pretliction mecha­
nism that is responsible for these predictions must be non-innate.

A prediction mechanism that successfully predicts future sensory states could 
serve a number of purposes within the cognitive system apart from providing er­
ror signals. We may list some of these possible uses as; carrying out goal directed 
activity, generating high level percepts, and revealing interesting information. 
Below, I will discuss each of these.

3.3.1 Carrying Out Goal-Directed Activity

A mechanism that predicts future sensory states can perhaps be "executed" in re­
verse direction for reaching "desired" sensory states. For example, if the mecha­
nism somehow encodes that sensory state B comes after motor action A, it may 
start action A whenever state B is desired. Similarly, such a mechanism can be 
used for avoiding "undesired" states. If state B in the previous example is this 
time undesired, the mechanism can inhibit the activation of action A.

Goal directed activity can, of course, be carried out also by higher level cog­
nitive mechanisms. The scheme that is suggested here for this is that the auto­
matic, repetitive acts that do not require special attention and planning are car­
ried out by the prediction mechanism whereas activities that require complex 
planning and attention are carried out by higher level mechanisms. However 
higher level mechanisms can use the prediction mechanism for carrying out parts 
of such activities.

3.3.2 Generating High Level Percepts

Considering the complexity of human senses and activities, successfully predict­
ing future sensory states is an extremely difficult task. Therefore the mechanism 
that is accomplishing this with a good degree of success must also be organizing 
the information on the sensory-motor level, aggregating initially "meaningless" 
sensory activations into more "meaningful" percepts that can then be used by
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higher level cognitive mechanisms. For example, consider how the changing of 
the image on one's visual field can be predicted while moving forward. In this 
case the projections of objects that are closer to the subject would move rather 
quickly whereas projections of objects far away would remain relatively stable. A 
mechanism that successfully predicts these changes, then, must be able to distin­
guish between near and far objects. Therefore useful concepts such as nearness 
and farness may be emerging at this level of cognitive activity. If powerful or­
ganizing rules can be found that result in a successful prediction mechanism, one 
of the side results of these rules may be the emergence of interesting, high-level 
percepts.

One of the most difficult aspects of studying cognition is dividing it into 
functional parts where each part may be studied more or less independently. 
Studying low level prediction lets us to cut a slice in cognitive activity where we 
replace the question of "How can we build an intelligent machine?" with the 
question of "How can we make a prediction mechanism that successfully predicts 
sensory states?" Still a very difficult question but at least a more rigorous one.

3.3.3 Revealing “Interesting” Information

Sensory information that a cognitive agent acquires from the world can be 
roughly divided into two categories: information that is "predictable" from past 
sensory states and actions, and information that is'not predictable as such. Infor­
mation of the latter type, in general, is the type that is worthy of more interest. 
Consider the example of eye movements. When somebody moves lus eyes a few 
degrees to the left, the image he sees will slide a little bit to the right. This new 
image can be roughly predicted from the previous image and the amount of the 
eye movement. However if part of the image changes in an unpredicted way, i.e. 
if predictions about part of the image fail, it may be concluded that something in 
the external world has moved. It would be extremely difficult to recognize this 
movement (since the whole image has changed anyway) if no prediction had been 
done about the new image.

A prediction mechanism, thus, can act like a filter that reveals interesting 
events in the environment. It automatically distinguishes between what is the 
normal outcome of events and what is non-standard, original and interesting.
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3.3.4 Remarks

I have listed three very important runctions of a liypoUietical prediction mecha­
nism. It may be evident by now that I ascribe a very important and special role to 
this prediction mechanism. If the prediction mechanism does support these func­
tions, then it could account for most of what we call as low-level processing in 
the brain. This view radically differs from conventional theories of low-level 
systems, so it may be worth elaborating this point a little bit.

To some readers, the claim that low-level processes in the brain are carried 
out by a prediction mechanism may seem absurd. After all, the claim is not based 
on any neuro-scientific evidence. In fact, it is not based on any real evidence 
other than my introspections (which would hardly count as solid evidence). I 
suppose the real evidence in support of my claim lies in its explanatory power. 
The existence of a prediction mechanism that continually adjusts itself to make 
better predictions and which, on the way, carries out the functions I have de­
scribed above explains a number of peculiarities regarding human cognition. It 
explains, firstly, how we are able to perceive the world, carry out motor actions, 
and sense interesting things. It explains how we get better at doing things through 
experience. It explains why our perceptions change through time and how they 
get more refined as we keep on perceiving a certain class of things. All of these 
explanations, and still others, I believe, make my claim a viable one.

Now, how can I give such explanations? I must first show that the prediction 
mechanism I am suggesting is not a miracle, and if one sits and tries to design 
such a mechanism, he will at the end come up with a number of simple rules, 
whose systematic application will result in the system we are looking for. If we 
can design a prediction mechanism, then a similar one could exist within the 
brain, and if the prediction mechanism is so good at providing explanations, then 
it seems plausible to consider all of this as serious evidence for that existence.

So, we come to the question of what such a prediction mechanism would look 
like. Unfortunately this question is seriously difficult and is not fully answered 
by the work presented here. However, this chapter will present a way to attack 
the problem. We are going to start by presenting a very simple prediction mecha­
nism that can only make successful predictions in the simplest cases. Then we 
will incrementally develop it to cover more sophisticated cases. This develop­
ment, hopefully, will convince the reader that a powerful, and yet simple predic­
tion mechanism, is possible.
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3.4 Some Guiding Principles

It is a very difficult task to design a system that does not have a clear specifica­
tion. The existence of a prediction mechanism is something we have taken as a 
hypothesis. However we are unable to clearly state its function and behavior. For 
this reason, our designing process will have the nature of an exploration whose 
outcome or destination is not really known. In order to keep this exploration fo­
cused, we will state some guiding principles which we will use throughout the 
development of the prediction mechanism.

In Section 3.3, I listed three functions of a prediction mechanism: enabling 
goal-directed activity (of a simple kind), generation of internal states that corre­
spond to high level notions, and lastly, distinguishing between interesting and 
non-interesting events. While we are working out the details of a prediction 
mechanism, we will make use of three guiding principles founded on these 
functions.

Guiding Principle 1

For carrying out goal-directed activity, elements that make predictions must also 
work in the reverse direction in order to find out how to achieve a goal state. 
When the elements work together for making better predictions, they must also 
enhance the goal-directed behavior of the overall system. Therefore, our first 
guiding principle will be enhancing goal-directed activity.

Guiding Principle 2

For successfully distinguishing between interesting and non-interesting informa­
tion, the prediction mechanism must exploit all opportunities for making success­
ful predictions. The more powerful the prediction mechanism is, the more inter­
esting will be the things that the system failed to predict. Therefore, another 
guiding principle we will use is maximizing predietory power.

Guiding Principle 3

If the prediction mechanism can predict with a good degree of success by using a 
limited amount of resources, this means that it is making use of notions that are 
also useful for higher level cognitive skills. Therefore, minimizing the amount 
of resources used should be one of our guiding principles in designing a predic­
tion mechanism.
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3.5 Setting up the system

The human cognitive system and its interaction with the body and the environ­
ment are complex issues that contain numerous details. Studying tlic organization 
of a prediction mechanism in tliis complex setting is rallier dilTicult. Therefore I 
will define a much simpler setting where the development of the ideas in this 
chapter will be easier.

3.5.1 The Composition of the Cognitive System

The human brain is a complex structure that is made up of densely connected 
cells, called neurons. Some of the neurons in the brain are stimulated by signals 
coming from various receptor cells in the body or the sense organs. These are 
called sensor neurons. Still others, when stimulated from within the brain, send 
signals that control muscles. These are called motor neurons. The connection 
patterns between the neurons is known to be dynamic, i.e. some of the existing 
connections can be broken and new ones can be established. Here 1 will present a 
scheme for a cognitive system that covers these aspects.

The “brain” of the cognitive agent is a complex network of simple elements 
and can be roughly divided into three layers. The bottom layer, called the inter­
face layer, consists of a fixed set of sensors and actuators. Certain fixed struc­
tures, that directly link sensors to actuators to create simple reflexes, also belong 
to this layer. The middle layer, called the prediction mechanism, can grow or 
shrink dynamically by the addition or removal of elements. The basic organiza­
tional principle of this layer is predicting the activity of the interface layer. There 
is also a higher layer which, I assume, contains various higher level mechanisms 
that are not critical to our discussion.

3.5.2 Time Scales

For simulating the passing of time in a simple way, we will assume that the envi­
ronment operates in discrete time steps. The sensors, actuators and other ele­
ments of the cognitive system will also operate in discrete time steps. It is con­
venient to assume that these internal elements operate faster than the things in 
the environment, so that a piece of information about an external entity may be 
processed before the information becomes obsolete. Therefore, we will distin­
guish between these two time scales. The environment will operate in external 
time steps, whereas the elements will operate in internal time steps. We will as-
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sunie that a single external time step corresponds to multiple inlernal lime steps. 
Sometimes, I will refer to external time steps as simply, lime steps.

3.5.3 The Interaction Between the Agent and the 
Environment

The agent interacts with the environment through its sensor and actuator ele­
ments. Below, I will describe these two types of elements.

Sensor Elements

Every sensor element is connected to a physical sensor. This physical sensor is 
assumed to check a binary condition in the world (such as if a finger touches 
something or not). When this condition is satisfied, it activates the sensor ele­
ment. In this case, the sensor element stays active throughout one external lime 
step. Sometimes I will call sensor elements simply sensors. 1 will graphically rep­
resent sensors with a circle that has an upward arrow inside. The name of the 
sensor will be written below this circle. If I want to show that the sensor is active 
I will place the symbol A to the left of the circle.

®
sl

Figure 3.1. Graphical representations of .sensors 

Figure 3.1 shows two sensors, si and s2. Sensor s2 is explicitly shown to be
active.

Actuator Elements

Actuator elements are connected to motors (or muscles) in the body of the cogni­
tive agent. These motors make parts of the body move in a certain way. For sim­
plicity, we will assume that motors work in a binary way and they are either ac­
tive, carrying out a certain action in a certain way, or they remain inactive. 
Whenever the actuator element is activated, it will start the motor it is connected 
to. Sometimes I will call actuator elements simply actuators. 1 will graphically 
represent actuators with a circle that has a downward arrow inside. The name of 
the aetuator will be written below this circle. If I explicitly want to show that the 
actuator is active I will place an A to the left of the circle.
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at
A ®

ci2

Figure 3.2. Graphical representation of actuators

Figure 3.2 shows two actuators, aland a2. Actuator a2 is explicitly shown to 
be active.

3.5.4 Events

If we have an interface element (either a sensor or an actuator) named k, tlic 
event that k is active within a certain external time step is denoted by k.A (Wc 
read this as the activeness of k). Similarly, the event that k has become active 
(when it was not active at the previous time step) is denoted by /c.AT (read acti­
vation of k). Conversely, the event that k has become inactive at a time step is 
denoted by k .A i  (read deactivation of k).

All these events have certain frequencies. The prediction mechanism will rec­
ord and use these frequencies to statistically observe the relations between such 
events. However, in order to simplify the presentation of the prediction mecha­
nism, I am going to talk about probabilities instead of frequencies. It must be re­
membered that the prediction mechanism approximates all such probabilities 
with frequencies. For example, P(/:.AT) will denote the probability of element k 
becoming activate at a certain (external) time step. A prediction mechanism has 
no way of knowing this probability. Therefore we will assume that it will record 
and use the corresponding frequency instead.

The sensors and actuators work within a causal and mechanistic world. There­
fore the activation patterns of these elements are related with each other.

I will use conditional probabilities to express statistical relations between 
events. However I will slightly change the notation of conditional probability in 
order to capture the time differences between events. If we have three events A, B 
and C:

• The expression P(C|„A), read n-delay conditional probability of C under 
condition A, will denote the probability of event C happening in a certain 
time step, if event A had happened n time steps ago.
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• Similarly, the expression P(C|„/4, B), read n-delay conditional probabil­
ity of C under condition A and B, will denote the probability of event C 
happening in a certain time step, if event A and B had happened /; time 
steps ago.

Again, the prediction mechanism will approximate such conditional probabilities 
with the corresponding frequencies if they are ever needed.

3.6 The Basic Predictor

In this section, a component of the prediction mechanism, the basic predictor, is 
introduced. In the first sub-section I discuss how basic predictors can be estab­
lished. In the second sub-section, I try to show how they can help with goal- 
directed activity.

3.6.1 Establishing Basic Predictors

Let us remember our setting: We have an agent situated in a complex environ­
ment. The agent has a set of sensors and actuators. Initially, the actuators are ac­
tivated by certain reflexes or by other mechanisms that are irrelevant here. While 
the agent is interacting with the environment, the sensors and actuators will be­
come activated and deactivated. Some of these activations and deactivations will 
be causally related with each other. This enables us to predict such internal 
events by looking at other internal events. For example, a sensor a may be sens­
ing the acknowledgment signal of a muscle that is activated by an actuator г.. In 
this case, the sensor will become active exactly one time step after the actuator 
becomes active. Therefore,

P(A:.At|, z.a T)= I

Of course, not all elements are so directly related with each other. The im­
portant point is that, related elements will almost always be statistically related 
with each other. We may establish predictors between statistically related ele­
ments. Basically, we can establish a predictor cj from interface element k to inter­
face element / i f :

P(/.a T|, LAT) >  P(/.AT)

The above inequality means that / gets active more often than usual if k had 
got active one time step ago. This is the basic rationale behind the idea that 
something can predict the activation of / when it sees the activation of k. We
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will call predictors established between two such interface elements basic pre­
dictors. I will call the conditional probability P(/.AT |i /c.a T), the reliabilily of 
basic predictor cj. I will call the elements k and /, the source and the target of cj 
respectively. Similarly, I will call the events LAT and /.At, the source event and 
the target event of q respectively. Lastly I will call the time difference between 
the source and target events the delay of q.

1 will graphically represent predictors with an arrow from the source element 
to the target element. The event at the source or target will be shown to the right 
of the arrow’s connections with the elements, by either an upward arrow sign (if 
the event is an activation), by a downward arrow sign (if the event is a deactiva­
tion), or by the absence of a sign (if the event is activeness). The delay of the 
predictor will be written over the arrow, while the name of the predictor will be 
written under the arrow. For example, a predictor named pi from an actuator 
named x to a sensor named a, whose source and target events are the activation of 
X and the activation of a respectively would be shown graphically as follows:

t
f-l

Figure 3.3. An example predictor

So far, we have looked at how to establish a pretlictor that predicts an ele­
ment’s activation from another element’s activation. Of course, it is in principle 
possible to use events other than ¿ictivation for making predictions. Establishing 
all possible predictors is in accordance with Guiding Principle 2 that I have dis­
cussed in Section 3.1. However, such an approach would not necessarily comply 
with guiding principles 1 and 3. This leads to an important point that will recur 
later in this thesis: Deciding which types of predictors to establish is an engi­
neering decision and must be studied in detail if we want to implement a working 
prediction mechanism. However, such a detailed analysis is beyond the scope of 
the work presented here.

The same line of argument applies to the delay between source and target 
events. We can try to establish predictors between events that happen in the same 
time step, as well as events that are two, three or more time steps apart. In this 
thesis, I will only use predictors with either 0 or 1 delay. However, predictors 
with longer delays may be found to be useful in a more detailed study.
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In the rest of this chapter, I will assume that only the types of predictors we 
discuss are established between elements, though other types arc also possible. 
However I will keep the notations and graphical representations as general as 
possible.

3.6.2 Goal-Directed Activity with Basic Predictors

By Guiding Principle 3 the predictors that are established must also contribute to 
goal-directed activity. This is carried out in a rather simple way:

All elements (sensors, actuators or predictors) have an associated goalness. 
The goalness of an element will be assumed to have a value in the continuous 
interval between 0 and 1. I will say that an element is a goal if its goalness is 
over a predefined threshold (we may assume that this threshold is close to 1). 
Graphically, I will show that an element is a goal by placing a C to the left of its 
graphical representation. Now, let us assume we have a predictor that predicts a 
target element’s activation from its source element’s activation. Let the predic­
tor’s reliability be equal to 1, which means that the target element’s activation 
always follows the source element’s activation at the predicted time. Such a pre­
dictor will not only carry out predictions, but it will also carry the goalncss of its 
target to its source. So, if the target element is a goal, the predictor will make the 
source element a goal as well. If the source element is a sensor, the goalness can 
be further propagated to other elements. I will ahso assume that, if actuators be­
come goals, they are automatically activated. Therefore, if the source of the pre­
dictor is an actuator, the predictor will activate that actuator upon carrying tlic 
goalness. Since the predictor is completely reliable (that is, its predictions always 
prove correct), the target will also become active after the activation of the 
source.

The same idea applies to predictors with reliabilities that are less than I. 
However this time, the predictor will not carry the goalness of the target to the 
source as it is, but will decrease this goalness on the way. The less reliable a pre­
dictor is, the more reduction will be made to the goalness. This can be easily 
achieved if the predictor multiplies the goalness of the target with its reliability, 
before carrying it to its source.

The same mechanism also applies to propagation of what I will call avoided- 
ness. Avoidedness is in some sense the dual of goalness and these two attributes 
cancel each other out. I will say that an element is an avoided if its avoidedness 
is over a predefined threshold. Graphically, I will show that an element is an 
avoided by placing a V to the left of its graphical representation. Avoidedness is
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propagated by predictors from their target to their sources in the same way goal- 
ness is. It is also decreased according to the reliability of the predictor.

In order to better present these ideas graphically, we will somehow simplify 
the workings of predictors by distinguishing between those predictors whose reli­
ability is close to 1 and those predictors whose reliability is relatively far from 1. 
I will call the first type reliable predictors and the second type unreliable pre­
dictors. I will graphically represent reliable predictors with thick arrows and un­
reliable predictors with thin ones. Also, I will represent interface elements whose 
type (sensor or actuator) need not be specified with an empty circle.

A predictor’s carrying goalness and avoidedness is shown graphically in Fig­
ure 3.4. I will call such graphical representations “rules”, since they capture im­
portant aspects of workings of the prediction mechanism.

Rule l.a

Rule l.b

Figure 3.4. Rules for basic predictors to propagate goalness and
avoidedness

The rules above represent how goalness and avoidedness are propagated in a 
simplified way. The right side of the rules show the state of the elements one in­
ternal time step after the state shown by the left side. Note that the predictors 
used in the rules are reliable predictors (they are drawn in thick lines). In reality, 
predictors should work on graded attributes. However, this kind of representation 
is easier to understand and such rules will be used throughout the presentation of 
the prediction mechanism.

An interesting situation arises when two different predictors carry goalness to 
the same element. Should these two goalness values be added, or should we take 
the maximum one? It turns out that we should add them if the target events of the
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two predictors are independent. If they are not independent, we should take their 
maximum. It is in principle possible to learn this by a statistical analysis of the 
relation between the two events. However, such a statistical analysis cannot be 
performed by simple predictors, and if the analysis is done by an external system, 
then the prediction mechanism I am proposing will lose its simplicity. Therefore, 
we will always take these events to be dependent ones and take the maximum of 
the two values. This is because, it is possible to have a great number of depend­
ent events and adding the goalness values associated with all of these would re­
sult in artificially increased goalness values. We also take the maximum of 
avoidedness values, if multiple predictors carry avoidedness to the same elemenl.

3.7 Meta-Predictors

In the previous sub-section I have described how to establish predictors between 
two statistically dependent interface elements. Such predictors can capture only 
the simplest relations between elements. In this section, I will describe how pre­
dictors can be built in a hierarchical way to form a more complex system that can 
make better predictions.

Let us use a simple example to better present this idea: The example concerns 
sensory-motor control of a simple robot hand for grabbing objects.

4:—̂

Figure 3.5. A robot hand connected to sensors and actuators

The robot hand is a simple device that has two fingers, a finger closing motor 
that can temporarily close the fingers, a pair of pressure sensors that sense if (he 
fingers touch anything and lastly, an infrared sensor that senses if there is any­
thing between the two fingers. The pair of pressure sensors, the infrared sensor
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and the motor are connected to two sensor elements and one actuator element 
that are named touch, object-in, and close-hand respectively.

We assume that the agent is acting in the world and trying motor actions 
(through reflexes or other means) at different times. Meanwhile, we record the 
frequencies of different events to approximate conditional or unconditional prob­
abilities. One of the motor actions carried out by the agent is activating close- 
hand, which makes the motor hand close its fingers. In this case, if there is an 
object between the fingers, the fingers will touch the object and pressure sensors 
will sense this and activate the sensor element touch. Let us call the probability 
of there being an object between the two fingers Pobjeci· This probability will be 
equal to (assuming that the infrared sensor that recognizes this works perfectly) 
P(object-in). Therefore:

P(/oi<c7i.AT |i close-ha?id, A'l) —

P(touch.A^) + P{close-hand.\t) ■ Pobjeci 

-  P ( touch.A't) ■ P (close-hand.A't)· Pqi,jcct

which is strictly greater than P(touch.A't). So, touch is activated more often 
than usual, if close-hand was activated one time step ago. This can be intuitively 
explained as follows: Some of the trials of closing the robot hand will take place 
when there is no object between the fingers. If we had done our statistical analy­
sis only in these instances, activation of touch'and activation of close-hand 
would turn out to be independent events. However in those trials where there is 
an object between the fingers, closing the hand causes the pressure on the fingers 
and thus activation of touch and activation of close-hand will be statistically de­
pendent. Those trials will affect the overall probabilities, and in the general set­
ting, these two events will be statistically related. As described in the previous 
sub-section, a predictor from close-hand to touch will therefore be established. 
Let us call this new predictor/?.
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Figure 3.6. Predictor p is establislied between touch and close-hand

The predictions carried out by predictor p will sometimes be simeessful (the 
predicted event will happen.) and sometimes fail. We may consider the sueeess 
and failure of this predictor as two new events. Let p.S denote the event that p 
succeeds at a certain time step. Similarly, p.F will denote the event that p fails at 
a certain time step. What we must do to enhance the prediction capability of our 
system is regarding these events as yet new events that need to be predicted.

Evidently p will be a rather unreliable predictor, because its predictions will 
be successful only if there is an object between the fingers (which is only rarely 
possible). However in the setting 1 have described above, there is a simple way to 
reliably predict the activation oi touch. What we must do for that is to use sensor 
object-in (which is connected to the infrared sensor) together with the activation 
of close-hand. This fact can be exploited with a simple addition to the system: 
We must simply look for something that serves as some kind of context for the 
success of predictor/?. Basically when that context is present, /?’s chance of suc­
ceeding must be higher than usual. Activeness of object-in is just such a context. 
Therefore, what we will do is to establish a “meta-predictor” from object-in to p. 
When object-in is active, the meta-predictor will temporarily increase the reli­
ability of/?. Thus in those instances that object-in is active, /? will function just 
like a reliable predictor. In other time instants, p will work like any other unreli­
able predictor.

3.7.1 Establishing Meta-Predictors

Now let us look at the details of this process. Firstly, we should elaborate on how 
to “find” meta-predictors. Let x and b be two interface elements and /? be a pre­
dictor that predicts b's activation from x ’s activation. The reliability of/? will be 
given by P(i>.At|| x.a T). N o w , let « be another interface element. In order to
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decide whether to establish a meta-predictor from a to p, we record the frequency 
corresponding to P (^ .A T |i A'.At.ri.A), which gives how reliably /;’s activation 
can be predicted from ;c’s activation and r/’s activeness. If this value is strictly 
greater than P(Z).AT|| x.AT), which is /?’s reliability, we establish a meta­
predictor q and P(Z7.AT Ii a:.a T,«.A) becomes <y’s reliability. This value shows 
how reliably ¿ ’s activation can be predicted from x’s activation and a ’s active­
ness. And the check we perform makes sure that this is better than how reliably 
¿ ’s activation can be predicted from x’s activation alone.

A s stated before, we use frequencies to approximate probabilities. The way 
this approximation is done is not important for our theory, however, we must 
make sure that such frequencies can be obtained in a simple way. The expression 
we use for computing reliabilities of meta-predictors causes a problem here, 
since it involves events (¿.At and x.AT) that are not directly recognizable by q 
(since q is not connected to either h or x). However we can express c/’s reliability 
in another way:

reliability(q) = P(6.AT|| x.AT,«.A)

_ P(x.AT|, «.A)· P(i>.Atl| x.a T,«. A) 
P(x.a T|| fl.A)

_ P(j7.SI, fl.A)
~ P(x.Atl,a.A)
_ P(/>.SI, a.A) .
~ P(p.SI,a.A) + P(/>.FI,«.A)

(1)

( 2) 

(3)

At step (1), we multiply the nominator and the denominator with the same 
expression. At step (2), we exploit the fact that P(/;.S)can be rewritten as the 
product of P(x.a T) and P(Z?.a T || x.a T). Finally, at step (3), we make use of the 
idea that whenever x is activated, p either succeeds or fails.

All the events involved in formula (3) are accessible by the meta-predictor. 
Hence the meta-predictor can adjust its reliability in its local setting.

As well as meta-predictors that predict their goal’s success, we can have 
meta-predictors that predict their goal’s failure. In order to discuss these we may 
make use of the notion of unreliability. Unreliability is the dual of reliability and 
is defined as (1 -  reliability). A meta-predictor from an element a that predicts 
the failure of a predictor p is established if:

P(/7.FI, a. A)
P(p.SI,fl.A) + P(/;.FI,n.A)
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is greater than the unreliability of p. In this case, this value becomes the inela- 
predictor’s reliability.

I will call meta-predictors that predict their target’s success, positive meta­
predictors. Similarly, meta-predictors that predict their target’s failure are called 
negative meta-predictors. When graphically representing positive meta­
predictors, a plus sign (+) will be placed to the right of the endpoint of the arrow. 
Negative meta-predictors will be shown with a minus sign (-) at the same place.

3.7.2 Prediction with Meta-Predictors

Whenever its source is active, a positive meta-predictor will temporarily set the 
reliability of its target to its own reliability. Conversely, a negative predictor in 
this case will set the reliability of its target to its own unreliability. That is, the 
reliability of the target predictor will become, for that internal time step, (1 -  the 
reliability of the meta-predictor). An important observation here is that, a posi­
tive meta-predictor must be more reliable than its target, since this is the con­
straint for its establishment. Conversely, the reliability of a negative meta­
predictor must be greater than the unreliability of its target. This makes sure that, 
if the meta-predictor predicts the failure or success of its target, it is guaranteed 
that the reliability of the target will change (unless another, more reliable pre­
dictor has already changed it).

It is also possible to establish meta-predictors whose targets are other meta­
predictors. Such meta-predictors work and are established just like the first level 
meta-predictors.

I will give a new graphical rule for demonstrating how meta-predictors affect 
their targets in a simplified way.
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Figure 3.7. Rules for meta-predictors predicting the success or (he failure
of their targets.

3.7.3 Goal-Directed Behavior with Meta-Predictors

In line with our Guiding Principle 1, meta-predictors must also contribute to the 
goal-directed activity.

Reliable positive meta-predictors contribute to goal-directed activity by tem­
porarily making their targets reliable when predicting their success. The example 
in Figure 3.8 demonstrates this idea;
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a X
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A ®  ®  0 ®  A ®  O ®  0 ( i ) '
a X b a X

l>2

Figure 3.8. An example of goal-propagation with mela-predictors

When sensors is active, meta-predictorp2 makes predictor/>>I reliable. Since 
sensor b is a goal, predictor p i, which is now reliable, makes actuator x a goal.
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Actuators, when they become goal, automatically become activated. Therel'ore 
actuator x will become active as a result. If p2 had not predicted the success of 
p i, X would not get activated.

Similarly, reliable negative meta-predictors help with goal-directed activity by 
temporarily making their targets unreliable. Figure 3.7 gives an example for this 
idea:

pA

P3
15'

A ©  ©

Figure 3.9. Inhibition of goal-propagation with negative meta-predictors

When sensor d is active, meta-predictor p4 makes predictor p3 unreliable. 
Sensor e is a goal, however, since p3 becomes temporarily unreliable, it can not 
carry goalness to actuator y. If p4 had not predicted the failure of p3, y would get 
activated.

Meta-predictors can contribute to goal directed activity in even more power­
ful ways. However, to do that, the functioning of basic predictors must be ex­
tended. This extension to the functioning of predictors will be different according 
to whether the predictor’s source is a sensor or an actuator. I will give two new 
rules for the two different cases and present the rationale behind them.

Rule 3

© c ©
'l·

©  c ©

Figure 3.10. Rule 3.

The predictor in Figure 3.8 encodes the knowledge that the target will be acti­
vated when the source actuator becomes active. Rule 3 states that if this predictor 
is unreliable, the predictor itself becomes a goal. A predictor’s becoming a goal 
means that other elements in the system will be activated to be able to predict its 
success. Once the predictor is predicted and becomes, as a result, reliable, it will 
be able to activate the actuator.



Chapter 3. A Prediction Mechanism 43
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Figure 3.11. Rules 4.a and 4.b

Rules 4.a and 4.b in Figure 3.9 define how unreliable prediclois can propagate 
goalness and avoidedness if their sources are sensors. Notice that tlie source and 
target events of the predictors are activeness events and not activations. Siicli 
predictors become goal or avoided only if their sources are active. When their 
sources are active, such predictors encode the information that their targets will 
become active if they can become reliable. Therefore, if their target is a goal, 
they make themselves a goal so that other predictors will predict their success. If 
their target is avoided, they make themselves avoided so that other predictors will 
not accidentally predict their success.

Once we have defined these rules, we may give goalness and avoidedness 
propagation rules for the meta-predictors.
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Rule 5.a
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Figure 3.12. Rule.s 5.a and 6.a.

The rules in Figure 3.10 describe how reliable mela-prediclors propagate 
goalness and avoidedness. Rule 5.a looks very much like Rule l.a. 44ie meta- 
predictor makes its source a goal so as to make its target predictor reliable. II' its 
source is an actuator, it will automatically become activated. If it is a sensor, 
goalness will be further propagated. Rule 6.a uses a similar idea. However, it 
makes its source avoided if its target is a goal. Rules 5.b and 6.b can be obtained 
by replacing goalness and avoidedness with each other.

Rule 7
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ugure 3.13. Rule 7.

Rule 7 describes how unreliable predictors whose sources are actuators 
propagate goalness. This rule is based on the same idea as Rule 3. The meta­
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predictor makes itself a goal so as to become reliable and activate the actuator at 
its source.

Rule 8.a
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Figure 3.14. Rules 8.a and 9.a

Rules 8.a and 9.a apply the idea in Rules 4.a iuid Rule 4.b to meta-predictors. 
These rules are valid for unreliable predictors that have sensors as their sources. 
The meta-predictor in rule 8.a encodes the information that its targets will be re­
liable if the meta-predictor itself becomes reliable. Therefore, it makes itself a 
goal. Similarly, the meta-predictor in Rule 9.a encodes that, its target will be­
come unreliable, if the meta-predictor itself becomes reliable. Therefore, it 
makes itself avoided. Rules 8.b and 9.b are based on similar ideas and can be de­
rived by replacing goalness and avoidedness with each other in Rules 8.a and 9.a.

These rules are generated according to intuitive ideas. Like most other rules 
and ideas in this thesis, they should not be taken as if they are precisely specify­
ing an architecture. The main objective in stating these rules is communicating 
how a prediction mechanism can function. Some of these rules can be discarded 
or modified, and many other rules can be found useful while engineering a 
working prediction mechanism.
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3.7.4 Timing Issues

Wliile describing (he setting for the system, 1 stated that internal and external 
time steps are distinguished from each other and an external time step corre­
sponds to multiple internal time steps. A process carried out by a predictor (a 
prediction or a goal propagation) takes one internal time step. Therefore, multiple 
internal time steps are necessary for the hierarchical system of predictors to fin 
ish their processing. However, this is not the only reason for having multiple in­
ternal little steps within a single external time step. Another reason is that, it is 
more fruitful to view a system of predictors as a dynamic system that stabilizes 
after a certain, time, rather than seeing it as a system implementing a feed­
forward, monotonic process. We can take this dynamic character of the prediction 
mechanism into account in developing certain details. One of the results of such 
an approach is that it would be wrong, in this case, to think that the state of any 
element in the unstable phase of the system has any significance.

An actuator may become a goal during the unstable phase of the prediction 
mechanism. The characteristics of the actuator must be such that, it must not 
immediately become activated and initiate a motor action the moment it becomes 
a goal, but must wait until the current external time step. Only when the external 
lime step ends, must it become active and start the action. We could have created 
the same effect if we had not distinguished between external and internal time, by 
specifying the behavior of the actuator so that it would become activated only if 
it remains as a goal for a long enough time interval.

Having defined the behavior of the actuators in this way, we can add a new 
principle: An actuator which is a goal will behave inside the prediction mecha­
nism, as if it was active. I will call this rule, the “simulation principle”, since 
this makes the prediction mechanism carry out prediction as if the motor action 
was really initiated.

3.7.5 Examples with Meta-Predictors

In this sub-section we will look at a number of problematic example cases to 
demonstrate how predictors can carry out goal-directed activity.

riie Need For Synchronous Activation

For accomplishing certain tasks, it may be necessary to activate multiple actua­
tors synchronously. Figure 3.13 shows a system of predictors that can carry out 
such a task.
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Figure 3.15. Predictors for recognizing synchronous activation.

The predictors in Figure 3.15 basically encode that sensor a will be activated 
one time step after the activation of z, A x and y are also active at that previous 
time step. When node a becomes a goal, predictor pi will become a goal (by 
Rule 3) after which, p2 will also become a goal (by Rule 7). Since p3 is a reliable 
predictor, it will carry p2’s goalness to x (by Rule 5.a). Since x is an actuator and 
is a goal, the simulation principle will be applied and x will act as if it had been 
activated in this turn. Therefore p3 will predict p2 and make it reliable (by Rule 
2.a). Since p2 is now reliable, it will propagate the goalness of pi to y (by Rule 
5.a). Once again by the simulation principle, y will act as if it was active. p2 will 
thus make pi reliable (by Rule 2.a). Predictor pi is now reliable and will make z 
a goal. At last x, y, and z have become goals and they will synchronously carry 
out their actions in the next external time step.

Fine Control Of Actions

Some tasks require precise sensory-motor control which can not be achieved by 
only activating certain activators. In order to achieve a fine level of sensory- 
motor control, certain other actuators must be inhibited. Below, we will look at 
such a problem.

Assume we have a sensor a and two actuators x and y. Let us also assume that 
activation of either x and y leads to the activation of a. However, when x and y 
are both activated at the same time, a does not become active. Such a scheme, 
will lead to the following system of predictors:
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Figure 3.16. An example for the fine control of an action

Predictors p\ and p2 predict the activation of a from the activation of x and v 
respectively. Predictor p4 captures the knowledge that when x is active pi will 
fail (pi can not succeed if x was active in the previous time step, because this 
means that x and y were both active at the same time, which means that a would 
not become activated. Similarly, p3 captures the knowledge that p2 will fail if y 
was active one time step ago.

All these predictors will be established according to the statistical methods 
we have described. Moreover, the system will successfully carry out goal directed 
activity. When a is a goal, p2 and pi will make x and y goals. By (he simulation 
principle, p3 and p4 will then make pi and p2 unreliable. Therefore ,v and y will 
not be goals in the next internal time step. Howev-er, this means that p3 and p4 
will not predict p2 and p i ’s failure anymore. Therefore, the same sequence will 
repeat again. Thus, x and y will oscillate between being goals aiul not goals, 
whereas p2 and pi will oscillate between being reliable and unreliable. However, 
reliability and goalness are, in fact, continuous attributes, and if, for example, pi 
and p3 are slightly more reliable than p2 and p4, y will get the upper hand in this 
competition. Even if all predictors have the same reliability, the system will be 
in a delicate balance that will be disturbed by even a small effect from outside. 
Thus, eventually, the balance will be broken and the system will stabilize, acti­
vating one of the actuators.

3.8 Generalizors

So far we have focused our attention on Guiding Principles 1 and 2, (hat is, on 
successfully predicting sensory states and guiding goal-directed iictivity. How­
ever, the mechanisms we have described are also in line with Guiding Princi­
ple 3. The important point here is to observe that a predictor’s states almost al­
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ways capture a higlier level piece of information than the states of its source and 
target. In this section we will focus on Guiding Principle 3.

One important property of intelligent behavior is treating similar things in 
similar ways. It would be absurd to claim that high level cognitive skills, such as 
analogy making, categorizing, etc., that are responsible for this kind of behavior 
can be explained at the level of the prediction mechanism. However, it would be 
plausible to think that the prediction mechanism, in its own simple way of doing 
things, exploits this idea. It tries to find similar things, similar schemes etc., to 
ease the task of prediction. In other words, it “generalizes”.

How can a prediction mechanism generalize, how can it find out that two 
things are in some way, “the same”? There can be multiple answers to these 
questions, but a simple one that comes to mind is the following; “Same” things 
usually have the same consequences. We will now extend our theory to exploit 
this idea.

A simple way to implement this idea is collecting predictors that have the 
same target, in one common “pool”. In order to do this, it is sufficient to insert a 
new node before an element, make all the predictors that predict the element in 
the same way predict that new node, and make that new node, in turn, predict the 
element. This idea is demonstrated in Figure 3.17:

Figure 3.17. Establishment of a generalizor.

I will call such temporary nodes generalizors and graphically represent them 
with circles that have an asterisk sign inside. I suggest inserting generalizors only 
before predictors, since it is difficult to see how inserting generalizors before 
sensors would be beneficial. A generalizor is connected to the predictor after it, 
(Let us call this predictor the indirect target of the generalizor) with a special 
0-delay predictor, called the primary arc of the generalizor. The generalizor be­
comes activated when it is predicted by a reliable predictor. Once it is active, it in
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turn (indirectly) predicts either the success, or the failure of its indirect target. If 
the primary arc of the generalizor now succeeds, the generalizor signals a success 
so that the predictor(s) that activated it also succeed. Similarly, if the primary arc 
fails, the generalizor signals a failure, and the predictors also fail. Generalizors 
also propagate the goalness or avoidedness of their indirect targets.

3.8.1 Emergence of a Representation of Obstacles

Let us, once again, continue our discussion with an example. Our agent this time 
will be a mobile robot that moves on wheels through a complex environment. 
The agent is equipped with different kinds of sensors like sonars, infra-red sen­
sors, touch sensors etc., as well as sensors that measure its speed, acceleration, 
deceleration, etc. As the agent navigates in the environment, a predictor is estab­
lished from its actuator that makes it move forward, to a sensor that senses (he 
forward movement. Therefore, this predictor simply captures the knowledge that, 
when the agent tries to move forward (by activating the appropriate actuator) it 
will do so. This predictor will usually succeed, but sometimes it will fail, proba­
bly because an obstacle is blocking the way. In time, meta-predictors will be es­
tablished that predict when the predictor fails. There will, of course be a number 
of such meta-predictors; each one using different sensory inputs. Some meta­
predictors will have, as their sources, sonar outputs, others infra-red sensor out­
puts, still others the outputs of touch sensors on ariificial tentacles. An important 
point is that many different things can be obstacles: a wall, a column, a glass 
door, a stair, the legs of a chair, to name a few. All of these obstacles will not al­
ways be recognized by a single sensor. However, we may assume that an obstacle 
will be sensed by at least one of these sensors. If we do not establish generali­
zors, every meta-predictor will work on its own to predict the failure of the pre­
dictor. However, if we do establish them, all these meta-predictors will first pre­
dict a generalizor. The activeness of the generalizor will signal the existence of a 
(generic) obstacle in front of the agent: a piece of information that could not be 
captured by any single meta-predictor. So, generalizors can produce signals that 
are much closer to our high-level notions than the signals generated by individual 
predictors.

There is also another very important function of generalizors. They lead to an 
economy in the number of predictors used in the system. A generalizor, once es­
tablished, can be used in the prediction of multiple elements. For instance, in our 
example, the generalizor that recognizes the existence of an obstacle in front of



the agent can be used to predict that if the agent is moving speedily, llie toueli 
sensors on its front will sense a violent crash.

3.8.2 Low-level Organization of a Visual System

Let us now try to apply the organization rules covered so Far to the visual system 
of an agent. For simplicity, I will assume that the visual input of the agent con­
sists of a rectangular grid of light sensors. Every sensor becomes active if the 
amount of light it senses is over a certain threshold and is inactive otherwise. So 
if the agent is looking at a black shape over a white background, the grid of sen­
sors would have the following pattern of activations.
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Figure 3.18. A pattern of aclivalion on the grid of .sensors

If the agent is situated in a typical environment, then the sensors in the grid 
will be statistically related to neighboring sensors. (This is so because objects in 
the world usually have uniform colors or uniformly colored sub regions and such 
objects usually do not stimulate a single visual sensor, but a group of them.) 'I'he 
activations of two such sensors will be statistically dependent within the same 
time step. Therefore we have to establish 0-delay predictors in order to capture 
such relations. So, 0-delay predictors will be established between sensors that are 
close to each other. I will assume that predictors between two neighboring sen­
sors will be reliable, and predictors between sensors that are close but not neigh­
boring will be unreliable. (Remember that reliable predictors are those whose re­
liability is greater than a certain threshold. For the sake of the argument, 1 will 
assume that the threshold is appropriately fixed for these predictors.) 'riierelore, a 
network of predictors will be established as in Figure 3.19.
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Figure 3.19. Predictors established between proximate sensors.

These predictors will fail whenever their source is active but their signal is 
not. Therefore, failures of these predictors in some sense recognize points of 
contrast. Once again, we obtain some higher level information by using predic­
tors.

As I have discussed in this section, we can collect the predictors shown in 
Figure 3.19 (and other predictors that predict a ’s activeness) together by intro­
ducing generalizors. In this scheme, there will be one generalizor for every sen­
sor and predictors will be connected to the generalizor as shown in Figure 3.20.

Figure 3.20. Predictors collected through a generalizor.

Since there will be one generalizor for every node, we may think of generali­
zors as constituting a second layer over the layer of sensors. Now, what informa­
tion does this new layer encode? According to our discussion, the generalizors 
will become active when they are predicted by a reliable predictor, and they will 
signal a failure (let us simpiy say, they fail) when their primary arc fails. There-
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fore, a generalizor will fail whenever one of the neighboring sensors is active but 
its indirect target is not. The failure of a generalizor indicates that the sensor it 
generalizes is a point of contrast. Therefore, the second layer of nodes is a map 
of contrasts, something like the primal sketch used by Marr as an intermediate 
representation of the visual input.

Figure 3.21. The original activation pattern and the primal image 
constructed by generalizors. ·

If we observe the statistical relations between the nodes in the second layer, 
there will be again interesting dependencies between the generalizors. The cru­
cial observation at this step is that points of contrast would not in general come 
in random patterns but would be organized as continuos edges. 'I'his regularity 
would depict itself on the statistical relations between the generalizors, and the 
failure of neighboring generalizors would turn out to be statistically depeiulenl. 
Thus 0-delay predictors would be established between neighboring generalizors 
whose success would indicate short segments of contours.

I have not described the entire story here. Hierarchical build-up would con­
tinue from this point. Short segments of contours should be also interde])endent 
and this would be captured by the prediction mechanism. Furthermore, I have
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only discussed the establishment process without paying attention to other as­
pects of predictors like inhibitions or enablings. I also did not discuss how higher 
cognitive systems could interact with this process. Considering these aspects, the 
visual system described here would develop in complicated ways that are not 
clear to me. My purpose was to demonstrate how visual primitives (like segments 
of contours) could emerge out of the organization rules of the prediction mecha­
nism.

3.9 State-Holders

So far I have described a number of elements of a prediction mechanism. These 
elements share a common property: They only use the information that is readily 
available on the sensors and actuators for carrying out predictions. Many events 
in the environment can be predicted that way. But the prediction mechanism can 
be made a lot more powerful if we add a small memory component to it, enabling 
the system to use this memory component together with the information on the 
sensors and actuators.

Adding such a memory component would enable the prediction mechanism to 
make better predictions, because things in the world tend to keej) their states. 
Even if there is no readily available sensory information about a certain thing, the 
memory component could make predictions about that thing by using the ide;i 
that, the thing is still preserving its state since the last time sensory information 
was last obtained about it.

I call such memory components “state holders”, because once they become 
activated, they will remain to be active for a short time, even if the activation 
signal dies out. The need for state holders will become’apparent if we show how 
non-state holding elements fail to accomplish certain tasks.

Basically, an element may have two types of activation patterns: First, the ac­
tivation pattern may consist of short spikes; once the element becomes active, it 
becomes inactive again in the next time step. Secondly, the activation pattern 
may consist of relatively long plateaus, once the element becomes activated, it 
remains to be active for some time

Let us call the first type, spike maker elements, and the second type plateau 
maker elements. Meta-predictors that have these two different types of sources 
have different characteristics. If the source is a plateau-maker element, the meta- 
predictor encodes the fact that the target predictor will succeed (or fail) as long 
as the source remains active. Thus, in a way, the plateau maker element acts a.s a
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context. If the source of the meta-predictor is spike maker, tlie meta-predictor en­
codes the fact that the target predicted will succeed (or fail) at the next time step 
after the appearance of the source signal. This means that the source of the meta­
predictor and the source of the target predictor must be siimiUaneousiy acti­
vated. Thus the spike-maker acts in a way as a trigger. This means (hat there is no 
way to use a spike-maker element as a context. This is rather problematic be­
cause spike-maker elements usually signal a change in the environment. If the 
changed “thing” remains to be sensed by the agent, there is no problem, however 
if it is not, then we lose an important piece of information.

Not only most activators and some sensors, but also predictors and meta­
predictors are spike-making elements (since success and failure events can be 
regarded as spikes). The activation, success and failure events generated by these 
elements signal stales in the environment, and such states can be used as a con­
text. State holders will help us to capture this kind of knowledge.

Figure 3.22 shows a typical state-holder. The state-holder is connected to a 
predictor (we call this the indirect target of the state-holder) with a 1-delay pre­
dictor (called the primary arc of the state-holder). The primary arc does not have 
to be fully reliable unlike the primary arc of a generalizor. The state-holder can 
be predicted or “depredicted”. Once it is predicted by a positive inedictor, it be­
comes active and remains to be active until either it is depredicted by a negative 
predictor or a certain time limit is reached. The state-holder can also propagate 
goalness and avoidedness.

Figure 3.22. A stale holder.

We graphically represent a state-holder with a circle that has a light bulb in­
side. Predictors that have a state-holder as their target may have predictors as
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their sources. These are triggered by either the success or failure of their source 
predictors.

3.9.1 Establishing State-holders

A state-holder represents a general, possibly hidden context for the success or the 
failure of a predictor. Therefore, it is possible to establish state-holders for every 
predictor. However it could be better to use heuristics in selecting which predic­
tors to establish state-holders for. State-holders can also be used in conjunction 
with generalizors as shown in Figure 3.23.

Figure 3.23. The usage of a state-holder together with a generalizor

The generalizor in the figure uses the state of the state-holder together with 
other sensors and actuators to carry out predictions. Thus, the state-holder can be 
generalized as well. This scheme is not problematic, however, 1 will ignore gen­
eralizors in this discussion for simplicity.

The real problem with using state-holders is finding those events that could 
predict or depredict it. For this, we may think that, instead of making a statistical 
observation of the elements at two time steps, we observe statistical relations 
within a time range. If, say, the success of a predictor x turns out to be statisti­
cally dependent on the activity of an element y, not only for a single time step, 
but for a number of time steps afterwards, we can establish a predictor from y to 
the state-holder attached to x.

Also activities of high-level cognitive systems may be guiding the state- 
holder establishment process. Such an idea makes sense. However, how such a 
guidance can be carried out is unclear.
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3.9.2 Sequences of Actions

State-holders enable us to encode the knowledge about a sequence generating a 
result, within a prediction mechanism. Assume we have three actuators, .v, v, and 
z, and a sensor a. When x, y, and z are activated strictly in this sequence (not nec­
essarily in consecutive time steps), sensor a becomes activated. Such knowledge 
can’t be failhCully encoded without state-holders, if intermediate states are not 
recognized by sensors. However, the system in Figure 3.24 can encode it.

Figure 3.24. Predictors that recognize a temporal sequence

Predictions that deactivate the state-holders are not shown in the figure, but 
they are assumed to exist. The system will not only successfully predict the acti­
vation of a at the right time, but also it will initiate the right sequence of motor 
actions if a becomes a goal. The delays on the arn\s of the state-holders will pro­
vide that the actuators are not activated simultaneously but in a sequence.

3.9.3 Re-trying an Interaction

Consider the example about the robot hand discussed in Section 3.7. Let us as- 
sume that we have a robot hand exactly like that one, but without an infra-red 
sensor to sense objects between the fingers. In this case, the predictor from loitch 
to close-hand can not be made reliable, since there is no sensor that signals the 
existence of an object. However, using state-holders may help with this difficulty. 
When pi succeeds (it touches an object) it is probable that it will succeed again 
in the near future (the object will still be there). Conversely if it fails it will 
probably fail again. The following system captures this knowledge.
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Figure 3.25. A scheme for the robot hand to remember its slate

If pi succeeds it will activate its state-holder g. Conversely, if it fails, it will 
deactivate g. If g has become activated, it will continue to predict the success of 
p\ for some time. Overall, the system encodes the knowledge that pi is likely to 
succeed if it succeeded a short time ago. There may of course be other predictors 
that predict g by looking at other inputs.

3.10 Remarks

This finishes the presentation of the prediction mechanism. I should add a dis­
claimer here. This sketch of a model should not be taken as a finished proposal 
that will work once it is implemented. A real prediction mechanism can be de­
veloped only through detailed experiments and continuous refinements. How­
ever, I believe this chapter suffices to demonstrate how the problem can be at­
tacked and serves to show the ideas and principles at wdrjc.



Chapter 4

Discussion

My claim in the introduction of this thesis was that a prediction mechanism 
serves as the low-level component of the cognitive system. I presented a number 
of arguments to support this claim. I argued that a prediction mechanism would 
help with goal-directed activity, distinguish between interesting and non- 
interesting events and generate and use high level notions. Then, in the third 
chapter, I sketched a model of a prediction mechanism. 1 suggested mechanisms 
and organizational rules in order to support these three functions. In this cha|)ter, 
I will look at the idea of a prediction mechanism in relation to the general piob- 
lems of cognition. In the first section, I will tryto reply to some possible ques­
tions and objections regarding the prediction mechanism. Next, I will review the 
functions it fulfills within the cognitive system. In the third section, 1 will discuss 
some of its additional capabilities. Finally, the last section of tins chapter is de­
voted to a discussion of higher cognitive systems and their relation to the piedic- 
tion mechanism.

4.1 Questions Regarding the Prediction mechanism

In this section, I would like to point out some possible questions regarding the 
prediction mechanism and suggest some answers.

Q l: The operations of the prediction mechanism seem to he associalionisi. 
But, we know that simple associationism cannot account for the complexity and 
productivity of human behavior. How can the prediction mechanism overcome the 
Urn i tat ions of associationism ?
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Although it may seem so, the theory presented here is not an associationist 
one. For example, the establisimient of a predictor and the establishment of a 
Hebbian cell assembly look very similar in that, they are both based on some 
kind of simultaneous activation of elements [14]. Mowever, unlike associationist 
mechanisms a predictor does not merely “associate” its source and target (for ex­
ample, it does not activate its target when its source is active). Prediction is a 
much richer organization principle than association and mechanisms that carry 
out predictions, therefore, can serve a broader functionality than associationist 
mechanisms can. For example, the success and failure of a prediction creates a 
piece of information that is of a higher level than the original signals, whereas 
association does not create any information as such. It, at most, extends the cov­
erage of already known rules to new objects.

Q2: It seems, the prediction mechanism has to catch delicate statistical rela­
tions between activation patterns of sensors and actuators in order to work prop­
erly. However, most "interface elements" will be only loosely related with each 
other. For example, the activation of a receptor in the retina and the activation of 
a motor that moves the arm are not independent events since there are certain 
delicate conditions in which one of these will trigger the other. However such 
relations are statistically so insignificant that it is hard to imagine how they can 
be caught accurately and systematically by a simple mechanism.

I would like to answer this in a series of steps^ (1) The prediction mechanism 
must be a practical system. Its duty is not capturing all statistical relations be­
tween elements, but aiding the adaptation and survival of the agent by distin­
guishing interesting events, helping with goal-directed activity and generating 
high-level information. Therefore missing a certain relation will not matter as 
long as this does not hinder these functions significantly. Even if it does so, we 
would have the same problem without the prediction mechanism. So the question 
is: are there any dependencies between elements that are easy to catch, and would 
these be sufficient to carry out the three functions I have mentioned. (2) There 
are indeed dependencies between certain elements that are statistically signifi­
cant. Consider this time two neighboring receptors in the retina. These two will 
have similar levels of activation if they are sensing the same surface and different 
levels of activation if one is sensing an edge or a spot. Obviously, at any given 
time, most of our receptors are sensing surfaces, while relatively few are sensing 
edges or spots. Therefore, such receptors will have significant statistical rela­
tions. Similarly, there will be other significant statistical relations regarding other 
sensory systems. (3) The mechanics of the prediction mechanism dictates that the 
success or failure of a predictor is a less frequent event than its source signal.
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Therefore, as we go up in the hierarchy of predictors, the signals become less 
frequent, carry higher-level information and become more specific. Conse­
quently, the relation between signals at higher levels can become statistically sig­
nificant, although relations between their sources and targets are not.

Q3: It seems that we have lots o f statistically related signals going around. If 
we have, say, 100 elements that are all related to each other, then, establishing 
predictors between each (ordered) pair will result in 9900 ¡jrediclors. If the suc­
cesses and failures of these predictors are also all related, we will get 
9900 X  9899 predictors in the second level. Since, we do not know in advance 
what kind o f statistical relations the environment will generate on the agent’s 
senses, it seems possible that the number of predictors will explode cond)inatori- 
cally.

This, I must admit, is a serious problem. It is one of the reasons that makes 
the development of a “practical” prediction mechanism a tough engineering 
problem. However, I do not see any reason for not being able to control the ex­
plosion with new types of elements and heuristic measures.

Q4: How can the prediction mechanism ever be implemented in the hardware 
of the brain ? The system requires that the elements carry out complicated tasks 
such as recording frequencies. Moreover, there is the problem of establishing new 
predictors between existing ones. How can the neurons, being relatively simple 
structures ever carry out such complex tasks?

First of all, the prediction mechanism does not have to map directly to organic 
mechanisms. The model I sketched is just one possibility for carrying out the 
functionalities I mentioned. There may be many other ways the same thing can be 
done, provided that these also work on a hierarchy of predictions. Second, we 
have not yet fully understood the workings of the brain and we should not make 
any a priori assumptions about its complexity. Third, frequency recording can be 
approximated by simple means; when a positive instance comes, we can just in­
crease the frequency a little bit if it is already high, and increase it a lot if it is 
low. Similarly, when a negative instance comes, we may decrease the frequency a 
little bit if it already low, and decrease it a lot, if it is high. This is very easy to 
carry out. It will give us only a crude measure of frequency, but this is not prob­
lematic since the frequency itself is only an approximation of probability. Lastly, 
new connections can be established in many ways, even randomly, provided that 
they can be broken with ease. Finding statistically related elements can be, after 
all, just a search problem. And neurons do get connected and disconnected with 
each other.
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4.2 Functions of the Prediction Mechanism

The prediction mechanism plays an important role in cognitive activity. 1 have 
listed three basic functions that are carried out by the prediction mechanism. To 
repeat, these are supporting goal-directed activity, finding interesting events by 
distinguishing between predicted and unpredicted states, and finally, generation 
of high level notions. Below, we will look at each of these functions.

4.2.1 Supporting Goal-Directed Activity

The prediction mechanism carries out goal directed activity by propagation of 
goalness through predictors. This type of parallel, simple, and quick goal- 
directed activity is quite different from the serial, sophisticated and slow goal tli- 
rected activity that humans carry out consciously. The role of the prediction 
mechanism in generating actions must be, therefore, limited to carrying out 
automatic behaviors. When a human first learns a sensory-motor skill (such as 
walking, swimming, juggling, etc.) he consciously plans and initiates every little 
action at the beginning. However, with experience, he masters the skill and starts 
to use it effortlessly. I believe that it is the prediction mechanism that is res|)i)ii- 
sible this automation. While the skill is being experienced, the prediction mecha­
nism connects the relevant elements to predict what happens during the ap|)liea- 
tion of the skill. While doing this, it starts to becomc-capable of carrying out the 
skill. So, the responsibility of carrying out (at least the monotonous parts of the 
skill) are slowly transferred to the prediction mechanism. After a time the pie· 
diction mechanism starts to display the skill on its own.

While the theory of the prediction mechanism is developed for carrying out 
low level, sensory-motor skills only, it seems to be possible that the prediction 
mechanism also automates certain high-level skills. After all, the prediction 
mechanism can regard any internal element as a sensor or an actuator. It does not 
really matter if that element is “below” the prediction mechanism (connected to 
the world) or “above” it (connected to higher level systems). If a process that is 
carried out by high level systems has repetitive parts, these parts may, in princi­
ple, be transferred to the prediction mechanism as well.

4.2.2 Finding Interesting Events

We have claimed that one of the functions of a prediction mechanism is finding 
out interesting events by distinguishing between predicted and unprcdicted ones.
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If the cognitive agent is sitting in a room with its eyes fixed on a spot, the pre­
diction mechanism will predict that the image seen will not change. If the pre­
diction fails, that is, if part of the image changes, this means something or some­
body in the room has moved: a piece of information that is in general more inter­
esting than the image of a still room. If the prediction mechanism is powerful 
enough, it may, this time, predict subsequent movements of the moving thing. If 
these predictions fail, this means that the thing that is moving has changed the 
course of its movements, in other words, it has “acted”. Again, something more 
interesting is revealed by carrying out predictions.

In the prediction mechanism we have described, a meta-predictor always has 
to be more reliable than its target. Therefore it fails less often and makes stronger 
predictions. This further means that the failure of a higher level predictor is more 
“unpredicted” and hence, more “interesting” than the failure of a lower level one. 
Thus the hierarchical build-up of the prediction mechanism automatically con­
tributes to the objective of finding more interesting knowledge.

4.2.3 Generation of High Level Notions

A powerful prediction mechanism must employ notions such as nearness, far­
ness, movement, etc., so that it can make successful predictions. Therefore, some 
of the concepts that are meaningful to us may be grounded in elements at this 
level. The argument that this is a benefit of the prediction mechanism may seem 
to be circular at first look, because we first posit the existence of such notions 
without stating how they can be created, and then call that an advantage. The im­
portant point here is that the prediction mechanism alone can be responsible for 
the creation of such high level notions, by trying to predict better using limited 
resources. If we somehow engineer the system so that it finds the most economic 
way of making successful predictions, “high-levelness” of internal elements 
comes as a bonus.

Elements like state-holders and generalizors allow the system to make better 
predictions, at the same time decreasing the number of predictors used. It is in 
general more efficient to use these elements as intermediate states in prediction 
instead of using predictors directly.

While presenting the model of the prediction mechanism, I presented methods 
of establishing predictors but did not discuss methods of discarding them. Estab­
lishing every possible predictor may not be the best way to organize a prediction 
mechanism. An alternative perspective is seeing the prediction mechanism as an 
arena where different elements compete with each other to make more successful
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predictions, those failing in the competition being eliminated. Such a system will 
be difficult to design, however, this effort must be undertaken if we wish to im­
plement a practical model.

4.3 Capabilities of the Prediction Mechanism

In this section, I wish to discuss certain capabilities of the prediction mechanism 
described in the previous chapter.

4.3.1 Pattern Recognition

Perhaps the most important difference between the approach presented in this 
thesis and more classical approaches, is the treatment of time. One of the most 
important ideas underlying this study is that cognition is something that takes 
place over time. This idea is used in the design of even the simplest components 
of our model. However,'the idea can also be used in a broader setting. In this sub­
section we will look at how this idea can be applied to pattern recognition.

In general, pattern recognition is studied, not in the context of an interaction 
between the agent and the environment, but as an isolated task on its own. How­
ever, pattern recognition, if taken as an interactive process, presents a quite dif­
ferent picture than the models generated in such studies.

For example, in a discussion. Dr. David Davenport had suggested a rather in­
teresting scheme for visual recognition that explained recognition in terms of a 
series of simple predictions. Every prediction was something like: “If I look at 
that point now, I will see a vertical line (or a dot, a curve, etc.).” In the beginning 
of the recognition session, the predictions usually failed. However, in time, they 
became more and more successful. Finally, there came a time where the predic­
tions always succeeded. This meant that the object at hand was recognized.

Applying the idea of prediction to recognition, therefore, seriously changes 
the nature of the problem. The agent can look at different points, move its head, 
touch an object, etc., in order to obtain more information. Thus, recognition can 
be studied as some type of interaction, rather than as an isolated problem.

4.3.2 Composite Actions

One problem with the model described in the previous chapter is that goals are 
represented by increasing the goalness of certain elements. How can such a
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sclieine represent a goal like “grab the bottle” that involves multiple constituents 
(such as grabbing and bottle)? It can be suggested that there are certain elements 
in the system that represent such composite actions. However, that would lead to 
a combinatorial explosion in the number of elements needed, since we would 
have to establish elements that represented arbitrary combinations of such con­
stituents. A better solution can be found by letting actions take their arguments 
from the context.

Figure 4.1. Sensory motor control of the robot hand

In order to present this idea, let us remember the robot hand example that we 
used in (he previous chapter. In this example, when the sensor ^rab is made a 
goal while there is no object in-between the fingers, the predictor p will become 
a goal itself (since its source is an actuator). In turn, the meta-predictor q will 
make (he sensor ohject-in a goal. Thus, we will now have the goal of having 
something in-between the fingers. We may assume that, the goalness of ohject-in 
will be propagated to other parts of the system, probably resulting in the behavior 
of moving (he hand towards the nearest object so that it now lies between the 
fingers. Once that is achieved, q will make p reliable, and p in turn will activate 
close-hand so that the object is grabbed. In short, when the sensor grab is made a 
goal, the agent will grab the nearest object. This means that, an activity like 
“grabbing the bottle” can be implemented by bringing the hand close to the bottle 
and then carrying out the generic grabbing action. Of course this is not a com­
plete solution to the problem because it leads to the problem of “bringing the 
hand close to the bottle” which is just another composite action. But that action 
too can take its argument from the context. For example, the hand movement ac­
tion may move the hand to the point where the eyes are fixed. Such reductions of 
composite actions may eventually lead to simple actions that take their objects 
from the context.
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4.4 Towards High Level Cognitive Skills

A Pinal point that needs to be addressed in this discussion is whether the ap- 
proach I have taken in this thesis will scale up or not. This is a rather difficult 
question and is only possible to answer within a constructivist picture of cogni­
tion.

Constructivism proposes that all human skills and behaviors are learned 
afresh by every individual. However, it differs from older “tabula rasa” theories 
of learning in that, it views the agent as an active constructor of knowledge rather 
than as a passive? empty space where experience is transcribed upon.

There is, as yet, no satisfactory computational model of the constructivist the­
ory. This is probably due to the difficulty of developing such a model. The re­
quirements of a constructivist model are extremely difficult to meet. As a matter 
of fact, (and this is the basic point that T am trying to get at) the requirements the 
constructivist theory places on cognitive models are so harsh that such models 
can be deduced by a top-down analysis. This is so because, such models can only 
be based on well-founded and general ideas (like the one 1 use, i.e. a hierarchy of 
predictions), and there should be very few such well founded and general ideas. I 
do not have at this moment any picture of what such a model looks like, but I be­
lieve it can be discovered, if Constructivism is after all, eorrect.

Below I will look at two cognitive systems that are believed to exist in the 
brain and discuss how they may be related to the prediction mechanism.

4.4.1 An Attention System

I have listed one of the functions of the prediction mechanism as distinguishing 
between interesting and non-interesting information. However, interesting infor­
mation that the prediction mechanism reveals must be of use somewhere else 
other than the prediction mechanism itself. This “interestingness” property of the 
information generated by the prediction mechanism, must serve as a basis for the 
interaction between the prediction mechanism and other components of the cog­
nitive system.

An attention system, whose basic function should be keeping the agent fo­
cused on a certain stream of information flow by suppressing other streams, 
seems to be an ideal candidate for interfacing to the prediction mechanism. The 
nature of the interface between these two systems can be expected to be in the 
following way; In general, information that was not predicted by the prediction
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mechanism will be interesting for the agent. However “predicteciness” or 
“unpredictedness” are not all-or-none attributes. We may suppose that the failure 
of predictors becomes more “unpredicted” as they get more reliable. Unpredict­
edness, and thus, interestingness, should therefore be graded attributes. Therefore 
threshold limits must operate to decide which pieces of information can be taken 
as interesting. An attention system can simply regulate these thresholds for con­
trolling the information flow from the prediction mechanism to other systems.

4.4.2 An Episodic Memory System

An important observation is that the prediction mechanism may capture only fre­
quently occurring and relatively simple regularities in the environment. It may, 
for example, recognize simple lines or predict when my foot will touch the 
ground when I am walking. However, it can not possibly generate a recognizer 
for an armadillo or predict the solution of a differential equation, because such 
things are either too infrequent or too complex to be captured statistically.

The episodic memory system is another component of the cognitive system 
that seems to be related with the prediction mechanism. The prediction mecha­
nism, according to our discussion, works according to statistical relations. How­
ever capturing such statistical relations is not the only way to carry out predic­
tions. For example, if we take a tour through a house we have not been at before, 
we will be able to make predictions like: “If I walk down the corridor and turn 
right I will arrive at the bathroom.” Such predictions can not be done by the pre­
diction mechanism, since there is not enough data to derive statistical relations 
from.

An episodic memory system can help with doing better predictions by re­
cording which predictions should be made in which context. In the above exam­
ple, the episodic memory could store the path taken to the bathroom and regulate 
the prediction mechanism to do the right predictions at the right time.
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Conclusions

1 stiirlcd (his thesis by stating that the capacity to carry out predictions should be 
built into an intelligent system. I tried to support this claim by showing that pre­
diction had certain epistemological virtues (it was a practical measure of knowl­
edge and it did not need any external error criterion) and therefore it could have 
uses within the cognitive system. In the second chapter, I tried to show that tra­
ditional models of cognition lacked sufficient explanatory power by referring to 
certain pieces of evidence and some well known problems. I discussed specific 
merits and shortcomings of certain approaches to modeling cognition. In the third 
chapter, I presented a hierarchical prediction mechanism that I argued could ac­
count for human low-level sensory-motor organization. I tried to demonstrate 
how the system could help in generating actions, reveal interesting events and 
result in the emergence of high-level representations. Finally, in the fourth chap­
ter I tried to answer some possible questions regarding the prediction mechanism, 
discussed its functions and capabilities and how it could be related to the general 
cognitive system.

A number of themes emerge from this discussion:

riie prediction mechanism described in Chapter 3 may actually exist in the 
brain in some or other way, and its rules and workings can help us in developing 
a better understanding of at least lower levels of the brain. I see this as a serious 
possibility, one more plausible than the existence of traditional models of per­
ception given their limited scope and explanatory power.

The constructivist pursuit to build “order from noise” seems to be feasible, at 
least for the simplest cases. The framework presented in this thesis may be
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someliow linked to a general development theory. The general methodology em­
ployed in the thesis may also be useful in studying higher levels of organization.

It is possible that there are other cognitive mechanisms whose functionings 
are based on simple and sound principles (like prediction) and thus can be in­
ferred by a top-down analysis.

The constructivist theory of cognitive development sufficiently constrains 
possible computational models. However, existing frameworks in AI seem to be 
inadequate for studying constructivist models. There exists the need for a differ­
ent kind of framework that offers different approaches to problems like learning 
and representation.

I find it rather difficult to discuss what kind of “future work” may follow this 
study. Obviously the hypothesis of the prediction mechanism has to be verified 
again and again. Computational models of the prediction mechanism must be 
built without hesitating to fill-in what I dismissed as “implementation details” in 
this thesis. These modSls must be tested within simulated or real environments 
and engineered towards better functionality. Computational models must be 
matched against neuro-scientific evidence with the hope of finding correlations 
or perhaps hints. All of this, of course, is no easy job, and can not be justified 
without evidence in favor of the feasibility of the ultimate enterprise.

This thesis, I believe should be regarded as a question rather than an answer. 
My concern has been, in a sense, to show that it actually is a good question, one 
that is worth investigating. I have tried to demonstrate that there may be some­
thing interesting along this side of the “search space” for a model of cognition. I 
hope that the material J have presented has fulfilled this purpose.
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