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ABSTRACT

THE MONGE-KANTOROVICH MASS
TRANSPORTATION PROBLEM

İhsan Demirel

M.S. in Mathematics

Advisor: Ali Süleyman Üstünel

September 2017

The Monge mass transportation problem was stated by French Mathematician,

G. Monge [6]. After that Soviet Mathematician Leonid Kantorovich [4] pub-

lished a relaxed version of the problem, namely the Monge-Kantorovich mass

transportation problem. This paper is concerned with the definitions and rela-

tions of problems and the existence, the uniqueness and the characterization of

solutions to problems for some specific cases. We will consider three type of func-

tion, namely the quadratic, strictly convex and strictly concave cost functions.

The Kantorovich Duality and cyclical monotonicity will be main tools to prove

results.

Keywords: the Monge-Kantorovich mass transportation, Cyclical Monotonicity,

The Kantorovich Duality.
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ÖZET

MONGE-KANTOROVICH KÜTLE TAŞIMA
PROBLEMİ

İhsan Demirel

Matematik, Yüksek Lisans

Tez Danışmanı: Ali Süleyman Üstünel

Eylül 2017

Monge kütle taşıma problemi Fransız Matematikçisi G. Monge [6] tarafından

belirtildi. Daha sonra Sovyet Matematikçi Leonid Kantorovich [4] sorunun ra-

hatlatılmış versiyonunu yayınladı. Bu makale problemlerin tanımını, ilişkisini

ve bazı özel durumlar için çözümün varlığı, tekliği ve karakteristik özellikleri

ile ilgili sonuçları içermekte. Biz maliyet fonksiyonu olarak üç farklı türü in-

celeyeceğiz, sırası ile ikinci dereceden, tekdüze dışbükey ve tekdüze içbükey

fonksiyonlar. Sonuçların ispatında Kantorovich eşlekliğini ve periyodik mono-

tonluğu kullanacağız.

Anahtar sözcükler : Monge-Kantorovich Kütle Taşıma Problemi, Periyodik Mono-

tonluk, Kantorovich Eşlekliği .

iv



Acknowledgement

Firstly, I would like to express my sincere gratitude to my advisor Prof. Ali
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Chapter 1

Introduction

In 1781, Gaspard Monge [6] introduced a question about how to minimize the

total cost of earth-moving, In other words, finding a transformation map between

two measure spaces with same mass which minimizes the total cost. Later this

problem has been studied by many mathematicians and Kantorovich [4] relaxed

this problem by changing map seeking with measure seeking and he transformed

the non-linear Monge problem into the linear problem.

In this paper we will discuss the existence, the uniqueness and the characteri-

zation of the solutions to these two problems.

The paper is organized as follows. In Section 2, we introduce Monge and

Monge-Kantorovich problems and we discuss some basic examples to understand

the relations between these two problems. Then we state Kantorovich Duality

theorem which is a very important tool to study Monge-Kantorovich problem. In

Section 3, we show that a solution to Monge-Kantorovich problem exists. After

that we discuss some important results about the uniqueness and the charac-

terization of solutions for some special cost functions. Firstly we consider the

quadratic cost function and state the results which are presented by Brenier,

Knott and Smith by using Kantorovich Duality and generalized by McCann [5]

by using cyclic monotonicity. Secondly, similar results have given for the cost

functions c(x, y) = h(x−y) and c(x, y) = l(|x−y|) where h is strictly convex and

l ≥ 0 is strictly concave. Again, we use the concept of c-cyclical monotonicity. In
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Appendix we will give preliminary knowledge about convex analysis. These are

necessary to prove our main results.
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Chapter 2

Monge-Kantorovich problem

2.1 Monge problem

Assume that you have some piles of sand and you need to fill up given holes

with it. Holes and piles have the same total volume and moving each sand from

location x in one of the piles to location y in a hole has a cost. The question is

what is the best way to fill up holes in order to minimize the total cost?

Before we state the problem we need to introduce some notations. M(Rn)

denotes the set of non-negative Borel measure on Rn with finite total mass and

P(Rn) denotes set of Borel probability measure.

Definition 2.1.1. For a measure µ on X and a Borel map T : X −→ Y , define

T#µ(A) = µ (T−1(A)) for all sets A ⊂ Y. The map T#µ is a measure on Y and

called the push-forward of µ through T. Finally we define Σ(µ, ν) as {T : X →
Y ;T#µ = ν}.

This question is first modeled by French Mathematician Garpast Monge in

1782 [6]. Piles and Holes are modeled by two probability measure µ, ν defined

on some measurable sets X and Y. The cost function c(x, y) gives us the cost

of moving a sand from location x to location y. One can assume that the cost

function is measurable, non-negative and can take the value of infinity, i.e., c :

3



X × Y → R+ ∪ {+∞}. Finally, moving the sand is modeled by a measurable

function T : X → Y with property T#µ = ν.

Now, we can state the Monge problem.

Problem 2.1.2 (Monge problem). Let X, Y be measurable spaces and c : X ×
Y → R ∪ {+∞}. Monge problem is to find a Transpor map T ∗ ∈ Σ(µ, ν) that

minimizes the functional

I[T ] =

∫
X

c(x, T (x))dµ(x)

i.e. I[T ∗] = inf I[T ], infimum is taken over the set Σ(µ, ν)

One of the the biggest difficulty of finding solution to Monge problem is that

we can not split the mass, in other word we can not divide the mass at location x

and sent to two different locations in Y. To overcome this difficulty Kantorovich

introduces new problem, called Monge-Kantorovich problem [4], which allows us

to move mass from location x to different locations in Y.

2.2 Monge-Kantorovich problem

In this problem, we are not looking for a Transport map, but a measure π on the

product space X × Y where dπ(x, y) models the amount of sand we moved from

location x to location y. On the other hand, if we back to example, all the sand

in the pile must be moved to holes and all sand on holes must come from pile.

Formal statement for this is∫
Y

dπ(x, y) = dµ(x) and

∫
X

dπ(x, y) = dν(y).

More formally, If A and B are measurable subsets of X and Y respectively, we

must have

π(A× Y ) = µ(A) and π(X ×B) = ν(B),

or equivalently for each φ ∈ L1(µ) and ϕ ∈ L1(ν) , we have∫
X×Y

(φ(x) + ϕ(y)) dπ(x, y) =

∫
X

φ(x)dµ(x) +

∫
Y

ϕ(x)dν(y).

We will denote the set of all measures that satisfy this condition by Π(µ, ν). We

will call each measure π ∈ Π(µ, ν) as ”Transference Plan”, and µ and ν as the
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first and the second marginals of π.

Next, we will state Monge-Kantorovich problem.

Problem 2.2.1 (Monge-Kantorovich Problem). Let X and Y be measurable

spaces and c : X × Y → R ∪ {+∞}. Monge-Kantorovich problem is to find a

Transference Plan π∗ ∈ Π(µ, ν) that minimizes the functional

J [π] =

∫
X×Y

c(x, y)dπ(x, y)

i.e. J [π∗] = inf J [π], infimum is taken over the set Π(µ, ν).

2.3 Relations between Monge problem and

Kantorovich problem

Example 2.3.1. Let X = Y = [−1, 1] , µ = δ0 and ν = 1
2
δ−1 + 1

2
δ1, where δx is

Dirac measure.

Clearly there is no Transport map such that T#µ = ν, i.e., Σ(µ, ν) = ∅. Hence,

there is no solution to Monge Problem.

However, π∗(A×B) = µ(A)ν(B) is almost surely the unique element of Π(µ, ν).

Therefore, it is solution to Monge-Kantorovich problem and

inf J [π] =
1

2
c(0,−1) +

1

2
c(0, 1).

Evidently, although solution to Monge problem does not exist (because of the

structure of measures,) solution to Monge-Kantorovich exists since it allows to

split masses. As a result, existence of solutions depends on structure of measure.

Example 2.3.2. Let X and Y be measurable spaces with measures and cost

function such that

µ =
1

3
δx1 +

2

3
δx2 ; ν =

1

3
δy1 +

2

3
δy2 ; c(xi, yj) = cij.

Then T (xi) = yi is almost surely the unique element of Σ(µ, ν), hence it is solution

to Monge problem and

inf I(T ) =
1

3
c(1, 1) +

2

3
c(2, 2).

5



On the other hand, in terms of Monge-Kantorovich problem, the result can be

different. Firstly, every element in Π(µ, ν) must satisfy the following conditions:

i) J [π] =
∑2

i=1

∑2
j=1 πijcij

ii) π11 + π12 = 1
3

; π21 + π22 = 2
3

; π11 + π21 = 1
3

; π12 + π22 = 2
3

iii)0 ≤ π11+ ≤ 1
3
; 0 ≤ π12+ ≤ 1

3
; 0 ≤ π21+ ≤ 1

3
; 0 ≤ π22+ ≤ 2

3

This implies that

π12 =
1

3
− π11; π21 =

1

3
− π11; π22 =

1

3
+ π11.

So, the total cost is

J [π] = π11 (c(1, 1)− c(1, 2)− c(2, 1) + c(2, 2)) +
1

3
(c(1, 2) + c(2, 1) + c(2, 2)) .

If (c(1, 1)− c(1, 2)− c(2, 1) + c(2, 2)) ≤ 0, we need to take π11 = 1
3

to minimize

the total cost and the result will be same as Monge problem;

inf J(π) =
1

3
c(1, 1) +

2

3
c(2, 2).

If (c(1, 1)− c(1, 2)− c(2, 1) + c(2, 2)) ≥ 0, total cost will take minimum value at

π11 = 0 and equal to;

inf J(π) =
1

3
(c(1, 2) + c(2, 1) + c(2, 2)) .

As a result, the solutions can take same or different values depending on the cost

function.

Next example is from Villani [10].

Example 2.3.3. Let X, Y be discrete spaces with measures

µ =
1

n

n∑
i=1

δxi ; ν =
1

n

n∑
j=1

δyj .

Observe that any map T which satisfies T (xi) = yj and T (xi) 6= T (xj) if i 6= j

for each i, j ∈ {1, 2, . . . , n}, will also satisfy T ∈ Σ(µ, ν). Therefore, the solution

to Monge problem is

inf I(T ) =
n∑
i=1

c(xi, yσ(i)),
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where σ is a permutation in Sn.

On the other hand, any measure π ∈ Σ(µ, ν) can be repiresented as an n × n

matrix {πij} which satisfies

πij ≥ 0; ∀j
n∑
i=1

πij = 1; ∀i
n∑
j=1

πij = 1

So, solution to Monge-Kantorovich problem is

inf J(π) = inf

{
1

n

n∑
i=1

n∑
j=1

πijc(xi, yi); {πij} ∈ Bn

}
,

whereBn =
{
M ∈Mn(R);Mij ≥ 0; ∀j

∑n
i=1Mij = 1; ∀i

∑n
j=1Mij = 1.

}
By Choquet theorem, this problem has a solution on extremal points1 of Bn.

By Birkhof theorem, extremal points of Bn are permutation matrices2. This im-

plies that solutions to the Monge and the Monge-Kantorovich problems exist, but

they are not unique, and they are equal, i.e.

inf J(π) = inf I(T ) =
n∑
i=1

c(xi, yσ(i)).

The existence, the uniqueness and the equality of solutions to both problems

depend on structure of spaces, the cost function and measures µ, ν. In following

section we will introduce same important result by assuming X = Y = Rn,

c(x, y) = |x − y|p, 0 < p < ∞ and measures µ and ν have a compact support.

Some of results we will show as following:

• For p > 1, if µ and ν are absolutely continuous, both problems have unique

solution and they coincide.

• For p > 1, if µ vanishes at small sets3, both problem have unique solution

and they coincide.

• For p > 1, if µ does not vanish at small sets, although the Monge-

Kantorovich problem has a solution, there is no solution to Monge Problem.

1Matrix M is called extremal point of Bn, if it can’t written as nontrivial convex combination
of two elements in Bn.

2M is called a permutation matrix, if it satisfies Mij ∈ {0, 1}, ∀j
∑n

i=1 Mij = 1, and
∀i
∑n

j=1 Mij = 1.
3Small set means the set which has n− 1 Hausdorff dimension
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• For p = 2, and if one of the first two assumptions hold, then the optimal

transport maps are gradient of some convex functions on R.

• For p = 1, if µ and ν are absolutely continuous, both problems have solu-

tions and they coincide, however there is no unique solution.

• For p = 1, if µ vanishes at small sets, both problems have solutions but

they do not necessarily coincide.

2.4 Kantorovich Duality

Kantorovich developed a very important tool, called Kantorovich Duality The-

orem, which is used for both theories and applications of Monge-Kantorovich

problem.

To understand the theorem better, here is a nice interpretation, introduced by

Villani[10];

“Suppose for instance that you are an industrial willing to transfer a

huge amount of coal from your mines to your factories. You can hire

trucks to do this transportation problem, but you have to pay them

c(x, y) for each ton of coal which is transported from place x to place

y. Both the amount of coal which you can extract from each mine,

and the amount which each factory will receive, are fixed. As you are

trying to solve the associated Monge-Kantorovich problem in order to

minimize the price you have to pay, another mathematician comes to

you and tells you My friend, let me handle this for you: I will ship

all your coal with my own trucks and you wont have to care of what

goes where. I will just set a price φ(x) for loading one ton of coal

at place x, and a price ψ(y) for unloading it at destination y. I will

set the prices in such a way that your financial interest will be to let

me handle all your transportation ! Indeed, you can check very easily

that for all x and all y, the sum φ(x) + ψ(y) will always be less that

the cost c(x, y) (in order to achieve this goal, I am even ready to give

financial compensations for some places, in the form of negative prices

!). Of course you accept the deal. Now, what Kantorovichs duality

8



tells you is that if this shipper is clever enough, then he can arrange

the prices in such a way that you will pay him (almost) as much as

you would have been ready to spend by the other method.”

Formally:

Theorem 2.4.1 (Kantorovich Duality Theorem). Let X, Y be two measure spaces

with probability measures µ, ν, and let c(x, y) be a non-negative cost function

defined on X × Y ; define a set Φc as;

Φc =
{

(φ, ψ) ∈ L1(µ)× L1(ν);φ(x) + ψ(y) ≤ c(x, y) µ-a.s. ∀x ∈ X, and ν-a.s. ∀y ∈ Y
}

and define function D : L1(µ)× L1(ν)→ R as;

D(φ, ψ) =

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y).

Then

inf
Π(µ,ν)

J(π) = sup
Φc

D(φ, ψ).

supΦc
D(φ, ψ) is called dual of infΠ(µ,ν) J(π).

Following Villani [10], we will give outline of the proof of this theorem. The

key point of proof is use of Minimax principle which allows us to change the

order of infimum and supremum under some conditions.

Theorem 2.4.2 (Minimax principle [3]). Let X be a compact Hausdorff space and

Y an arbitrary set (not topologized). Let f be a real-valued function on X × Y
such that, for every y ∈ Y , f(x, y) is lower semi-continuous on X. If f is convex

on X and concave on Y , then

inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

inf
x∈X

f(x, y)

Proof of 2.4.1. Let M+(X × Y ) denotes the set of all positive borel measures

from X to Y. Observe that

inf
Π(µ,ν)

J(π) = inf
M+(X×Y )

[
J(π) +

{
0 π ∈ Π(µ, ν)

+∞ else

]
9



= inf
M+(X×Y )

[
J(π) + sup

Cb(X)×Cb(Y )

[ ∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

−
∫
X×Y

(φ(y) + ψ(y)) dπ(x, y)

]
= inf

M+(X×Y )
sup

Cb(X)×Cb(Y )

[
J(π) +

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

−
∫
X×Y

(φ(y) + ψ(y)) dπ(x, y)

]

= sup
Cb(X)×Cb(Y )

inf
M+(X×Y )

[
J(π) +

∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

−
∫
X×Y

(φ(y) + ψ(y)) dπ(x, y)

]
by 2.4.2

= sup
Cb(X)×Cb(Y )

[∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)

− sup
M+(X×Y )

[ ∫
X×Y

(φ(y) + ψ(y)− c(x, y)) dπ(x, y)

]]
(4.1)

Define f(x, y) = φ(x) + ψ(y) − c(x, y). If f(x, y) > 0 for some (x0, y0), then by

choosing πλ = λδ(x0,y0) ∈ M+(X × Y ),
∫
X×Y f(x, y)dπλ goes to ∞ as λ goes to

∞. Hence sup
∫
X×Y f(x, y)dπ(x, y) = ∞. On the other hand, if f(x) ≤ 0, then

supremum attains at π = 0 ∈M+(X × Y ) and is equal to 0. Hence

4.1 = sup
Cb(X)×Cb(Y )

[∫
X

φ(x)dµ(x) +

∫
Y

ψ(y)dν(y)−

{
0 (φ, ψ) ∈ Φc

+∞ else

]
= sup

Φc

D(φ, ψ).

10



Chapter 3

Solutions to problems

3.1 The quadratic cost function

In this section, we let X = Y = Rn and define the cost function c(x, y) = |x−y|2
2

.

And finally, we let µ, ν be Borel Probability measure with finite second moments,

i.e. ∫
Rn

|x|2

2
dµ(x) +

∫
Rn

|y|2

2
dν(y) = M <∞. (1.1)

3.1.1 The existence of solution to Monge-Kantorovich

problem

Lemma 3.1.1. Π(µ, ν) is compact for weak topology of probability measures.1

Proof. We already know that µ and ν are tight, therefore, for ε > 0 there exist

compact sets Kε, Lε ⊂ Rn such that µ(Kc
ε ) < ε and ν(Lcε) < ε. Now let π ∈

Π(µ, ν). Then

π ((Kε × Lε)c) ≤ π (Rn × Lcε) + π (Kc
ε × Rn) ≤ 2ε

1The topologoy induced by Cb(Rn
+ × Rn

+).

11



So Π(µ, ν) is tight, hence relatively compact. On the other hand Π(µ, ν) is clearly

closed. These two imply that Π(µ, ν) is compact.

Proposition 3.1.2. Monge-Kantorovich problem admits a minimizer,i.e. there

exist π′ ∈ Π(µ, ν) such that

J(π′) = inf
Π(µ,ν)

J(π).

Proof: Let (πk)k∈N ⊂ Π(µ, ν) be minimizing sequence, i.e. lim J(πk) =

infΠ(µ,ν) J(π) as k → ∞, then it admits a cluster point π′ ∈ Π(µ, ν.) On the

other hand, we can find a sequence of nondecreasing bounded continuous func-

tions (cl(x, y))l∈N which converges to c(x, y). So, we have

J(π′) = lim
l→∞

∫
X×Y

cl(x, y)dπ′(x, y) by monotone convergence theorem

≤ lim
l→∞

lim sup
k→∞

∫
X×Y

cl(x, y)dπk(x, y) since π′ is a cluster point

≤ lim sup
k→∞

∫
X×Y

c(x, y)dπk(x, y) since cl(x, y) ≤ c(x, y)

= inf
Π(µ,ν)

J(π)

Hence π′ is an optimal transportation plan for Monge-Kantorovich problem. A

more elegant result will be given in following sections.

3.1.2 More about Kantorovich Duality

Due to our assumptions at the beginning of the section we will have a more

elegant result about Kantorovich Duality. Again we will follow th book of villani

[10]

By definition (φ, ψ) ∈ Φc if and only if

φ(x) + ψ(y) ≤ |x− y|
2

,

and this is true if and only if

x.y ≤
(
|x|2

2
− φ(x)

)
+

(
|y|2

2
− ψ(y)

)
.

12



So (φ, ψ) ∈ Φc if and only if (φ̃, ψ̃) ∈ Φ̃c where φ̃(x) = |x|2
2
− φ(x),

ψ̃(y) = |y|2
2
− ψ(y) and

Φ̃c =
{

(φ, ψ) ∈ L(µ)1 × L(ν)1; x.y ≤ φ(x) + ψ(y)
}
. (1.2)

So by using 1.1, we have

sup
Φc

D(φ, ψ) = sup
Φ̃c

(
M −

∫
Rn

φ(x)dµ(x) +

∫
Rn

ψ(x)dν(y)

)
= M − inf

Φ̃c

D(φ, ψ)

On the other hand

inf
Π(µ,ν)

J(π) = inf
Π(µ,ν)

(∫
Rn×Rn

|x− y|2

2
dπ(x, y)

)
= M −

(
sup

Π(µ,ν)

∫
Rn×Rn

x.ydπ(x, y)

)
Finally we can rewrite Duality Theorem as

sup
Π(µ,ν)

(∫
Rn×Rn

x.ydπ(x, y)

)
= inf

Φ̃c

(∫
Rn

φ(x)dµ(x) +

∫
Rn

ψ(x)dν(y)

)
= inf

Φ̃c

J(φ, ψ). (1.3)

Now define φ∗(y) = supx∈X (x.y − φ(x)) . This transform is called Legendre-

Fenchel transform. From 1.3, (φ, ψ) ∈ Φ̃c implies for all y ∈ Y ν-almost surely

ψ(y) ≥ φ∗(y). (1.4)

Moreover, it is clear that

φ(x) + φ∗(y) ≥ xy. (1.5)

Hence µ−almost surely

φ(x) ≥ sup
y∈Y

(x.y − φ∗(y)) = φ∗∗(x). (1.6)

Lemma 3.1.3. Let µ and ν be probability measures with second finite moments

and they are supported in subsets X and Y of Rn. For each measurable functions

φ, ψ with values in R ∪ {+∞}, define

φ∗(y) = sup
x∈X

(x.y − φ(x))
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ψ∗(x) = sup
y∈Y

(x.y − ψ(y)) .

Let Φ̃c be defined by 1.2 and let (φk, ψk)k∈N be a minimizing sequence for D over

Φ̃c. Then

(i) one can modify φk, ψk on sets Mk, Nk of measure zero such that the equation

x.y ≤ φk + ψk holds for each x ∈ X, y ∈ Y without changing the value of

D(φk, ψk).

(ii) There exists a sequence of real numbers (ak)k∈N such that

(φk, ψk) = (φ∗∗k − ak, ψ∗k + ak)

it is still a minimizing sequence for D over Φ̃c and satisfying followings:

φk(x) ≥ −|x|
2

2
∀x ∈ X and ψk(y) ≥ −|y|

2

2
∀y ∈ Y

lim inf
k→∞

inf
x∈X

φk(x) +
|x|2

2
≤ inf

Φ̃c

D(φ, ψ) +M

lim inf
k→∞

inf
y∈Y

ψk(y) +
|y|2

2
≤ inf

Φ̃c

D(φ, ψ) +M

(iii) If X = Y = Rn, then

inf
Φ̃c

D(φ, ψ) = inf
L1(µ)

D(φ∗∗, φ∗)

Proof. (iii) From 1.5 if we show that φ∗ ∈ L1(ν), we will have (φ, φ∗) ∈ Φ̃c.

Firstly (φ, ψ) ∈ Φ̃c implies that ψ(y) ≥ xy − φ(x), hence ψ(y) ≥ φ∗(y)

On the other hand there exist (x0, b0) ∈ Rn × R such that φ∗(y) ≥
xoy − b0 ≥ −1

2
(|x0|2 + |y|2 + b0) combining these two, we get |φ∗(y)| ≤

max
(
|ψ(y)|, 1

2
(|x0|2 + |y|2 + |b0|)

)
for each y ∈ Y ν-almost surely. Hence, let-

ting A = {y ∈ R : |ψ(y)| ≤ 1
2
(|x0|2 + |y|2 + |b0|)}∫

Rn

φ∗(y)dν(y) ≤
∫
A

1

2

(
|x0|2 + |y|2 + |b0|

)
dν(y) +

∫
Ac

ψ(y)dν(y)

≤
∫
Rn

1

2

(
|x0|2 + |y|2 + |b0|

)
dν(y) +

∫
Rn

ψ(y)dν(y) <∞

So (φ, φ∗) ∈ Φ̃c, and for each (φ, ψ) ∈ Φ̃c, we have D(φ, φ∗) ≤ D(φ, ψ) since

ψ(y) ≥ φ∗(y). By the same reason, (φ∗∗, φ∗) ∈ Φ̃c and D(φ∗∗, φ∗) ≤ D(φ, ψ).

Therefore

inf
Φ̃c

D(φ, ψ) = inf
L1(µ)

D(φ∗∗, φ∗)
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(i) By definition of Φ̃c, (φk, ψk) ∈ Φ̃c implies that there exist sets Mk, and Nk

with zero measure such that x.y ≤ φk + ψk holds for all (x, y) ∈ M c
k ×N c

k . Next

we change values of φk, and ψk to be +∞ on Mk, and Nk respectively. We still

have (φk, ψk) ∈ Φ̃c but value of D did not change since we worked on sets with

zero measure.

(ii) We know that ψk is not identically +∞ and by part (i) for each x, y we

have φk(x) ≥ x.y − ψk(y). Hence there exist y0 ∈ Y and b0 ∈ R such that

φk(x) ≥ x.y0 − b0. for all x. Hence

φ∗k(yo) = sup
x∈X

(x.y0 − φk(x)) ≤ −b0,

and φ∗k is a proper function. Moreover, since φk is proper, there exist x0 and d0

such that for all y φ∗k(y) ≥ x0.y − d0. So,

ak = inf
y∈Y

(
|y|2

2
+ φ∗k(y)

)
is finite. Now define:

φk = φ∗∗k + ak

ψk = φ∗k − ak

Clearly ∀y ∈ Y , we have

ψk(y) ≥ −|y|
2

2
(1.7)

On the other hand, for all x ∈ X

φk(x) +
|x|2

2
= sup

y∈Y

(
x.y − φ∗k(y) +

|x|2

2

)
+ ak

≥ sup
y∈Y

(
−φ∗k(y)− |y|

2

2

)
+ ak

= − inf
y∈Y

(
φ∗k(y) +

|y|2

2

)
+ ak = 0 (1.8)

So we have done with lower bounds. Now we will deal with upper bounds. By

1.4, 1.6 and the definition of function D we have

D(φk, ψk) = D(φ∗∗k + ak, φ
∗
k − ak) = D(φ∗∗k , φ

∗
k) ≤ D(φk, ψk) <∞. (1.9)

So,

0 ≤
∫
X

(
φk(x) +

|x|2

2

)
dµ+

∫
Y

(
ψk(y) +

|y|2

2

)
dν
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≤
∫
X

(
φk(x) +

|x|2

2

)
dµ+

∫
Y

(
ψk(y) +

|y|2

2

)
dν

= D(φk, ψk) +M <∞ (1.10)

1.7 and 1.8 imply first and 1.9 implies the second inequality.

Hence (φk, ψ) ∈ L(µ)1 × L(ν)1, and by their definition, (φ, ψ) ∈ Φ̃c. So, if we

take limit of both sides of 1.10, we see that (φk, ψ) is a minimizing sequence for

D over Φ̃c. Moreover,

D(φk, ψk) +M =

∫
X

(
φk(x) +

|x|2

2

)
dµ+

∫
Y

(
ψk(y) +

|y|2

2

)
dν

≥ inf
X

(
φk(x) +

|x|2

2

)
+ inf

Y

(
ψk(y) +

|y|2

2

)
Since terms on the right side are nonnegative we have

D(φk, ψk) +M ≥ inf
X

(
φk(x) +

|x|2

2

)
D(φk, ψk) +M ≥ inf

Y

(
ψk(y) +

|y|2

2

)
Since (φk, ψk) is minimizing sequence for D over Φ̃c, we have

inf
Φ̃c

D(φ, ψ) +M ≥ lim inf
k→∞

inf
X

(
φk(x) +

|x|2

2

)
inf
Φ̃c

D(φ, ψ) +M ≥ lim inf
k→∞

inf
Y

(
ψk(y) +

|y|2

2

)
.

Lemma 3.1.4. Let µ, ν be probability measure with second finite moments. Then

there exist a pair φ, φ∗ of semi-continuous convex function such that

inf
Φ̃c

D(φ, ψ) = D(φ, φ∗)

Proof. (Convex Settings) Assume that µ and ν are supported in subsets X and

Y of Rn
+. Let (φk, ψk)k∈N be a minimizing sequence for D over Φ̃c, and (φk, ψ) be

sequence that satisfies conditions in lemma 3.1.3. By definition, we know that φk

is uniformly lipstick, i.e.

‖ψk‖Lip(X) ≤ sup
Y
|y|.
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Moreover by lemma 3.1.3, there sexist xk ∈ X

− sup
X

|x|2

2
≤ ψk(xk) ≤ sup

X

|x|2

2
+ inf

Φ̃c

D +M + 1.

Since φk is uniformly lipstick, we decide that for all x ∈ X

ψk(x) ≤ φk(xk) + sup
X
|x|2

≤ sup
X

3|x|2

2
+ inf

Ψ̃c

D +M + 1.

And

ψk(xk)− sup
X
|x|2 ≤ ψk(x)

− sup
X

3|x|2

2
≤ ψk(x).

Since X is compact, ψk is uniformly bounded. Similarly φk is uniformly bounded.

Moreover (φk)k∈N, (ψk)k∈N are both sequences of equicontinuous (since uniformly

Lipschitz) functions defined on compact sets of a separable metric space since they

are uniformly Lipschitz. Therefore we can apply Arzela-Ascoli theorem. Hence,

there exist subsequences (φkn), (ψkn) that converge uniformly to φ ∈ Cb(X),

ψ ∈ Cb(Y ) respectively. These convergences also holds in L1. Therefore,

inf
Φ̃c

D ≤ D(φ
∗∗
, φ
∗
) ≤ D(φ, ψ) ≤ lim

n→∞
D(φkn , ψkn) ≤ lim

n→∞
D(φkn , ψkn) ≤ inf

Φ̃c

D

This completes the proof of lemma in compact settings. For general case please

see the references.

3.1.3 Theorems for quadratic case

In this section we will prove main theorems for Quadric cost function. In order to

do this, we need to use some convex analysis. Therefore, if you are not familiar

with convex analysis, please see the appendix for some necessary background

information.

Theorem 3.1.5 (Knott-Smith criterion). Let µ, ν be probability measure with

second finite moments, and define the cost function c(x, y) = |x−y|2
2

. The measure

17



π ∈ Π(µ, ν) is optimal transportation plan if and only if there exists a convex

lower-semi continuous function φ such that

supp(π) ⊂ ∂φ,

in other words;

y ∈ ∂φ(x), π almost surely.

Moreover, we have

inf
Φ̃c

D(φ, ψ) = D(φ, φ∗)

Proof. Assume that π ∈ Π(µ, ν) is an optimal transportation plan. By lemma

3.1.4, there exists convex lower semi-continuous function φ such that (φ, φ∗) ∈ Φ̃c

and minimize D over Φ̃c. So we have∫
Rn×Rn

x.y dπ(x, y) =

∫
Rn

φ dµ(x) +

∫
Rn

φ∗ dν(y) by 1.3

=

∫
Rn×Rn

(φ+ φ∗) dπ(x, y) since π ∈ Π(µ, ν)

Hence we have ∫
Rn×Rn

(φ+ φ∗ − x.y) dπ(x, y) = 0

Since (φ, φ∗) ∈ Φ̃c, integrand is non-negative. Hence φ+φ∗ = x.y π-almost surely.

This is equivalent to, by A.0.6

supp(π) ⊂ ∂φ,

or

y ∈ ∂φ(x), π almost surely.

On the contrary, assume that π ∈ Π(µ, ν) and there exists a convex lower-semi

continuous function φ such that

supp(π) ⊂ ∂φ.

By the following each above steps in reverse order, we have∫
Rn×Rn

x.y dπ(x, y) =

∫
Rn

φ dµ(x) +

∫
Rn

φ∗ dν(y)by by A.0.6
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≥ inf
Ψ̃c

D since (φ, φ∗) ∈ Φ̃c

= sup
Π(µ,ν)

∫
Rn×Rn

x.y dπ(x, y) by 1.3

≥
∫
Rn×Rn

x.y dπ(x, y)

So there is equality for everywhere, hence π is optimal transportation plan.

Theorem 3.1.6 (Breniers theorem). Let µ, and ν be probability measures with

second finite moments, and define the cost function c(x, y) = |x−y|2
2

. If µ vanish

on small sets, then there exists a unique optimal transportation plan π ∈ Π(µ, ν)

such that

π = (id×5φ)# µ,

where 5φ is unique gradient of convex function such that 5φ#µ = ν.

Proof. By 3.1.2 and 3.1.5, we already know that there exist optimal transporta-

tion plan π ∈ Π(µ, ν), and a convex lower-semi continuous function φ such

that spt(π) ⊂ ∂φ. Since φ is integrable, it is µ-almost surely finite. Hence

µ (Dom (φ)) = 1. Moreover, the boundary of Dom (φ) is a small set, so by as-

sumption it has zero µ measure. Hence µ (int (Dom (φ))) = 1. Moreover φ is

differentiable everywhere except small set by A.0.7. By A.0.3, we know that dif-

ferentiability at x implies unique sub-gradient at x, which is 5φ(x). As a result

we have ∂φ(x) = {Oφ(x)} for all x ∈ X µ almost surely. Therefore, we have

π-almost surely

(x, y) ∈ spt(π)⇒ (x, y) = (x,Oφ(x))

Which implies

dπ(x, y) = µ(x).δ(x−Oφ(x)).

Equivalently π′ = (id×5φ)# µ, and 5φ#µ = ν.

Next we will prove uniqueness part. Let π and π2 be two optimal transportation

plan such that π = (id×5φ)# µ, and π′2 = (id×5φ2)#µ. By 3.1.5, both (φ, φ∗)

and (φ2, φ
∗
2) are solution to dual problem, i.e.

inf
Φ̃c

D(φ, φ∗) = D(φ, φ∗) =

∫
Rn

φ(x)dµ(x) +

∫
Rn

φ∗(x)dν(y)

= D(φ2, φ
∗
2) =

∫
Rn

φ2(x)dµ(x) +

∫
Rn

φ∗2(y)dν(y)
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=

∫
Rn×Rn

x.y dπ(x, y) by 1.3

Since π = (id×5φ)# µ,, we have∫
Rn×Rn

(φ2(x) + φ∗2(5φ(x))) dµ(x) =

∫
Rn×Rn

x.5 φ(x) dµ(x)

Hence ∫
Rn×Rn

(φ2(x) + φ∗2(5φ(x))− x.5 φ(x)) dµ(x) = 0

Since integrand is finite, we have φ2(x)+φ∗2(5φ(x))−x.5φ(x) = 0 almost surely.

So A.0.6 implies 5φ(x) ∈ ∂φ2(x), and A.0.3 implies 5φ(x) = 5φ2(x) µ-almost

surely .

3.1.4 Cyclical monotonicity

Until now we have studied the quadratic cost function under the assumption

of finite second order moments. In order to receive more general result for the

quadratic cost, we need to introduce a geometrical idea, namely the concept of

cyclical monotonicity.

Definition 3.1.7 (Cyclically monotone ). A subset Γ ∈ Rn × Rn is called

Cyclically monotone if it satisfies the condition; for all m ≥ 1 and for all

(x1, y1), . . . , (xm, ym) ∈ Γ, we have

m∑
i=1

|xi − yi|2 ≤
m∑
i=1

|xi − yi−1|2

where y0 = ym or equivalently

m∑
i=1

yi.(xi+1 − xi) ≤ 0.

The concept of cyclical monotonicity will allow us to prove of one way of Knott-

Smith optimality criterion without assumption of finite second moments. This

will be enough to prove generalized Brenier’s theorem.
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Theorem 3.1.8 (Rockafellar [7]). A nonempty subset Γ ⊂ Rn × Rn is cyclically

monotone if and only if there exists a proper convex function φ on Rn such that

Γ ⊂ ∂φ.

Proof. First, assume that Γ is cyclically monotone and let (x0, y0) be any element

in Γ. Now define

φ(x) = sup{ym.(x− xm) + ym−1.(xm − xm−1) + · · ·+y0.(x1 − x0);m ∈ N,

(xi, yi) ∈ Γ ∀ 1 ≤ i ≤ m}

Note first that φ is a supremum of a nonempty collection of affine functions,

hence it is a lower semi-continuous convex function. Moreover, φ(x0) ≤ 0 since

Γ is cyclically monotone, which means φ is proper. Next, we will show that Γ is

subset of ∂φ, i.e., if (x, y) ∈ Γ, then we have

φ(z) ≥ φ(x) + y.(z − x), ∀z ∈ Rn.

First, let a be any number less than φ(x). By definition of φ, there exist m ∈ N
and (x1, y1) . . . (xm, ym) such that

a ≤ ym.(x− xm) + ym−1.(xm − xm−1) + · · ·+ y0.(x1 − x0).

Thus,

a+ y.(z − x) ≤ y.(z − x) + ym.(x− xm) + ym−1.(xm − xm−1) + · · ·+ y0.(x1 − x0)

≤ φ(z).

Last inequality come from the defition of φ. Since we choose a arbitrarily, we have

φ(z) ≥ a+ y.(z − x), ∀z ∈ Rn, ∀a < φ(x).

This implies

φ(z) ≥ φ(x) + y.(z − x), ∀z ∈ Rn.

and Γ is a subset of ∂φ.

Conversely, assume Γ ⊂ ∂φ where φ is a proper convex function on Rn. We will

show that ∂φ is cyclically monotone subset of Rn×Rn. Then our claim will follow.

Let (x1, y1), . . . , (xm, ym) ∈ ∂φ. By the definition of subdifferential we have ∀z ∈
Rn.

φ(z) ≥ φ(x1) + y1.(z − x1)
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Hence,

φ(x2) ≥ φ(x1) + y1.(x2 − x1)

φ(x3) ≥ φ(x2) + y2.(x3 − x2)

...

φ(x1) ≥ φ(xm) + ym.(x1 − xm)

Adding up these inequalities, we will observe

m∑
i=1

yi.(xi+1 − xi) ≤ 0.

This is just the definition of cyclically monotone set. Therefore, ∂φ is cyclically

monotone. In particular, Γ is cyclically monotone since, it is subset of a cyclically

monotone set.

Theorem 3.1.9. Let µ and ν be probability measures on Rn, and define the cost

function c(x, y) = |x− y|2. If π ∈ Π(µ, ν) is optimal transportation plan then

support of π′ is cyclically monotone.

Remark 3.1.10. Please note that this theorem is not a characterization of op-

timal transportation plan since converse of it is still an open problem.

From 3.1.8 and 3.1.9 we can decude the following result.

Theorem 3.1.11. Let µ and ν be probability measure on Rn, and define the cost

function c(x, y) = |x−y|2
2

. If π ∈ Π(µ, ν) is optimal transportation plan then the

support of π is supported in the sub-differential of a proper lower semi-continuous

convex function.

This is one direction of Knott-Smith optimality criterion but we did not need

any assumptions of finiteness of the second moments.

Theorem 3.1.12 (Breniers theorem, extended version). Let µ and ν be probabil-

ity measure and define the cost function c(x, y) = |x− y|2. If µ vanish on small

sets, then there exists unique optimal transportation plan π ∈ Π(µ, ν) such that

π = (id×5φ)# µ,

where 5φ is unique gradient of convex function such that 5φ#µ = ν.
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Proof. Recall that we only use one direction of Knott-Smith criterion 3.1.5, which

is what we just proved without the assumption of finiteness of the second mo-

ments, in the existence part of Brenier’s theorem 3.1.6. Hence, the proof of

existence part of Brenier’s theorem 3.1.6 also holds for this theorem.

However, for the uniqueness part of Brenier’s theorem, we used 3.1.4 which re-

quires the assumption of finiteness of the second moments. Hence, we need help

of Aleksandrovs lemma A.0.8 in order to prove uniqueness

Now, let π and π2 be two optimal transportation plans such that π =

(id×5φ)# µ, and π2 = (id ×5φ2)#µ and 5φ 6= 5φ2 µ−almost surely. Then,

there exists x0 ∈ spt(µ) such that 5φ(x0) 6= 5φ2(x0). Adding some constant

number to φ and φ2, we can ensure that φ(x0) = φ2(x0) = 0, and this will not

affect the gradients. By A.0.9 , there exists a small neighborhood U of x0 such

that U ∩ {φ = φ2} has d− 1 Hausdorff dimension, and it has zero µ measure by

assumption. On the other hand, U has a positive measure since it contains x0.

Hence, it intersects {φ > φ2} or {φ < φ2} with positive µ measure. Exchanging

{φ, φ2} if necessary, we can say that U intersects V = {φ > φ2} with positive µ

measure.

By lemma A.0.8, we know that x0 lies in a positive distance away from Z =

Oφ2
−1 (∂φ(V )) . So, we can find some neighborhood U2 of x0 such that U2∩Z = ∅.

Let T = U ∩ U2.

Now, since V ∩ Domφ ⊆ Z and 1 = ν(Rn) = Oφ#µ(Rn) = µ(Oφ−1(Rn)) =

µ(DomOφ), we have

µ(V ) ≤ µ(Z).

On the other hand, we know Z ⊆ V from A.0.8, hence µ(Z) ≤ µ(V ). Moreover

T ∩ Z = ∅ and µ(T ∩ V ) > 0, hence

µ(Z) < µ(V ).

We observed

µ(Z) < µ(V ) ≤ µ(Z).

This contradiction implies uniquness.
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3.2 Result for other cost functions

In this section, we will focus on two special cost function which are

c(x, y) = h(x− y), h is strictly convex on Rn,

c(x, y) = l(|x− y|), l is strictly concave on R+.

This section corresponds to the work of Gangbo and McCann [11]. The main idea

is to use generalized notions of Convex Analysis so, again if you are not familiar

with convex analysis please see the appendix before starting.

3.2.1 c-cyclical monotonicity

Definition 3.2.1 (c-cyclically monotone). A subset Γ ∈ Rn × Rn is called

c-cyclical monotone if it satisfies the condition: for all m ≥ 1 and for all

(x1, y1), . . . , (xm, ym) ∈ Γ and permutation σ on m-letters, we have

m∑
i=1

c(xi, yi) ≤
m∑
i=1

c(xσ(i), yi) (2.1)

or equivalently

m∑
i=1

c(xi, yi) ≤
m∑
i=1

c(xi−1, yi)

where x0 = xm.

Theorem 3.2.2 (Ruschendorf [8]). A nonempty subset Γ ⊂ Rn×Rn is c-cyclically

monotone if and only if there exists a proper c-concave function φ on Rn such

that Γ ⊂ ∂cφ.

Proof. Assume Γ ⊂ ∂cφ where φ is a proper convex function on Rn. We will show

that ∂cφ is cyclically monotone subset of Rn × Rn. Then our claim will follow.

Let (x1, y1), . . . , (xm, ym) ∈ ∂cφ. By the definition of c-superdifferential we have

φ(x2)− φ(x1) ≥ c(x2, y1)− c(x1, y1)

φ(x3)− φ(x2) ≥ c(x3, y2)− c(x2, y2)
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...

φ(x1)− φ(xm)) ≥ c(x1, ym)− c(xm, ym)

Adding up these inequalities, we will observe

m∑
i=1

c(xi, yi) ≤
m∑
i=1

c(xi, y−1).

This is just the definition of cyclically monotone Therefore ∂φ is cyclically mono-

tone. In particular, Γ is cyclically monotone since it is subset of a cyclically

monotone set.

Conversely, assume that Γ is cyclically monotone and let (x0, y0) be any element

in Γ. Now define

φ(x) = inf{c(x, ym)− c(xm, ym) + · · ·+ c(x2, y1)− c(x1, y1);m ∈ N, (xi, yi) ∈ Γ}

Note first that φ is a infimum of a nonempty collection of functions of type

c(., y) − b, hence it is a c-concave function. Moreover, φ(x0) ≤ 0 since Γ is

cyclically monotone, which means φ is proper. Next we will show that Γ is subset

of ∂cφ. First let a be any number greater than φ(x). By definition of φ, there

exist m ∈ N and (x1, y1) . . . (xm, ym) such that

a ≥ c(x, ym)− c(xm, ym) + · · ·+ c(x2, y1)− c(x1, y1).

Thus

a+ c(z, y)− c(z, x) ≥ c(z, y)− c(z, x) + c(x, ym)− c(xm, ym) + · · ·+ c(x2, y1)− c(x1, y1)

≥ φ(z).

Last inequality come from the definition of φ. Since we choose a arbitrarily, we

have

φ(z) ≤ φ(x) + c(z, y)− c(z, x), ∀z ∈ Rn,

and Γ is a subset of ∂cφ.

Theorem 3.2.3. Let µ, ν be probability measure on Rn, and define continuous

cost function c(x, y) ≥ 0. If π ∈ Π(µ, ν) is optimal transportation plan then

support of π is c-cyclically monotone.
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Proof. Suppose that spt(π) is not cyclically monotone. Which means we can find

an integer m and permutation σ such that

m∑
i=1

c(xi, yi) >
m∑
i=1

c(xσ(i), yi)

for some (x1, y1), . . . , (xm, ym) ∈ spt(π).

Now consider the function

f(x1, . . . , xm, y1, . . . , ym) =
m∑
i=1

c(xσ(i), yi)−
m∑
i=1

c(xi, yi).

This function is continuous and takes negative value at (x1, y1), . . . , (xm, ym) ∈
spt(π). Hence there exist compact neighborhoods Uj ⊂ Rn of xj and Vj ⊂ Rn of

yj such that f(u1, . . . , um, v1, . . . , vm) < 0 if uj ∈ Uj and vj ∈ Vj. On the other

hand, λ = infj π(Uj × Vj) > 0 since (xj, yj) ∈ spt(π).

Next, define a measure πi as πi(A) = λ−1π(Uj × Vj ∩ A) for all A ⊂ Rn × Rn,

and let µi and νi be the first and the second marginals of πi. Our goal is to build

better measure than π in the transport problem. Now define

π′ = π − λ

m

m∑
i=1

πi +
λ

m

m∑
i=1

π′i

where π′i = µσ(i) ⊗ νi.

The measure π′ is positive and in Π(µ, ν). Moreover

J(π′)− J(π) =
λ

m

m∑
i=1

∫
c d(π′i − πi) < 0

by the condition on the function f. This contradicts to the the fact that π is

optimal.

3.2.2 Strictly convex cost

In this subsection we will consider the cost function which has a form c(x, y) =

h(x− y) where the function satisfies the following conditions
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(H1) h : Rd → [0,∞)is strictly convex,

(H2) lim h(x)
|x| = +∞ as |x| → +∞,

(H3) For given r <∞ and angle θ ∈ (0, π): whenever p ∈ Rn is far enough from

the origin, there exists a direction z ∈ Rn such that, on the truncated cone

K with angle θ
2
, vertex p, and direction z, defined by

K(p, z, θ) = {z ∈ Rn : |x− p||z|cos(θ/2) ≤ (z, x− p) ≤ r|z|},

h consume its maximum at p.

We need these conditions to ensure the invertibility of Oh on whole Rn. Although

we will not prove, it will turn out that (Oh)−1 = Oh∗ where ∗ is the usual

Legendre transform.

We can state main theorem of this subsection.

Theorem 3.2.4 (Breniers theorem for strictly convex costs). Let µ and ν be

probability measures and define the cost function c(x, y) = h(x − y) where h

is satisfying (H1)-(H3). If µ is absolutely continuous with respect to Lebesgue

measure, then there exists a unique optimal transportation plan π ∈ Π(µ, ν) in

the form

π = (id× s)# µ,

where s(x) = x − (Oh)−1 ◦ Oφ such that s#µ = ν. and it is uniquely determined

with a c-concave function φ µ-almost surely.

We will divide the proof of this theorem in order to make it easy to read.

Theorem 3.2.5. Let µ, ν be probability measure and define the cost function

c(x, y) = h(x − y) where h is satisfying (H1)-(H3). Suppose π ∈ Π(µ, ν) has

support in ∂cφ for some c-concave function φ. If φ is differentiable µ-almost

surely, then s#µ = ν and π = (id× s)# µ where s(x) = x− Oh∗ ◦ Oφ.

Proof. Note that by A.0.16 part (i) s(x) is a Borel map and the domain of s is

DomOφ where φ is differentiable. So, DomOφ is a Borel set and by the assumption

µ(DomOφ) = 1.

First, we will show that π = (id× s)# µ. Let U, V be a Borel sets in Rn and define

S = {(x, y) ∈ ∂cφ : x ∈ DomOφ}
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Observe that S = ∂cφ∩DomOφ×Rn. Since ∂cφ is closed a set and DomOφ×Rn

is a Borel set, S is a Borel set and π(S) = 1 since π(∂cφ) = π(DomOφ×Rn) = 1.

Moreover, by A.0.16 part (ii) for (x, y) ∈ S we have y = s(x), hence

(U × V ) ∩ S =
((
U ∩ s−1(V )

)
× Rn

)
∩ S

This implies

π(U × V ) = π((U × V ) ∩ S)

= π
(((

U ∩ s−1(V )
)
× Rn

)
∩ S
)

= π
((
U ∩ s−1(V )

)
× Rn

)
= µ

(
U ∩ s−1(V )

)
= (id× s)# µ(U × V ).

Since, the semi-algebra of products U ×V generates all borel sets in Rn×Rn, we

have π = (id× s)# µ, from which s#µ = ν follows.

Theorem 3.2.6. Let µ, ν be probability measure and define the cost function

c(x, y) = h(x − y) where h is satisfying (H1)-(H3). Suppose µ is absolutely

continuous with respect to Lebesgue. If a map s(x), which has form form s(x) =

x− Oh∗ ◦ Oφ(x), pushes µ forward to ν, then it is µ−almost surely unique.

Proof. Assume that in addition to s(x) there exists t(x) such that t(x) = x −
Oh∗ ◦ Oψ(x), for some c-concave ψ such that t#µ = s#µ = ν but that t = s

µ−almost surely does not hold. Then, there exists x0 ∈ Rn at which

(k1) φ and ψ are differentiable but t(x0) 6= s(x0), and

(k2) x0 is Lebesgue point for dµ(x) = f(x)dx with f(x0) > 0 where f is the

Radon-Nikodym derivative of µ respect to Lebesgue

Adding some constant, if necessary, to φ and ψ we can have φ(xo) = ψ(x0) = 0 and

this change does not effect t and s. Define U = {x ∈ int(Domφ) : φ(x) > ψ(x)}
and V = ∂cψ(U).

Note that V is a Borel set since U is open and ∂cψ is closed. Moreover, φ is

continuous 2 on U and ψ is upper semi-continuous.

2We will not explain the reason because an extensive background is needed, but one can
check [11] theorem 3.3 for the answer.
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Observe that t is defined µ-almost surely for all x ∈ U and A.0.16 part (ii) implies

{t(x)} = ∂cψ(x) ⊂ V, or U ⊆ t−1(V ). Hence

µ(U) ≤ µ(t−1(V )) (2.2)

We have s−1(V ) ⊂ ∂cφ−1(V ) again by A.0.16 part (ii). Let K = {φ > ψ, } then

by using A.0.17

U = K ∩ int(Domφ) ⊇ ∂cφ−1 (∂cψ(K)) ∩ int(Domφ)

⊇ ∂cφ−1 (V ) ∩ int(Domφ) ⊇ s−1(V ) ∩ int(Domφ) = s−1(V ),

hence

µ(t−1(V )) ≤ µ(U) (2.3)

But we still need string inequality. Remember that by A.0.16 part (ii) we have

∂cφ(x0) = {s(x0)} 6= {t(x0)} = ∂cψ(x0). So ∂cφ(x0) and ∂cψ(x0) are disjoint.

Which implies x0 lies in a positive distance away from s−1(V ) ⊂ ∂cφ−1(V ) and

we can find a neighborhood Ω of x0 which is disjoint from s−1(V ).

Now translate µ, φ and ψ so that x0 = 0. Now, consider the cone

C =

{
x : x.(Oφ(x0)− Oψ(x0)) ≥ 1

2
.|x|
}
.

The differentiability of φ and ψ at x0 = 0 implies

φ(x)− ψ(x) = x.(Oφ(x0)− Oψ(x0)) + o(|x|).

Thus for very small x ∈ C we have x ∈ U. Moreover since x0 is Lebesgue point,

the average value of f(x) over C∩Br(x0) converges f(x0) > 0 as r goes to 0. Hence

for small r this set has positive µ measure and lies in U and Ω. So µ(U ∩Ω) > 0.

Combining this with 2.2 and 2.3 we have

µ(t−1(V )) < µ(U) ≤ µ(t−1(V ))

This contradiction yields that there can not be such a t(x).

Proof of 3.2.4. By 3.1.2 we know that there exists an optimal transportation plan

π ∈ Π(µ, ν). By 3.2.3 support of π is c-cyclically monotone. By 3.2.2 there exists

a proper c-concave function φ on Rn such that spt(π) ⊂ ∂cφ. Observe that the

function f(x, y) = x on Rn × Rn pushes π forward to µ. Hence,

µ(f(∂cφ)) = f#π(f(∂cφ)) = π(∂cφ) ≥ π(spt(π)) = 1
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So, f(∂cφ) has full µ measure. On the other hand by A.0.16 part (iii) and (iv)

we have f(∂cφ) ⊆ Domφ, and the set Domφ\DomOφ has a Lebesgue measure

zero. Combining these with absolute continuity assumption, we see that φ is

differentiable µ- almost surely on Rn. So we can apply 3.2.5 which says s#µ = ν

and π = (id× s)# µ where s(x) = x−Oh∗◦Oφ. From 3.2.6 Such map s is unique,

hence π is unique.

3.2.3 Strictly concave cost

For last cost function, the invertibility of Oh had important role for the solution.

We have this invertibility thanks to the convexity of h. There is another case that

ensures the invertibility of Oh, when c(x, y) = h(x − y) = l(|x − y|) where l is

strictly concave. Note that here we do not consider the usual concave function,

since every non-negative concave function is constant. By strictly concave, we

mean the functions l : R+ → R+ is strictly concave with l(0) = 0.

For this cost function, we again have almost the same result as for convex case.

Theorem 3.2.7 (Breniers theorem,for strictly concave costs). Let l : [0,∞) →
[0,∞) and define c(x, y) = h(x− y) = l(|x− y|). Let µ and ν be Borel probability

measures on Rn and define µ0 = [µ − ν]+ and ν0 = [ν − µ]+. If µ0 vabishes on

support of v0 and on small sets, then

(i) there exists c-concave function φ : Rn → R on support of νo such that a

map s(x) = id − (Oh)−1 ◦ Oφ pushes µ0 to ν0 and it is µ0-alomost surely

unique,

(ii) there is unique optimal measure π ∈ Π(µ, ν),

(iii) the restriction of π to diagonal is given by πd = id× id#(µ− µo),

(iv) the off-diagonal part of π = πd + πo is given by πo = id× s#µo.

Basicly, we have same result as for convex case if µ and ν do not share a mass,

i.e., they are singular to each other. Otherwise we send shared mass with identity

map and other mass with map s, and in this case we again have a unique optimal

plan but Monge problem does not have a solution in this case. We do not give a

proof but one can see [11] for the proof. It is very similar to convex case.
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Appendix A

Preliminaries on convex analysis

A.0.1 Convexity

Definition A.0.1. Let φ : Rn → R ∪ {+∞}, but not identically +∞.
φ is called proper convex function if:

∀x, y ∈ Rn, t ∈ [0, 1], φ (tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y)

φ is called strickly convex function if:

∀x 6= y ∈ Rn, t ∈ (0, 1), φ (tx+ (1− t)y) < tφ(x) + (1− t)φ(y)

We denote the set of points where φ is finite by Dom(φ). Note that the boundary

of Dom(φ) is small set since φ is convex.

Definition A.0.2. The subdifferential of a convex function φ on Rn is a subset

∂φ ⊆ Rn × Rn of pairs (x,y) which satisfies

φ(z) ≥ φ(x)+ < y, z − x >, ∀z

The subgradients of φ at x will form a closed and convex set ∂φ(x) = {y; (x, y) ∈
∂φ}

Theorem A.0.3 ([2] p.106). If D is convex subset of Rn and f : D → Rm is a

convex function, then f is differentiable at x ∈ int(D) if and only if f has unique

subgradient at x.Moreover, this unique element is 5f(x).
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Remark A.0.4. From A.0.7 and A.0.3, 5φ(x) exists almost everywhere.

Definition A.0.5. For proper function φ : Rn → R∪{+∞}, we define its convex

conjuge function (or Legendre transform) by

φ∗(y) = sup
x∈Rn

(x.y − φ(x))

Clearly we have

∀x, y ∈ Rn, x.y ≤ φ(x) + φ∗(y).

Reason for why convex conjuge function have an important role is that we use it

fot the characterization of the subdifferential of a convex function. This charac-

terization will be crucial for the proof of main theorems.

Proposition A.0.6. Let φ be proper lower semi-continous convex function on

Rn. Then, for all x, y ∈ Rn,

x.y = φ(x) + φ∗(y)⇐⇒ y ∈ φ(x)⇐⇒ x ∈ φ∗(y)

Proof.

x.y = φ(x) + φ∗(y)⇐⇒ x.y ≥ φ(x) + φ∗(y)

⇐⇒ ∀z ∈ Rn, x.y ≥ φ(x) + y.z − φ(z)

by definition of conjuge function

⇐⇒ ∀z ∈ Rn, φ(z) ≥ φ(x)+ < y, z − x > ⇐⇒ y ∈ φ(x)

by definition of subdifferential

Theorem A.0.7 (Alexandrov theorem [1]). If U is open subset of Rn and f :

U → Rm is a convex function, then f has second derivative almost everywhere.

Lemma A.0.8 (Aleksandrovs lemma). Let φ and φ̄ be two convex functions

such that φ(x0) = φ̄(x0) = 0 but Oφ(x0) 6= Oφ̄(x0) = 0. Let V = {φ > φ̄} and

Z = Oφ̄−1 (∂φ(V )). Then Z ⊆ V and Z lies positive distance away from x0.

Proof. Let x ∈ Z, then there exists y ∈ Oφ(V ) such that y = Oφ̄(x). Since

y ∈ ∂φ(V ), there exists m ∈ V such that y ∈ ∂φ(m). So, for all z ∈ Rn we have

φ(z) ≥ φ̄(m)+ < y, z −m >
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φ̄(m) ≥ φ̄(x)+ < y,m− x >

Since φ(m) > φ̄(m), combining these inequalities we have

φ(z) > φ̄(x)+ < y, z − x > . (0.1)

Taking z = x shows φ(x) > φ̄(x), hence x ∈ V.
Now, assume that x0 lies in closer of Z. Then, we can find a sequence xn ∈ Z

converges to x0. Similarly, there exists a sequence mn ∈ V such that Oφ̄(xn) ∈
∂φ(mn). For all z φ̄(z) ≥ φ̄(x0)+ < Oφ̄(x0), z − x0 > and Oφ̄(x0) = φ̄(x0) = 0

implies that φ̄ ≥ 0. We have also Oφ̄(xn) −→ 0 by continuity of ∂φ. Moreover,

Oφ̄(x0) 6= 0 implies that φ(z0) < 0 for some z0 near x0. By using 0.1, we observe

0 > φ(z0) > φ̄(xv)+ < Oφ̄(xn), z0 − xn >

≥< Oφ̄(xn), z0 − xn > since φ̄ ≥ 0

≥ −|Oφ̄(xn|.|z0 − xn| −→ 0

since xn −→ x0 and Oφ̄(xn) −→ 0. We obtained a contradiction. Hence, x0 can

not lie in closer of Z

Theorem A.0.9 (An implicit function theorem). Let φ and φ̄ be two convex

functions such that φ(x0) = φ̄(x0) = 0 but Oφ(x0) 6= Oφ̄(x0) = 0. There exists

small neighbourhood U of x0 such that U∩{φ = φ̄} has d−1 Hausdorff dimension.

This is actually a corollary of An implicit function theorem. One can find this

theorem and its proof in [5].

A.0.2 Generalized convexity and concavity

Definition A.0.10 (Generalized convexity). Let X and Y be two non-empty set

and let c(x,y) be a function on X × Y with values on Rn ∪ {−∞}.
φ is called c-convex function if there exists a proper function ψ : Y −→ R∪ {∞}
such that

φ(x) = sup
y∈Y
{c(x, y)− ψ(y)}

We denote the set {x ∈ X : φ(x) 6=∞} by Dom(φ).
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Definition A.0.11 (c-subdifferential). The c-subdifferential of a function φ on

Rn is a subset ∂cφ ⊆ Rn × Rn of pairs (x, y) which satisfies

φ(z) ≥ φ(x) + c(z, y)− c(x, y), ∀z ∈ X

The c-subdifferential of φ at x is ∂cφ(x) = {y ∈ Y : (x, y) ∈ ∂cφ}

Definition A.0.12 (Generalized concavity). Let X and Y be two non-empty set

and let c(x, y) be a function on X × Y with values on Rn ∪ {+∞}.
φ on X is called c-concave function if there exist a proper function ψ : Y −→
R ∪ {−∞} such that

φ(x) = inf
y∈Y
{c(x, y)− ψ(y)}

We denote the set {x ∈ X : φ(x) 6= −∞} by Dom(φ).

Definition A.0.13 (c-superdifferential). The c-superdifferential of a function φ

on Rn is a subset ∂cφ ⊆ Rn × Rn of pairs (x, y) which satisfies

φ(z) ≤ φ(x) + c(z, y)− c(x, y), ∀z ∈ X

The c-subdifferential of φ at x is ∂cφ(x) = {y ∈ Y : (x, y) ∈ ∂cφ}

Definition A.0.14 (c-transforms). Let X and Y be two non-empty sets.

If c(x, y) be a function on X × Y with values on R ∪ {−∞} and φ is proper

function on X with values in R ∪ {+∞}, we define its c-transform by

φc(y) = sup
x∈X
{c(x, y)− φ(x)}

If c(x, y) be a function on X × Y with values on R ∪ {+∞} and φ is proper

function on X with values in R ∪ {−∞}, we define its c-transform by

φc(y) = inf
x∈X
{c(x, y)− φ(x)}

Proposition A.0.15 (Fenchel-Young inequality).

(c-convex case)

If c(x, y) be function on X×Y with values on Rn∪{+∞} and φ is proper function

on X with values in Rn ∪ {−∞}, then we have

(i) ∀(x, y) ∈ X × Y , φ(x) + φc(y) ≥ c(x, y)
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(ii) ∀x ∈ X, φ(x) ≥ φcc(x)

(iii) φ(x) + φc(y) = c(x, y) if and only if y ∈ ∂cφ(x)

In particular, φ is c-convex if and only if φ = φcc

(c-concave case)

If c(x, y) be function on X×Y with values on Rn∪{−∞} and φ is proper function

on X with values in Rn ∪ {+∞}, then we have

(i) ∀(x, y) ∈ X × Y , φ(x) + φc(y) ≤ c(x, y)

(ii) ∀x ∈ X, φ(x) ≤ φcc(x)

(iii) φ(x) + φc(y) = c(x, y) if and only if y ∈ ∂cφ(x)

In particular, φ is c-concave if and only if φ = φcc

Proof. We will give a proof for just c-convex case, since the proof of other case

is almost the same. (i) and (ii) is clear by definition of c-transdorm. For (iii)

observe that

φ(x) + φc(y) ≤ c(x, y)⇐⇒ φ(x) + sup
z∈X
{c(z, y)− φ(z)} ≤ c(x, y)

⇐⇒ ∀z ∈ X, φ(x) + c(z, y)− φ(z) ≤ c(x, y)

⇐⇒ ∀z ∈ X, φ(x) + c(z, y)− c(x, y) ≤ φ(z)

⇐⇒ y ∈ ∂cφ(x)

Combining this result with (i), we have φ(x) + φc(y) = c(x, y)⇐⇒ y ∈ ∂cφ(x)

if φ is c-convex then, there exists a proper ψ such that φ(x) = supy{c(x, y)−ψ(y)}.
Observe that

fc(y) = sup
z∈X
{c(z, y)− sup

w∈Y
{c(z, w)− ψ(w)}}

≤ sup
z∈X
{c(z, y)− c(z, y)− ψ(y)}

= ψ(y)
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and this implies

φcc(x) = sup
y∈Y
{c(x, y)− φc(y)}

≥ sup
y∈Y
{c(x, y)− ψ(y)}

= φ(x)

By part (ii) we φcc(x) ≤ φ(x), so we have equality.

On the other hand if φcc(x) = φ(x), φ is c-convex by definition.

Proposition A.0.16. Fix the function c(x, y) = h(x − y) where h is stringly

convex satisfiying (H1)-(H3) and a c-concave φ on Rn. Let Domφ and DomOφ

denote the sers on which φ is finite and φ is differentiable respectively. Then we

have

(i) s(x) = x− Oh∗ ◦ Oφ defines a Borel map from DomOφ to Rn,

(ii) ∂cφ(x) = {s(x)} for all x ∈ DomOφ,

(iii) ∂cφ(x) = ∅ unless x ∈ Domφ,

(iv) the set Domφ\DomOφ has Lebesgue measure zero.

Proof. see [11] thorem 3.4.

Lemma A.0.17 (Generalized Aleksandrovs lemma). Fix the function c(x, y) =

h(x− y) where h is stringly convex satisfiying (H1)-(H3). Suppose φ is c-concave

on Rn and continuous at x0 ∈ Rn with φ(x0) = φ̄(x0) = 0. Define V = {φ > φ̄}
and Z = ∂cφ−1

(
∂cφ̄(V )

)
. Then Z ⊆ V and Z lies in a positive distance away

from x0.

Proof. The proof is very similar to Aleksandrovs lemma A.0.8.
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