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ABSTRACT

A TWO STAGE SOLUTION APPROACH TO SPARE
PARTS DISTRIBUTION UNDER A SPECIAL COST

STRUCTURE

Esra Koca

M.S. in Industrial Engineering

Supervisor: Assoc. Prof. Emre Alper Yıldırım

July, 2010

In this thesis, we consider a multicommodity distribution problem. We assume

that there is a central depot which houses a number of different types of items.

There is a finite number of geographically dispersed demand points which place

orders for these items on a daily basis. The demand of these demand points should

be satisfied from this central depot. We assume that a finite number of identical

trucks with predetermined destinations are used for the distribution of the items

from the central depot to each demand point. The demand of each demand point

can be split among several trucks and a single truck is allowed to visit several

demand points. Our objective is to satisfy the demand of each demand point

with the minimum total distribution cost while respecting the capacity of each

truck. The cost structure is dictated by the final destinations of trucks used in the

distribution of the items and the set of demand points visited by each truck. We

propose two different solution approaches. The first approach, called the Direct

Approach, is aimed at solving the problem directly using a mixed integer linear

programming formulation. Since the Direct Approach becomes computationally

infeasible for real-life problems, we propose a so-called Hierarchical Approach

that is aimed at solving the problem in two stages using an aggregation followed

by a disaggregation scheme. We study the properties of the solutions computed

with the Hierarchical Approach. We perform extensive computational studies on

a data set adapted from a major automotive manufacturing company in Turkey in

an attempt to compare the performances of the two approaches. Our results reveal

that the Hierarchical Approach significantly outperforms the Direct Approach on

the vast majority of the instances.

Keywords: multicommodity distribution, transportation, logistics.
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ÖZET

ÖZEL MALİYET YAPISI ALTINDA YEDEK PARÇA
DAĞITIMI İÇİN İKİ AŞAMALI ÇÖZÜM YÖNTEMİ

Esra Koca

Endüstri Mühendisliği, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Emre Alper Yıldırım

Temmuz, 2010

Bu tez çalışmasında çok ürünlü bir dağıtım problemi üzerine çalıştık. Farklı

çeşitte parçaların bulunduğu merkez depodan istek noktalarına kamyonlarla

dağıtım yapılmaktadır. İstek noktalarının herbir parça çeşidi için günlük tale-

pleri bu kamyonlar ile sağlanmalıdır. Bir istek noktasının talebi birden fazla

kamyonla sağlanabilir. Benzer sekilde bir kamyon birden fazla istek noktasının

talebini taşıyabilir. Belirli sayıda son durağı bilinen türdeş kamyonlar olduğunu

varsaydık. Taşımacılık maliyeti olarak iki çeşit ücret vardır: son durak ücreti

ve ugrama ücreti. Her bir istek noktası için belirli miktarda bir son durak

ücreti vardır. Eğer bir kamyon taşımacılıkta kullanılıyorsa o kamyonun son surak

ücreti ödenmelidir. Aynı şekilde, her bir istek noktası ikilisi için de belirli bir

uğrama ücreti vardır. Eğer bir kamyon son durağı dışında bir istek noktasına

da parça taşıyorsa o istek noktası için uğrama ücreti ödenmelidir. Problem her

bir istek noktasının her bir parça çeşidi için taleplerini kamyon kapasitelerine

uygun bir şekilde en az taşımacılık maliyeti ile saglamaktır. Problemi çözmek

için iki farklı çözüm yöntemi geliştirdik: Doğrudan Çözüm Yöntemi ve Aşamalı

Çözüm Yöntemi. Bu iki çözüm yönteminin sonuçlarını analiz edip karşılaştırdık.

Türkiye’nin önde gelen otomobil üreticilerinden birisinden elde ettiğimiz günlük

veriler ile çözüm yöntemlerimizi test ettik. Elde ettiğimiz sonuçlara göre aşamalı

çözüm yönteminin bu problemi çözmek için daha efektif bir cözüm yöntemi olduğu

sonucuna vardık.

Anahtar sözcükler : çok ürünlü dağıtım, taşımacılık, lojistik.
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Chapter 1

Introduction

Logistics is the management of the flow of material, service, information and capi-

tal between the origin point and the consumption point in order to satisfy require-

ments of the consumers. It consists of integration of information, transportation,

warehousing, inventory, material handling and packaging. Today logistics is one

of the important functions in business.

Figure 1.1: Logistics Cost as a Percentage of GDP

The significance of logistics can be understood by examining annual logistics

costs of the countries. Cost of logistics always constitutes a large percentage of

Gross Domestic Product (GDP) in the U.S. As seen in Figure 1.1, in the last ten

1



CHAPTER 1. INTRODUCTION 2

years, logistics cost in each year in the U.S. has corresponded to more than 8.5

percent of that year’s GDP. This situation makes logistics an important part of

the economy.

According to the 20tℎ Annual State of Logistics Report of Council of Sup-

ply Chain Management Professionals (CSCMP), U.S. business logistics cost was

$1,344 billion which is equal to 9.4 percent of U.S. GDP in 2008. In addition, as

seen in Figure 1.2, transportation cost was $872 billion which is about 65 percent

of the total logistics cost. This makes transportation as the most important part

of logistics functions.

Figure 1.2: Distribution of Logistics Costs of U.S. in 2008

A similar situation is valid for Turkey. Transportation costs and incomes of

Turkey between the years 2000 and 2007 can be seen in Figure 1.3 [48]. Trans-

portation cost of Turkey in 2007 was $6.268 billion USD whereas its GDP in 2007



CHAPTER 1. INTRODUCTION 3

was $663.419 billion USD. Therefore, Turkey’s transportation cost in 2007 is equal

to 9.45 percent of its GDP. In addition, the transportation income of Turkey in

2007 was 6.104 billion USD. According to the logistics report for 2007 which is

prepared by UTIKAD, the Freight Forwarders and Logistics Service Providers

Association in Turkey, respecting the data of Central Bank of the Republic of

Turkey, the reason of this situation is that Turkey could not take advantage of its

own logistics resources in the international trades. Therefore, there is an effort

to reduce the transportation costs and improve the logistics activities in Turkey.

Figure 1.3: Transportation Costs and Incomes of Turkey Between 2000 and 2007

The importance of the logistics does not only lie on its high costs. Due to

globalization, competition has increased and companies try to survive in the new

global business market by improving their productivity and customer service.

Therefore, quick delivery of goods to customers is important for companies in

order to stay in the market. Quick deliveries is possible if the companies manage

their logistics well.

Another aspect that requires companies to manage their logistics well is the

environmental issues. An effective transportation means less fuel consumption

and less environmental pollution. Moreover as fuel costs are high, it is also

helpful for companies to reduce their costs.
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As explained above, it is necessary and beneficial for companies to manage

their logistics well. Transportation is one of the most important parts of the

logistics and it should be done in a cost-efficient way for the sake of the companies.

The problem we study in this thesis is inspired by a logistics problem of one of

the major automotive companies in Turkey. The company has a warehouse for

spare parts in its facility, and there are retailers all around Turkey that are served

by this warehouse. The company outsources its logistics and the distribution of

the spare parts to the retailers is done by trucks of the logistics company. Each

day demands of some or all of the retailers for the spare parts should be satisfied

by the trucks. The problem is to satisfy the demand of each retailer for each

spare part type with the minimum transportation cost. Although the problem

is inspired by an automotive company, many logistics problems can be cast in

this setting. There is a central depot in which there are different types of items

that can be ordered by any one of the demand points. Distribution of the items

from the central depot to the demand points is done by trucks. A truck can

carry items for more than one demand point and a demand point’s demand can

be satisfied by more than one truck. The problem is to satisfy the daily demand

of each demand point for each item type with the minimum transportation cost.

Many logistics problems can be cast in this setting. Consequently, many real

life distribution problems can be solved by the solution method proposed for this

problem.

The problem we study in this thesis is not a classical routing problem. The

main difference between our problem and a routing problem is the cost structure.

There are two types of costs in our problem: final destination costs and visiting

costs. There is a fixed number of trucks each having certain final destinations

and final destination costs. A truck may carry demand for demand points other

than its final destination. In this situation, an additional visiting cost is paid

for each visit of the truck to the demand points. The visiting cost depends on

the final destination of the truck and the demand point that is visited. When

the final destination of a truck and the demand points that will be visited are

known, the route that the truck will follow is fixed. Therefore, we do not need

to route the trucks that will be used; we need to choose the trucks that will be
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used and decide how to satisfy demand of each demand point for each item type

with the minimum transportation cost. Therefore, the problem we study is not

a classical routing problem, it is more similar to a capacity allocation problem.

Each truck has a limited capacity and a fixed final destination cost. We need to

determine the trucks that will be used in the distribution and allocate capacities

of the trucks to the demand of each demand point with minimum cost.

In the next section, we provide a review of the literature on the distribution

problems.

1.1 Literature Survey

We review the literature in order to determine the problems related to our problem

and the solution techniques presented for solving them. We find out that the

problems that are related to distribution problems are the Traveling Salesman

Problem (TSP), Multi-Traveling Salesman Problem (mTSP) and Vehicle Routing

Problem (VRP). In this section, we briefly give the definitions of these problems

and the solutions techniques developed for each problem type.

TSP is the problem of finding a path through a weighted graph that starts and

ends at the same vertex and visits every other vertex in the graph exactly once

so that the total weight of the path is minimized. Although TSP related prob-

lems were treated in 1800s by the mathematicians W.R. Hamilton and Thomas

Kirkman, the general form of the TSP was first studied starting in the 1930s

by mathematicians Karl Menger in Vienna and Harvard. TSP is an NP-Hard

Problem but many of the special cases of the TSP can be solved efficiently in

polynomial time. Dantzig, Fulkerson and Johnson [13], solved a 49-city prob-

lem with the linear programming approach. They used subtour restrictions in

their solution approach. In the survey of Bellmore and Nemhauser [7], several

exact and approximate solution methods for the TSP are reviewed. There are

three fundamentally different solution generation ways: tour-to-tour improve-

ment, based on finding a better tour that is a neighbor of the present tour; tour
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building, based on building a sequence by successively including other nodes into

the present sequence until a tour is obtained; subtour elimination, starting from

an optimal solution to the assignment problem under the matrix C, subtours are

eliminated iteratively until a tour is obtained. All procedures of the tour-to-tour

improvement are approximate. Exact tour building algorithms are dynamic pro-

gramming [6],[25],[28], the branch and bound algorithms of Little et al. [36], and

Hatfield and Pierce [27]. Exact subtour elimination methods are integer linear

programming [13], [8], [37], [38], the branch and bound algorithm of Eastman

[17], and the Gilmore-Gomory method [23]. There are also partitioning and de-

composition methods used by Held and Karp [28] and Karg and Thompson [31]

in order to obtain approximate solutions to the TSP.

There exists several families of heuristics for the TSP. These can be classi-

fied into three categories: constructive heuristics, improvement heuristics, and

composite heuristics consisting of a tour construction phase followed by an im-

provement phase. Renaud, Boctor and Laporte [41], introduced a fast composite

heuristic for the symmetric TSP. In addition, well solvable special cases of the

TSP are researched in the survey by Burkard, Deineko, Van Dal, Van Der Veen

and Woeginger [10].

A generalization of the TSP is the multiple traveling salesman problem

(mTSP). In mTSP there are m salesmen located at a single vertex and the prob-

lem is to determine tours for each of the m salesmen through a weighted graph

that starts and ends at the same vertex and visits every other vertex in the graph

exactly once so that the total weight of the tours is minimized [5]. Compared

to the TSP, the mTSP is more adequate to model real life situations, since it is

capable of handling more than one salesman. Bektas [30], reviews the literature

and describes exact and heuristic solution approaches proposed for the problem.

There are different types of integer programming formulations for the mTSP: in

the assignment-based formulations, subtour elimination constraints (SECs) are

used in order to get a proper solution for the problem. Several types of SECs

are proposed in Datzig et. al.[13], Miller et. al.[38], Gavish [21], Kara and Bek-

tas [30]. Laporte and Nobert [32], presented two different formulations for the

mTSP. A k-degree centre tree-based formulation and a flow based formulation
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are due to Christofides et al. [11]. Laporte and Nobert [32] proposed an exact

solution algorithm based on the relaxation of the some of the constraints of the

problem and they introduce SECs iteratively. Ali and Kerninton [1] proposed

a branch and bound algorithm for the asymmetric mTSP. Gavish and Srikanth

[22] attempt to solve a large scale mTSP and another exact solution method is

proposed by Gromicho et al.[26].

mTSP can be considered as a relaxation of the VRP, which deals with de-

signing a set of vehicle routes of least cost in such a way that each customer is

visited exactly once by exactly one vehicle, the total demand of any route does

not exceed the vehicle capacity and all the routes start and end at the depot.

Most of the distribution and logistics problems are modeled as the VRP. There

exists a broad literature on this problem and consequently there are many exact

and approximate solution algorithms.

The VRP was first introduced by Dantzig and Ramser [14], but they called

it ”truck dispatching problem”. In this paper, an approach for obtaining a near

optimal solution was proposed. Five years later, Clarke and Wright [12], modified

the solution approach of Dantzig and Ramser and developed an effective greedy

heuristic. The algorithm of Clarke and Wright, called ”savings algorithms”, first

creates vehicle routes containing the depot and one other vertex and then merges

the routes according to the largest saving in the total cost. Several improvements

to these algorithms have been proposed by Gaskell [20], Yellow [47], Golden et

al. [24], Paessens [40], and Nelson et al. [39].

Another heuristic for solving the VRP is the sweep algorithm which is pro-

posed in a book by Wren [45] and a paper by Wren and Holliday [46]. In this

algorithm clusters are initially formed by rotating a ray centered at the depot and

then TSP for each cluster is solved. An extension of the sweep algorithm which is

called the Petal algorithm is another heuristic that is developed by Balinski and

Quandt [4]. This algorithm first generates routes which are called ”petals” and

then selects the routes that will be used among them by solving a set partitioning

problem. Several improvements to the petals algorithms are proposed by Foster

and Ryan [19], Ryan et al. [43] and Renaud et al. [42].
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The two phase method of Fisher and Jaikumar [18] is called the cluster first,

route second algorithm. In this algorithm customers are first allocated to clusters

first and then TSP is solved for each cluster. A generalized assignment problem

is solved to form clusters. Bramel and Simchi-Levi [9] developed a two phase

heuristic in which seeds are determined by solutions of the capacitated location

problems and the remaining vertices are gradually added into their allotted route

in the second stage. Most of the classical and modern heuristics and exact ap-

proaches developed for the VRP can be found in the surveys of Laporte [33],

Laporte et al. [34] and Toth and Vigo [44].

There are several variations of VRP like VRP with capacity restrictions

(CVRP), time windows (VRPTW), pick-up and delivery (VRPPD), time depen-

dent travel times, uncertain demand and messy cost functions. However, none of

these variations are suitable for our problem. In the TSP, mTSP, and VRP, it is

assumed that each vertex, or customer, should be visited once in total whereas

in our problem there is no restriction on the number of visits to any demand

point. The demand of any demand point may be split into several trucks in our

problem. However, recently a new VRP variant is introduced to the VRP liter-

ature which is called the Split Delivery Vehicle Routing Problem (SDVRP) by

Dror and Trudeau [15]. The SDVRP allows the delivery to a demand point to be

split between two or more vehicles. In many cases, allowing split deliveries yields

savings in both the total distance traveled and the number of vehicles required.

There are few exact algorithms in the SDVRP literature. Dror et al.[16]

solved the problem with a mixed integer programming approach using several

valid inequalities. Their method optimally solves small instances of the problem

with up to 10 demand points. They used heuristic methods rather than an exact

solution method to obtain feasible solutions. Lee et al. [35] developed a dynamic

programming model with finite state and action spaces. Their largest instance

consists of nine demand points and six vehicles. Archetti et al.[3],[2] performed

the worst case analysis for the SDVRP and developed a tabu search algorithm for

the SDVRP, respectively. The SDVRP in not as widely studied as other variants

of the VRP, like CVRP, VRPTW, VRPPD. Exact algorithms in the literature

can only solve small SDVRP instances.
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Jin, Liu and Bowden [29] developed a two stage algorithm with valid inequal-

ities for the SDVRP. They adopt the formulation of Dror et al.[16] and Lee et al.

[35]. Their solution approach gives good results for the problem.

The problem we study is similar to the SDVRP. However, in SDVRP it is

assumed that the cost structure is symmetric and has the triangular property

whereas we do not restrict the cost in our problem in any way. Therefore, the

problem we study is different than their problem. In addition, as explained in

the previous section, the cost structure of the problem makes it different from

a routing problem. Therefore, we do not use their algorithm but develop our

specific solution approach.

1.2 Thesis Overview

The rest of the thesis can be summarized as follows. In the next chapter, we define

our problem and present the solution approaches we develop in order to solve the

problem. In Chapter 3, the solutions of the models that are introduced in Chapter

2 are analyzed and compared. Numerical results and several comparisons are

presented in Chapter 4. Finally, we present our concluding remarks in Chapter

5.



Chapter 2

Problem Definition and

Optimization Models

In the previous chapter, we gave a short description of the problem we studied

in this thesis. In this chapter, in Section 2.1 we formally define the problem.

After that, we present the solution approaches developed to solve the problem.

We developed two different solution approaches: The Direct Approach and The

Hierarchical Approach. In Section 2.2, we explain these solution approaches in

detail introducing the models used in these solution approaches.

2.1 Problem Definition

Assume that there is a central depot from which a number of items should be

distributed to demand points so as to satisfy their demand. Distribution of items

is carried out by trucks and the goal is to minimize the total distribution cost.

There are M demand points whose demand should be satisfied by the central

depot.

A truck that will be used in the distribution may satisfy more than one point’s

demand and the demand of any one of the points may be satisfied by more than

10



CHAPTER 2. PROBLEM DEFINITION AND OPTIMIZATION MODELS 11

one truck. Each truck that is used in the distribution will have a fixed final

destination which is also one of the demand points.

We assume that the transportation costs are primarily determined by the final

destination of a truck. For each demand point j, j = 1, . . . ,M , there is a final

destination cost of fj. If a truck whose final destination is the demand point j

used in the distribution of the items, then fj is paid as the final destination cost of

that truck. If a truck whose final destination is the demand point j, j = 1, . . . ,M ,

also carries load for the demand point i, then si,j, i = 1, . . . ,M , i ∕= j, will be

paid for the visit of that truck to the demand point i.

The shortest path between the depot and the demand point j, j = 1, . . . ,M

is assumed to be known. If a truck whose final destination is the demand point

j, j = 1, . . . ,M is used in the distribution, then this shortest path will be used.

Therefore, when the final destination of a truck is known, then the route that it

should follow becomes fixed. Since the final destination of each truck is known,

all of these trucks have certain routes to follow. In addition, for each demand

point pair (i, j), i = 1, . . . ,M , j = 1, . . . ,M , i ∕= j, there is a fixed route to

be followed for the visit of a truck whose final destination is the demand point

j to the demand point i. Therefore, if we know the truck that will be used

and the demand points it will visit, then the route it will follow becomes fixed.

Consequently, the problem under consideration is different from a typical routing

problem.

A visit of a truck whose final destination is the demand point j, j = 1, . . . ,M ,

to the demand point i, i = 1, . . . ,M , i ∕= j is carried out by the smallest possible

deviation from the route of the truck. The value of si,j, i = 1, . . . ,M , j =

1, . . . ,M , depends on the position of i with respect to the shortest path between

the depot and the demand point j. Therefore, si,j is not symmetric, in general.

There may be some i = 1, . . . ,M , j = 1, . . . ,M , i ∕= j such that si,j ∕= sj,i. In

addition, si,j does not directly depend on the length of the deviation from the

shortest path to j. It can be seen the cost for the combination of the extra time

passed, additional distance traveled, extra fuel consumed, etc. for the visit of the

truck to i.
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If si,j > fi, then si,j + fj > fi + fj. Consequently, a truck whose final

destination is the demand point j does not visit the demand point i in any

optimal solution as it is obvious that sending one truck to the demand point i

and one truck to the demand point j costs less. In this case, we let si,j = +∞.

Both fj, j = 1, . . . ,M , and si,j, i = 1, . . . ,M , j = 1, . . . ,M , i ∕= j are assumed

to be known. This cost structure can be represented by defining an M ×M cost

matrix C whose elements are composed of visiting and final destination costs such

that:

Ci,j =

{
si,j if i ∕= j,

fj if i = j,

for i = 1, . . . ,M , j = 1, . . . ,M . The cost matrix C is an input to our problem.

We assume that costs are additive and that they are independent of one

another. If a truck whose final destination is the demand point j visits only

demand points i and k on the way, then the total cost for that truck will be

fj + si,j + sk,j.

We assume that there is a fixed number of trucks whose final destination is

the demand point j, j = 1, . . . ,M and we denote the number of trucks whose

final destination is the demand point j by tj, j = 1, . . . ,M . We represent the set

of these trucks by Tj = {1, . . . , tj}. Overall, there are T =
∑M

j=1 tj trucks. We

assume that all of the trucks are identical.

There are N items that can be ordered by the demand points. The demand

of each demand point for each item type is denoted by Di,l for i = 1, . . . ,M and

l = 1, . . . , N . In order to determine the capacity of a truck allocated to one unit

of a single item, we use the measure of a truckload. The capacity of a truck that

is occupied by one unit of item type l, l = 1, . . . , N is denoted by wl so that

0 < wl ≤ 1. wl = 1/nl, where nl is the largest number of item type l that can be

loaded into a truck for each l = 1, . . . , N .

We assume that any combination of items can be loaded into trucks as long as

their total volume is less then or equal to one truckload. This assumption seems
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restrictive since in fact it depends on the shapes of the items. There may be some

combinations of the items that cannot be loaded into trucks despite the fact that

their total volume is less than or equal to one truckload. The geometry of the

items may affect the number of items that can be loaded into a truck. However,

this restriction can be avoided by expanding the assumption if necessary. Without

this assumption, the problem turns into a 3-D bin packing problem, which is a

strongly NP-hard problem.

Our main goal is to satisfy the demand of each demand point for each item type

with the minimum transportation cost while respecting the capacity of trucks.

As stated above, as each truck has a certain final destination, each truck has a

certain route and we do not need to determine routes for the trucks. We only

need to decide which trucks to use and how to allocate demands of the demand

points to these trucks so that the total transportation cost is minimized. The

actual problem is to allocate demands of the demand points to trucks so as to

minimize the total transportation cost. Therefore, our problem is more similar

to a resource allocation problem.

The problem was inspired by a major automotive manufacturer in Turkey.

The automotive company outsources its logistics from a logistics company and

this company uses the cost structure explained above. The company has a ware-

house for spare parts in its facility, and there are retailers all around Turkey that

are served by this warehouse. The distribution of spare parts to the retailers is

performed by trucks of the logistics company. For each retailer, there is a fixed

route to be followed. For instance, if the final destination of a truck and retailers

that it will visit are known, then the route that the truck should follow becomes

fixed. The cost structure is determined by these fixed routes.

Many logistics problems can be cast in this setting. For instance, the central

depot may represent the warehouse of a manufacturing facility and demand points

may represent distribution centers; or the central depot may be a distribution

center of an automobile company and the demand points may be retailers. The

problem introduced in the chapter is so general that many real life problems can

be solved by the solution method proposed for this problem.
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In the following section, we introduce our optimization models that will form

a basis for our solution approach.

2.2 Optimization Models

In this section, we present several optimization models for the problem defined

in Section 2.1. In Section 2.2.1, we develop a mixed integer linear programming

model for the problem introduced in Section 2.1. However, for large instances of

the problem, the model becomes difficult to solve. In Section 2.2.2, we introduce

our two stage solution approach in an attempt to solve the problem in an efficient

way.

2.2.1 Direct Approach

The Direct Approach is an attempt to solve the problem introduced in Section

2.1 using a mixed integer linear programming model developed in this section.

The purpose of this model is to select the trucks that will be used and decide how

to satisfy demands of all the demand points with the minimum transportation

cost while respecting the truck capacities.

Despite the fact that all of the parameters used for this formulation are intro-

duced in Section 2.1, we can summarize our parameters as follows:

M : Number of demand points

N : Number of different types of items

Tj : Set of trucks whose final destination is the demand point j, j = 1, . . . ,M

tj : Number of trucks whose final destination is the demand point j, j = 1, . . . ,M

fj : Final destination cost for each truck in Tj, j = 1, . . . ,M

si,j : Cost of visiting demand point i for each truck in Tj, i = 1, . . . ,M, j =

1, . . . ,M , i ∕= j

Di,l : The daily demand (in number of units) of demand point i for item type l,



CHAPTER 2. PROBLEM DEFINITION AND OPTIMIZATION MODELS 15

i = 1, . . . ,M , l = 1, . . . , N

wl: Capacity of a truck that is occupied by one unit of item type l, l = 1, . . . , N .

We next define the decision variables:

zj,k =

{
1 if truck k ∈ Tj is used ;

0 otherwise,
j = 1, . . . ,M , k ∈ Tj.

xi,j,k =

{
1 if truck k ∈ Tj carries load for the demand point i;

0 otherwise,

i = 1, . . . ,M , j = 1, . . . ,M , k ∈ Tj.

di,j,k,l = Demand (in number of units) of the demand point i for item type l that

is satisfied by truck k ∈ Tj, i = 1, . . . ,M , j = 1, . . . ,M , k ∈ Tj, l = 1, . . . , N.

Using the parameters and decision variables defined above, we formulate the

following mixed integer programming model, which we refer to as (IP):
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(IP) min
M∑
j=1

∑
k∈Tj

fjzj,k +
M∑
i=1

M∑
j=1

∑
k∈Tj

si,jxi,j,k

s.t.
M∑
i=1

xi,j,k ≤ Mzj,k, j = 1, . . . ,M, k ∈ Tj, (2.1)

N∑
l=1

wldi,j,k,l ≤ xi,j,k, i = 1, ...,M, j = 1, ...,M, k ∈ Tj (2.2)

M∑
i=1

N∑
l=1

wldi,j,k,l ≤ zj,k, j = 1, . . . ,M, k ∈ Tj, (2.3)

M∑
j=1

∑
k∈Tj

di,j,k,l = Di,l, i = 1, . . . ,M, l = 1, . . . , N, (2.4)

di,j,k,l ≥ 0 and integer, i = 1, ...,M, j = 1, ...,M, k ∈ Tj, l = 1, .., N (2.5)

xi,j,k ∈ {0, 1}, i = 1, ...,M, j = 1, ...,M, k ∈ Tj, (2.6)

zj,k ∈ {0, 1}, j = 1, . . . ,M, k ∈ Tj, (2.7)

The objective function is the total cost that arises from the cost of final

destinations of used trucks and visiting cost for the demand points they will

visit.

If a truck is not used, it cannot satisfy the demand of any demand point,

which is ensured by the constraint (2.1). Similarly, if any part of the demand

of a demand point is not allocated to a truck, then that truck cannot carry any

item for that point. On the other hand, even if some part of the demand of a

demand point is allocated to a truck, total volume of the items carried by the

truck for the demand point cannot exceed the truck capacity. This is guaranteed

by the constraint (2.2). The constraint (2.3) is the capacity constraint that should

be satisfied for each truck. The constraint (2.4) ensures the satisfaction of the

demand of each demand point for each item type.

The remaining constraints (2.5), (2.6) and (2.7) define the range of values that

the decision variables can take.
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(IP) can be used to solve small instances of the problem. However, when the

problem instance gets larger, the model becomes increasingly difficult to solve

since both the number of constraints and number of variables of (IP) is O(M2NT )

where T =
∑M

j=1 Tj. The number of constraints of (IP) is 3MT + 2M2T +MN +

M2NT and the number of variables of (IP) is MT (M + MN + 1). In addition,

all the variables are either binary variables or integer variables, which makes the

problem more difficult to solve. There are MT (M + 1) binary variables and

M2NT integer variables in this model.

Since the larger instances of the problem may not be solved by the Direct Ap-

proach, we developed a new solution approach, called the Hierarchical Approach.

We explain this solution approach in the next subsection.

2.2.2 Hierarchical Approach

As the number of integer and binary variables in (IP) quickly increases with N ,

M and T , the model becomes difficult to solve for large instances of the problem.

We present the Hierarchical Approach in an attempt to solve larger instances

of the problem in a more effective way. In an attempt to decrease the number of

discrete variables and constraints, we first ignore the different type of items. We

aggregate the demand of each demand point. We achieve this by interpreting the

total demand of each demand point in terms of truckload so that Ei =
N∑
l=1

wlDi,l,

for i = 1, . . . ,M . Next, we solve a problem to satisfy the demand (in truckload) of

each demand point with the minimum transportation cost while respecting truck

capacities. This is the first stage. The important difference between the first stage

and the Direct Approach is the ignorance of the different type of items in the first

stage. The new aggregate items are assumed to be divisible and the integrality

is therefore ignored in the first stage. This yields a decrease in the number of

variables and the number of constraints by a factor of O(N). In addition, as the

demand in truckload can be allocated to trucks in any proportion, there is no

integrality restriction on the allocated demands of each demand point in the first
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stage. These results make the first stage problem easier to solve in comparison

with the Direct Approach. Therefore, we solve a relatively easier and smaller

problem in the first stage.

The solution from the first stage gives us information about two crucial points.

The first one is the trucks that will be used in the distribution. The second one

is the demand points that each truck will visit. According to this information, in

the second stage, we solve the problem of satisfying the demand of each demand

point for each item type with the trucks that will visit it. Note that this problem

decomposes naturally. Demand of a demand point can be satisfied by a finite

number of trucks. Similarly, a truck can satisfy the demand of a finite number of

demand points. In addition, as the demand points are geographically dispersed,

there may be demand points that are not related to each other. Therefore, we

divide the problem into subproblems after the first stage solution is obtained.

This is called the clustering stage. A cluster consists of all the trucks that will

visit at least one of the demand points of the cluster. In addition, all the demand

points that are visited by at least one of the trucks of the cluster also belong

to the same cluster with the trucks. Therefore, solution of one subproblem does

not depend on another one. The subproblem is to satisfy the demand of each

demand point in the cluster by the trucks that will visit it within the same cluster.

At the end of the clustering stage, we have several subproblems to solve and in

the second stage, we solve each subproblem separately. In the second stage, we

disaggregate the demand of each demand point. We do not ignore different type

of items. We solve the problem with respect to the solution of the first stage. At

the end of the second stage, we determine how to distribute the items into trucks

so that the demand of each demand point is satisfied.

The main idea of the Hierarchical Approach is the demand aggregation and

disaggregation. Demand aggregation makes the first stage problem easier to solve

as explained above. However, the demand aggregation also has a drawback. We

ignore the integrality of the items while considering the demand in truckload.

Therefore, we may allocate the aggregated demand in truckload into trucks in

such a way that it may not be possible to allocate the same demand for items

into the same number of trucks. Consider the following example:
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Example 2.1: Suppose that there are two demand points, Point 1 and Point

2 and there are two item types, Item 1 and Item 2. One unit of Item 1 occupies

0.2 truckload and one unit of Item 2 occupies 0.3 truckload. The demand of each

demand point for each item type is given in the following table:

Di,l Item 1 Item 2

Point 1 1 3
Point 2 0 3

The aggregated demand of Point 1 is EPoint1 = 1.1 truckload and the aggre-

gated demand of Point 2 is EPoint2 = 0.9 truckload. This aggregated demand

can be allocated to two trucks. One truckload of the demand of Point 1 can

be allocated to Truck 1, and the rest of the demand of Point 1 and all of the

demand of Point 2 can be allocated to Truck 2. However, it is not possible to

allocate demand of the demand points for each item type into two trucks after

disaggregating the demand.

As shown in Example 2.1, demand aggregation may lead us to a demand

allocation which is not possible for the disaggregated demand. This is the dis-

advantage of the demand aggregation. Therefore, in the second stage, we allow

excess capacity usage in the trucks, but we penalize it in the objective function.

In the following subsections, we explain the stages of the Hierarchical Ap-

proach in detail.

2.2.2.1 First Stage

The main purpose of the first stage is to determine the trucks that will be used

in order to satisfy the demand of the demand points with the minimum trans-

portation cost. When the model is solved to optimality, trucks that will be used

and capacities that should be allocated on each truck to each demand point they

will visit are determined with minimum total cost.

As in the Direct Approach, we initially assume that there are T =
∑M

i=1 ti

trucks available. Next, we compute the total demand of each demand point in
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terms of truckload,i.e., we let Ei =
N∑
l=1

wlDi,l for i = 1, . . . ,M . In the first stage,

we try to satisfy the demand of each demand point with minimum cost. In other

words, we ignore different types of items and we only allocate total demand Ei

of each demand point i = 1, . . . ,M into trucks. As the total demand Ei can be

allocated into trucks in any proportion, we also ignore the integrality of items in

the first stage. Consequently, from the solution of the first stage we only obtain

the set of trucks that will be used and the capacities that should be reserved for

each demand point in each truck.

The parameters of the first stage are defined as follows:

M : Number of demand points

N : Number of different types of items

T : Total number of trucks

Tj : Set of trucks whose final destination is the demand point j, j = 1, . . . ,M

tj : Number of trucks whose final destination is the demand point j, j = 1, . . . ,M

fj : Final destination cost for each truck in Tj, j = 1, . . . ,M

si,j : Cost of visiting the demand point i for each truck in Tj, i = 1, . . . ,M, j =

1, . . . ,M

Ei : Demand (in truckload) of the demand point i, i = 1, . . . ,M

wl : Capacity of a truck that is occupied by a unit of item type l, l = 1, . . . , N

Variables of the first stage are defined as follows:

zj,k =

{
1 if truck k ∈ Tj is used;

0 otherwise,
j = 1, . . . ,M , k ∈ Tj.

xi,j,k =

{
1 if truck k ∈ Tj carries load for the demand point i;

0 otherwise,

i = 1, . . . ,M , j = 1, . . . ,M , k ∈ Tj.



CHAPTER 2. PROBLEM DEFINITION AND OPTIMIZATION MODELS 21

yi,j,k = Demand of the demand point i (in truckload) that is satisfied by truck

k ∈ Tj, i = 1, . . . ,M, j = 1, . . . ,M , k ∈ Tj.

For the first stage of the Hierarchical Approach we derive the following model

which we refer to as the First Stage Model (FSM):

(FSM) min
M∑
j=1

∑
k∈Tj

fjzj,k +
M∑
i=1

M∑
j=1

∑
k∈Tj

si,jxi,j,k

s.t.
M∑
i=1

xi,j,k ≤ Mzj,k, j = 1, . . . ,M, k ∈ Tj (2.8)

yi,j,k ≤ xi,j,k, i = 1, . . . ,M, j = 1, . . . ,M, k ∈ Tj (2.9)
M∑
i=1

yi,j,k ≤ zj,k, j = 1, . . . ,M, k ∈ Tj (2.10)

M∑
j=1

∑
k∈Tj

yi,j,k = Ei, i = 1, . . . ,M, (2.11)

yi,j,k ≥ 0 i = 1, . . . ,M, j = 1, . . . ,M, k ∈ Tj, (2.12)

xi,j,k ∈ {0, 1}, i = 1, . . . ,M, j = 1, . . . ,M, k ∈ Tj, (2.13)

zj,k ∈ {0, 1}, j = 1, . . . ,M, k ∈ Tj. (2.14)

The objective function is the total cost that arises from the cost of final

destinations of the trucks used and visiting cost of the demand points they will

visit.

If a truck is not used, then it cannot carry any load for any of the demand

point. Similarly, if any part of the demand of a demand point is not allocated to

a truck, then that truck cannot carry any load for that point. These are ensured

by the constraints (2.8), (2.9), respectively. Total volume of the load carried by

a truck cannot exceed the truck capacity. This is guaranteed by the constraints

(2.10). The constraints (2.11) serve for the demand satisfaction of all the demand

points.
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The remaining constraints (2.12), (2.13) and (2.14) define the range of values

the decision variables can take.

2.2.2.2 Intermediate Stage: Clustering

In the first stage, we solve the first stage model for the aggregated demand of

each demand point. At the end of the first stage, the trucks that will be used

and the demand points they will visit are determined. The allocated capacities

on each truck for each demand point are also decided. However, items demanded

by the demand points are not allocated to the trucks. Therefore, we need to

disaggregate the aggregated demand of each demand point in terms of different

items. In the second stage, we disaggregate the demand respecting the solution

from the first stage. However, this problem naturally decomposes into smaller

problems. In this stage, we determine these subproblems.

We construct a graph with respect to the solution of the first stage. Consider

a bipartite graph in which vertices represent trucks and demand points. If a

truck visits a demand point, then there exists an edge between the vertices that

represent that truck and that demand point. This graph is a bipartite graph as

there are no edge between any two trucks or any two demand points. For example,

suppose that the first stage reveals that n trucks will be used in order to satisfy

the demand of m demand points. Consider the following graph in Figure 2.1.

According to this graph, Truck 1 and Truck 2 carry load for Demand Point 1 and

Truck 3 satisfies the demand of Demand Point 2 and Demand Point 3.

In the resulting graph, we find out connected components, i.e., we divide the

graph into clusters or subgraphs such that there exist no edge between any pair

of the clusters. For example, according to the graph in Figure 2.1, Truck 1, Truck

2 and Point 1 form the first cluster. Point 2, Point 3 and Truck 3 form the second

cluster and so on.

Note that a demand point appears only in one cluster and similarly a truck

belongs only to one cluster. In addition, trucks that will carry load for a demand

point are in the same cluster with the demand point and the demand points



CHAPTER 2. PROBLEM DEFINITION AND OPTIMIZATION MODELS 23

Figure 2.1: The Bipartite Graph

that are visited by the same truck are also in the same cluster with the truck.

Satisfying the demand of all the demand points in a cluster with the trucks that

will visit them is a subproblem for each cluster. Solution of a subproblem does

not depend on the solution of another one.

We solve the second stage for each cluster individually. For our example, the

first subproblem is to satisfy the demand of Point 1 using only Truck 1 and Truck

2. The second subproblem is to satisfy the demand of the demand points Point

2 and Point 3 using Truck 3. We continue until there is no cluster left.

After the first stage solution is obtained, we find the clusters in the clustering

stage and then solve the second stage for each cluster separately. In the next

section, we explain the second stage of the solution approach.

2.2.2.3 Second Stage

After the clustering stage is completed, we solve the second stage for each cluster

separately as the corresponding subproblems can be solved independently.
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In the second stage, we solve the subproblems for each cluster. A subproblem

for a specific cluster is to satisfy the demand of the demand points in the cluster

for each item type using only the trucks that will visit them. At the end of

this stage, we find how to satisfy the demand of each demand point for each

item type. However, as we ignore the integrality of items in the first stage, it

may not be possible to find a solution to the second stage that respects the first

stage solution (see Example 2.1). Therefore, in the second stage, our objective is

to find a feasible solution respecting the solution from the first stage as closely

as possible. In order to achieve this objective, we develop two different models

which are called the Second Stage Model-1 (SSM-1) and Second Stage Model-2

(SSM-2).

As the solution of the first stage becomes an input for the second stage, no-

tations that we use for some of the variables of the first stage and parameters

of the second stage will be the same. The parameters of the second stage are as

follows:

M ′ : Number of demand points in the cluster

T ′ : Number of trucks in the cluster

R′ : Set of demand points in the cluster; ∣R′∣ = M ′,

T ′j : Set of trucks whose final destination is the demand point j, j = 1, . . . ,M ′

t′j : Number of trucks whose final destination is the demand point j, j = 1, . . . ,M ′

N : Number of different types of items

wl : Capacity of a truck that is occupied by a unit of item type l, l = 1, . . . , N

Di,l: Demand of demand point i for item type l, i = 1, . . . ,M ′, l = 1, . . . , N

The following are the optimal solutions returned by (FSM) and used in the

second stage:

x∗i,j,k =

{
1 if truck k ∈ T ′j carries load for the demand point i;

0 otherwise,

i ∈ R′, j ∈ R′,k ∈ T ′j .
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y∗i,j,k : Demand (in truckload) of demand point i that will be satisfied by truck

k ∈ T ′j , for i ∈ R′, j ∈ R′, k ∈ T ′j .

In (SSM-1), we find a solution such that the deviation from the solution of the

first stage is minimized. In the first stage, we allocate the demand (in truckload)

of the demand points into the used trucks. In (SSM-1), we try to find a solution

that is as close as possible to the first stage solution.

The variables of (SSM-1) are as follows:

di,j,k,l : Number of units of item type l in truck k ∈ T ′j for the demand point

i, i ∈ R′, j ∈ R′, k ∈ T ′j , l = 1, . . . , N .

pi,j,k : Capacity used more than the allocated capacity for the demand point

i in truck k ∈ T ′j , i ∈ R′, j ∈ R′, k ∈ T ′j .

qi,j,k : Capacity used less than the allocated capacity for the demand point i

in truck k ∈ T ′j , i ∈ R′, j ∈ R′, k ∈ T ′j .

cj,k : Additional capacity used in truck k ∈ T ′j , j ∈ R′, k ∈ T ′j .

(SSM-1) is formulated as the following:
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(SSM-1) min
∑
j∈R′

∑
k∈T ′j

(∑
i∈R′

(pi,j,k + qi,j,k) + cj,k

)
s.t.∑

j∈R′

∑
k∈T ′j

x∗i,j,kdi,j,k,l = Di,l, i ∈ R′, l = 1, .., N, (2.15)

∑
i∈R′

N∑
l=1

wldi,j,k,l ≤ 1 + cj,k j ∈ R′, k ∈ T ′j (2.16)

N∑
l=1

wldi,j,k,l ≤ y∗i,j,k + pi,j,k, i, j ∈ R′, k ∈ T ′j (2.17)

N∑
l=1

wldi,j,k,l ≥ y∗i,j,k − qi,j,k, i, j ∈ R′, k ∈ T ′j (2.18)

di,j,k,l ≥ 0 and integer, i, j ∈ R′, k ∈ T ′j , l = 1, .., N, (2.19)

pi,j,k ≥ 0, i, j ∈ R′, k ∈ T ′j , (2.20)

qi,j,k ≥ 0, i, j ∈ R′, k ∈ T ′j , (2.21)

cj,k ≥ 0, j ∈ R′, k ∈ T ′j . (2.22)

The constraint (2.15) ensures the demand satisfaction of each demand point

for each item type. The constraint (2.16) finds the excess in capacity usage, cj,k,

in each truck k ∈ T ′j for j = 1, . . . ,M ′ in order to satisfy the demand of each

demand point. The constraints (2.17) and (2.18) find the positive and negative

deviation from the allocated capacity pi,j,k and qi,j,k in truck k ∈ Tj, j = 1, . . . ,M ′

for each demand point i = 1, . . . ,M ′, respectively.

The remaining constraints (2.19), (2.20), (2.21) and (2.22) define the ranges

of values that each decision variable can take.

We define the excess capacity usage in trucks using the variables cj,k ≥ 0,

j ∈ R′, k ∈ T ′j and the constraint (2.16). We need to do this as it may not be

possible to satisfy the demand of each demand point with the trucks that will

visit them (see Example 2.1). Therefore, we allow the excess capacity usage in

the trucks, however we penalize the excess capacity in the objective. Since it is

a minimization problem, the model tries to make the excess usage as small as
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possible.

If a solution that is consistent with the first stage solution is found, then

∑
j∈R′

∑
k∈T ′j

(∑
i∈R′

(pi,j,k + qi,j,k) + cj,k

)
= 0.

This means that the actual capacity in each truck that is allocated to each demand

point is exactly the same as the first stage solution. However, this may not

always be possible since the integrality restriction is ignored in the first stage.

The objective function is chosen to ensure smallest deviation from the first stage

solution.

We propose another model for the second stage, called the Second Stage

Model-2 (SSM-2). In (SSM-2), we only minimize the total infeasibility, total

excess in the capacities of trucks used without taking into account the allocated

capacities in each truck for each demand point from the first stage solution.

(SSM-2) is formulated as follows:

(SSM-2) min
∑
j∈R′

∑
k∈T ′j

cj,k

s.t.∑
j∈R′

∑
k∈T ′j

x∗i,j,kdi,j,k,l = Di,l, i ∈ R′, l = 1, . . . , N, (2.23)

∑
i∈R′

N∑
l=1

wldi,j,k,l ≤ 1 + cj,k j ∈ R′, k ∈ T ′j (2.24)

di,j,k,l ≥ 0 and integer, i, j ∈ R′, k ∈ T ′j , l = 1, . . . , N, (2.25)

cj,k ≥ 0, j ∈ R′, k ∈ T ′j . (2.26)

The constraint (2.23) ensures the demand satisfaction of each demand point

for each item type. The constraint (2.24) finds the excess in capacity usage, cj,k,

in each truck k ∈ T ′j for j = 1, . . . ,M ′ in order to satisfy the demand of each

demand point.
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The remaining constraints (2.25) and (2.26) define the range of values that

each decision variable can take.

The main purpose of the second stage is to find a feasible solution respecting

the solution of the first stage as closely as possible. However, we may ignore

the capacity allocations in each truck. There may be another combination of the

allocated capacities in the trucks without changing the total transportation cost

while satisfying the demand of all the demand points. Moreover, any solution to

(SSM-1) is also a solution for (SSM-2). If it is best to stick to the solution of

the first stage, (SSM-2) also does it since the first stage solution is also a feasible

solution for (SSM-2). Therefore, we ignore the constraints (2.17) and (2.18) of

(SSM-1) in (SSM-2). Our main purpose in (SSM-2) is to find a feasible solution

such that no truck is used more than its capacity. Therefore, we again allow the

excess capacity usage in the trucks by the same reason explained before and we

now minimize only the total excess capacity used in the trucks. If it is possible to

satisfy the demand of each demand point by the trucks with no excess capacity,

(SSM-2) finds a solution with an objective function value of zero. If it is not

possible, then (SSM-2) finds a solution with excess capacity in trucks as small as

possible.

We develop (SSM-2) since it is easier to solve than (SSM-1) since it has M ′2T ′

fewer constraints and variables than (SSM-1). In addition, the set of feasible

points of (SSM-1) is a subset of the set of feasible points of (SSM-2).

When the Hierarchical Approach finds a solution to the problem introduced

at the beginning of the chapter, it does it in a significantly shorter time than

the Direct Approach. In addition, it may also solve the problem instances that

cannot be solved by the Direct Approach. However, by the Hierarchical Approach

we have a risk to find a solution that is infeasible for the original problem since

the excess capacity usage in the trucks is allowed in the Hierarchical Approach. If

there exists k ∈ T ′j , j = 1, . . . ,M ′, such that cj,k > 0 in any of the subproblems,

then the solution of the Hierarchical Approach is not feasible for the original

problem. In the next chapter, we analyze the solution of this approach and find

an upper bound for cj,k, j = 1, . . . ,M ′, k ∈ T ′j . Our goal is to find an upper
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bound on the measure of infeasibility of the solution we obtain from the second

stage.



Chapter 3

Analysis of The Optimization

Models

In the previous chapter, we introduce the Hierarchical Approach and the Direct

Approach. In this chapter, we compare these two different solution approaches.

As discussed in the previous chapter, the Hierarchical Approach may give a so-

lution that is not feasible for the original problem. In this chapter, we give the

conditions in order for the solution of the Hierarchical Approach to be an opti-

mal solution of the original problem and then we analyze the quality of solutions

of the Hierarchical Approach. We find an upper bound on the the maximum

infeasibility residual for the solution of the Hierarchical Approach.

In the second stage of the Hierarchical Approach, we solve each subproblem

separately. At the end of the second stage, we obtain a solution for each subprob-

lem. The solution of each subproblem gives us information about how to satisfy

the demand of the demand points in the corresponding cluster. Consequently,

a solution of the original problem introduced in Chapter 2 is given by the com-

bination of the solutions of each subproblem. We call the combination of the

solutions of each subproblem of the second stage ”the solution of the Hierarchical

Approach” in the rest of the thesis.

We next discuss several properties of the Hierarchical Approach.

30
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Lemma 1 The optimal value of (FSM) is less than or equal to the optimal

value of (IP).

Proof. It suffices to show that any optimal solution of (IP) is a feasible solution

of the first stage of the Hierarchical Approach. Let di,j,k,l be an optimal solution

of (IP). Then we can compute yi,j,k =
∑N

l=1 wldi,j,k,l for each i = 1, . . . ,M , j =

1, . . . ,M , k ∈ Tj. Since

M∑
i=1

N∑
l=1

wldi,j,k,l ≤ 1

by (2.3) for each j = 1, . . . ,M , k ∈ Tj, we have

M∑
i=1

yi,j,k ≤ 1

for each j = 1, . . . ,M , k ∈ Tj. In addition, if we multiply both sides of the

equation

M∑
j=1

∑
k∈Tj

di,j,k,l = Di,l

by wl and sum up both sides for all l = 1, . . . , N , we obtain

M∑
j=1

∑
k∈Tj

yi,j,k = Ei

for all i = 1, . . . ,M . This shows that any optimal solution of (IP) can be trans-

formed into a feasible solution for the first stage of the Hierarchical Approach.

Therefore, any optimal solution of the Hierarchical Approach has a cost which

is less than or equal to the cost of solution of (IP) since both problems have the

same objective function value.
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As indicated in Chapter 2, it is easier to solve (SSM-2) than solving (SSM-1).

Therefore, we henceforth assume that we use (SSM-2) in the second stage of the

Hierarchical Approach.

In the next proposition, we present a sufficient condition in order for the

solution of the Hierarchical Approach to be an optimal solution for (IP).

Proposition 1 If the optimal objective function value of the second stage

of the Hierarchical Approach is equal to zero for each cluster, then any optimal

solution of the Hierarchical Approach is also an optimal solution of the original

problem.

Proof. If cj,k = 0 for all j = 1, . . . ,M , k ∈ Tj, then all trucks are used without

any excess in their capacities. Therefore this solution is also a feasible solution

for (IP). By Lemma 1, this solution is an optimal solution for (IP).

Proposition 1 gives a sufficient condition for the optimality of the solution

of the Hierarchical Approach. However, this condition may not be satisfied in

general. As we allow the excess capacity usage in trucks in the second stage of

the Hierarchical Approach, it may find a solution in which there exists at least

one truck that is used more than its capacity. Therefore, the solution of the

Hierarchical Approach may be infeasible for the original problem.

Next, we find an upper bound on the possible excess capacity usage for a

truck in an optimal solution of the Hierarchical Approach.

Consider a cluster in which there are M ′ demand points {R1, . . . , RM ′} and

T ′ trucks {T1, . . . , TT ′}. Each truck has a capacity of one truckload.

Since there are T ′ trucks, the total capacity of all trucks in the cluster is T ′.

We can assume that the total demand of all demand points in the cluster is equal

to the total capacity of all trucks in the cluster. If this is not the case, we can add

a dummy demand point with demand (T ′ - total demand of all demand points)

and satisfy this assumption.

Let
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d+
j : positive deviation from the truck capacity of one truckload for truck j

d−j : negative deviation from the truck capacity of one truckload for truck j

dj : net deviation from the truck capacity of one truckload for truck j,

j = 1, . . . , T ′.

Then,

T ′∑
j=1

dj = 0 (3.1)

where

dj = d+
j − d−j , (3.2)

min
{
d+
j , d

−
j

}
= 0. (3.3)

The objective of the second stage of the Hierarchical Approach is to minimize

the total excess capacity used in the trucks, i.e.,

min
T ′∑
j=1

d+
j . (3.4)

Let w = maxl∈B′ wl where

B′ : set of items in the cluster; B′ ⊂ {1, . . . , N} ,

wl : Truck capacity (in terms of truckload) occupied by one unit of item type

l, l ∈ B′.

The next lemma establishes an upper bound on the largest net deviation in

any truck for an optimal solution of (SSM-2).

Lemma 2 We have

max
j=1,...,T ′

dj ≤ w. (3.5)
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Proof. If T ′ = 1, by the equation (3.1), d1 = 0 and (3.5) is satisfied. Let T ′ > 1.

Suppose to the contrary that

max
j=1,...,T ′

dj > w. (3.6)

Assume without loss of generality that d1 > w. Then, it follows from the equation

(3.1) that

T ′∑
j=2

dj = −d1 < −w (3.7)

and

min
j=2,...,T ′

dj ≤
∑T ′

j=2 dj

T ′ − 1
<
−w

T ′ − 1
(3.8)

since the minimum of a finite set of real numbers is less than or equal to the

average of the set. Let arg minj=2,...,T ′ dj = k. Note that k ∕= 1.

Consider the subgraph in which demand points and trucks are represented by

nodes and edges connect demand points and trucks if a truck satisfies all or some

proportion of the demand of a demand point (see Figure 2.1 for an example).

This subgraph is a bipartite graph as there are no edges between any two trucks

or any two demand points. We claim that we can construct a feasible solution of

(SSM-2) with a smaller objective function value. We achieve this by redistributing

items among trucks.

There exists a path between any two trucks in this graph and such a path

includes at least one demand point. In other words, we can find a path

from T1 to Tj, for any j ∈ {1, . . . , T ′}. Let the path from T1 to Tk be

P = {T1, R1, T2, R2, . . . , Tk−1, Rk−1, Tk}. We can take an item, say item l1, that

is ordered by R1 and reload it to the next truck in the path after R1 which is

T2. As {T1, R1, T2} ⊂ P , R1 is connected to both of T1 and T2. This implies that

both of the trucks carry items for R1. Therefore, by taking one item from T1

and reloading it to T2 we do not change the total cost. By this process, we may

change the loads of each truck but do not affect the demand satisfaction of the
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demand points. Then, we take an item, say item l2 from T2 which is ordered by

R2, and reload it to the next truck T3 in the path. We repeat this process until

we find a feasible solution for (SSM-2) with a smaller objective function value.

Let Δd+
j be the net change in the objective function value corresponding to

the truck Tj for j = 1, . . . , T ′.

Since d1 > w, by our assumption, we still have d1 > 0 after we remove an

item from T1. Therefore

Δd+
1 = −wl1 . (3.9)

When we add item l1 to T2, we may observe the following different cases. We

treat each case separately.

∙ Case I, if d2 < 0 and wl1 + d2 < 0, then

d+
2 = Δd+

2 = 0 (3.10)

and then

T ′∑
i=1

Δd+
i = Δd+

1 + Δd+
2 + 0 = −wl1 + 0 = −wl1 < 0, (3.11)

T ′∑
i=1

(d+
i + Δd+

i ) <
T ′∑
i=1

d+
i . (3.12)

We obtain a solution which has a better objective function value, which is

a contradiction.

∙ Case II, if d2 < 0 and wl1 + d2 ≥ 0, then

d+
2 = Δd+

2 = wl1 + d2 < wl1 ≤ w, (3.13)

and then

T ′∑
i=1

Δd+
i = Δd+

1 + Δd+
2 + 0 < −wl1 + wl1 = 0, (3.14)

T ′∑
i=1

(d+
i + Δd+

i ) <
T ′∑
i=1

d+
i . (3.15)
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We obtain a solution which has a better objective function value, which is

a contradiction.

∙ Case III, if d2 ≥ 0 , then

Δd+
2 = wl1 , (3.16)

d+
2 ≥ wl1 , (3.17)

and then

T ′∑
i=1

Δd+
i = Δd+

1 + Δd+
2 + 0 = −wl1 + wl1 = 0, (3.18)

T ′∑
i=1

(d+
i + Δd+

i ) =
T ′∑
i=1

d+
i . (3.19)

If one of the first two cases happens, then we reach our goal and obtain a

contradiction. If the third case is realized, then we remove one item, item wl2

from T2 and reload it to the next truck in the path, T3. Then,

Δd+
2 ≤ wl1 − wl2 . (3.20)

For T3, we repeat the same analysis with T2. If one of the first two cases

is realized, then we reach our goal. Otherwise, we continue the process, which

eventually ends when we remove item wlk−1
from Tk−1 and reload it to Tk. As

dk <
−w

T ′ − 1
, (3.21)

d+
k = 0, (3.22)

and when we load item wlk−1
to Tk, we have

Δd+
k < wlk−1

− w

T ′ − 1
. (3.23)

In addition, in this case, the third case should have been realized for all the

trucks Tj, j ∈ {2, . . . , k − 1} since otherwise the process would have stopped



CHAPTER 3. ANALYSIS OF THE OPTIMIZATION MODELS 37

earlier. Then,

Δd+
1 = −wl1 ,

Δd+
2 ≤ wl1 − wl2 ,

Δd+
3 ≤ wl2 − wl3 ,

.

.

.

Δd+
k < wlk−1

− w

T ′ − 1
.

When we sum up all the changes, we obtain

T ′∑
i=1

Δd+
i <

−w
T ′ − 1

< 0, (3.24)

T ′∑
i=1

(d+
i + Δd+

i ) <
T ′∑
i=1

d+
i . (3.25)

By this process, we obtain a feasible solution which has a better objective function

value. If there still exists a truck with dj > w , j ∈ {1, . . . , T ′} in any cluster of

the second stage, we can repeat the same. This is a contradiction. Therefore,

max
j=1,...,T ′

dj ≤ w. (3.26)

In the next theorem, we show that we can further improve the upper bound

in Lemma 2.

Theorem 1 Consider a cluster in which there are M ′ demand points

{R1, . . . , RM ′} and T ′ trucks {T1, . . . , TT ′}. Each truck has a capacity of one

truckload.

Let w = maxl∈B′ wl where

B′ : set of items in the cluster; B′ ⊂ {1, . . . , N},

wl : Truck capacity (in terms of truckload) occupied by one unit of item type

l ∈ B′.
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Then,

max
i=1,...,T ′

di ≤ w

(
1− 1

T ′

)
, (3.27)

where

dj : net deviation from the truck capacity of one truckload for truck Tj,

j = 1, . . . , T ′.

Proof. We assume that the total demand of all the demand points is equal to

T ′. If this is not the case, then we can satisfy this condition by defining a dummy

demand point as in the previous proof.

Let

d+
j : positive deviation from the truck capacity of one truckload for truck Tj

d−j : negative deviation from the truck capacity of one truckload for truck Tj

Δd+
j : net change in the objective function value caused by truck Tj

for j = 1, . . . , T ′.

If T ′ = 1, by the equation (3.1), d1 = d+
1 = 0 and (3.27) is satisfied.

If T ′ ≥ 2, we again proceed by contradiction. Suppose, without loss of gener-

ality, that

d1 = d+
1 > w

(
1− 1

T ′

)
> 0. (3.28)

Then by (3.1),

T ′∑
j=2

dj = −d1 = −d+
1 < −w

(
1− 1

T ′

)
= −wT ′ − 1

T ′
< 0, (3.29)

and

min
j=2,...,T ′

dj < −
w

T ′
< 0, (3.30)

since the minimum of a finite set of real numbers is less than or equal to the

average of the set. Let arg minj=2,...,T ′ dj = k. Note that k ∕= 1.
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We will use the same procedure as in the previous proof. We remove l1 from

T1, reload it to T2; take l2 from T2 and reload it to T3 and do this until we obtain

a solution that has a better objective function value. In contrast, this time there

are two different cases for T1:

Case 1: wl1 ≤ d+
1

This case is equivalent to the previous proof since in the previous proof, it is

assumed that

w < d+
1 (3.31)

and as

w = max
l∈B′

wl ≥ wl1 , (3.32)

in the previous proof

wl1 ≤ d+
1 . (3.33)

Then, we achieve our goal either in a truck Tj, j ∈ {2, . . . , k − 1} or when we

reach Tk. The cases where we achieve our goal before Tk are the same as the

previous proof. If we achieve our goal in Tk, then

Δd+
1 = −wl1 ,

Δd+
2 ≤ wl1 − wl2 ,

.

.

.

Δd+
k ≤ wk−1 + dk < wk−1 −

w

T ′
.

When we sum up Δd+
i values over all i = 1, . . . , k values, we obtain

T ′∑
i=1

Δd+
i < −w

T ′
< 0, (3.34)

T ′∑
i=1

(d+
i + Δd+

i ) <
T ′∑
i=1

d+
i . (3.35)

This is a contradiction as we find a better solution.
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Case 2: wl1 > d+
1 > w(1− 1

T ′
)

For this case, Δd+
1 = −d+

1 < −wl1 . If one of the first two cases of the previous

proof is realized in the truck Tj, j ∈ {2, . . . , k − 1}, then

Δd+
1 < −wl1 ,

Δd+
2 ≤ wl1 − wl2 ,

.

.

.

Δd+
j ≤ wj−1 + dj.

When we sum up Δd+
i over all i = 1, . . . , j values, we obtain

T ′∑
i=1

Δd+
i < dj < 0, (3.36)

T ′∑
i=1

(d+
i + Δd+

i ) <
T ′∑
i=1

d+
i . (3.37)

This is a contradiction as we find a better solution.

If we reach the truck Tk, then

Δd+
1 < −wl1 ,

Δd+
2 ≤ wl1 − wl2 ,

.

.

.

Δd+
k ≤ wk−1 + dk < wk−1 −

w

T ′
.

When we sum up Δd+
i over all i = 1, . . . , k values, we obtain

T ′∑
i=1

Δd+
i < −w

T ′
< 0, (3.38)

T ′∑
i=1

(d+
i + Δd+

i ) <
T ′∑
i=1

d+
i . (3.39)
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Since we obtain a feasible solution with a smaller objective function value, this

is a contradiction.

Remark: The upper bound w
(
1− 1

T ′

)
for maxj=1,...,T ′ dj is tight as illustrated

by the following example.

Example 3.1: Assume that there is only one type of item, B′ = {1}, which

occupies w = w1 = 2
3

of the truck capacity. There is one demand point, M ′ = 1

and it has a demand of three units of the item, D1,1 = 3. As the total demand

is two truckloads, the Hierarchical Approach finds a solution in which two trucks

visit the demand point. Therefore, T ′ = 2. However, according to the second

stage of the solution approach,

d1 = 1
3

= 2
3

(
1− 1

2

)
= w

(
1− 1

T ′

)
and

d2 = −1
3
.

Therefore, the upper bound w
(
1− 1

T ′

)
cannot be improved.

Consequently, despite the fact that the Hierarchical Approach may give a

solution that is not feasible for the original problem, there is a tight upper bound

on the the maximum infeasibility residual for the solution of the Hierarchical

Approach.

We can take advantage of this upper bound for obtaining a feasible solution

for the original problem. Suppose that, in the first stage of the Hierarchical

Approach, we assume that all the trucks have a capacity of (1 − w) truckload.

Then, we need to replace zj,k with (1 − w) in the constraints (2.10) for all j =

1, . . . ,M , k ∈ Tj and solve (FSM) with the modified constraints. After the

solution of (FSM) is obtained and the clustering stage is completed, we solve

(SSM-2) for all the clusters by assuming that the trucks have a capacity of one

truckload. Since we know that the excess capacity cannot be more than w(1 −
1
T ′

) ≤ w, ∀T ′, by Theorem 3, it is obvious that there can not be an excess

capacity usage in any of the trucks in a solution found by the modified solution

approach. Consequently, the modified Hierarchical Approach certainly finds a
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feasible solution for the original problem. Therefore, we can ensure that a feasible

solution is computed by utilizing the upper bound in Theorem 3. However since

we assume reduced capacities in the first stage, this solution may result in a

higher cost.

Alternatively, we can solve the problem for only the clusters in which there

exists some extra capacity usage in some of the trucks. For this alternative, we

need to solve (FSM) for only the demand points in the cluster by assuming that

all the trucks have a capacity of (1 − w) truckload. In this way, we can find a

better feasible solution from the first alternative, since this time we assume only

some of the trucks have less capacity. In addition, if the cluster is small sized,

then we can use the Direct Approach for solving the problem of satisfying the

demand of each demand point in the cluster with the trucks having a capacity of

one truckload. This alternative, gives a better feasible solution from the first two

ones.

In this chapter, we analyzed the quality of solutions of the Hierarchical Ap-

proach and presented a sufficient condition in order for the solution of the Hier-

archical Approach to be an optimal solution of the original problem. Next, we

obtained a tight upper bound on the the maximum infeasibility residual for the

solution of the Hierarchical Approach. In the next chapter, we introduce our

computational study for the Hierarchical Approach and the Direct Approach and

we compare the solution approaches based on the computational results.



Chapter 4

Computational Results

In this chapter, we present the computational results of the two solution ap-

proaches introduced in Chapter 2. We used GAMS 22.3, Microsoft Office Excel

2007 and Visual Basic 6.5 in the implementation of the solution approaches. In

addition, CPLEX 10 is used as the solver in GAMS 22.3. All the computations

were performed on a computer that has 4 GB DDR2 RAM, Intel Core 2 Duo 2.53

GHz P8700 processor and 32-bit Windows 7 operating system.

We designed an Excel-based user friendly interface on Excel. The user enters

the number of items ordered by each demand point for each item type in an

Excel sheet in which there exists a column for each demand point and a row for

each item type and clicks a button that activates the Visual Basic code. All the

necessary data is exported to different sheets in a format such that GAMS can

use them as input and then GAMS is called by Visual Basic. Next, GAMS starts

to solve the models with the input data. We used xlimport, a procedure that

imports data from a spreadsheet into a GAMS program, and Gdxxrw, a GAMS

utility to read Excel spreadsheet data, in order to get the input data from Excel

43
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sheets. We used the following options in each of the GAMS models:

reslim = 43200

optcr = 0.00

nodefileind = 3

solvefinal = 0

names = 0

The first option guarantees that the running time for a GAMS model can

be at most 12 hours. If the optimal solution cannot be obtained after 12 hours,

then GAMS gives the best feasible solution obtained up to that time. In the

second option, relative optimality criteria is set to 0 which means that GAMS will

terminate when it finds an optimal solution unless another termination criterion

is satisfied. In the third option, we specify how to handle the node files during

the MIP processing. By default, CPLEX transfers nodes to node files when in-

memory set is larger than 128 MBytes and it keeps the resulting node files in

compressed form in memory. By setting nodefileind to 3, node files are stored

on the disk in compressed form. This provides more memory that can be used.

The last two options are modified in order to avoid an ’Out of Memory’ error. As

we are interested in the primal values of the solution, we do not need to see the

marginal values of variables and there is no need to solve the final problem for

the fixed values of the variables. This is guaranteed by the fourth option. The

last option prevents GAMS names for the variables and equations to be loaded

into CPLEX and this leads to less memory usage.

After GAMS terminates, we transfer the solution found to an Excel spread-

sheet. We use xldump, a procedure that can be used to export data from a GAMS

program to a spreadsheet, in order to achieve this. Then, we arrange the solution

such that there exists an Excel sheet for each truck that will be used. In each

sheet, the demand points that will be visited by the truck that corresponds to

that sheet and the number of items that will be carried to these demand points

are specified. This makes the solution easy to understand. The flow chart for the

solution approaches can be seen in Figure (4.1).

We used the data adapted from one of the major automobile companies in
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Figure 4.1: Flowchart of the solution approaches

Turkey in order to compare the two different solution approaches. There are 63

demand points and 71 different types of items. However, not all of the demand

points place an order each day. Similarly, some of the items may not be demanded

in some days.

Daily demands of the demand points for items are satisfied by trucks. Trucks

are outsourced from a logistics company. According to the contract between the

companies, there is no limit on the number of trucks; the company gets as many

trucks as necessary each day. Therefore, there is no limit on the number of trucks.
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However, the solution approaches we introduced in Chapter 2, assume that there

are tj trucks whose final destination is the demand point j for each demand point

j, j = 1, . . . ,M where tj, j = 1, . . . ,M , is a known, fixed number. Therefore,

we need to fix the number of trucks before the models are solved. In order to

achieve this, we need to find sufficiently large values for each tj, j = 1, . . . ,M .

The following part shows how large tj should be so that an optimal solution to

the problem can be found by the solution approaches introduced in Chapter 2.

Assume that there is a truck whose final destination is the demand point j. We

assume that, demand point i can be visited by a truck whose final destination

is the demand point j if and only if si,j < ∞. As we stated in Chapter 2, if

si,j > fi, then it is obvious that sending a truck to demand point i costs less

than a visit of the truck whose final destination is the demand point j to i. In

this case, we let si,j = ∞. Therefore, the demand point i can be visited by a

truck whose final destination is the demand point j if and only if si,j ≤ fi. Let

Rj ⊆ R = {1, . . . ,M} be the set of demand points that can be visited by the

truck whose final destination is the demand point j. Observe that once the final

destination of a truck is determined, then the set of demand points that can be

visited by this truck becomes available; therefore Rj is known for each j ∈ R. As

a result, we can define

Rj = {i ∈ R : si,j ≤ fi, i ∕= j}

for all j ∈ R.

A truck whose final destination is the demand point j can carry demand of

demand points i ∈ Rj ∪ {j}. Consequently, there may be a solution such that

the trucks whose final destination is the demand point j satisfy demand of all

the demand points in Rj ∪ {j}. Therefore, tj, the number of trucks whose final

destination is the demand point j, should be large enough to be able to satisfy the

demand of j and demand points in Rj. Therefore, in order to find the sufficient

number of trucks for each demand point j, we need to consider demand of all the

demand points in Rj ∪ {j}, j ∈ R.
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In order to find the sufficient number of trucks tj for each j, we use the

algorithm described in Algorithm 1.

Algorithm 1 Algorithm For Finding Sufficient Number of Trucks

(Input) Rj, set of demand points for each demand point j, j ∈ R;
Di,l, demand of demand point i for item type l, i ∈ R, l = 1, . . . , N ;
wl, volume (in truckload) of each item type for l = 1, . . . , N
(Output) tj, sufficient number of trucks for satisfying demand of all the points
in Rj ∪ {j}, j ∈ R;
t′i, sufficient number of trucks for satisfying demand of the demand point i,
i ∈ R
for i ∈ R do
t′i ← 0
if
∑N

l=1 Di,l > 0 then
t′i ← 1
B1 ← 0
for l := 1 to N do

if Di,l > 0 then
for n := 1 to Di,l do

if {k ∈ {1, . . . , t′i} : wl + Bk ≤ 1} = ∅ then
t′i ← t′i + 1
Bt′i
← wl

else
k∗ ← arg min{k ∈ {1, . . . , t′i} : wl + Bk ≤ 1}
Bk∗ ← wl + Bk∗

for j ∈ R do
tj ← t′j
for i ∈ Rj do
tj ← tj + t′i

Satisfying the demand of a demand point for each item type with the mini-

mum number of trucks resembles a bin packing problem. In our problem, trucks

corresponds to bins and items ordered by the demand point correspond to the

items that will be placed into bins. The problem is to find the minimum number

of bins for packing all the items. Therefore, in Algorithm 1, we modified a greedy

algorithm for the bin packing problem.

In this algorithm, for each demand point i = 1, . . . ,M , the demand of i for

each item type l is placed into trucks. When all the demand of i is placed into

trucks, the number of trucks necessary for satisfying the demand of demand point
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i is found and is denoted by t′i. Note that t′i is an upper bound for the minimum

number of trucks that can satisfy the demand of demand point i as this is a

feasible solution for the bin packing problem for demand point i. After t′i is

found for all i = 1, . . . ,M , then tj = t′j +
∑

i∈Rj
t′i is computed and tj gives us

the sufficient number of trucks for each demand point j = 1, . . . ,M .

In the following lemma, we show that Algorithm 1 finds the sufficient number

of trucks for each demand point so at most tj trucks are used for each demand

point j = 1, . . . ,M in all of the optimal solutions.

Lemma 3 There cannot be an optimal solution to the problem introduced

in Chapter 2 in which more than tj trucks are used for any demand point j,

j = 1, . . . ,M , where tj denotes the number of trucks that have demand point j as

the final destination which is found by Algorithm 1.

Proof. Let R = {1, . . . ,M} be the set of demand points. Suppose that for each

demand point j ∈ R, the bin packing problem is solved. Let tbj be the optimal

solution of the bin packing problem for the demand point j ∈ R. Note that tbj

is the minimum number of trucks necessary for satisfying the demand of point

j. Let tb
∗
j = tbj +

∑
i∈Rj

tbi be the number of trucks whose final destination is

the demand point j. Note that t′j ≥ tbj for all j ∈ R and consequently tj ≥ tb
∗
j .

Therefore, if we can show that tb
∗
j trucks are sufficient for each demand point

j ∈ R, then it is obvious that tj trucks are also sufficient.

Suppose, for a contradiction, that there exists an optimal solution that uses

more than tb
∗
j trucks for some j ∈ R. Let to

∗
j be the number of used trucks whose

final destination is the demand point j in the optimal solution and let ni,j be the

number of visits to point i ∈ Rj in the optimal solution by trucks whose final

destination is the demand point j. Note that {j}∪Rj consists of all the demand

points that can be served by a truck whose final destination is the demand point

j. Therefore, there may be two cases in the optimal solution: to
∗

j trucks satisfy

all the demand of all the demand points in the set {j} ∪ Rj or to
∗

j trucks satisfy

some portion of demand of some of the points in {j} ∪Rj.

First Case: to
∗

j trucks satisfy all the demand of all the demand points in
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the set {j} ∪Rj.

We know that there exists a solution in which tb
∗
j = tbj+

∑
i∈Rj

tbi trucks whose final

destination is the demand point j are used such that tbi trucks satisfy demand of

point i ∈ Rj and tbj trucks satisfy the demand of point j. The cost of this solution

is

fjt
b∗
j +

∑
i∈Rj

tbisi,j.

However, by our assumption tb
∗
j < to

∗
j . As tbi is the minimum number of trucks

necessary for satisfying the demand of i ∈ Rj, ni,j ≥ tbi for all i ∈ Rj. Conse-

quently,

fjt
b∗
j +

∑
i∈Rj

tbisi,j < fjt
o∗

j +
∑
i∈Rj

ni,jsi,j,

which is a contradiction since satisfying all the demand of all the demand points

in the set {j} ∪Rj using tb
∗
j < to

∗
j trucks costs less.

Second Case: to
∗

j trucks satisfy some portion of demand of some of the

points in {j} ∪Rj.

Let R̄j ⊂ {j} ∪ Rj be the set of demand points which are visited by trucks

whose final destination is the demand point j in the optimal solution. Similarly,

let Di,l,j ≤ Di,l, i ∈ R̄j, l = 1, . . . , N , j ∈ R, be the number of type l items

demanded by point i and carried by trucks whose final destination is the demand

point j in the optimal solution. Suppose that we solve the bin packing problem

for satisfying the demand of points in R̄j where the demand of each point for

each item type is Di,l,j, i ∈ R̄j, l = 1, . . . , N . Let the solution of the bin packing

problem for each demand point i ∈ R̄j be t̄bi and let t̄b
∗
j =

∑
i∈R̄j

t̄bi . It is obvious

that t̄bi ≤ tbi for all i ∈ R̄j and consequently t̄b
∗
j ≤ tb

∗
j . The bin packing solution

gives a solution to the problem such that t̄bi trucks satisfy the demand of points

in R̄j where demand is Di,l,j. Then, the cost of this solution is

fj t̄
b∗
j +

∑
i∈R̄j∖{j}

t̄bisi,j
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and as a result of the argument above

fj t̄
b∗
j +

∑
i∈R̄j∖{j}

t̄bisi,j ≤ fjt
b∗

j +
∑

i∈R̄j∖{j}

tbisi,j.

By the first case we know that

fjt
b∗
j +

∑
i∈R̄j∖{j}

tbisi,j < fjt
o∗

j +
∑

i∈R̄j∖{j}

ni,jsi,j,

therefore

fj t̄
b∗
j +

∑
i∈R̄j∖{j}

t̄bisi,j < fjt
o∗

j +
∑

i∈R̄j∖{j}

ni,jsi,j

which is a contradiction.

As a consequence, there cannot be an optimal solution to the problem that

uses more than tb
∗
j trucks for some j ∈ R. Since tj ≥ tb

∗
j for all j ∈ R, Algorithm

1 finds a sufficient number of trucks for each demand point.

The following lemma shows that solution of the Algorithm 1 cannot be im-

proved.

Lemma 4 Solution of the Algorithm 1 is tight, i.e., there exists an instance

of the problem for which there may be an optimal solution to a problem that uses

exactly tj trucks for some j ∈ R.

Proof. Consider the following example:

Suppose that R = {A,B,C} and consider the cost table below. Assume

that in the table, sj,j corresponds to fj for each j = A,B,C and the other cells

indicate the visiting costs. For instance, fA = 10 and sB,A = 5. Therefore, final

destination cost of each truck whose final destination is the demand point A is

10 units and a visit of a truck whose final destination is the demand point A to

the demand point B costs 5 units.
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si,j j
i A B C

A 10 ∞ ∞
B 5 20 ∞
C 5 ∞ 20

Then, RA = {B,C} and RB = RC = ∅. Assume that each demand point has

exactly one truckload of demand. Then, Algorithm 1 gives the following results:

t
′
A = 1 ; t

′
B = 1 ; t

′
C = 1;

tA = 1 + 1 + 1 = 3 ; tB = 1 ; tC = 1.

The optimal solution of this problem is to send 3 trucks whose final destination is

the demand point A. The first truck goes directly to point A (costs 10 units). The

second truck first visits point B then goes to point A (costs 5 + 10 = 15 units).

Finally, the last one first visits point C then goes to point A (costs 5 + 10 = 15

units); and the total cost of the optimal solution is 10 + 15 + 15 = 40 units.

Notice that tA = 3 and all of them are used in the optimal solution. Therefore,

the upper bounded solution resulting from Algorithm 1 cannot be improved.

Therefore, initially we create tj trucks for each demand point j = 1, . . . ,M and

assign the demand point j to these trucks as the final destination. This procedure

does not cut off the optimal solution as shown by Lemma 4. In addition, tj,

j = 1, . . . ,M cannot be improved as shown by Lemma 4.

As the company provided us only with the data of 11 days, we performed all

the computational studies on this data. The data we used can be summarized in

the following table. In addition, the detailed data can be seen in Appendix A.1

- A.24. The number of trucks defined for each problem in Table 4.1 is computed

by Algorithm 1.

We applied the two different solution approaches for solving the problem for
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Table 4.1: Input Data
Day # # of Demand # of Item # of Trucks

Points Types Defined

Day 1 14 45 77
Day 2 11 50 39
Day 3 12 47 46
Day 4 17 49 101
Day 5 10 37 24
Day 6 19 44 60
Day 7 23 49 163
Day 8 10 49 40
Day 9 7 39 26
Day 10 8 41 34
Day 11 27 48 169

the data of each day. In Table 4.2, the number of discrete and continuous vari-

ables, total number of variables and number of constraints for the first stage

model and for each subproblem of the second stage are given. As it can be seen

from the table, the first stage problem is a larger problem compared to the sub-

problems of the second stage in terms of the number of variables and the number

of constraints. In the first stage, we solve a relatively larger problem and in the

second stage we solve several small subproblems.

We prefer to compare the model statistics of (IP) and (FSM), as subproblems

of the second stage are very small problems compared to the first stage problem.

In Table 4.3, total number of variables, number of discrete variables and number

of constraints of (IP) and (FSM) are presented. As illustrated in the table, the

first stage problem is also a smaller problem than the problem of the Direct

Approach in terms of the number constraints and variables. In (IP), only the

variable that corresponds to the objective function value is a continuous variable,

all of the other variables are discrete variables. As it can be seen from the table,

there is a big difference between the number of discrete variables of (IP) and

(FSM). This is a serious disadvantage for the Direct Approach. In addition, the

number of constraints of (IP) is larger than the number of constraints of (FSM)

in all of the days. Therefore, in both of the stages of the Hierarchical Approach,

relatively smaller and easier problems are solved. This makes the Hierarchical
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Approach more preferable over the Direct Approach.

Table 4.3: Direct Approach vs. Hierarchical Approach Statistics
# of Discrete Total # of # of

Day # Variables Variables Constraints
(IP) (FSM) (IP) (FSM) (IP) (FSM)

1 695310 16170 695311 31263 17879 17263
2 241098 5148 241099 9868 6128 5589
3 318504 7176 318505 13801 8293 7741
4 1461167 30906 1461168 60096 33457 32641
5 91440 2640 91441 5041 3251 2891
6 975840 22800 975841 44461 24777 23960
7 4315099 89976 4315100 176204 94853 93749
8 200400 4400 200401 8401 5291 4811
9 51142 1456 51143 2731 1912 1646
10 91664 2448 91665 4625 3049 2729
11 6041412 127764 6041413 250966 133624 132355

In Table 4.4, the results obtained from the two solution approaches are sum-

marized. Resource usage reported for the Hierarchical Approach is the total time

necessary for solving the first stage and each of the subproblems of the second

stage. As it can be seen in the table, the resource usage of the Direct Approach

is significantly larger than the resource usage of the Hierarchical Approach. This

is an expected situation as the problem sizes are very different from each other.

As indicated before, relatively smaller and easier to solve problems are solved in

both of the stages of the Hierarchical Approach.

It can be observed from the table that maximum infeasibility residual is 0 for

all the days. By Proposition 1, this implies the Hierarchical Approach finds fea-

sible solutions for all days. For the data of 11 days, there are only two days, Day

7 and Day 11, that cannot be solved to optimality by the Hierarchical Approach

within the limited time. However, these days cannot be solved to optimality by

the Direct Approach either. Nevertheless, for Day 7, the Hierarchical Approach

finds a better solution with a smaller cost in the same time. Note that, the Hier-

archical Approach finds a solution in which 19 trucks are used in total, whereas

the Direct Approach finds a solution in which 20 trucks are used. For Day 11,

the two solution approaches find solutions with the same cost. For the other
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days, all the days except the day 7 and 11, the Hierarchical Approach finds the

optimal solutions with impressive resource usages. Moreover, note that, the cost

of the solution of the Hierarchical Approach is less than or equal to the cost of

the solution of the Direct Approach for each day. Therefore, we can conclude

that the solution of the Hierarchical Approach is at least as good as the solution

of the Direct Approach for each day on this data set.

The Direct Approach cannot solve the problem to optimality for the data of

8 days in the limited time. The results reported for these days are the best solu-

tions that are found before the time limit is exceeded. It finds optimal solutions

only for the days 2, 5 and 8. However, as seen from the table, there is a big

difference between the solution times for the solution approaches for these days .

The Hierarchical Approach finds the optimal solutions in significantly less time.

Moreover, note that the sizes of the problem for these days are very small com-

pared to the other days. Therefore, the Direct Approach can be used for solving

the problem for small sizes whereas the Hierarchical Approach performs well also

for larger instances of the problem.

Although the Direct Approach can not solve the problem to optimality for

the data of days 1,3,4,5,6,9,10,11, note that costs of the solutions found by both

of the solution approaches are the same for these days. Since the Hierarchical

Approach finds the optimal solutions for these days, the Direct Approach also

finds the optimal solutions for these days. However, CPLEX cannot verify that

an optimal solution is found because of the size of the (IP).

In summary, our computational study shows that the Hierarchical Approach

is a better solution approach than the Direct Approach in many aspects such as

the resource usage and the quality of the solution found in the limited time. For

small instances of the problem the Direct Approach can be used. However, for

larger instances of the problem it is better to use the Hierarchical Approach.



Chapter 5

Conclusion and Future Research

In this thesis, we consider a multicommodity distribution problem. We assume

that there is a central depot which houses a number of different types of items.

There is a finite number of geographically dispersed demand points which place

orders for these items on a daily basis. The demand of these demand points

should be satisfied from this central depot. We assume that a finite number of

identical trucks with predetermined destinations are used for the distribution of

the items from the central depot to each demand point. The demand of each

demand point can be split among several trucks and a single truck is allowed to

visit several demand points. The problem is to satisfy the demand of each demand

point with the minimum total distribution cost while respecting the capacity of

each truck. The cost structure is dictated by the final destinations of trucks used

in the distribution of the items and the set of demand points visited by each

truck.

Since the cost structure of the problem makes it different from the VRP, we

developed two different solution approaches in an attempt to solve the problem.

The Direct Approach solves the problem with a mixed integer linear program-

ming model which is called (IP). The purpose of this model is to select the trucks

that will be used and decide how to satisfy demands of all the demand points with

the minimum transportation cost while respecting the truck capacities. As the
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number of integer and binary variables in (IP) quickly increases with the number

of demand points, item types and trucks, the model becomes difficult to solve for

larger instances of the problem.

We developed the Hierarchical Approach in an attempt to solve larger in-

stances of the problem in a more effective way. The Hierarchical Approach

consists of two main stages and an intermediate stage. In the first stage, we

aggregate the demand of each demand point and we solve a problem to satisfy

the aggregated demand of each demand point with the minimum transportation

cost while respecting the truck capacities. By the solution of the first stage we

determine the trucks that will be used in the distribution and the demand points

that each truck will visit. According to this information, we divide the problem

into subproblems in the intermediate stage which is called the clustering stage.

We partition the set of the demand points and the used trucks into clusters so

that there is no relation between any of the clusters. In the second stage, we solve

each subproblem separately. We solve the problem of satisfying the demand of

all the demand points in a cluster with the trucks that will visit them for each

cluster. At the end of the second stage, we determine how to distribute the items

into trucks so that the demand of each demand point is satisfied. As a drawback

of the demand aggregation and disaggregation, we allow the excess capacity usage

in the trucks in the second stage. Therefore, the Hierarchical Approach may find

a solution that is not feasible for the original problem. However, we penalize it

in the objective function. We showed that maximum infeasibility of the solution

we obtain by the Hierarchical Approach is less than or equal to the maximum

truck capacity that can be occupied by one unit of the ordered items. Then, we

further improved this upper bound and found a tight bound on the maximum

infeasibility residual for each truck.

We tested the solution approaches with real data set obtained from a major

automotive company in Turkey. As the company provided us with only data of 11

days, we performed all the computational studies on this data. We used GAMS

22.3, CPLEX 10 as the solver in Gams 22.3, Microsoft Office Excel 2007 and

Visual Basic 6.5 in the implementation of the solution approaches. We conclude

that the Hierarchical Approach is more efficient than the Direct Approach in
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many aspects.

Although the Hierarchical Approach may find an infeasible solution for the

original problem, it found a feasible solution in our computational study in all of

the days. For the data of 11 days, there were only two days that could not be

solved to optimality by the Hierarchical Approach within the limited time. How-

ever, these days also could not be solved to optimality by the Direct Approach.

For the other days, the Hierarchical Approach found the optimal solutions with

impressive resource usages. On the other hand, the Direct Approach could not

solve the problem to optimality for the data of 8 days in the limited time.

As a conclusion, our computational study showed that the Hierarchical Ap-

proach is more effective than the Direct Approach in many aspects such as the

resource usage and the quality of the solution found in the limited time. It is

better to use the Hierarchical Approach in order to solve the problem as it less

time consuming and it gives better solutions than the Direct Approach.

Several variations in the problem may be handled with small modifications in

the solution approaches. For instance, we assumed that the trucks are identical.

However, if the trucks are not identical, the constraints related to the truck

capacity can be modified easily. In addition, we believe that more work can be

done in an attempt to improve the solution approaches. For instance, if there

exists an excess capacity usage in some of the trucks then maybe the problem

can be solved for the trucks with less capacities. This would prevent an excess

capacity usage in any of the trucks. However, this also may lead to a worse

solution.

A further research may be an extension to the Hierarchical Approach by ob-

taining the clusters first. If the clusters can be obtained first somehow, then the

solution to the problem can be found more easily. Then, the solution approach

resembles the cluster first, route second methods. However, obtaining the clusters

first is also an important problem in the literature.

Another further research may be to relax the assumption that any combination

of items can be loaded into trucks as long as their total volume is less then or



CHAPTER 5. CONCLUSION AND FUTURE RESEARCH 61

equal to one truckload. Without this assumption, the problem turns into the

3-D Bin Packing Problem which is a strongly NP-Hard problem. However, the

problem may be more realistic since we do not ignore the geometry of the items

anymore.
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Table A.1: Capacity of a truck that is occupied by one unit of an item
l wl l wl l wl

1 0.00694 25 0.01389 49 0.00139
2 0.01042 26 0.01389 50 0.00042
3 0.00521 27 0.00833 51 0.00077
4 0.00694 28 0.00694 52 0.00144
5 0.00463 29 0.00833 53 0.00139
6 0.00521 30 0.01042 54 0.02778
7 0.00278 31 0.01389 55 0.05952
8 0.00417 32 0.00595 56 0.00083
9 0.00208 33 0.00347 57 0.01389
10 0.02083 34 0.01389 58 0.00167
11 0.04167 35 0.04167 59 0.00014
12 0.00833 36 0.04167 60 0.00042
13 0.00417 37 0.00069 61 0.00038
14 0.00521 38 0.00052 62 0.00595
15 0.00521 39 0.00052 63 0.00116
16 0.00521 40 0.00417 64 0.00042
17 0.00208 41 0.00833 65 0.00298
18 0.00208 42 0.00694 66 0.00219
19 0.01042 43 0.00260 67 0.00104
20 0.00833 44 0.00091 68 0.01042
21 0.01042 45 0.00144 69 0.00833
22 0.00694 46 0.01389 70 0.00042
23 0.00347 47 0.02083 71 0.04167
24 0.00595 48 0.00595
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Table A.8: Cost Matrix(Cont’d)
58 59 60 61 62 63 58 59 60 61 62 63

1 ∞ ∞ ∞ ∞ ∞ ∞ 33 ∞ ∞ ∞ ∞ ∞ ∞

2 ∞ ∞ ∞ ∞ ∞ ∞ 34 ∞ ∞ ∞ ∞ ∞ ∞

3 ∞ ∞ ∞ ∞ ∞ ∞ 35 ∞ ∞ ∞ ∞ ∞ ∞

4 ∞ ∞ ∞ ∞ ∞ ∞ 36 ∞ ∞ ∞ ∞ ∞ ∞

5 ∞ ∞ ∞ ∞ ∞ ∞ 37 ∞ ∞ ∞ ∞ ∞ ∞

6 ∞ ∞ ∞ ∞ ∞ ∞ 38 ∞ ∞ ∞ ∞ ∞ ∞

7 ∞ ∞ ∞ ∞ ∞ ∞ 39 ∞ ∞ ∞ ∞ ∞ ∞

8 ∞ ∞ ∞ ∞ ∞ ∞ 40 ∞ ∞ ∞ ∞ ∞ ∞

9 ∞ ∞ ∞ ∞ ∞ ∞ 41 ∞ ∞ ∞ ∞ ∞ ∞

10 ∞ ∞ ∞ ∞ ∞ ∞ 42 ∞ ∞ ∞ ∞ ∞ ∞

11 ∞ ∞ ∞ ∞ ∞ ∞ 43 ∞ ∞ ∞ ∞ ∞ ∞

12 ∞ ∞ ∞ ∞ ∞ ∞ 44 ∞ ∞ ∞ ∞ ∞ ∞

13 ∞ ∞ ∞ 274.72 ∞ ∞ 45 ∞ ∞ ∞ ∞ ∞ ∞

14 ∞ ∞ ∞ ∞ ∞ ∞ 46 ∞ ∞ ∞ ∞ ∞ ∞

15 ∞ ∞ ∞ ∞ ∞ ∞ 47 ∞ ∞ ∞ ∞ ∞ ∞

16 ∞ ∞ ∞ ∞ ∞ ∞ 48 ∞ ∞ ∞ ∞ ∞ ∞

17 ∞ ∞ ∞ ∞ ∞ ∞ 49 ∞ ∞ ∞ ∞ ∞ ∞

18 ∞ ∞ ∞ ∞ ∞ ∞ 50 ∞ ∞ ∞ ∞ ∞ ∞

19 ∞ ∞ ∞ ∞ ∞ ∞ 51 ∞ ∞ ∞ 44.43 ∞ ∞

20 ∞ ∞ ∞ ∞ ∞ ∞ 52 44.43 ∞ ∞ ∞ ∞ ∞

21 ∞ ∞ ∞ ∞ ∞ ∞ 53 ∞ ∞ ∞ ∞ ∞ ∞

22 ∞ ∞ ∞ ∞ ∞ ∞ 54 ∞ ∞ ∞ ∞ 44.43 ∞

23 ∞ ∞ ∞ ∞ ∞ ∞ 55 ∞ ∞ ∞ ∞ ∞ ∞

24 ∞ ∞ ∞ ∞ ∞ ∞ 56 ∞ ∞ ∞ ∞ ∞ ∞

25 ∞ ∞ ∞ ∞ ∞ ∞ 57 ∞ ∞ ∞ ∞ ∞ ∞

26 ∞ ∞ ∞ ∞ ∞ ∞ 58 1293.62 ∞ ∞ ∞ ∞ ∞

27 ∞ ∞ ∞ ∞ ∞ ∞ 59 ∞ 616.19 ∞ ∞ ∞ ∞

28 ∞ ∞ ∞ ∞ ∞ ∞ 60 ∞ ∞ 1609.54 ∞ ∞ ∞

29 ∞ ∞ ∞ ∞ ∞ ∞ 61 ∞ ∞ ∞ 616.19 ∞ ∞

30 ∞ ∞ ∞ ∞ ∞ ∞ 62 ∞ ∞ ∞ ∞ 783.15 ∞

31 ∞ ∞ ∞ ∞ ∞ ∞ 63 ∞ ∞ ∞ ∞ ∞ 861.61

32 ∞ ∞ ∞ ∞ ∞ ∞

* The rows correspond to the final destinations and the columns correspond to
the visited demand points.



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 76

T
ab

le
A

.9
:

D
at

a
of

D
ay

1
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
5

7
8

9
10

11
12

13
14

15
17

18
19

20
21

22
24

25
26

27
28

29
30

1
11

6
1

16
11

15
2

7
2

14
5

5
2

1
2

11
11

13
2

6
1

2
2

5
2

4
5

10
5

10
4

3
3

1
1

3
3

2
7

28
4

2
3

2
5

21
21

2
2

8
3

2
1

2
1

8
5

12
4

8
10

2
12

40
3

4
1

1
15

1
1

1
2

16
4

1
6

4
4

2
2

1
2

3
3

9
3

3
17

1
1

27
1

2
2

17
1

1
20

1
1

1
1

1
28

1
1

1
2

2
34

1
5

2
17

5
4

2
1

8
6

4
4

35
11

4
5

1
36

2
1

1
1

47
11

1
11

8
10

13
55

1
1

2
1

2



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 77

T
ab

le
A

.1
0:

D
at

a
of

D
ay

1(
C

on
t’

d
)

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

31
32

35
36

37
38

39
40

41
46

47
49

52
54

56
64

65
68

69
1

2
5

24
14

5
10

8
1

7
3

2
1

10
1

1
60

16
1

7
3

2
6

6
10

2
5

48
69

4
3

2
1

1
7

8
1

1
2

2
11

1
2

15
1

16
2

11
42

1
17

1
27

15
9

2
2

28
2

1
5

34
3

13
3

90
4

24
1

35
2

5
81

38
36

1
1

1
47

10
27

7
1

55
2

1
3

5
4



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 78

T
ab

le
A

.1
1:

D
at

a
of

D
ay

2
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
4

5
7

8
9

10
11

12
13

14
15

17
18

19
20

21
22

24
25

26
27

28
1

4
5

31
4

1
10

11
2

2
3

4
2

8
11

4
5

22
20

1
1

7
23

2
1

3
2

6
25

36
1

1
10

8
1

7
1

8
8

11
1

2
1

3
17

10
9

1
1

19
3

2
1

2
4

3
4

1
21

11
5

1
2

3
1

20
2

0
2

1
1

2
2

3
1

33
5

1
1

9
9

1
9

54
2

11
8

5
1

5
31

8
34

5
21

1
2

6
8

1
2

1
37

21
5

2
2

1
6

14
1

47
9

3
5

15
5

10
2

2
1

10
1

2

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

29
30

31
32

33
34

35
36

37
38

39
40

41
46

47
52

55
56

60
62

63
64

65
66

67
1

1
3

58
1

3
11

10
1

4
7

4
3

6
36

21
24

0
2

2
9

1
2

10
20

11
1

13
1

20
2

1
6

19
5

2
2

1
26

6
21

3
2

1
1

3
16

15
16

8
4

1
33

20
16

3
4

2
2

10
7

49
3

2
1

34
1

1
9

25
10

37
1

1
1

47
3

3
5

12
2

1
4

2
2

5



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 79

T
ab

le
A

.1
2:

D
at

a
of

D
ay

3
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
6

7
8

9
10

11
12

13
14

15
17

18
19

20
21

22
23

24
25

26
1

6
7

2
4

24
40

30
2

17
2

2
3

4
6

6
5

2
1

8
2

1
11

3
3

1
16

1
3

4
8

10
1

4
22

2
2

1
2

22
3

2
3

3
15

4
6

7
1

6
1

1
2

3
27

7
11

5
6

3
7

14
4

2
1

33
7

2
1

1
1

7
22

6
1

1
34

43
15

1
3

9
1

4
1

1
1

3
1

1
2

35
1

1
2

4
2

3
37

8
1

20
2

1
43

5
3

2
1

4
2

5
1

10
5

6
2

1
14

2
2

46
2

6
1

1
2

2

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

27
28

29
30

31
32

35
36

37
38

39
40

41
42

46
48

49
50

54
63

64
65

67
70

1
8

2
2

1
2

2
16

6
4

1
18

2
8

1
4

21
9

1
16

10
8

8
2

1
1

18
22

2
2

1
12

12
6

15
0

1
27

9
1

15
3

1
2

7
33

6
10

3
4

4
68

5
2

1
2

10
34

9
9

4
2

1
1

1
1

26
35

2
4

1
22

2
5

6
37

10
1

14
43

4
6

4
1

1
7

4
2

43
15

2
1

46
2

1
1

1
35

16
5

3



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 80

T
ab

le
A

.1
3:

D
at

a
of

D
ay

4
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
4

5
7

8
9

10
11

12
13

14
15

17
18

19
20

21
22

24
25

26
27

3
55

7
41

6
6

9
1

7
12

5
1

20
11

16
12

2
2

3
7

1
2

2
10

12
1

3
1

4
9

8
19

1
11

2
7

1
11

7
3

12
1

2
1

2
1

2
1

2
1

2
16

20
3

2
3

6
10

1
2

21
16

2
4

10
6

3
1

1
22

24
4

1
6

7
1

29
2

7
1

4
2

3
33

5
3

1
17

6
13

5
2

6
1

1
2

34
3

9
1

1
2

7
19

16
10

1
1

4
1

1
35

18
3

4
16

29
30

16
14

5
2

3
1

6
1

1
2

43
18

1
4

2
1

1
47

11
3

4
1

52
15

1
1

2
6

3
5

4
3

2
58

1
1

2
2

1
20

2
59

2
4

1
1

2
4

1
4

1
1

3
3

2



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 81

T
ab

le
A

.1
4:

D
at

a
of

D
ay

4
(C

on
t’

d
)

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

28
29

30
31

32
33

35
36

37
38

39
40

41
42

44
46

47
49

50
54

58
63

65
68

71
3

7
20

71
20

4
1

1
7

2
2

1
2

3
5

4
50

38
20

1
53

2
2

10
3

5
3

4
2

2
1

2
11

1
1

20
1

12
1

2
1

1
26

62
7

3
16

2
5

18
16

10
21

21
2

21
2

1
5

22
1

1
4

9
1

29
1

21
18

1
33

1
1

1
1

5
10

14
2

2
25

4
1

34
2

4
1

1
1

2
4

22
5

15
3

20
6

1
35

1
1

3
31

30
10

30
3

43
2

5
8

51
1

47
2

1
1

3
21

4
10

1
52

3
1

5
2

50
2

58
13

1
1

59
4

1
2

5
6

1



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 82

T
ab

le
A

.1
5:

D
at

a
of

D
ay

5
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
7

8
9

10
11

12
13

14
15

17
19

20
21

24
25

26
1

15
4

14
6

7
5

1
2

5
2

1
1

7
2

10
3

1
27

13
4

3
1

1
33

14
1

13
11

6
1

2
4

2
1

1
34

1
4

1
1

2
6

2
8

2
2

1
3

37
7

1
4

5
2

43
3

47
23

1
2

5
3

55
2

2
1

1
1

1
1

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

27
28

29
30

32
35

36
37

38
39

40
42

44
46

49
54

58
71

1
2

1
3

5
3

2
15

44
1

2
2

3
70

4
1

1
7

3
1

28
1

27
1

1
11

6
20

33
2

2
3

1
2

6
32

10
8

1
20

7
2

34
2

3
3

2
3

2
30

2
37

2
1

43 47
6

3
2

20
55

1
19

8
2

7



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 83

T
ab

le
A

.1
6:

D
at

a
of

D
ay

6
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
5

6
7

9
10

11
12

13
14

15
16

17
18

19
20

21
22

24
25

1
2

1
2

1
20

4
18

8
1

7
1

1
2

1
1

2
1

1
10

2
2

1
13

3
4

2
3

3
2

2
1

14
9

1
1

4
4

1
4

1
1

21
2

2
1

1
2

30
2

1
23

1
1

1
1

1
1

1
24

1
1

12
3

2
2

2
1

29
2

3
1

2
2

5
2

1
5

1
4

30
2

1
33

2
1

3
1

3
11

5
26

35
20

2
35

80
39

37
1

1
2

1
2

2
2

6
1

3
40

4
1

1
2

1
1

1
1

42
1

5
2

48
10

44
2

1
1

2
1

1
1

52
1

1
1

6
1

1
1

2
2

1
1

5
1

58
1

1
6

1
4

2
10

3
1

59
3

1
10



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 84

T
ab

le
A

.1
7:

D
at

a
of

D
ay

6(
C

on
t’

d
)

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

26
27

28
29

30
31

32
35

36
37

38
39

40
41

46
48

49
56

57
58

59
61

1
4

5
5

1
1

2
1

1
2

1
1

1
1

7
3

5
2

17
2

2
8

5
3

6
5

11
2

13
1

5
1

2
1

1
10

8
5

14
1

2
2

1
1

1
4

4
9

2
5

2
3

30
21

2
2

6
2

7
4

23
1

2
6

1
24

2
1

1
5

16
7

1
10

29
2

1
2

6
1

1
3

1
1

1
30

3
11

33
10

22
30

3
4

3
4

11
75

30
1

35
11

13
20

37
3

3
1

3
1

4
1

4
4

8
4

2
1

1
40

2
2

3
1

4
14

2
3

2
42

8
5

8
4

5
44

1
2

5
2

52
3

1
6

5
1

1
58

1
1

3
7

5
3

59
2

1
1

1



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 85

T
ab

le
A

.1
8:

D
at

a
of

D
ay

7
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
4

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
24

25
26

1
1

2
1

2
1

3
41

3
3

60
4

4
22

31
10

1
10

6
1

7
92

6
90

1
1

7
5

5
10

2
54

2
7

1
4

2
3

4
15

2
1

1
1

1
1

2
16

2
4

1
1

3
2

4
1

1
1

17
1

2
1

1
1

1
19

1
2

1
3

1
20

1
1

1
1

1
1

22
11

2
4

2
1

1
11

2
25

1
1

1
1

1
28

3
2

2
4

2
33

3
5

5
1

1
4

2
45

11
1

21
10

3
4

1
4

1
1

3
34

7
4

2
2

5
5

14
20

6
1

10
1

1
2

35
1

1
1

3
5

20
5

2
4

1
3

3
1

1
36

1
3

2
1

1
2

1
1

1
41

1
1

1
42

46
5

14
6

10
1

45
10

3
2

1
2

2
3

1
1

1
46

1
1

1
1

47
1

1
1

27
1

53
1

3
1

2
3

2
1

1
2

1
1

56
1

1



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 86

T
ab

le
A

.1
9:

D
at

a
of

D
ay

7(
C

on
t’

d
)

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
45

46
49

50
51

52
53

54
1

1
3

5
3

2
3

25
1

2
3

14
6

1
1

15
1

7
21

5
7

7
6

2
11

7
2

30
14

12
2

1
6

15
1

1
1

4
15

3
1

1
16

1
1

1
1

10
2

1
3

17
3

1
1

1
1

7
2

10
5

3
20

1
1

19
2

3
5

3
9

1
4

1
20

1
3

3
6

5
2

1
22

1
5

3
4

5
1

28
1

25
1

3
1

1
2

4
28

5
1

14
28

2
1

1
3

11
20

4
4

12
33

1
1

9
4

7
1

2
16

7
26

6
33

2
2

2
4

34
1

5
9

1
5

4
4

13
23

6
2

3
2

35
6

6
4

3
2

4
24

36
2

3
4

1
9

1
1

12
41

1
1

3
42

23
14

4
10

1
60

4
45

3
5

1
1

25
30

11
1

1
2

10
46

1
1

1
5

1
1

1
47

1
9

3
1

11
1

3
1

8
53

3
2

1
1

2
1

1
2

15
6

4
2

56
2

10



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 87

T
ab

le
A

.2
0:

D
at

a
of

D
ay

8
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
4

6
7

8
9

10
11

12
13

14
15

17
18

19
20

21
22

23
24

25
26

1
1

1
3

10
3

1
2

7
8

12
1

41
36

16
13

1
2

4
7

20
2

2
31

2
1

1
33

52
9

4
21

27
3

40
6

1
2

2
2

34
28

8
4

6
1

11
12

18
12

7
6

4
2

1
2

3
35

30
5

8
1

2
4

18
27

5
5

18
22

4
2

1
2

5
1

2
1

39
1

1
1

1
1

1
42

1
4

4
2

3
12

10
3

2
47

10
12

7
1

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

27
28

29
30

31
32

33
35

36
37

38
39

40
41

42
43

46
48

49
50

52
53

58
67

71
1

6
10

3
3

2
7

3
9

43
55

30
1

16
1

3
2

2
13

90
5

4
4

3
31

1
1

1
10

33
21

3
15

13
4

4
6

3
28

30
44

6
1

5
2

34
6

11
12

4
4

4
4

20
14

9
53

1
1

42
1

35
7

1
16

5
2

8
7

6
24

21
1

1
4

1
39

1
1

1
2

1
2

42
11

3
1

1
1

2
1

27
2

3
2

47
1

8
29

12
5



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 88

T
ab

le
A

.2
1:

D
at

a
of

D
ay

9
D

em
an

d
It

em
T

y
p

e
1

2
4

7
8

9
10

11
12

13
14

15
17

18
19

20
21

25
26

2
1

1
1

3
5

6
2

1
3

1
1

16
1

5
7

1
13

33
5

3
1

13
15

10
5

14
3

3
1

1
2

34
9

4
14

14
22

35
12

7
24

4
10

11
3

14
4

14
3

22
2

1
37

1
2

1
1

2
1

4
2

1
42

2
3

35
12

9

D
em

an
d

It
em

T
y
p

e
27

28
29

30
31

32
35

36
37

38
39

40
46

47
48

49
50

56
60

67
2

2
2

1
3

1
17

5
30

5
1

1
11

16
2

1
2

2
20

2
4

8
33

1
15

5
1

10
4

2
26

1
8

9
2

34
22

1
3

2
67

2
2

1
7

1
35

10
4

11
3

2
3

5
37

3
3

1
1

1
12

1
6

1
2

4
42

1
25

5



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 89

T
ab

le
A

.2
2:

D
at

a
of

D
ay

10
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
4

5
7

8
10

11
12

13
14

15
17

19
20

21
22

24
25

7
2

2
4

2
3

8
1

2
8

1
2

1
1

13
8

10
3

2
1

16
21

3
2

21
3

8
3

21
11

4
1

1
4

7
2

6
1

3
1

1
33

20
6

2
6

5
11

2
16

1
34

3
3

5
2

5
10

26
1

7
2

35
3

1
1

1
2

3
5

2
2

1
1

37
5

2
2

1
2

3
5

5
5

4
6

1
1

1

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

26
27

28
29

30
31

32
34

35
36

37
38

39
40

41
43

46
47

48
49

50
7

7
5

4
2

2
3

5
27

1
8

3
25

11
4

2
3

1
3

1
2

16
2

1
2

2
3

22
21

2
1

1
2

1
1

4
4

2
8

2
1

10
1

33
1

2
4

11
4

22
2

8
1

6
2

34
2

1
1

2
6

7
24

6
11

1
35

4
3

1
2

1
16

11
1

37
3

1
2

2
1

3
11

1
13

2
1

3
6



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 90

T
ab

le
A

.2
3:

D
at

a
of

D
ay

11
D

em
an

d
It

em
T

y
p

e
P

oi
n
t

1
2

3
4

6
7

8
9

10
11

12
13

14
15

17
18

19
20

21
22

24
25

26
27

1
5

3
4

5
2

5
3

2
1

2
6

3
5

7
1

16
1

2
6

1
1

2
2

7
8

7
1

1
4

12
16

5
2

1
2

3
8

7
3

1
8

3
2

2
2

1
14

3
2

2
1

3
4

1
2

1
2

15
1

1
2

1
16

1
5

5
7

4
6

14
1

2
22

1
2

1
1

4
4

4
2

2
1

1
1

1
1

23
3

2
2

1
2

2
1

28
1

1
1

2
2

2
1

29
2

1
3

4
1

31
1

1
2

2
3

2
33

51
8

2
1

1
2

2
27

29
10

10
29

4
5

4
10

2
1

1
2

10
34

8
10

1
3

3
15

22
5

6
4

1
1

2
1

1
35

2
7

12
2

11
19

2
8

2
1

1
1

3
1

2
5

37
2

1
1

2
3

1
1

39
1

1
1

1
1

1
1

42
1

4
2

4
7

20
1

44
2

1
3

2
4

3
1

47
4

5
3

8
1

2
4

1
48

2
2

1
1

1
1

54
1

1
2

1
1

2
56

3
1

1
58

8
5

2
4

4
2

2
8

1
5

1
1

62
1

2
2

1
1

1
1

63
1

2
2

5
1

2
2



APPENDIX A. DATA USED IN THE COMPUTATIONAL STUDY 91

T
ab

le
A

.2
4:

D
at

a
of

D
ay

11
(C

on
t’

d
)

D
em

an
d

It
em

T
y
p

e
P

oi
n
t

28
29

30
31

32
33

34
35

36
37

38
39

40
41

43
46

47
48

49
50

54
58

60
67

1
3

2
16

5
7

1
1

1
9

1
2

2
1

6
50

4
1

1
2

2
6

1
3

7
3

2
1

8
43

18
2

1
11

4
2

8
2

1
1

15
11

3
3

16
0

2
14

1
1

2
1

8
1

4
5

15
6

1
1

4
16

9
2

23
50

2
5

60
22

1
1

3
3

4
2

2
1

1
23

1
3

2
1

1
1

2
1

1
28

1
2

2
2

2
1

4
4

2
4

29
1

11
16

2
1

31
4

2
1

5
2

1
33

12
32

8
3

1
1

1
8

15
13

29
1

1
12

1
2

1
4

34
4

8
4

3
4

2
8

1
5

4
37

7
56

2
35

5
13

5
2

11
2

20
15

5
1

9
3

1
2

37
1

1
1

1
1

1
3

4
1

39
7

1
42

5
1

2
19

0
1

44
4

1
2

11
1

1
47

2
3

5
32

3
1

1
1

48
1

27
2

54
1

1
2

21
1

5
1

5
56

4
58

1
1

1
1

2
2

5
3

7
2

1
61

1
62

1
1

1
2

2
1

10
63

1
1

2
4

1
3

4


