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Abstract

An element of a ring R is called strongly J#-clean provided that it can be
written as the sum of an idempotent and an element in J#(R) that commute. We
characterize, in this article, the strongly J#-cleanness of matrices over projective-
free rings. These extend many known results on strongly clean matrices over com-
mutative local rings.

2010 Mathematics Subject Classification : 15A13, 15B99, 161.99.
Key words: strongly J#-matrix, characteristic polynomial, projective-free ring.

1 Introduction

Let R be a ring with an identity. We say that x € R is strongly clean provided
that there exists an idempotent e € R such that + —e € U(R) and ex = ze. A
ring R is strongly clean in case every element in R is strongly clean (cf. [9-10]). In [2,
Theorem 12], Borooah, Diesl, and Dorsey provide the following characterization: Given
a commutative local ring R and a monic polynomial h € R]t] of degree n, the following
are equivalent: (1) h has an SRC factorization in RJt]; (2) every ¢ € M,(R) which
satisfies h is strongly clean. It is demonstrated in [6, Example 3.1.7] that statement
(1) of the above can not weakened from SRC factorization to SR factorization. The
purpose of this paper is to investigate a subclass of strongly clean rings which behave
like such ones but can be characterized by a kind of SR factorizations, and so get more
explicit factorizations for many class of matrices over projective-free rings.

Let J(R) be the Jacobson radical of R. Set

J#*(R)={z € R | 3n e N such that z" € J(R)}.
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For instance, let R = M5(Z2). Then
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while J(R) = 0. Thus, J#(R) and J(R) are distinct in general. We say that an element
a € R is strongly J#-clean provided that there exists an idempotent e € R such that
a—e € J?(R) and ea = ae. If R is a commutative ring, then a € R is strongly
J#-clean if and only if a € R is strongly J-clean (cf. [3]). But they behave different for
matrices over commutative rings. A Jordan-Chevalley decomposition of n x n matrix
A over an algebraically closed field (e.g., the field of complex numbers), then A is an
expression of it as a sum: A = E + W, where E is semisimple, W is nilpotent, and
E and W commute. The Jordan-Chevalley decomposition is extensively studied in Lie
theory and operator algebra. As a corollary, we will completely determine when an
n X n matrix over a filed is the sum of an idempotent matrix and a nilpotent matrix
that commute. Thus, the strongly J#-clean factorizations of matrices over rings is also
an analog of that of Jordan-Chevalley decompositions for matrices over fields.

We characterize, in this article, the strongly J#-cleanness of matrices over projective-
free rings. Here, a commutative ring R is projective-free provided that every finitely
generated projective R-module is free. For instances, every commutative local ring,
every commutative semi-local ring, every principal ideal domain, every Bézout domain
(e.g., the ring of all algebraic integers) and the ring R[z| of all polynomials over a prin-
cipal domain R are all projective-free. We will show that strongly J#-clean matrices
over projective-free rings are completely determined by a kind of “SC”-factorizations
of the characteristic polynomials. These extend many known results on strongly clean
matrices to such new factorizations of matrices over projective-free rings (cf. [1-2] and
[5))-

Throughout, all rings with an identity and all modules are unitary modules. Let
f(t) € R[t]. We say that f(t) is a monic polynomial of degree n if f(t) = t"+a,_1t" '+
-+ ajt+ ag where a,—1,--- ,a1,a9 € R. We always use U(R) to denote the set of all
units in a ring R. If ¢ € M, (R), we use x(p) to stand for the characteristic polynomial
det(tl, — p).

2 Full Matrices Over Projective-free Rings

1 1
Let A = ( 10 ) € Ms(Zs). Tt is directly verified that A € My(Zs) is not strongly

J#-clean, though A is strongly clean. It is hard to determine strongly cleanness even for
matrices over the integers, but completely different situation is in the strongly J#-clean
case. The aim of this section is to characterize a single strongly J#-clean n x n matrix



over projective-free rings. Let M be a left R-module. We denote the endomorphism
ring of M by end(M).

Lemma 2.1 Let M be a left R-module, and let E = end(M), and let o € E. Then the
following are equivalent:

(1) a € E is strongly J7 -clean.

(2) There exists a left R-module decomposition M = P & @ where P and @ are
a-invariant, and a|p € J# (end(P)) and (1 — o)|g € J#(end(Q)).

Proof (1) = (2) Since « is strongly J#-clean in F, there exists an idempotent 7 € E
and a u € J#(E) such that o = (1 —7) +u and mu = umr. Thus, 7o = 7u € J#(wEn).
Further, 1 —a = 7+ (—u), and so (1-7)(1—a) = (1—7)(—u) € J#((1—m)E(1—7)).
Set P = Mm and Q = M(1 — 7). Then M = P® Q. As ar = 7a, we see that
P and Q are a-invariant. As ar € J¥ (7TE7T), we can find some ¢t € N such that
(am)t € J(wEm). Let v € end(P). For any x € M, it is easy to see that (z)7(1p —
7(a|p)t) = ()7 (7 — (7ym)(ram)t) where 5 : M — M given by (m)y = (m)my for any
m € M. Hence, 1p — ’y(a\p)t € aut(P). Hence (a\p)t € J(end(P)). This implies that
alp € J#(end(P)). Likewise, we verify that (1 — a)|g € J# (end(Q)).

(2) = (1) For any A € end(Q), we construct an R-homomorphism A € end(M) given
by (p+q)A = (¢)A. By hypothesis, a|p € J# (end(P)) and (1 — a)|g € J# (end(Q)).
Thus, @ = 1o + alp — (1m — a)|g. As P and Q are a-invariant, we see that alg =
1ga. In addition, 1o € end(M) is an idempotent. As (%)((11\/1 —a)lg) =0 =
(Am — a)lg) (%), we show that a|p — (17 — )]g € J# (end(M)), as required. O

Lemma 2.2 Let R be a ring, and let M be a left R-module. Suppose that x,y,a,b €
end(M) such that xa + yb = 1y, 2y = yr = 0,ay = ya and xb = bx. Then M =
ker(x) @ ker(y) as left R-modules.

Proof Straightforward. (cf. [6, Lemma 3.2.6]). O

Lemma 2.3 Let R be a commutative ring, and let ¢ € M, (R). Then the following are
equivalent:

(1) o € J#(Mo(R)).
(2) x(¢) =t"(mod J(R)), i.e., x(p) —t" € J(R)[t].

(3) There exists a monic polynomial h € R[t] such that h = t%9"(mod J(R)) for
which h(p) = 0.



Proof (1) = (2) Since ¢ € J#(M,(R)), there exists some m € N such that ¢™ €
J(Mn(R)). As J(Myn(R)) = M,(J(R)), we get B € N(M,(R/J(R))). In view of [6,
Proposition 3.5.4], x (%) = t"(mod N(R/J(R))). Write x(¢) = t" 4+ art" ' +--- + a,.
Then x(9) = ¢" +art" ' +--- +@,. We infer that each a]"" + J(R) = 0+ J(R) where
m; € N. This implies that a; € J#(R). That is, x(¢) = t"(mod J#(R)). Obviously,
J(R) C J#(R). For any x € J#(R), then there exists some m € N such that 2" € J(R).
For any maximal ideal M of R, M is prime, and so € M. This implies that = € J(R);
hence, J#(R) C J(R). Therefore J#(R) = J(R), as required.

(2) = (3) Choose h = x(p). Then h = t%9" (mod J(R)). In light of the Cayley-
Hamilton Theorem, h(p) = 0, as required.

(3) = (1) By hypothesis, there exists a monic polynomial A € R[t] such that
h = t%9" (mod J(R)) for which h(p) = 0. Write h = ¢" + a;¢t"' + --- + a,,. Choose
h=t"+at" '+ +a, € (R/J(R))[t]. Then h = t"(mod N(R/J(R))) for which
( ) 0. According to [6, Proposition 3.5.4], there exists some m € N such that
?)" =0 over R/J(R). Therefore o™ € M, (J(R)), and so ¢ € J#(M,(R)). O
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Definition 2.4 For r € R, define
J, ={f € R[t] | f monic, and f = (t — T)degf (mod J#(R))}.

Lemma 2.5 Let R be a projective-free ring, let ¢ € My(R), and let h € R]t] be a
monic polynomial of degree n. If h(v) = 0 and there exists a factorization h = hohy
such that hg € Jo and hy € J1, then ¢ s strongly J#_clean.

Proof Suppose that h = hoh; where hg € Jo and hy € J;. Write hg = t? 4+ a1tP~! +

“+ap and hy = (t — 1)9 + byt9"t + ... + b,. Then each a;,b; € J#(R). Since
R is commutative, we get each a;,b; € J(R). Thus, hg = t? and h; = (t — 1)¢
in (R/J(R))[t]. Hence, (ho,h1) = 1, In virtue of [6, Lemma 3.5.10], we have some
up,u1 € R[t] such that uphg + uihy = 1. Then ug(v)ho(p) + ui(p)hi(v) = 1,5. By
hypothesis, h(¢) = ho()hi(p) = hi(@)ho(p) = 0. Clearly, uo(p)h1(p) = hi(e)uo(y)
and ho(@)u1 (@) = ui(p)ho(p). In light of Lemma 2.2, nR = ker (ho(p)) ® ker (h1(¢)).
As hot = thg and hit = thy, we see that ho(v)e = @ho(e) and hi(p)e = phi(p),
and so ker(ho(p)) and ker(hi(y)) are both ¢-invariant. It is easy to verify that
ho(cp ‘ker(ho(go))) = 0. Since hg € Joy, we see that hy = tdedho (mod J#(R)); hence,
© lker(ho(e)) € J# (end(kerho(p))).

It is easy to verify that hy (¢ ‘ker(hl(cp))) = 0. Set g(u) = (—1)%9" by (1 — u). Then
9(( 1 =@ )lker(hi(p)) = 0. Since hy € J1, we see that hy = (t — 1)%9" (mod J#(R)).
Hence, g(u) = (—1)%9"1 (—u)999 (mod J(R)). This implies that g € Jo. By virtue
of Lemma 2.3, (1 — ©) |ker(hy(p)) € J7 (end(ker(hi(¢)))). According to Lemma 2.1,
¢ € M,(R) is strongly J#-clean. O



The matrix

0 0 0 —ag
10 --- 0 —ai
00 -+ 1 —ap

is called the companion matrix Cj, of h, where h = t" +a,_1t" "1 +---+ait+ag € R[t].

Theorem 2.6 Let R be a projective-free ring and let h € R[t] be a monic polynomial
of degree n. Then the following are equivalent:

(1) Every ¢ € M,(R) with x(p) = h is strongly J* -clean.
(2) The companion matriz Cy of h is strongly J¥ -clean.

(3) There exists a factorization h = hohy such that hy € Jo and hy € J;.

Proof (1) = (2) Write h =" + a,_1t"" 1 + -+ + a1t + ag € R[t]. Choose

00 --- 0 —ag
10 --- 0 —a

Ch = .. . . . € Mn(R)
o0 -- 1 —Qp—1

Then x(Cy,) = h. By hypothesis, Cj, € M,(R) is strongly .J-clean.

(2) = (3) In view of Lemma 2.1, there exists a decomposition nR = A & B such
that A and B are p-invariant, ¢ |4 € J# (endp(A)) and (1 — ¢) |p € J#(endr(B)).
Since R is a projective-free ring, there exist p,q € N such that A = pR and B = ¢R.
Regarding endp(A) as M,(R), we see that ¢ |4 € J# (M,(R)). By virtue of Lemma 2.3,
X(¢ |a) = t?(mod J#(R)). Thus x(¢ |4) € Jo. Analogously, (1 — ) |5 € J# (My(R)).
It follows from Lemma 2.3 that x((1 — ¢) |g) = t¢ ( mod J#(R)). This implies
that det(Ay — (1 —¢) |p) = A ( mod J#(R)). Hence, det((1 — NI, — ¢ |B) =
(=A)? ( mod J#(R)). Set t =1 — A. Then det(tl, — ¢ |) = (t — 1)? ( mod J#(R)).
Therefore we get x (¢ |5) = (t—1)? ( mod J#(R)). We infer that x(¢ [5) € J1. Clearly,
X(¢) = x(p |a)x(¢ |B).- Choose hg = x(¢ |4) and hy = x(¢ |p). Then there exists a
factorization h = hghy such that hg € Jg and hy € J1, as desired.

(3) = (1) For every ¢ € M,(R) with x(¢) = h, it follows by the Cayley-Hamilton
Theorem that h(p) = 0. Therefore ¢ is strongly J#-clean by Lemma 2.5. O

Corollary 2.7 Let F' be a field, and let A € M, (F). Then the following are equivalent:

(1) A is the sum of an idempotent matriz and a nilpotent matriz that commute.



(2) x(A) =t5(t — 1)t for some s,t > 0.

Proof As J(M,(F)) =0, we see that a n x n matrix contains in J# (M, (F)) if and
only if A is a nilpotent matrix. So A € M, (F) is strongly J#-clean if and only if A
is the sum of an idempotent matrix and a nilpotent matrix that commute. By virtue
of Theorem 2.6, we see that A € M, (F) is the sum of an idempotent matrix and a
nilpotent matrix that commute if and only if x(A) = hohy, where hy € Jy and hy € J;.
Clearly, hg € J if and only if hy = 99" (mod J# (F)). But J#(F) = 0, and so hy = t°,
where s = deghg. Likewise, hy = (t — 1)!, where t = degh;. Therefore we complete the
proof. O

For matrices over integers ,we have a similar situation. As J (Mn(Z)) = 0, we see
that an n x n matrix contains in J# (Mn(Z)) if and only if it is a nilpotent matrix.
Likewise, we show that A € M,,(Z) is the sum of an idempotent matrix and a nilpotent
matrix that commute if and only if x(A) = t5(t — 1) for some s,¢ > 0. For instance,

-2 2 -1
choose A= | —4 4 —2 | € M3(Z). Then x(A) = t(t — 1)2. Thus, A is the sum
-1 1 0
of an idempotent matrix and an nilpotent matrix that commute. In fact, we have a
-1 10 -1 1 -1
corresponding factorization A=| -2 2 0 |+ | -2 2 -2
0 0 1 -1 1 -1

Corollary 2.8 Let R be a projective-free ring, and let ¢ € Ma(R). Then ¢ is strongly
J#-clean if and only if

(1) x(¢) = t*(mod J(R)); or
(2) x(p) = (t —1)*(mod J(R)); or
(8) x(¢) has a root in J(R) and a root in 1+ J(R).

Proof Suppose that ¢ is strongly J#-clean. By virtue of Theorem 2.6, there exists a
factorization x(p) = hohy such that hg € Jo and hy € J;.

Case L. deg(hg) = 2 and deg(h1) = 0. Then hg = x(¢) = 2 — tr(p)t + det(yp)
and hy = 1. As hg € Jo, it follows from Lemma 2.3 that ¢ € J#(My(R)) or x(p) =
t*(mod J(R)).

Case II. deg(hg) = 1 and deg(h1) = 1. Then hy =t — o and h; =t — 5. Since R
is commutative, J#(R) = J(R). As hg € Jg, we see that ho = t(mod J(R)), and then
a € J(R). As hy € Ji, we see that hy = t — 1(mod J(R)), and then 8 € 1 + J(R).
Therefore x(¢) has a root in J(R) and a root in 1+ J(R).

Case III. deg(hg) = 0 and deg(hy) = 2. Then hl() = det(tl; — ) = (t —
1)%(mod J(R)). Set uw =1 —t. Then det(uly — (I — ¢)) = u*(mod J(R)). According
to Lemma 2.3, I — ¢ € J#(M(R)) or x(¢) = (t — 1) (mod J( )

6



We will suffice to show the converse. If x(¢) = t?(mod J(R)) or x(¢) = (¢t —
1)2(mod J(R)), then ¢ € J#(M(R)) or I — ¢ € J#(M(R)). This implies that ¢ is
strongly J#-clean. Otherwise, @, I, — ¢ & J(MQ(R)). In addition, x(y) has a root in
J(R) and a root in 1+ J(R). According to [4, Theorem 16.4.31], ¢ is strongly J-clean,

and therefore it is strongly J#-clean. O
0 2 .
Choose A = < 13 ) € My (Z4) It is easy to check that A, I, — A € M, (Z4) are

not nilpotent. But x(A) = 2 +t+2 has a root 2 € J(Z4) and aroot 1 € 1+ J(Zy4). As
J(Z4) = {0,2} is nil, we know that every matrix in J# (M3(Zy4)) is nilpotent. It follows
from Corollary 2.8 that A is the sum of an idempotent matrix and a nilpotent matrix

that commute. Let Zg) = {7} | m,n € Z,2 { n}, and let A = < ; (1) ) € Ma(Zy))-

9
Then J(Z)) = {22 |m,n €Z,2 t n}. As x(A) =t>—t+2 hasaroot 3 € 1+ J(Zg))
and a root % € J(Z)). In light of Corollary 2.8, A is strongly J-clean.

Corollary 2.9 Let R be a projective-free ring, and let f(t) = t*> + at +b € R[t] be
degree 2 polynomial with 1 +a € J(R),b & J(R). Then the following are equivalent:

(1) Every ¢ € Mo(R) with x(p) = f(t) is strongly J? -clean.
(2) There exist r1 € J(R) and ro € 1 + J(R) such that f(r;) =0.

(3) There exists v € J(R) such that f(r) =

Proof (1) = (2) Since every ¢ € My(R) with x(¢) = f(t) is strongly J#-clean, it
follows by Corollary 2.8 that f(t) = (t — r1)(t — r2) with r € J(R),ro € 1+ J(R).

(2) = (3) is trivial.

(3) = (1) As r?+ar+b =0, we see that f(t) = (t—7)(t+a+7). Clearly, t—r € Jo.
As 14+a+r € J(R), we see that t+a+7r € J;. According to Theorem 2.6, we complete
the proof. O

Let ¢ be a 3 x 3 matrix over a commutative ring R. Set mid(y) = det(lz — ¢) —
1+ tr(p) + det(yp).

Corollary 2.10 Let R be a projective-free ring, and let ¢ € M3(R). Then ¢ is strongly
J#-clean if and only if

(1) x(p) = tg(mod J(R)); or

(2) x(p) = (t—1)3 (mod J(R))' or

(3) x(¢) has a root in 1+ J(R),tr(p) € 1 + J(R),mid(p) € J(R),det(p) € J(R);or
(4) x(¢) has a root in J(R), tr(v) € 2+ J(R), mid(p) € 1+ J(R),det(p) € J(R).



Proof Suppose that ¢ is strongly J#-clean. By virtue of Theorem 2.6, there exists a
factorization x(¢) = hohy such that hg € Jo and hy € J;.

Case I. deg(hy) = 3 and deg(h;) = 0. Then hg = x(¢) and h; = 1. As hg € Jo, it
follows from Lemma 2.3 that ¢ € J#(M3(R)).

Case II. deg(hg) = 0 and deg(h1) = 3. Then hi(t) = det(tls — ¢) = (t —
1)3(mod J(R)). Set u=1—t. Then det(ulz — (I3 — ¢)) = u’(mod J(R)). According
to Lemma 2.3, Is — ¢ € J#(M3(R)).

Case I1I. deg(hg) = 2 and deg(hy) = 1. Then hg = t?> +at +band hy =t — a. As
ho € Jo, we see that hg = t?(mod J(R)); hence, a,b € J(R). As hy € J1, we see that
hi = t—1(mod J(R)); hence, a € 1+J(R). We see that a—a = —tr(p), b—aa = mid(yp)
and —ba = —det(yp). Therefore tr(p) € 1+ J(R), mid(y) € J(R) and det(p) € J(R).

Case IV. deg(hg) = 1 and deg(h1) = 2. Then hg =t — o and hy = t*> + at + b.
As ho € Jo, we see that hg = t(mod J(R)); hence, a € J(R). As hy € Ji, we see
that hy = (t — 1)%(mod J(R)), and then a € —2 + J(R) and b € 1+ J(R). Obviously,
x(p) = 13 — tr()t? + mid(p)t — det(y), and so a — a = —tr(yp),b — aa = mid(p) and
—ba = —det(p). Therefore tr(yp) € 2+ J(R), mid(p) € 1 + J(R) and det(p) € J(R).

Conversely, if x(p) = t*(mod J(R)) or x(p) = (t — 1)3(mod J(R)), then ¢ €
J#(M3(R)) or I3 — ¢ € J#(M3(R)). Hence, ¢ is strongly J#-clean. Suppose x(¢) has
aroot a € 1+J(R) and tr(p) € 1+J(R),det(p) € J(R). Then x(¢) = (t*+at+b)(t—a)
for some a,b € R. This implies that a — o = —tr(p), —ba = —det(p). Hence, a,b €
J(R). Let hg = t>+at +b and hy = t — a. Then x(¢) = hoh1 where hg € Jo and
hi € J;. According to Theorem 2.6, ¢ is strongly J#-clean.

Suppose x(¢) has a root a € J(R) and tr(¢) € 2+ J(R), mid(¢) € 1 + J(R) and
det(p) € J(R). Then x(p) = (t — a)(t* + at + b) for some a,b € R. This implies that
a—a=—tr(¢),b—ac = mid(p). Hence, a € =2+ J(R),b € 1+ J(R). Let hy =t — «
and hy = t?> + at +b. Then x(¢) = hohi where hg € Jo and hy € J;. According to
Theorem 2.6, ¢ is strongly J#-clean, and we are done. O

3 Matrices Over Power Series Rings

The purpose of this section is to extend the preceding discussion to matrices over
power series rings. We use R[[z]] to stand for the ring of all power series over R. Let
A(z) = (ai(w)) € My, (R[[z]]). We use A(0) to stand for (a;;(0)) € M, (R).

Theorem 3.1 Let R be a projective-free ring, and let A(z) € Ma(R[[z]]). Then the
following are equivalent:
(1) A(z) € My (R[[z]]) is strongly J#-clean.

(2) A(0) € Ms(R) is strongly J* -clean.



Proof (1) = (2) Since A(z) is strongly J#-clean in M (R[[z]]), there exists an F(x)
E?(z) € My(R[[z]]) and a U(z) € J#(Ms(R[[z]])) such that A(z) = E(z) + Uz
and E(z)U(z) = U(x)E(x). This implies that A(0) = E(0) + U(0) and E(0)U(0)
U(0)E(0) where E(0) = E?(0) € Ma(R) and U(0) € J#(M(R)). As a result, A(0) is
strongly J#-clean in Ms(R).

(2) = (1) Construct a ring morphism ¢ : R[[z]] — R, f(z) — f(0). Then
R = R[[z]]/ker f, where ker f = {f(z) | f(0) =0} C J(R][[z]]). For any finitely gener-
ated projective R[[z]]-module P, P% (R[[z]]/ker[) is a finitely generated projective

R[[z]]/ker f-module; hence it is free. Write P(% (R[[z]]/kerf) = (R[z]]/kerf)™ for
some mN. Then P% (R[[z]]/kerf) = (R[[z]])"™ (% (R[[z]]/ker f). That is, P/P(kerf)

( =)™/ (R[[z]])" (kerf) witkerf C J(R[z]]). By Nakayama Theorem, P =
( z]])™ is free. Thus, R[[z]] is projective-free. Since A(0) is strongly J#-clean
in Mg( ), it follows from Corollary 2.8 that A(0) € J#(MQ(R)), or Iy — A(0) €
J# (MQ(R)), or the characteristic polynomial X( (0)) = y? + ,uy + X has a root
o € 14+ J(R) and aroot 8 € J(R). If A(0) € J#(Mz(R)), then A(z) € J# (Mz(R][[z]])).
If I, — A(0) € J#(M2(R)), then I, — A(z) € J#(MQ(R[[ ]1)). Otherwise, we write

y= > bz’ and x(A(z)) = v* — p(x)y — A(z). Then y? = Z c;xt where ¢; = z bibi k.
i=0 i=0 k=0

&

Let p(x) = z,u,a; ANz) = Z)\x € R[[z]] where up = p and Ao = A. Then,

y? — pu(z)y — )\( ) = 0 holds in R[[ ]] if the following equations are satisfied:

b3 — bopo — Ao = 0;
(bob1 + b1bo) — (bop1 + bipig) — A1 = 0;
(boba + b3 + babg) — (boptz + bipa + bajig) — Ag = 0;

Obviously, po = a+p € U(R) and a— 5 € U(R) . Let by = a. Since R is commutative,
there exists some by € R such that

bob1 + b1(bo — po) = A1 + bopr.
Further, there exists some b2 € R such that

boba + ba(bo — po) = Ag — b3 + bopa + b1ju.

By iteration of this process, we get b3, by, ---. Then y? — pu(z)y — A(x) = 0 has a root
yo(z) € 14+J(R[[x]]). If bp = B € J(R), analogously, we show that y*—p(z)y—A(z) =
has a root yi(x) € J(R[[z]]). In light of Corollary 2.8, the result follows. O



Corollary 3.2 Let R be a projective-free ring, and let A(z) € My(R[[z]]/(z™)) (m >
1). Then the following are equivalent:

(1) A(z) € My(R[[z]]/(z™)) is strongly J#-clean.
(2) A(0) € Mo(R) is strongly J¥ -clean.

Proof (1) = (2) is obvious.

(2) = (1) Let ¥ : R[[x]] — R[[=]]/(z™),%(f) = f. Then it reduces a surjective ring
homomorphism ¢* : M (R[[z]]) — M (R[[z]]/(z™)). Hence, we have a B € M, (R[[x]])
such that ¢¥*(B(xz)) = A(z). According to Theorem 3.1, we complete the proof. O

2 242z
E le 3.3 Let R = Z , and let A(x ~ - = € My(R).
xample e a[z]/(2?), and le <2+$ 3+3x 2(R)
Obviously, Z4 is a projective-free ring, and that R = Zy[[x]]/(z*). Since we have the
0 2 2 0
strongly J#-clean decomposition A(0) = < 3 1 ) + ( 7 3 ) in Ms(Zy), it follows

by Corollary 3.2 that A(x) € Ma(R) is strongly J#-clean.

Theorem 3.4 Let R be a projective-free ring, and let A(x) € Ms(R[[z]]). Then the
following are equivalent:

(1) A(z) € Ms(R[[z]]) is strongly J#-clean.
(2) A(z) € Ms(R[[z]]/(z™))(m > 1) is strongly J#-clean.
(3) A(0) € M3(R) is strongly J* -clean.

Proof (1) = (2) and (2) = (3) are clear.

(3) = (1) As A(0) is strongly J#-clean in M3(R), it follows from Corollary 2.10
that A(0) € J#(Ms(R)), or I3 — A(0) € J#(M3(R)), or x(A(0)) has a root in J(R)
and tr(A(0)) € 2+ J(R), mid(A(0)) € 1+ J(R),det(A(0)) € J(R), or x(A(0)) has a
root in 1+ J(R) and tr(A(0)) € 1+ J(R),mid(A(0)) € J(R),det(A(0)) € J(R). If
A(0) € J#(M;5(R)) or I3 — A(0) € J#(M;5(R)), then A(z) € J#(Ms(R[[z]])) or I3 —
A(z) € J#(Ms(R[[z]])). Hence, A(z) € M3(R|[[x]]) is strongly J#-clean. Assume that
x(A(0)) = 3 — ut? — Xt — v has a root o € J(R) and tr(A(0)) € 2+ J(R), mid(A(0)) €

1+ J(R),det(A(0)) € J(R). Write y = Y bia’. Then y> = Y ¢z’ where ¢; =
i=0 1=0

3 bpbi_g. Further, y3 = 3 dix? where d; = Y bpei_g. Let p(x) = > pat, M) =
k=0 i=0 k=0 i=0

> Aiw',y(x) = Y yia' € R[] where g = p, Ao = A and 49 = 7. Then, y* — u(x)y* —
=0 i=0
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A(x)y — v(z) = 0 holds in R[[z]] if the following equations are satisfied:

b3 — b3 1o — boho — Yo = 0;
(363 — 2bopo — Xo)b1 = 71 + bEp1 + boAi;
(3b§ — 2bopo — Xo)b2 = 2 + bz + bl + 2bob1puy + bora + b1 g — 3bobT;

Let by = o € J(R). Obviously, g = trA(0) € 2+ J(R) and A\g = —midA(0) € U(R).
Hence, 3b2 —2bgj0— Ao € U(R). Thus, we see that by = (3b3 —2bopuo — Ao) ™1 (71 + b3 11 +
bO)\l) and b2 = (3[)(2) —2b0u0 _)\0)_1(’}/2+b(2)/$2+b%/l0+2b0b1/$1 +b0)\2+bl)\0—3bob%). By
iteration of this process, we get bs, by, . Then y® — u(x)y? — AM(x)y — y(x) = 0 has a
root yo(z) € J(R|[[z]]). It follows from trA(0) € 2+ J(R) that trA(z) € 2+ J(R[[z]]).
Likewise, midA(z) € 1+ J(R[[z]]). According to Corollary 2.10, A(z) € Ms(R[[z]]) is
strongly J#-clean.

Assume that x (A(0)) has aroot 1+a € J(R) and tr(A(0)) € 1+J(R), mid(A(0)) €
J(R),detA(0) € J(R). Then det(I3— A(0)) = 1—trA(0) +midA(0) — detA(0) € J(R).
Set B(z) = I3 — A(z). Then x(B(0)) has a root o € J(R) and tr(B(0)) € 2+
J(R),detB(0) € J(R). This implies that midB(0) = detA(0) — 1 +trB(0) 4+ detB(0) €
1+ J(R). By the preceding discussion, we see that B(z) € Ms(R[[z]]) is strongly
J#-clean, and then we are done. O

From this evidence above, we end this paper by asking the following question: Let
R be a projective-free ring, and let A(z) € M, (R[[z]])(n > 4). Do the strongly J#-
cleanness of A(x) € M3(R|[[z]]) and A(0) € M3(R) coincide with each other?
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