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Numerical Analysis of Multidomain Systems:
Coupled Nonlinear PDEs and

DAEs With Noise
Alper Demir , Fellow, IEEE, and M. Selim Hanay

Abstract—We present a numerical modeling and simulation
paradigm for multidomain, multiphysics systems with components
modeled both in a lumped and distributed manner. The lumped
components are modeled with a system of differential-algebraic
equations (DAEs), whereas the possibly nonlinear distributed
components that may belong to different physical domains are
modeled using partial differential equations (PDEs) with asso-
ciated boundary conditions. We address a comprehensive suite
of problems for nonlinear coupled DAE–PDE systems including
1) transient simulation; 2) periodic steady-state (PSS) analysis
formulated as a mixed boundary value problem that is solved
with a hierarchical spectral collocation technique based on a
joint Fourier–Chebyshev representation, for both forced and
autonomous systems; 3) Floquet theory and analysis for cou-
pled linear periodically time-varying DAE–PDE systems; 4) phase
noise analysis for multidomain oscillators; and 5) efficient param-
eter sweeps for PSS and noise analyses based on first-order and
pseudo-arclength continuation schemes. All of these techniques,
implemented in a prototype simulator, are applied to a substan-
tial case study: a multidomain feedback oscillator composed of
distributed and lumped components in two physical domains,
namely, a nano-mechanical beam resonator operating in the non-
linear regime, an electrical delay line, an electronic amplifier and
a sensor-actuator for the transduction between the two physical
domains.

Index Terms—Chebyshev and Fourier representations and
collocation, differential-algebraic equations (DAEs), mixed
boundary value problems, multidomain systems, multiphysics
simulation, nano electro-mechanical systems (NEMS), noise, oscil-
lators, partial differential equations (PDEs), phase noise, spectral
methods.

I. INTRODUCTION

IN THE design and analysis of engineering systems, one
often has to take into account interaction between differ-

ent physical phenomena, and perform a so-called multiphysics
analysis [1]. For instance, the dynamics of electronic circuits
are governed by the laws of electromagnetism as encapsulated
by Maxwell’s equations or Kirchoff’s laws. On the other hand,
the reliability and performance of integrated circuits critically
depend on the local operation temperature [2]. In integrated
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circuit design, one has to carefully evaluate the impact of
heat generation and thermal effects and, if necessary, intro-
duce effective cooling solutions. This involves performing a
coupled multiphysics analysis of both the electrical dynamics
and the thermal behavior of the circuit.

The interaction of multiple physical phenomena is often
undesired and results in degraded system performance. On the
other hand, there are many interesting and emerging engineer-
ing systems that have a multidomain nature. For instance, nano
electro-mechanical systems (NEMS) contain tightly interact-
ing and integrated mechanical and electronic components
exhibiting multiple and coupled physical phenomena, gov-
erned by the laws of mechanics, electromagnetism, optics,
piezo-resistivity, etc. [3]. The utility and novelty of these kinds
of systems critically stem from their multidomain nature. The
possibility of putting together different domains in an engi-
neering system is opening up vast opportunities and enabling
unprecedented applications. However, the design and analysis
of such multidomain systems pose a huge challenge. The elec-
tronic design automation community is already grappling with
very difficult problems in the design and analysis of purely
electronic systems, due to shrinking device sizes and ever
increasing system complexity. The multidomain nature of the
emerging systems that bring together electronics with other
domains turns an already difficult problem into an extreme
challenge that needs to be addressed.

There are various software packages for simulating mul-
tiphysics models [1], which are mostly based on solving a
coupled system of partial differential equations (PDEs), mainly
employing finite element methods for numerical computa-
tions. This approach is no doubt very general. However, it
is also very costly to model every component of a system
with a PDE in a distributed manner. As a result, only basic
types of analyses, e.g., dc/static, ac, and transient, can be
conducted for relatively small scale systems. On the other
hand, various types of detailed and advanced analyses, such
as periodic steady-state (PSS) and nonstationary noise, can
be conducted at the electrical level for large electronic cir-
cuits using mostly lumped component models encapsulated as
a system of differential-algebraic equations (DAEs). In fact,
lumped models would be adequate for most components of
multidomain systems, with only a few requiring a judiciously
chosen distributed, PDE-based high fidelity model. We thus
propose a numerical modeling and simulation paradigm for
multidomain, multiphysics systems with components modeled
both in a distributed and lumped manner. The lumped com-
ponents are modeled with a system of DAEs, whereas the
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distributed components that may belong to different physical
domains are modeled using PDEs with associated boundary
conditions (BCs).

We envision that electronic circuit simulators that are tra-
ditionally based on a DAE formulation can be enhanced and
extended to a coupled DAE–PDE formalism. The state-of-the-
art circuit simulators already contain models that can handle
some specialized distributed components. However, these are
linear models mostly for interconnect structures. In current
practice, one has to first develop or derive a DAE compatible,
lumped behavioral model for the nonlinear distributed compo-
nents, possibly using other tools, in order to include them in
the circuit simulator. In this paper, our eventual goal is to aug-
ment circuit simulators so that they can handle various kinds
of nonlinear, as well as linear, distributed components in a
transparent and painless manner. It is most desirable that the
rich suite of analysis schemes (steady-state, noise, etc.) already
available in a circuit simulator be extended for nonlinear cou-
pled DAE–PDE systems. This nontrivial and challenging task
requires rethinking many aspects of a circuit simulator and the
development of novel formulations and algorithms, e.g., a new
circuit and system specification scheme, new formulations for
various analysis types and the extension of the theory behind
them, and new numerical methods.

We address a comprehensive suite of problems for
the numerical modeling and analysis of multidomain sys-
tems modeled as nonlinear coupled DAE–PDE systems. In
Section II, we first set up a general formulation that cap-
tures coupled DAE–PDE systems. Then in Section III, we
present a substantial case study: a multidomain feedback oscil-
lator composed of distributed and lumped components in two
physical domains, namely, a nano-mechanical beam resonator
operating in the nonlinear regime, an electrical delay line, an
electronic amplifier, and a sensor-actuator for the transduction
between the two physical domains. This example serves as
a concretization for the abstract formulations we present. It
is used throughout this paper in order to illustrate the tech-
niques we discuss. In Section IV, we discuss the linearization
of nonlinear coupled DAE–PDE systems at the functional-
operator level, which significantly differs from that of pure
DAE systems. These linearizations form the basis for various
analysis schemes and numerical methods that will be discussed
later. In Section V, we present a generalization of Floquet the-
ory to coupled DAE–PDE systems. This serves as the basis
for phase noise analysis of multidomain oscillators, that we
discuss in Section VI. Then in Section VII, we describe the
numerical techniques we have formulated and implemented in
a prototype simulator for multidomain systems. In particular,
we discuss novel formulations and techniques for PSS analy-
sis, Floquet analysis and phase noise analysis. Some aspects
of the theory, analysis formulations and the numerical tech-
niques are inherited from the pure DAE formulations in circuit
simulators and the numerical methods recently developed by
the numerical analysis community. However, the handling of
the PDE-based models for the nonlinear distributed compo-
nents coupled with the DAE-based lumped models, and the
formulation of PSS, Floquet and phase noise analyses for
such systems, require nontrivial extensions. In particular, we
present a new hierarchical spectral collocation scheme based
on a joint Fourier–Chebyshev representation for PSS analysis

that also forms the basis for the subsequent Floquet and phase
noise analyses. We believe that spectral methods, as opposed
to finite element schemes, are more appropriate for handling
the distributed components, due to their superior efficiency and
accuracy [4]. They are also more compatible with the numeri-
cal techniques already in use for circuit simulation. Finally, in
Section VIII, we present numerical analysis results for our case
study, the mechanical beam resonator and the NEMS oscilla-
tor. We compare our noise analysis results with the ones from
recent literature that were obtained in a semi-analytical man-
ner based on a purely lumped model. The use of distributed
models for key components of a multidomain system can offer
better design insight and improved analysis fidelity.

The main novel contributions of this paper are as follows.
1) Conceptualization of nonlinear coupled DAE–PDE-

based simulation paradigm for multiphysics simulation
of multidomain systems in a circuit simulator.

2) Hierarchical, joint Fourier–Chebyshev spectral colloca-
tion scheme for PSS analysis of nonlinear multidomain
forced and autonomous systems modeled with coupled
DAEs–PDEs.

3) Numerical Floquet and phase noise analysis scheme for
multidomain oscillators as coupled DAE–PDE systems.

4) Practically relevant results on a substantial case study,
i.e., a multidomain feedback oscillator used in attogram
mass sensing applications, with comparisons to results
in the literature.

II. COUPLED MULTIDOMAIN PDES AND DAES

Let t denote time and consider a multidomain, multiphysics
dynamical system with distributed and lumped components.
Let x = [

x1, . . . , xp
]T denote a vector of space coordinates

for the distributed components. One can have p > 3, since
the components of the system may belong to different phys-
ical domains. For instance, in an NEMS system, one can
have both mechanical and electrical distributed components
that require the use of independent coordinate systems. Let
u(t, x) = [u1(t, x), . . . , un(t, x)]T denote a vector of n dis-
tributed variables, i.e., a vector of functions (of x) for a given
t. Let z(t) = [z1(t), . . . , zm(t)]T be a vector of m lumped vari-
ables, i.e., a vector of scalars for fixed t. The dynamics of the
multiphysics/domain system is described by

∂

∂t
L(u, z) = R(t, u, z) with ICs and BCs (1)

where the left-hand-side (LHS) L and the right-hand-side
(RHS) R denote a vector of integro-differential nonlinear
operators and functionals, that operate on a vector of func-
tions, i.e., u(t, x), and a vector of scalars, i.e., z(t). All of the
components of the vector produced by the operators and func-
tionals in L and R by acting on u(t, x) and z(t) are functions
of time t. We next consider these components for a given t. For
hybrid systems that involve both distributed and lumped vari-
ables, some of these components are functions (of x), whereas
others that correspond to the lumped components are scalars.
We partition L(u, z) and R(t, u, z) as follows to reflect this
structure:

L(u, z) =
[
Lu(u, z)

Lz(u, z)

]

R(t, u, z) =
[
Ru(t, u, z)

Rz(t, u, z)

]

. (2)
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Fig. 1. NEMS oscillator with feedback configuration.

For a given t, the operators Lu(u, z) and Ru(t, u, z) (both with
dimension n × 1) produce functions by acting on u(t, x) and
z(t), whereas the functionals Lz(u, z) and Rz(t, u, z) (both
with dimension m × 1) produce scalars. The equation in (1)
is associated with initial and/or BCs both in t and x. Without
loss of generality, we assume that the derivatives with respect
to time t are restricted to be first-order. This is not a theo-
retical requirement, but is needed for the convenience of the
numerical techniques that will be employed. If the govern-
ing equations contain higher-order derivatives with respect to
t, auxiliary variables can be defined in order to transform the
equations into the above form. Circuit simulators are based on
a DAE formulation which is also restricted to have only first-
order time derivatives. On the other hand, there is no restriction
on the order of derivatives with respect to x one may use in
defining the operators L(u, z) and R(t, u, z). The RHS oper-
ator R(t, u, z) is allowed to have an explicit dependence on
t in order to capture time-varying excitations. The formula-
tion in (1) is most general, and was inspired by the pure DAE
formulation in circuit simulators As a special case, it cap-
tures PDEs for distributed systems, DAEs for lumped systems,
and hybrid models that contain both. For instance, modified
nodal analysis (MNA) formulation of Kirchoff’s laws for an
electronic circuit, which is the basis of almost all circuit sim-
ulators, can be obtained from (1) if there are no distributed
components, i.e., by removing u, Lu(u, z) and Ru(t, u, z)
from (2).

III. MULTIDOMAIN NEMS OSCILLATOR

In order to concretize the abstract formulation presented
in Section II, we present a practically relevant case study, a
multidomain NEMS oscillator with a block diagram given in
Fig. 1. The NEMS oscillator is composed of a beam resonator,
a sensor that converts the mechanical motion of the beam res-
onator into an electrical signal, an electrical delay line, an
electronic amplifier, and an actuator that drives the beam res-
onator with the signal from the electronic amplifier [5], [6].
These components are connected in a feedback configuration
and, under appropriate conditions, the system operates as an
autonomous oscillator [7]. NEMS are currently being used as
ultrasensitive mass and force sensors [8], [9].

A. Mechanical Beam Resonator

We model the mechanical beam resonator using the Euler–
Bernoulli beam theory that applies to beams with length much
larger than cross-sectional dimensions. The Euler–Bernoulli
equation, a PDE, for a lossless and linear beam is given by

m
∂2

∂t2
u(t, x) = −EI

∂4

∂x4
u(t, x) + a(t, x) (3)

where m is the mass per unit length, E is the Young’s (elastic)
modulus of the beam material, I is the moment of inertia,1 x
is the position coordinate along the length of the beam, and
u(t, x) represents the position-dependent lateral deflection, and
a(t, x) captures any excitation (in dimensions of force per unit
length) [10], [11]. The dimensions for the quantities above
are: 1) elastic modulus E: force per unit area; 2) m: mass
per unit length; and 3) I: fourth power of length. Thus, the
(R/L)HS of (3) has a dimension of force per unit length. The
Euler–Bernoulli equation in (3) must always be augmented
with appropriate BCs. For instance, for a beam with both ends
fixed and rigidly clamped [10], [11], we have (L: beam length)

u(t, x) = 0 and
∂

∂x
u(t, x) = 0 at x = 0, L. (4)

There are various fundamental loss mechanisms in mechan-
ical resonators. For a lossy beam, the Euler–Bernoulli equation
in (3) needs to be augmented as follows:

(
m

∂2

∂t2
+ m ωQ

QVI

∂

∂t
+ EI

QKV ωQ

∂

∂t

∂4

∂x4

)
u(t, x)

= −EI
∂4

∂x4
u(t, x) + a(t, x) (5)

where QVI and QKV are the quality factors of the res-
onator due to external (viscous damping) and internal material
(Kelvin–Voigt damping) losses [12]. ωQ is the frequency at
which the quality factors are defined, and is chosen as the low-
est vibration mode frequency of the linear-lossless resonator.
The overall quality factor is Q = 1/(1/QVI + 1/QKV).

As the beam vibrates laterally, its length changes slightly.
This creates tension in the beam, which is a nonlinear
phenomenon.2 This tension effect is captured by further
augmenting the Euler–Bernoulli equation as below [11]

(
m

∂2

∂t2
+ m ωQ

QVI

∂

∂t
+ EI

QKV ωQ

∂

∂t

∂4

∂x4

)
u(t, x)

=
(

−EI
∂4

∂x4
+ Te

∂2

∂x2

)
u(t, x) + a(t, x) (6)

where the tension Te is given by Te = A E �L(t)/L in terms
of the beam cross-sectional area A and the elongation �L(t).
Tension Te can be expressed as the result of the following
nonlinear integro-differential functional acting on u(t, x):

Te(�) = A E

L

⎡

⎣
L∫

0

√(
1 + ∂

∂x
�
)2

dx − L

⎤

⎦. (7)

The functional Te(�) defined above operates on functions of x
and produces scalar values. The following relate the quantities
above [10], [11]: 1) strain = �L(t)/L; 2) stress (force per unit
area) = E �L(t)/L; and 3) tension = A × stress.

B. Electrical Delay Line

We model the delay line with the advection equation [13]

td
∂

∂t
g(t, x) = − ∂

∂x
g(t, x) with g(t, x = 0) = s(t) (8)

1For rectangular cross-section: I = w t3/12, w: width, t: thickness [10].
2Intrinsic tension on the beam is assumed to be zero.
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where x is the position along the delay line, s(t) is the
input signal to be delayed, and td is the amount of desired
delay. Equation (8) has the solution g(t, x) = s(t − x td). If
the line has unit length, then the signal at its termination is
g(t, x = 1) = s(t − td), i.e., a delayed version of the signal at
its input.

C. Electronic Amplifier

We use a lumped model for the electronic amplifier and
formulate its governing equations using Kirchoff’s laws in the
MNA form as a system of DAEs as follows:

d

dt
q(v(t)) + f(v(t), b(t)) = 0 (9)

where v(t) contains a vector of circuit variables, nonlinear
function q(·) captures the capacitive and inductive compo-
nents, f(·, ·) models the memoryless, resistive effects. b(t) is
the input and set to the output of the delay line as follows:

b(t) = g(t, x = 1) = s(t − td). (10)

The output y(t) of the amplifier is typically chosen as one
of the voltage or current variables, selected by a vector l from
the entries of v(t) with y(t) = lT v(t).

D. Sensor and Actuator

We use simple models for the transduction between the
mechanical and electrical domains. We assume a sensor that
measures the deflection of the beam at its mid-point, whose
electrical output is fed to the input of the delay line. The
beam resonator is driven by an actuator that applies a lateral,
position-independent force that varies with t as dictated by
the output of the electronic amplifier. Thus, the sensor and the
actuator are represented by

s(t) = u(t, x = L/2), a(t, x) = y(t) = lT v(t). (11)

E. Unified Model

We now put together the models of the components of
the NEMS oscillator and obtain a unified model expressed
in the general form in (1). We first set up a unified variable
naming convention that is compatible with (1). We observe
that the system model has distributed variables in two dif-
ferent physical domains, i.e., the lateral deflection u(t, x) of
the mechanical resonator, and the electrical signal g(t, x) in
the delay line. The space coordinates x for these distributed
variables are independent and belong to different domains:
we set x = [x1, x2]T with x1 for the mechanical domain and
x2 for the electrical. We collect the distributed variables in
u(t, x) = [u1(t, x1), u2(t, x1), u3(t, x2)]T with u1(t, x1) =

u(t, x1) for the beam and u3(t, x2) = g(t, x2) for the delay
line. u2(t, x1) is reserved for the beam resonator, to be used
shortly. The lumped variables of the system are contributed
by only the amplifier: we set z(t) = v(t).

We need to define auxiliary variables as necessary so that
the DAEs and the PDEs that govern the system behavior can
be formulated with only first-order derivatives with respect to
time t

u2(t, x1) = ∂

∂t
u1(t, x1) = ∂

∂t
u(t, x1) (12)

and rewrite (6) as a set of two equations as follows:

∂

∂t
u1(t, x1) = u2(t, x1) (13)

∂

∂t

(
EI

QKV ωQ

∂4

∂x4
1

u1(t, x1) + m u2(t, x1)

)

=
(

−EI
∂4

∂x4
1

+ Te
∂2

∂x2
1

)

u1(t, x1) − m ωQ

QVI
u2(t, x1) + a(t, x1)

(14)

with tension Te = Te(u1(t, x1)) defined by (7).
Finally, we put together all of the model equations above

and obtain (15), as shown at the bottom of this page, with the
BCs in (16), as shown at the bottom of this page. We note
that (15) is in the form given in (1). Operators L(u, z) and
R(u, z) are defined by the square brackets on the LHS and
RHS, respectively. The first three components of these vector
valued operators are functions (of x), whereas the rest that
correspond to the lumped amplifier model are scalars.

IV. LINEARIZATION OF COUPLED PDES AND DAES

We now consider the linearization of the nonlinear opera-
tors in (1) around a given solution denoted by up(t, x) and by
zp(t). These linearizations are used for the numerical tech-
niques based on Newton iterations, and in formulating the
variational system that describes the perturbative and noise
dynamics of (1) around a given time-varying solution. We
compute the Jacobians of the nonlinear integro-differential
operators L(u, z) and R(t, u, z) with respect to u and z. We
consider the Jacobian of L (same for R)

JL
(
up, zp

) =
⎡

⎣
∂
∂uLu(u, z) ∂

∂zLu(u, z)

∂
∂uLz(u, z) ∂

∂zLz(u, z)

⎤

⎦

∣
∣∣∣∣∣u = up

z = zp

. (17)

The Jacobian matrix above is not a simple matrix of scalar
valued partial derivatives, some of its entries are in fact Fréchet
derivatives [14], i.e., derivatives of operators with respect to
functions. Its block entries have the following properties.

∂

∂t

⎡

⎢⎢⎢⎢⎢
⎢
⎣

u1(t, x1)

EI
QKV ωQ

∂4

∂x4
1
u1(t, x1) + m u2(t, x1)

td u3(t, x2)

q(z(t))

⎤

⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

u2(t, x1)(
−EI ∂4

∂x4
1

+ Te
∂2

∂x2
1

)
u1(t, x1) − m ωQ

QVI
u2(t, x1) + lT z(t)

− ∂
∂x2

u3(t, x2)

−f(z(t), u3(t, x2 = 1))

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

(15)

u1(t, x1) = 0 and ∂
∂x u(t, x1) = 0 at x1 = 0, L u3(t, x2 = 0) = u1(t, x1 = L/2) (16)
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1) JLuu = (∂/∂u)Lu: n × n matrix valued linear operator.
Operates on an n × 1 vector of functions and produces
an n × 1 vector of functions.

2) JLuz = (∂/∂z)Lu: n × m matrix of functions. When
multiplied with an m × 1 vector of scalars, produces an
n × 1 vector of functions.

3) JLzu = (∂/∂u)Lz: m×n matrix valued linear functional.
Maps an n × 1 vector of functions to an m × 1 vector of
scalars.

4) JLzz = (∂/∂z)Lz: m × m matrix of scalars. Maps an
m × 1 vector of scalars to an m × 1 vector of scalars.

In the linearization of (1), in addition to computing the
Jacobians of the operators L and R, we also need to linearize
the BCs if they involve nonlinear operations.

A. Linearization of the NEMS Oscillator Model

We now consider the linearization of our case study, the
NEMS oscillator captured by the coupled PDE-DAE system
in (15), and the BCs in (16). The Jacobian of the operator
L(u, z) in (15) is

JL(t) =

⎡

⎢⎢
⎢⎢⎢⎢
⎣

I O O 0
EI

QKV ωQ

∂4

∂x4
1

m I O 0

O O td I 0

O O O C(t)

⎤

⎥⎥
⎥⎥⎥⎥
⎦

(18)

where C(t) = ∂

∂z
q(z)

∣∣∣
z=zp(t)

I: identity operator: function → same function;
O: zero operator: function → zero function;
O: m × 1 vector of zero functionals: function → scalar

zero;
0: 1 × m vector of zero functions;
C(t): m × m matrix of scalars (for a given t).

Before we compute the Jacobian of R(u, z) in (15), we define

Gz(t) = ∂

∂z
f(z, u3)

∣∣∣∣
z=zp(t),u3=up3(t,x2=1)

(19)

gu3(t) = ∂

∂u3
f(z, u3)

∣∣
∣∣
z=zp(t),u3=up3(t,x2=1)

(20)

DTe = Te
(
up1(t, x1)

) ∂2

∂x2
1

+
[

∂2

∂x2
1

up1(t, x1)

]

JTe (21)

JTe = ∂

∂u1
Te(u1)

∣∣∣∣
u1=up1(t,x1)

(22)

where
Gz(t): m × m matrix of scalars (for a

given t);
gu3(t): m × 1 vector of scalars (for a

given t);

Eu3(t,x2=1): evaluation functional that acts on
a function [u3(t, x2), for fixed t
as a function of x2] and produces
a scalar that is set to the value
of the function at the specified
evaluation point (x2 = 1);

DTe : linear operator with components
as below, evaluated based on
the chain/multiplication rules for
differentiation;

Te(up1(t, x)): scalar produced by the func-
tional in (7);

JTe : linear functional = Derivative
of the nonlinear functional Te:
function → scalar;

(∂2/∂x1
2)up1(t, x1): for a given t, this is a function

of x1;[
(∂2/∂x1

2)up1(t, x1)
]
JTe : outer product of a function

with a functional (for a given
t). Functional JTe : function →
scalar. Overall an operator: func-
tion → function.

The Jacobian of R(u, z) in (15) can then be computed as
shown in (23), as shown at the bottom of this page. The
Jacobians of L(u, z) and R(u, z) were computed using com-
position rules for operators, functionals, functions and scalars
that are dictated by the chain and multiplication rules for
Fréchet differentiation. The Fréchet derivative of the functional
in (22) can be evaluated by several consecutive applications
of the chain rule. The BCs in (16) are already linear, hence
need not be linearized.

V. FLOQUET THEORY FOR COUPLED PDES AND DAES

The variational system that is associated with (1) can be for-
mulated based on the linearizations of the nonlinear operators
and the BCs as follows:

∂

∂t

(
JL(t)

[
us(t, x)

zs(t)

])
= JR(t)

[
us(t, x)

zs(t)

]
with
BCs.

(24)

us and zs represent the deviational (around the expansion point
up and zp) distributed and lumped variables

u(t, x) = up(t, x) + us(t, x), z(t) = zp(t) + zs(t).

The equations in (24) are a coupled set of linear PDEs and
DAEs that represent a linear time-varying system. In the case
when up(t, x) and zp(t) are time-periodic, the variational sys-
tem becomes linear periodically time-varying (LPTV). For the
rest of our treatment in this section, we assume that up(t, x)

and zp(t) represent a time-periodic solution of (1) for the
autonomous case when the RHS operator R(u, z) does not
have an explicit dependence on time t. The existence and the
computation of a time-periodic autonomous solution for (1) is

JR(t) =

⎡

⎢
⎢⎢⎢⎢⎢
⎣

O I O 0

−EI ∂4

∂x4
1

+ DTe −m ωQ
QVI

I O I lT

O O − ∂
∂x2

0

O O −gu3(t)Eu3(t,x2=1) −Gz(t)

⎤

⎥
⎥⎥⎥⎥⎥
⎦

(23)
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a prerequisite for the Floquet analysis that is discussed below,
as well as the derivation of the phase equation that will be
covered in Section VI. In general, not all autonomous coupled
DAE–PDE systems as in (1) will possess nontrivial time-
periodic solutions, i.e., autonomously oscillate. The ones that
do will oscillate only for some settings of the system parame-
ters. For instance, the feedback NEMS system autonomously
oscillates only for a certain range of the feedback delay td
discussed in Section III-B.

Floquet theory is on a simple but extremely useful result
on the structure of the solutions for LPTV systems [15]. It
has ample applications in the analysis of the dynamics of
oscillating systems. Floquet theory for systems that contain
only lumped components, hence modeled either with a set of
ordinary differential equations (ODEs) or DAEs, is well under-
stood, see [16]. There exist generalizations of Floquet theory
to PDEs [17].

We next describe a generalized form of Floquet theory that
applies to hybrid (with both lumped and distributed compo-
nents) LPTV systems in the form in (24). Instead of providing
a formal proof for the results to be stated below, we outline
here a straightforward, heuristic derivation technique that was
advocated in [13] in another context: 1) we first discretize
the space x dependence of the operators and distributed vari-
ables in (24) using an appropriate scheme; 2) this discretization
turns (24) into a set of DAEs; 3) we can then apply the
results of Floquet theory for DAEs [16] to the space discretized
version of (24); and 4) finally, we take a limit to return to
the continuous dependence on x. Essentially, Floquet theory
relates to the time dependence of LPTV systems. The nature
of space dependence, whether it is discretized or continuous,
is immaterial, apart from implications on the mechanics of
setting up the theory. For instance, the definition of the dot
product operation for vectors that contain both distributed and
lumped variables is different than the case with only lumped
variables, as we further discuss later below.

In extending Floquet theory from a DAE to a mixed
DAE–PDE system, the discretization of the PDE compo-
nent serves two purposes, one theoretical and the other one
numerical/practical. In the theoretical case discussed above,
discretization is used to extend the Floquet theory results from
a DAE to a mixed DAE–PDE system, by first mapping from a
distributed to a lumped system via discretization, then apply-
ing Floquet theory for DAEs, and finally going back by taking
a limit to the continuum. In this theoretical use of discretiza-
tion, one can use any sound convergent discretization scheme,
e.g., finite-difference, finite-element, or spectral. However, a
manually formed ad-hoc lumped model for the distributed
components would be of no use in this case, since there is no
well-defined procedure (which can be taken to the continuum
limit) that allows one to go back and forth between the dis-
tributed and lumped domains. Once Floquet theory is extended
as such, we arrive at a generalized form of Floquet theory
expressed in functional form for mixed PDE-DAE systems.
Then, for practical/numerical computations, one is again faced
with a decision on how to discretize the PDE components,
which is independent of what was used in extending the theory.
In this case, one can use any form of discretization, including
lumped models developed in an ad-hoc form. Finite-element
and finite-difference discretizations are more flexible, they can
handle complex geometries more easily, but they generate

large sparse discretization matrices and have limited order
of accuracy. On the other hand, spectral discretization offers
superior accuracy for smooth problems. Ad-hoc lumped mod-
els can be very compact and computationally inexpensive, but
they may miss important effects in the distributed component
and there is no well defined procedure to obtain them.

The adjoint of the LPTV system in (24) is defined by

J T
L (t)

∂

∂t

[
ûs(t, x)

ẑs(t)

]
= −J T

R(t)

[
ûs(t, x)

ẑs(t)

]
with
BCs.

(25)

The modal solutions of (24) and (25) can be represented in
the following form:

us(t, x) = usp(t, x) eμt zs(t) = zsp(t) eμt (26)

ûs(t, x) = ûsp(t, x) e−μt ẑs(t) = ẑsp(t) e−μt (27)

where μ (a complex scalar) is called a Floquet exponent.
zsp(t) and ẑsp(t) are vectors of lumped variables that are peri-
odically time-varying (PTV). The vector valued usp(t, x) and
ûsp(t, x) are also periodic in t, but also functions of x. There
are infinitely many such linearly independent modal solutions
for (24) and (25), since the system is infinite-dimensional due
to the distributed components. However, in practice, we can
compute finitely many modal solutions once the distributed
components are discretized. The Floquet exponents determine
the stability properties of the variational system in (24) and
its adjoint in (25). If all Floquet exponents have negative real
parts, then one can conclude that (24)/(25) is stable/unstable. If
the variational system arises from a stable autonomous oscilla-
tor system, then one of the Floquet exponents satisfies μ = 0
due to the marginally stable nature of autonomous oscillators.
We number the zero Floquet exponent as the first and denote
the corresponding PTV quantities as zsp1(t), usp1(t, x), ẑsp1(t),
and ûsp1(t, x). One can easily show that [16]

usp1(t, x) = ∂

∂t
up(t, x), zsp1(t) = d

dt
zp(t) (28)

which means that the variational system in (24) has a PTV
solution, which is (up to a scaling factor due to linearity) equal
to the time derivative of the PTV solution of the original non-
linear system in (1). This holds only in the case when the
system is autonomous, that is when the RHS operator R(u, z)
does not have an explicit dependence on t. The corresponding
(for also μ = 0) PTV solution of the adjoint equation in (25),
represented by ẑsp1(t) and ûsp1(t, x), plays an important role
in analyzing the behavior of autonomous oscillators [16]. It
can be used to project the noise sources in order to quantify
phase fluctuations and timing jitter. The solutions of (25) can
be determined up to a scaling factor, due to linearity. ẑsp1(t)
and ûsp1(t, x) need to be properly normalized (scaled) in order
for them to produce correct projections for the characterization
of phase fluctuations

[
ûsp1(t, x)

ẑsp1(t)

]
•
(
JL(t)

[
usp1(t, x)

zsp1(t)

])
= 1 (29)

The dot product operation above, denoted by •, for a vector
of both distributed and lumped variables is defined by
[

u(t, x)

z(t)

]
•
[

v(t, x)

y(t)

]
= zT(t) y(t) +

n∑

i=1

∫

x∈X
ui(t, x) vi(t, x) dx

(30)
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where X represents the spatial domain. The normalization con-
dition in (29) needs to be enforced at some t within one period.
It will also hold for other values of t [16].

VI. PHASE EQUATION FOR MULTIDOMAIN

OSCILLATORS

The role of the PTV solutions of the adjoint variational
equation in (25) in characterizing phase fluctuations for
autonomous oscillators is captured in a phase equation [18].
The essential and important dynamics of noisy oscillators can
be encapsulated in a scalar phase variable α(t) [18]. For a
multidomain autonomous oscillator, we have

∂

∂t
L(u, z) = R(u, z) + b(t, x) with BCs (31)

where the disturbances b(t, x) = [bu(t, x), bz(t)]T are par-
titioned into ones that affect the distributed and lumped
components. We can approximate the solution of (31) with

u(t, x) ≈ up(t + α(t), x), z(t) ≈ zp(t + α(t)) (32)

where the phase α(t) satisfies the phase equation given by

d

dt
α =

[
ûsp1(t + α, x)

ẑsp1(t + α)

]
•
[

bu(t, x)

bz(t)

]
. (33)

up(t, x) and zp(t) are the time-periodic solutions of (31) when
the disturbance is removed. As apparent from the phase equa-
tion, the components of ẑsp1(t) and ûsp1(t, x) quantify exactly
how noise injected into the system at any time point within a
period of oscillation, and at any spatial point of a distributed
or lumped component, turn into phase fluctuations.

The phase equation in (33) can be derived using a gen-
eralization of a technique that was proposed in [13], where
Novičenko and Pyragas considered oscillatory systems rep-
resented by a set of delay differential equations (DDEs),
essentially ideal delay elements in addition to a set of ODEs.
Since an ideal delay line is a distributed component, DDEs
can be considered to be a very special case of the cou-
pled PDE-DAE systems that we consider. Nevertheless, the
“heuristic” method used by Novičenko and Pyragas [13] in
deriving a phase model based on DDEs can be easily applied
to the much more general case we consider here. In fact, we
have already advocated the use of this technique in Section V
in the generalization of Floquet theory from pure DAE to
coupled DAE-PDE systems: 1) discretize the space depen-
dence of the PDE-based components and combine them with
the DAE-based ones to obtain a (larger) DAE system; 2) use
the phase model derivation technique for pure DAE sys-
tems [16] on the discretized system; and 3) return to a coupled
distributed-lumped representation by taking the limit so that
the granularity of discretization becomes infinitesimal.

VII. NUMERICAL METHODS AND

SIMULATION TOOL

The formulations above dictate difficult analysis problems
and imply challenging issues that need to be addressed.

1) Syntactic description scheme for multidomain/physics
systems with distributed and lumped components.

2) Automatic differentiation of a mixture of coupled non-
linear operators, functionals, and functions with respect

to a set of distributed (function) and lumped (scalar)
variables.

3) PSS analysis of driven and autonomously oscillating
multidomain systems that are governed by a coupled
set of PDEs and DAEs.

4) Floquet analysis of the variational system and its adjoint
around a periodic solution computed by PSS analysis.

5) Stationary, cyclo-stationary, and phase noise analysis.
6) Efficient parameter sweeps for steady-state/noise

analyses.
We developed new schemes, where appropriate, that address

the above and implemented all of the numerical analysis
modes in a MATLAB3 [19]-based prototype simulator for
multidomain systems. Our current implementation supports
1-D spatial domains, but allows independent spatial coor-
dinates for different physical domains. We were extremely
fortunate to become aware of an open-source software pack-
age called Chebfun [20]. As stated in [20], “Chebfun extends
MATLAB’s inherent facilities with vectors and matrices to
functions and operators.” Chebfun provided us with most of
the infrastructure needed for our simulator: 1) equation and
BC specification format/parser; 2) automatic differentiation of
nonlinear operators [14]; 3) representation of functions with
Chebyshev interpolants on finite domains; and 4) automatic
spectral collocation of spatial integro-differential linear oper-
ators and BCs that are compatible with Chebyshev represen-
tations [21]. However, the schemes and techniques available
in Chebfun (version 5.3.0) were not able to address all of the
analysis modes and issues identified above. We developed new
formulations as detailed below, and implemented the following
extensions as well as a number of substantial add-ons for our
prototype simulator.

1) Extensions that enable handling a mixed set of dis-
tributed and lumped variables in system specification.

2) Extensions to the automatic differentiation infrastruc-
ture [14] in order to handle more general operations
between operators, functionals, and functions that can
also deal with mixed scalar/distributed variables. The
manual derivative computations we have performed in
Section IV can now be carried out in a completely
automatic manner.

3) Numerical solution of initial value problems in time t
(i.e., time-stepping) for systems as in (1) via implicit
time discretization schemes (e.g., multistep methods)
that use analytically computed Jacobians as opposed to
ones that are approximated with finite differences.

4) Representation of time-periodic distributed variables
(functions of both x and t) with joint/hierarchical
Chebyshev (Fourier) expansions for their spatial (time)
dependence.

5) Numerical PSS analysis based on hierarchical Fourier
spectral collocation in time and Chebyshev spectral
collocation for space, which employs damped Newton
iterations for solving the nonlinear equations, and pre-
conditioned Krylov subspace-based iterative techniques
for the solution of inner loop linear equations. For both
forced and autonomous systems.

3MATLAB is a registered trademark of The MathWorks, Inc.



1452 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 7, JULY 2018

Listing 1. Multidomain NEMS oscillator.

6) Numerical, adaptive step-size, first-order pseudo-
arclength continuation [22] for performing drive
frequency sweeps for PSS analysis of driven/forced
multidomain systems.

7) Numerical Floquet analysis of the variational system
around a periodic solution computed by PSS, which
inherits the mixed hierarchical Fourier/Chebyshev spec-
tral collocation scheme from PSS analysis mentioned
above and employs Krylov subspace-based iterative
techniques for solving the resulting eigenvalue problem.

8) Numerical, adaptive step-size, zero-order, simple (non
arc-length) parameter continuation for performing
parameter sweeps for PSS followed with Floquet anal-
ysis of autonomous multidomain oscillators.

9) Phase noise analysis for multidomain oscillators.
While some of the above can be considered as enhancements

to the software infrastructure of Chebfun so that it can handle
coupled DAE-PDE systems as opposed to pure PDE or ODE
systems, there are others that necessitated the development of
novel formulations and required nontrivial implementations.
Next, we elaborate on the most important ones.

A. System Description and Equation Specification

The MATLAB code in Listing 1 captures the equations and
the BCs for the NEMS oscillator in (15) and (16).

The amplifier model is chosen as a saturating amplifier [23]

d

dt
z = −BW z + BW b(t) (34)

y(t) = g z(t)√

1 +
(

g z(t)
s

)2
(35)

where BW is the bandwidth, b(t)/y(t) is the input/output, g
is the gain for low frequencies and small inputs, and s is the
output saturation level. Most of the code in Listing 1 is self
explanatory. Chebop is a Chebfun utility for defining opera-
tors. Scaly is a syntactic utility we have implemented as an
extension to Chebfun that specifies its argument to be scalar
valued, i.e., not a function of x.

B. Chebyshev and Fourier Representations of Variables

The lumped variables z(t) in (1) depend on t only, whereas
the distributed variables u(t, x) depend both on t and x. In the

transient analysis of multidomain systems based on time-
stepping schemes, the representation of the time dependence
is straightforward, i.e., discrete time points selected by the
multistep solver. In order to represent the spatial dependence
of the distributed variables for a given t, we use Chebfun.
A chebfun for a function on a finite domain is a polynomial
interpolant through Chebyshev points [20], [24]. Chebfun pro-
vides efficient implementations for various operations, such
as evaluation, differentiation, integration, etc. based on fast
algorithms [20], [24].

In PSS, Floquet and phase noise analyses, the time depen-
dence of the system variables is periodic. For the lumped
variables, we use Fourier expansions. However, the represen-
tation of the distributed variables in the time-periodic case is
not obvious. Chebfun was recently extended to functions of
more than one variable [25]–[28]. However, it is not possible to
mix Fourier and Chebyshev expansions for multivariable func-
tions as we require, it is either all Chebyshev or all Fourier.
Efficient construction of representations, and their numerical
manipulation, for multivariate functions are open problems.
We use a relatively simple approach currently, by combin-
ing a Chebyshev interpolant with a Fourier series as a tensor
product [28]

u(x, t) =
N∑

i=0

⎡

⎣
K∑

k=−K

cik ejkωpt

⎤

⎦pi(x) (36)

with the fundamental frequency ωp = 2π/Tp and
∑K

k=−K cik ejkωpt = u(xi, t) (37)

where xi’s are the Chebyshev points, xi = cos (iπ/N) (assum-
ing a domain [−1, 1]), and pi(x)’s are the Lagrange basis
functions for the polynomial interpolant through xi [24]. For a
Chebyshev point xi, (37) is a Fourier representation for u(xi, t).
The coefficients cik for u(xi, t) are computed (via an FFT)
by sampling u(xi, t) in t with uniformly spaced time points at
tl = (l−1)/(2K+1) Tp for l = 1, . . . , 2K+1. One can go back
and forth between uniformly spaced time samples and coef-
ficients via FFTs and perform various operations efficiently
using the appropriate (sample or coefficient-based) represen-
tation. For a given tl on the other hand, the interpolant in (36)
is equivalent to the Chebyshev interpolant

u(x, tl) = ∑N
i=0 u(xi, tl) pi(x) = ∑N

i=0 ĉi(tl)Ti(x) (38)

where Ti is the degree i Chebyshev polynomial [24]. The
coefficients ĉi(tl) are computed from the function values at
the Chebyshev points, i.e., u(xi, tl)’s. Similarly, the transfor-
mations between sample and coefficient-based representations
are done via FFTs.

C. Periodic Steady-State Analysis for Coupled DAE–PDEs

For the PSS analysis of a coupled PDE-DAE system, we
need to solve the following mixed-boundary value problem:

∂

∂t
L(u, z) = R(t, u, z) with

u(t, x) = u
(
t + Tp, x

)
, z(t) = z

(
t + Tp

)
, BCs in x

(39)

both in the forced and autonomous cases.
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We formulate the analysis based on the joint Chebyshev–
Fourier representation in (36). We use the Chebyshev technol-
ogy of Chebfun, but implemented our own Fourier technology
as an add-on for a joint/hierarchical Chebyshev–Fourier tech-
nology. Chebysev spectral collocation is used for the x, and
Fourier spectral collocation for the t dependence in dis-
cretizing the mixed-boundary problem in (39). When a joint
Chebyshev–Fourier collocation-based discretization is applied
to (39), a system of nonlinear algebraic equations is obtained.
For a problem with a 1-D spatial domain, the size of this
algebraic equation system is (nN + m) L, where n (m) is the
number of distributed (lumped) variables. N is the number of
the terms in the Chebyshev interpolants, and L = 2K + 1 is
the number of terms in the Fourier representation. We solve
this set of nonlinear algebraic equations using damped Newton
iterations. The initial guess for the Newton iterations is gen-
erated by running a transient analysis. In every iteration of
Newton’s method, a linear system of equations, which has the
same size as the nonlinear equation set, needs to be solved.
We solve this system using GMRES [29] as implemented in
MATLAB. The large matrix with size (nN + m) L is never
formed, but an implicit routine that multiplies it with a vector
is used. In this routine and in evaluating the RHS of the set
of nonlinear equations, we use FFTs in order to go back and
forth between the coefficient and sample domains. In order
to accelerate the GMRES iterations, we use a block diago-
nal preconditioner [30]. The discretization of (39) with the
joint Chebysev–Fourier scheme is performed in a hierarchical
manner so that the discrete variables (i.e., Fourier coefficients
of the values of the distributed variables at the Chebyshev
points and the lumped variables) are sorted in a Fourier-
major, Chebyshev-minor manner. As such, the block diagonal
preconditioner corresponds to ignoring the mixing between the
Fourier components that arises due to the nonlinear effects in
the system. In our current implementation, we fully exploit the
implicit structure in the large Jacobian discretization matrix
that arises due to Fourier collocation of time dependence.
Currently, any structure that may be due to Chebyshev dis-
cretization of the space dependence is exploited only to the
extent that it results in straightforward sparsity in matrix
instantiations of the linear spatial operators via Chebyshev
collocation. For instance, if a model contains distributed com-
ponents in two different physical domains which are coupled
to each other only through interface components (i.e., BCs),
this results in sparsity (zero blocks) in the discretized matrix
representations of the spatial operators. Lumped components
are also typically interfaced with the distributed components
through interface components represented by BCs. However,
unlike finite difference schemes, most spectral discretization
techniques generate dense blocks [4] for operators acting on
distributed variables. As a result, the computational complex-
ity of PSS analysis in our current implementation is roughly
O
(
(nN3 + m)L

)
, assuming that the lumped part of the sys-

tem has sparse interactions, and the distributed components
and variables are coupled with each other through only BCs.
On the other hand, there is no inherent theoretical obstacle
to exploiting all of the implicit structure in a hierarchical,
joint Chebyshev–Fourier collocation technique, rendering it
fully matrix-free. The linear spatial operators do not need
to be instantiated as full matrices, as exemplified in [31].

The fully matrix-free version of the hierarchical Fourier–
Chebyshev collocation scheme for PSS analysis would result
in a computational complexity of O((nN + m) L). Finally, in
the ultimate matrix-free version of PSS analysis for DAE-
PDE systems, one may be able to use compressed low-rank
representations [26] (as opposed to simple tensor products)
for joint Chebyshev–Fourier representations and achieve an
ultimate analysis complexity of O((N + L)n + L m).

D. Floquet Analysis for Coupled LPTV DAEs and PDEs

The form of the modal solutions of the coupled LPTV PDE-
DAE system in (24) are as in (26) as dictated by Floquet
theory. We substitute (26) into (24) to obtain

μJL(t)

[
usp(t, x)

zsp(t)

]
=
(
JR(t) − ∂

∂t
JL(t)

)[
usp(t, x)

zsp(t)

]

with BCs. (40)

The above defines a generalized eigenvalue problem, which
can be solved to compute the Floquet modes of (24). The linear
but time-periodic operators JL(t) and JR(t) are the lineariza-
tions of the nonlinear operators L(u, z) and R(u, z) around the
time-periodic solution up(t, x), zp(t) that can be numerically
computed by PSS analysis. In order to solve the eigenvalue
problem in (40), we inherit the same joint Fourier–Chebyshev
discretization and the hierarchical spectral collocation scheme
that are used for PSS analysis. In solving the discretized
eigenvalue problem, we use the eigs utility in MATLAB,
which is based on Arnoldi iterations. Just as GMRES is used
in the PSS analysis in a matrix-free manner, we use eigs
in a matrix-free manner in order to compute several Floquet
eigenmodes that have the Floquet exponents with the smallest
magnitude. In doing so, Arnoldi iterations are actually per-
formed using a shift-invert scheme, where the invert operations
are implicitly performed via preconditioned GMRES [32].
The computations outlined above can also be performed on the
adjoint system defined by (25). The Floquet eigenmode of the
adjoint system computed as such that corresponds to the zero
Floquet exponent is then normalized using (29) and (30). This
eigenmode serves as the key in characterizing phase noise for
multidomain oscillators, which we discuss next.

E. Phase Noise Analysis for Multidomain Oscillators

Phase noise characterization for multidomain oscillators is
performed based on the phase equation in (33) and the eigen-
mode of the adjoint system that corresponds to the zero
Floquet exponent, represented by ẑsp1(t) and ûsp1(t, x). The
stochastic analysis and characterization of phase noise based
on the phase equation proceeds along the lines of the analy-
sis described in [16], [33], and [34] for purely lumped ODE
and DAE systems. Instead of repeating essentially the same
analysis here, we would like to emphasize what is different.

With a system that contains distributed components, the
noise sources represented by bu(t, x) in (33) also have a
distributed nature. As such, their characteristics need to be
specified in terms of not only their temporal behavior but also
spatially. For instance, a white noise source may be white in
the temporal sense, i.e., with uncorrelated time samples, and/or
in space, i.e., with uncorrelated values at two different spatial
points of the distributed component.
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Unlike purely lumped systems, the equations for the cou-
pled DAE-PDE systems have associated BCs for the spatially
distributed components. Even though the BCs are implicit
in (1), (24), and (25), they become instantiated as algebraic
constraints when these equations are discretized based on
Fourier and/or Chebyshev collocation. This also holds for
the eigenvalue problem in (40), and for the similar prob-
lem for the adjoint system in (25). Thus, as we compute
ẑsp1(t) and ûsp1(t, x) for the adjoint system, we also obtain
adjoint components that correspond to the BCs of the for-
ward system in (24). At first thought, these components may
seem like abstract necessities of the Fourier–Chebyshev col-
location used in solving the eigenvalue problems. However,
these components do have a deeper physical meaning. Just as
the components of ẑsp1(t) and ûsp1(t, x) quantify exactly how
noise injected into the system turns into phase fluctuations, the
components that correspond to the BCs for the adjoint system
quantify how any disturbance to the BCs creates phase fluctu-
ations. This can be best understood by noting that the adjoint
system in (25) is obtained from the forward system in (24)
by transposing the matrix valued operators JL(t) and JR(t):
there is a one-to-one correspondence between the variables of
the adjoint system and the equations of the forward system.
That is why the impact of noise (injected into an equation) on
phase fluctuations is characterized by the corresponding vari-
able of the adjoint system. BCs of the forward system appear
as (algebraic) equations when the system is discretized and
instantiated with matrices. There is in fact a corresponding
adjoint system variable for every BC equation.

VIII. RESULTS

We present numerical analysis results on our case study.
The ultimate limits to the sensitivity of mass sensors based on
NEMS oscillators are determined by inherent fluctuations and
noise in the mechanical and electrical domain [10], [35], [36].
Recent work on the analysis of NEMS oscillator mass sen-
sors [23], [37], [38] based on lumped models revealed that
when the mechanical resonators are operated at specific
points in the nonlinear regime they offer better noise perfor-
mance. We investigate this issue using our proposed hybrid
distributed-lumped analysis approach and simulation tool.

A. Setup and System Parameters

We use the parameter values and the geometrical dimensions
given in [10] for the mechanical beam resonator. However, for
our numerical calculations, we use normalized (scaled) quan-
tities. We normalize the length of the beam to be unity, its
width and length are scaled accordingly. We use a mass scal-
ing factor set to an attogram. Time is scaled in such a way
so that the smallest modal vibration frequency for the linear,
lossless beam is equal to normalized 1. The scaling factors are
summarized in Table I. The scaled beam parameters are given
in Table II. Other system parameters, such as the quality fac-
tors for the resonator, the amplifier parameters and the delay
line characteristics vary depending on the analysis scenario.
They will be specified, where appropriate.

TABLE I
SCALING FACTORS

TABLE II
SCALED (NORMALIZED) BEAM PARAMETERS

Fig. 2. Open loop beam resonator: transient analysis.

B. Transient and PSS Analysis: Driven Beam Resonator

The beam resonator in this case is operated in an open-loop
configuration based on the equations in (13) and (14), with the
BCs in (4). We include loss in the beam with quality factors
QKV = 2000 and QVI = 2000, with an overall quality factor
of Q = 1000. We also take into account the nonlinear effect
due to tension as captured by a term in (14). The excitation
is chosen as below with A = 1 and fc = 0.25 (normalized)

a(t, x1) = A sin (2π fc t). (41)

For transient analysis, the initial conditions are set to zero
at all points along the beam, i.e., u1(t = 0, x1) = 0 and
u2(t = 0, x1) = 0 for 0 ≤ x1 ≤ 1. We use an implicit
second-order time-stepping scheme, and 29-point Chebyshev
representations for u1(t, x1) and u2(t, x1) at a given t. Fig. 2
shows the transient analysis result for the lateral deflection
u1(t, x1) of the beam as a function of both position x1 and
time t. On this 3-D plot, the deflection for the mid-point (at
x1 = L/2) of the beam is traced with a curve. With a sinusoidal
excitation as in (41), the beam resonator eventually reaches
a time-PSS, which can be directly computed with a PSS
analysis. As described in Section VII-C, the PSS analysis is
performed by a hiearchical Fourier–Chebyshev spectral tech-
nique. The initial guess for the Newton iterations is obtained
via transient analysis. A Fourier–Chebyshev representation as
in (36) with 29 Chebyshev points and 31 Fourier compo-
nents was used for u1(t, x1) and u2(t, x1). The total number of
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Fig. 3. Open loop beam resonator: PSS analysis.

nonlinear algebraic equations obtained via Fourier–Chebyshev
spectral discretization is equal to (2×29+4)×31 = 1922. Four
additional equations are needed in order to capture the spatial
BCs. With rectangular spectral collocation [21], we have effec-
tively used a 29 + 4 = 33 point Chebyshev interpolant for the
x1 dependence of u1(t, x1), which is projected to 29 colloca-
tion points. With the initial guess from transient analysis, the
Newton iterations converge quadratically to the desired relative
accuracy (10−8) within four iterations. The time-PSS for the
lateral deflection u1(t, x1) is shown in Fig. 3. We observe that
the beam steady-state is far from being sinusoidal in time t,
due to the nonlinear effect in the beam.

C. Frequency Sweep for PSS Analysis: Driven
Beam Resonator

The beam resonator is operated in an open-loop config-
uration, with a sinusoidal drive as in (41). We include the
nonlinear effect due to tension, and also loss due to vis-
cous damping with QVI = 10 but set damping due to the
Kelvin–Voigt effect to zero. The analysis is carried out for a
range of drive amplitudes, from A = 0.01 to A = 3.00. We
perform the drive frequency sweep for PSS analysis using
the arclength continuation technique. Fig. 4 shows the RMS
value (over one period in t) of the beam lateral deflection
at its mid-point as a function of drive frequency for a range
of drive amplitudes. Each point on the family of graphs in
Fig. 4 represents a PSS analysis. However, the initial guesses
for these analyses are not all generated via transient analyses,
they are in fact generated from a previous run of the anal-
ysis via first-order continuation. As seen in Fig. 4, at larger
drive amplitudes that excite the nonlinearity of the beam, there
are multiple solutions for a range of drive frequencies. The
arclength continuation scheme enables us to compute all of
these multiple solutions. However, not all of these solutions
are stable. The behavior revealed by the results in Fig. 4 is
well-known and appears in the periodically forced nonlinear
duffing oscillator [39]–[41]. In fact, the scalar duffing model
is used as a simple representation for mechanical beam res-
onators [41]. Our results in Fig. 4 reveal a curious effect: at
the highest drive amplitudes, apart from the main multivalued

Fig. 4. Open loop beam resonator: frequency sweep PSS.

branch of the frequency response at frequencies larger than 1,
one can observe a smaller scale secondary multivalued (blown
up in the figure for better visibility) branch at around a fre-
quency value of 0.46. In fact, there is a tertiary branch (which
is not multivalued) that is visible as a tiny blip at around a
frequency value of 0.27. We believe that these secondary and
tertiary peaks in the frequency response are a manifestation of
the superharmonic resonance phenomenon [39] seen in forced
nonlinear oscillatory systems.

1) Comparison With Previous Work: Results similar to the
ones above are reported in [42] and [43]. These works are on
the numerical solution of nonlinear equations for distributed
beam models using a modal/finite-element technique [42], and
a spectral Chebyshev one [43]. Especially the work in [43] is
noteworthy: a numerical technique that is based on a Chebysev
representation for spatial dependence is proposed. However,
instead of a collocation scheme [21], a Galerkin scheme is
used. Even though the handling of the BCs is achieved with a
projection scheme as in [21], their approach seems less gen-
eral. The rectangular spectral collocation approach [21] we
use is straightforward. Nevertheless, it appears that in both
works [42], [43], the time-PSS is computed by running a tran-
sient time-stepping scheme long enough, as opposed to the
hierarchical Fourier–Chebyshev technique we have proposed
that computes the steady-state solution directly and efficiently.
Furthermore, they do not employ an arclength continuation
scheme in tracing the frequency response curves with folds.
They seem to be performing a simple drive frequency sweep,
where at each frequency a transient analysis is run anew.
This must be quite costly computationally, and cannot capture
the unstable branches. That is probably why the frequency
response curves presented in [42] and [43] exhibit jumps at
the fold locations.

D. Delay Sweep for PSS Analysis: NEMS
Feedback Oscillator

We include loss in the beam with quality factors QKV = 20
and QVI = 20, with an overall quality factor of Q = 10.



1456 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 7, JULY 2018

(a)

(b)

(c)

Fig. 5. NEMS feedback oscillator: delay sweep PSS. (a) RMS lateral deflec-
tion versus feedback delay. (b) Oscillation frequency versus feedback delay.
(c) RMS lateral deflection versus oscillation frequency.

The model for the amplifier is as specified in Section VII-A:
a simple saturating amplifier. We choose the bandwidth BW
of the amplifier to be very large. This means that z(t) = b(t)

in (34). We consider three sets of values for the small ampli-
tude gain g and the output saturation level s for the amplifier, as
defined in (35). Fig. 5(a) shows the RMS beam lateral deflec-
tion at its mid-point, as a function of feedback delay, for the
three amplifier parameter sets. Each point on the family of
graphs in Fig. 5(a) represents the result of a PSS analysis for
the autonomous NEMS oscillator at a certain feedback delay
setting. We observe that, for each amplifier parameter set, the
NEMS resonator oscillates with maximum amplitude at a cer-
tain value of feedback delay. More interestingly, for the largest
gain setting of the amplifier, the NEMS oscillator exhibits mul-
tiple oscillatory solutions for a narrow range of feedback delay
values. We are not aware of any other work in the literature
that has demonstrated this behavior for an NEMS feedback
oscillator, experimentally, or computationally. The oscillation
frequency at each feedback delay setting is determined by the
autonomous dynamics of the oscillator. In PSS analysis, the
oscillation frequency is an unknown, and is solved for along
with the other variables. Fig. 5(b) shows the oscillation fre-
quency as a function of feedback delay. The data for this plot
comes from the same set of PSS analyses that were run to
generate the data for Fig. 5(a). We observe that the oscilla-
tion frequency as a function of feedback delay exhibits two
local extrema, a maximum, and a minimum. These two points
are of interest [23], [37], [38], for the phase noise perfor-
mance of the oscillator, to be discussed in the next section.
The feedback delay value that corresponds to the maximum
frequency in Fig. 5(b) seems to be the same as the delay value
that corresponds to the maximum amplitude in Fig. 5(a). We
can use the same data in these plots in order to create a plot
of the RMS value of the beam lateral deflection versus fre-
quency, shown in Fig. 5(c). We observe that the maximum
frequency indeed corresponds to the maximum amplitude. This
plot looks similar to Fig. 4 for the open-loop, driven resonator.
However, all of the solutions represented in Fig. 5(c) are sta-
ble, autonomous solutions of the feedback oscillator, whereas
not all solutions in Fig. 4 correspond to stable ones for the
driven, open-loop resonator. As discussed in [37], “unstable
solutions in the open-loop configuration are stabilized by the
closed-loop feedback.”

E. Delay Sweep for Phase Noise Analysis:
NEMS Oscillator

The sensitivity of NEMS oscillators used as ultrasensitive
sensors is determined by their noise performance [10], [35].
There are various noise sources in NEMS systems. We concen-
trate on the two most important ones: 1) electronic amplifier
noise and 2) mechanical resonator noise.

1) Impact of Amplifier Noise on Phase Noise: The major
source of noise in the electronic domain is the amplifier. For
the simple saturating amplifier in (34) and (35), we use a
white noise source at the input to model its noise contribution.
The impact of this input-referred noise source on the phase
noise performance of the NEMS oscillator can be quantified
via the time-periodic Floquet eigenmode ẑsp1(t) of the adjoint
equation, as discussed in Section V. Based on the results
in [34], the contribution and impact of amplifier noise on phase
noise can be computed as follows PNamp = ∫ Tp

t=0

[
ẑsp1(t)

]2
dt.

PNamp is normalized, in the sense that the strength of the
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Fig. 6. Phase noise impact of amplifier noise.

Fig. 7. Phase noise impact of distributed beam noise.

noise source is set to unity. Using the techniques discussed
in Sections VII-D and VII-E, PNamp can be computed for a
certain feedback delay setting based on PSS and Floquet anal-
yses. Fig. 6 shows PNamp as a function of feedback delay, for
the three amplifier parameter sets. We observe that the phase
noise impact of amplifier noise has two sharp local minima.
These minima in fact correspond to the two turning points in
Fig. 5(c). The minimum on the right in Fig. 6 corresponds to
the first turning point in Fig. 5(c) with maximum frequency
and amplitude, whereas the one on the left corresponds to the
second turning point with smaller frequency and amplitude.
Both of the minima become deeper as the saturation level of
the amplifier increases.

2) Impact of Mechanical Beam Noise on Phase Noise:
The fluctuation-dissipation theorem dictates that every dissipa-
tion mechanism is associated with a noise source [10]: every
loss mechanism in the beam resonator corresponds to a noise
source. The mechanical noise due to intrinsic losses in the

beam material and viscous damping is white, similar to ther-
mal noise in electrical circuits, however, with a distributed
nature as the beam itself. As discussed in [10], this distributed
noise source has uncorrelated samples not only in time but also
in space: the mechanical noise at two different points on the
beam are uncorrelated. The impact of this distributed noise
source on the phase noise performance of the NEMS oscilla-
tor can be quantified via the time-periodic Floquet eigenmode
ûsp1(t, x) as follows. PNbeam = ∫ Tp

t=0

∫ 1
x=0

[
ûsp1(t, x)

]2
dx dt.

The integral with respect to x is due to the distributed nature
of beam noise. Fig. 7 shows PNbeam as a function of feed-
back delay, for the three amplifier parameter sets. We observe
that the phase noise impact of mechanical beam noise also has
two local minima. However, the local minimum on the right
in Fig. 7 is not sharp, and does not correspond to the first
turning point in Fig. 5(c).

3) Comparison With Previous Work: The noise analysis
results reported above for an NEMS resonator-based feedback
oscillator qualitatively agree with previous results reported in
the literature. The “noise quenching effect” [23] for the ampli-
fier noise, with a saturating amplifier, at the first turning point
described above was first discovered by Yurke et al. [11]. This
result was later further developed and extended by Kenig et al.
in a series of papers [23], [37], [38], who discovered a similar
noise quenching effect at also the second turning point and
verified them experimentally. The analyses conducted by both
Yurke et al. [11] and Kenig et al. [23], [37], [38] are based on
a lumped duffing model of the resonator, whereas our results
are based on the hybrid lumped-distributed model. While the
results previously obtained based on the lumped model are
practically valuable, the distributed model of the beam res-
onator can offer improved design insight and higher analysis
fidelity, and can be used in order to verify the various approx-
imations involved in deriving a lumped model of a distributed
component. More complicated resonator structures difficult to
model in a lumped manner can be analyzed and optimized for
noise performance based on distributed models.

IX. CONCLUSION

We presented a numerical simulation framework and
tool for multidomain systems modeled with coupled PDEs
and DAEs. A nontrivial application to an NEMS-based
oscillator was discussed. Current and future work is on:
1) compressed, joint Chebyshev–Fourier representations for
multivariate functions; 2) full exploitation of structure in hier-
archical Chebyshev–Fourier collocation schemes for efficient
steady-state and noise analyses for coupled PDE-DAE sys-
tems; and 3) in-depth investigation of the noise performance
of NEMS feedback oscillators as ultrasensitive sensors.
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