
ar
X

iv
:1

40
6.

12
37

v1
  [

m
at

h.
R

A
] 

 4
 J

un
 2

01
4
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Abstract

An element of a ring R is called strongly J#-clean provided that it can be

written as the sum of an idempotent and an element in J#(R) that commute. We

characterize, in this article, the strongly J#-cleanness of matrices over projective-

free rings. These extend many known results on strongly clean matrices over com-

mutative local rings.
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1 Introduction

Let R be a ring with an identity. We say that x ∈ R is strongly clean provided

that there exists an idempotent e ∈ R such that x − e ∈ U(R) and ex = xe. A

ring R is strongly clean in case every element in R is strongly clean (cf. [9-10]). In [2,

Theorem 12], Borooah, Diesl, and Dorsey provide the following characterization: Given

a commutative local ring R and a monic polynomial h ∈ R[t] of degree n, the following

are equivalent: (1) h has an SRC factorization in R[t]; (2) every ϕ ∈ Mn(R) which

satisfies h is strongly clean. It is demonstrated in [6, Example 3.1.7] that statement

(1) of the above can not weakened from SRC factorization to SR factorization. The

purpose of this paper is to investigate a subclass of strongly clean rings which behave

like such ones but can be characterized by a kind of SR factorizations, and so get more

explicit factorizations for many class of matrices over projective-free rings.

Let J(R) be the Jacobson radical of R. Set

J#(R) = {x ∈ R | ∃ n ∈ N such that xn ∈ J(R)}.
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For instance, let R =M2(Z2). Then

J#(R) = {

(

0 0

0 0

)

,

(

0 1

0 0

)

,

(

0 0

1 0

)

},

while J(R) = 0. Thus, J#(R) and J(R) are distinct in general. We say that an element

a ∈ R is strongly J#-clean provided that there exists an idempotent e ∈ R such that

a − e ∈ J#(R) and ea = ae. If R is a commutative ring, then a ∈ R is strongly

J#-clean if and only if a ∈ R is strongly J-clean (cf. [3]). But they behave different for

matrices over commutative rings. A Jordan-Chevalley decomposition of n × n matrix

A over an algebraically closed field (e.g., the field of complex numbers), then A is an

expression of it as a sum: A = E +W , where E is semisimple, W is nilpotent, and

E and W commute. The Jordan-Chevalley decomposition is extensively studied in Lie

theory and operator algebra. As a corollary, we will completely determine when an

n × n matrix over a filed is the sum of an idempotent matrix and a nilpotent matrix

that commute. Thus, the strongly J#-clean factorizations of matrices over rings is also

an analog of that of Jordan-Chevalley decompositions for matrices over fields.

We characterize, in this article, the strongly J#-cleanness of matrices over projective-

free rings. Here, a commutative ring R is projective-free provided that every finitely

generated projective R-module is free. For instances, every commutative local ring,

every commutative semi-local ring, every principal ideal domain, every Bézout domain

(e.g., the ring of all algebraic integers) and the ring R[x] of all polynomials over a prin-

cipal domain R are all projective-free. We will show that strongly J#-clean matrices

over projective-free rings are completely determined by a kind of “SC”-factorizations

of the characteristic polynomials. These extend many known results on strongly clean

matrices to such new factorizations of matrices over projective-free rings (cf. [1-2] and

[5]).

Throughout, all rings with an identity and all modules are unitary modules. Let

f(t) ∈ R[t]. We say that f(t) is a monic polynomial of degree n if f(t) = tn+an−1t
n−1+

· · ·+ a1t+ a0 where an−1, · · · , a1, a0 ∈ R. We always use U(R) to denote the set of all

units in a ring R. If ϕ ∈Mn(R), we use χ(ϕ) to stand for the characteristic polynomial

det(tIn − ϕ).

2 Full Matrices Over Projective-free Rings

Let A =

(

1 1

1 0

)

∈ M2(Z2). It is directly verified that A ∈ M2(Z2) is not strongly

J#-clean, though A is strongly clean. It is hard to determine strongly cleanness even for

matrices over the integers, but completely different situation is in the strongly J#-clean

case. The aim of this section is to characterize a single strongly J#-clean n×n matrix
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over projective-free rings. Let M be a left R-module. We denote the endomorphism

ring of M by end(M).

Lemma 2.1 Let M be a left R-module, and let E = end(M), and let α ∈ E. Then the

following are equivalent:

(1) α ∈ E is strongly J#-clean.

(2) There exists a left R-module decomposition M = P ⊕ Q where P and Q are

α-invariant, and α|P ∈ J#
(

end(P )
)

and (1M − α)|Q ∈ J#
(

end(Q)
)

.

Proof (1) ⇒ (2) Since α is strongly J#-clean in E, there exists an idempotent π ∈ E

and a u ∈ J#(E) such that α = (1−π)+u and πu = uπ. Thus, πα = πu ∈ J#
(

πEπ
)

.

Further, 1−α = π+(−u), and so (1−π)(1−α) = (1−π)(−u) ∈ J#
(

(1−π)E(1−π)
)

.

Set P = Mπ and Q = M(1 − π). Then M = P ⊕ Q. As απ = πα, we see that

P and Q are α-invariant. As απ ∈ J#
(

πEπ
)

, we can find some t ∈ N such that

(απ)t ∈ J
(

πEπ
)

. Let γ ∈ end(P ). For any x ∈ M , it is easy to see that (x)π
(

1P −

γ
(

α|P
)t)

= (x)π
(

π− (πγπ)(παπ)t
)

where γ :M →M given by (m)γ = (m)πγ for any

m ∈M . Hence, 1P − γ
(

α|P
)t

∈ aut(P ). Hence
(

α|P
)t

∈ J
(

end(P )
)

. This implies that

α|P ∈ J#
(

end(P )
)

. Likewise, we verify that (1− α)|Q ∈ J#
(

end(Q)
)

.

(2) ⇒ (1) For any λ ∈ end(Q), we construct an R-homomorphism λ ∈ end(M) given

by
(

p+ q
)

λ = (q)λ. By hypothesis, α|P ∈ J#
(

end(P )
)

and (1M −α)|Q ∈ J#
(

end(Q)
)

.

Thus, α = 1Q + α|P − (1M − α)|Q. As P and Q are α-invariant, we see that α1Q =

1Qα. In addition, 1Q ∈ end(M) is an idempotent. As
(

α|P
)(

(1M − α)|Q
)

= 0 =
(

(1M − α)|Q
)(

α|P
)

, we show that α|P − (1M − α)|Q ∈ J#
(

end(M)
)

, as required. �

Lemma 2.2 Let R be a ring, and let M be a left R-module. Suppose that x, y, a, b ∈

end(M) such that xa + yb = 1M , xy = yx = 0, ay = ya and xb = bx. Then M =

ker(x)⊕ ker(y) as left R-modules.

Proof Straightforward. (cf. [6, Lemma 3.2.6]). �

Lemma 2.3 Let R be a commutative ring, and let ϕ ∈Mn(R). Then the following are

equivalent:

(1) ϕ ∈ J#
(

Mn(R)
)

.

(2) χ(ϕ) ≡ tn
(

mod J(R)
)

, i.e., χ(ϕ)− tn ∈ J(R)[t].

(3) There exists a monic polynomial h ∈ R[t] such that h ≡ tdegh
(

mod J(R)
)

for

which h(ϕ) = 0.
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Proof (1) ⇒ (2) Since ϕ ∈ J#
(

Mn(R)
)

, there exists some m ∈ N such that ϕm ∈

J
(

Mn(R)
)

. As J
(

Mn(R)
)

= Mn

(

J(R)
)

, we get ϕ ∈ N
(

Mn(R/J(R))
)

. In view of [6,

Proposition 3.5.4], χ
(

ϕ
)

≡ tn
(

mod N(R/J(R))
)

. Write χ(ϕ) = tn + a1t
n−1 + · · ·+ an.

Then χ
(

ϕ
)

= tn + a1t
n−1 + · · ·+ an. We infer that each ami

i + J(R) = 0+ J(R) where

mi ∈ N. This implies that ai ∈ J#(R). That is, χ(ϕ) ≡ tn
(

mod J#(R)
)

. Obviously,

J(R) ⊆ J#(R). For any x ∈ J#(R), then there exists somem ∈ N such that xn ∈ J(R).

For any maximal idealM of R,M is prime, and so x ∈M . This implies that x ∈ J(R);

hence, J#(R) ⊆ J(R). Therefore J#(R) = J(R), as required.

(2) ⇒ (3) Choose h = χ(ϕ). Then h ≡ tdegh
(

mod J(R)
)

. In light of the Cayley-

Hamilton Theorem, h(ϕ) = 0, as required.

(3) ⇒ (1) By hypothesis, there exists a monic polynomial h ∈ R[t] such that

h ≡ tdegh
(

mod J(R)
)

for which h(ϕ) = 0. Write h = tn + a1t
n−1 + · · · + an. Choose

h = tn + a1t
n−1 + · · · + an ∈

(

R/J(R)
)

[t]. Then h ≡ tn
(

mod N(R/J(R))
)

for which

h
(

ϕ
)

= 0. According to [6, Proposition 3.5.4], there exists some m ∈ N such that
(

ϕ
)m

= 0 over R/J(R). Therefore ϕm ∈Mn

(

J(R)
)

, and so ϕ ∈ J#
(

Mn(R)
)

. �

Definition 2.4 For r ∈ R, define

Jr = {f ∈ R[t] | f monic, and f ≡ (t− r)
degf (

mod J#(R)
)

}.

Lemma 2.5 Let R be a projective-free ring, let ϕ ∈ Mn(R), and let h ∈ R[t] be a

monic polynomial of degree n. If h(ϕ) = 0 and there exists a factorization h = h0h1
such that h0 ∈ J0 and h1 ∈ J1, then ϕ is strongly J#-clean.

Proof Suppose that h = h0h1 where h0 ∈ J0 and h1 ∈ J1. Write h0 = tp + a1t
p−1 +

· · · + ap and h1 = (t − 1)q + b1t
q−1 + · · · + bq. Then each ai, bj ∈ J#(R). Since

R is commutative, we get each ai, bj ∈ J(R). Thus, h0 = tp and h1 = (t − 1)q

in
(

R/J(R)
)

[t]. Hence,
(

h0, h1
)

= 1, In virtue of [6, Lemma 3.5.10], we have some

u0, u1 ∈ R[t] such that u0h0 + u1h1 = 1. Then u0(ϕ)h0(ϕ) + u1(ϕ)h1(ϕ) = 1nR. By

hypothesis, h(ϕ) = h0(ϕ)h1(ϕ) = h1(ϕ)h0(ϕ) = 0. Clearly, u0(ϕ)h1(ϕ) = h1(ϕ)u0(ϕ)

and h0(ϕ)u1(ϕ) = u1(ϕ)h0(ϕ). In light of Lemma 2.2, nR = ker
(

h0(ϕ)
)

⊕ ker
(

h1(ϕ)
)

.

As h0t = th0 and h1t = th1, we see that h0(ϕ)ϕ = ϕh0(ϕ) and h1(ϕ)ϕ = ϕh1(ϕ),

and so ker
(

h0(ϕ)
)

and ker
(

h1(ϕ)
)

are both ϕ-invariant. It is easy to verify that

h0
(

ϕ |ker(h0(ϕ))

)

= 0. Since h0 ∈ J0, we see that h0 ≡ tdegh0

(

mod J#(R)
)

; hence,

ϕ |ker(h0(ϕ)) ∈ J#
(

end(kerh0(ϕ))
)

.

It is easy to verify that h1
(

ϕ |ker(h1(ϕ))

)

= 0. Set g(u) = (−1)degh1h1(1− u). Then

g
(

( 1 − ϕ )|ker(h1(ϕ))

)

= 0. Since h1 ∈ J1, we see that h1 ≡ (t − 1)degh1

(

mod J#(R)
)

.

Hence, g(u) ≡ (−1)degh1(−u)degg
(

mod J(R)
)

. This implies that g ∈ J0. By virtue

of Lemma 2.3, (1 − ϕ) |ker(h1(ϕ)) ∈ J#
(

end(ker(h1(ϕ))
)

). According to Lemma 2.1,

ϕ ∈Mn(R) is strongly J
#-clean. �
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The matrix

ϕ =













0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −an−1













∈Mn(R)

is called the companion matrix Ch of h, where h = tn+an−1t
n−1+ · · ·+a1t+a0 ∈ R[t].

Theorem 2.6 Let R be a projective-free ring and let h ∈ R[t] be a monic polynomial

of degree n. Then the following are equivalent:

(1) Every ϕ ∈Mn(R) with χ(ϕ) = h is strongly J#-clean.

(2) The companion matrix Ch of h is strongly J#-clean.

(3) There exists a factorization h = h0h1 such that h0 ∈ J0 and h1 ∈ J1.

Proof (1) ⇒ (2) Write h = tn + an−1t
n−1 + · · ·+ a1t+ a0 ∈ R[t]. Choose

Ch =













0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −an−1













∈Mn(R).

Then χ(Ch) = h. By hypothesis, Ch ∈Mn(R) is strongly J
#-clean.

(2) ⇒ (3) In view of Lemma 2.1, there exists a decomposition nR = A ⊕ B such

that A and B are ϕ-invariant, ϕ |A ∈ J#
(

endR(A)
)

and (1 − ϕ) |B ∈ J#
(

endR(B)
)

.

Since R is a projective-free ring, there exist p, q ∈ N such that A ∼= pR and B ∼= qR.

Regarding endR(A) asMp(R), we see that ϕ |A ∈ J#
(

Mp(R)
)

. By virtue of Lemma 2.3,

χ(ϕ |A) ≡ tp
(

mod J#(R)
)

. Thus χ(ϕ |A) ∈ J0. Analogously, (1−ϕ) |B ∈ J#
(

Mq(R)
)

.

It follows from Lemma 2.3 that χ
(

(1 − ϕ) |B
)

≡ tq
(

mod J#(R)
)

. This implies

that det
(

λIq − (1 − ϕ) |B
)

≡ λq
(

mod J#(R)
)

. Hence, det
(

(1 − λ)Iq − ϕ |B
)

≡

(−λ)q
(

mod J#(R)
)

. Set t = 1 − λ. Then det
(

tIq − ϕ |B
)

≡ (t− 1)q
(

mod J#(R)
)

.

Therefore we get χ(ϕ |B) ≡ (t−1)q
(

mod J#(R)
)

. We infer that χ(ϕ |B) ∈ J1. Clearly,

χ(ϕ) = χ(ϕ |A)χ(ϕ |B). Choose h0 = χ(ϕ |A) and h1 = χ(ϕ |B). Then there exists a

factorization h = h0h1 such that h0 ∈ J0 and h1 ∈ J1, as desired.

(3) ⇒ (1) For every ϕ ∈ Mn(R) with χ(ϕ) = h, it follows by the Cayley-Hamilton

Theorem that h(ϕ) = 0. Therefore ϕ is strongly J#-clean by Lemma 2.5. �

Corollary 2.7 Let F be a field, and let A ∈Mn(F ). Then the following are equivalent:

(1) A is the sum of an idempotent matrix and a nilpotent matrix that commute.
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(2) χ(A) = ts(t− 1)t for some s, t ≥ 0.

Proof As J
(

Mn(F )
)

= 0, we see that a n× n matrix contains in J#
(

Mn(F )
)

if and

only if A is a nilpotent matrix. So A ∈ Mn(F ) is strongly J#-clean if and only if A

is the sum of an idempotent matrix and a nilpotent matrix that commute. By virtue

of Theorem 2.6, we see that A ∈ Mn(F ) is the sum of an idempotent matrix and a

nilpotent matrix that commute if and only if χ(A) = h0h1, where h0 ∈ J0 and h1 ∈ J1.

Clearly, h0 ∈ J0 if and only if h0 ≡ tdegh0(mod J#(F )). But J#(F ) = 0, and so h0 = ts,

where s = degh0. Likewise, h1 = (t− 1)t, where t = degh1. Therefore we complete the

proof. �

For matrices over integers ,we have a similar situation. As J
(

Mn(Z)
)

= 0, we see

that an n × n matrix contains in J#
(

Mn(Z)
)

if and only if it is a nilpotent matrix.

Likewise, we show that A ∈Mn(Z) is the sum of an idempotent matrix and a nilpotent

matrix that commute if and only if χ(A) = ts(t − 1)t for some s, t ≥ 0. For instance,

choose A =







−2 2 −1

−4 4 −2

−1 1 0






∈ M3(Z). Then χ(A) = t(t − 1)2. Thus, A is the sum

of an idempotent matrix and an nilpotent matrix that commute. In fact, we have a

corresponding factorization A =







−1 1 0

−2 2 0

0 0 1






+







−1 1 −1

−2 2 −2

−1 1 −1






.

Corollary 2.8 Let R be a projective-free ring, and let ϕ ∈M2(R). Then ϕ is strongly

J#-clean if and only if

(1) χ(ϕ) ≡ t2
(

mod J(R)
)

; or

(2) χ(ϕ) ≡ (t− 1)2
(

mod J(R)
)

; or

(3) χ(ϕ) has a root in J(R) and a root in 1 + J(R).

Proof Suppose that ϕ is strongly J#-clean. By virtue of Theorem 2.6, there exists a

factorization χ(ϕ) = h0h1 such that h0 ∈ J0 and h1 ∈ J1.

Case I. deg(h0) = 2 and deg(h1) = 0. Then h0 = χ(ϕ) = t2 − tr(ϕ)t + det(ϕ)

and h1 = 1. As h0 ∈ J0, it follows from Lemma 2.3 that ϕ ∈ J#
(

M2(R)
)

or χ(ϕ) ≡

t2
(

mod J(R)
)

.

Case II. deg(h0) = 1 and deg(h1) = 1. Then h0 = t − α and h1 = t − β. Since R

is commutative, J#(R) = J(R). As h0 ∈ J0, we see that h0 ≡ t(mod J(R)), and then

α ∈ J(R). As h1 ∈ J1, we see that h1 ≡ t − 1(mod J(R)), and then β ∈ 1 + J(R).

Therefore χ(ϕ) has a root in J(R) and a root in 1 + J(R).

Case III. deg(h0) = 0 and deg(h1) = 2. Then h1(t) = det
(

tI2 − ϕ
)

≡ (t −

1)2(mod J(R)). Set u = 1− t. Then det
(

uI2 − (I2 − ϕ)
)

≡ u2
(

mod J(R)
)

. According

to Lemma 2.3, I2 − ϕ ∈ J#
(

M2(R)
)

or χ(ϕ) ≡ (t− 1)2
(

mod J(R)
)

.
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We will suffice to show the converse. If χ(ϕ) ≡ t2
(

mod J(R)
)

or χ(ϕ) ≡ (t −

1)2
(

mod J(R)
)

, then ϕ ∈ J#
(

M2(R)
)

or I2 − ϕ ∈ J#
(

M2(R)
)

. This implies that ϕ is

strongly J#-clean. Otherwise, ϕ, I2 − ϕ 6∈ J
(

M2(R)
)

. In addition, χ(ϕ) has a root in

J(R) and a root in 1+ J(R). According to [4, Theorem 16.4.31], ϕ is strongly J-clean,

and therefore it is strongly J#-clean. �

Choose A =

(

0 2

1 3

)

∈M2

(

Z4

)

. It is easy to check that A, I2 −A ∈M2

(

Z4

)

are

not nilpotent. But χ(A) = t2+ t+2 has a root 2 ∈ J(Z4) and a root 1 ∈ 1+J(Z4). As

J(Z4) = {0, 2} is nil, we know that every matrix in J#
(

M2(Z4)
)

is nilpotent. It follows

from Corollary 2.8 that A is the sum of an idempotent matrix and a nilpotent matrix

that commute. Let Z(2) = {m
n

| m,n ∈ Z, 2 ∤ n}, and let A =

(

1 1
2
9 0

)

∈ M2(Z(2)).

Then J(Z(2)) = {2m
n

| m,n ∈ Z, 2 ∤ n}. As χ(A) = t2− t+ 2
9 has a root 1

3 ∈ 1+J(Z(2))

and a root 2
3 ∈ J(Z(2)). In light of Corollary 2.8, A is strongly J-clean.

Corollary 2.9 Let R be a projective-free ring, and let f(t) = t2 + at + b ∈ R[t] be

degree 2 polynomial with 1 + a ∈ J(R), b 6∈ J(R). Then the following are equivalent:

(1) Every ϕ ∈M2(R) with χ(ϕ) = f(t) is strongly J#-clean.

(2) There exist r1 ∈ J(R) and r2 ∈ 1 + J(R) such that f(ri) = 0.

(3) There exists r ∈ J(R) such that f(r) = 0.

Proof (1) ⇒ (2) Since every ϕ ∈ M2(R) with χ(ϕ) = f(t) is strongly J#-clean, it

follows by Corollary 2.8 that f(t) = (t− r1)(t− r2) with r1 ∈ J(R), r2 ∈ 1 + J(R).

(2) ⇒ (3) is trivial.

(3) ⇒ (1) As r2+ar+b = 0, we see that f(t) = (t−r)(t+a+r). Clearly, t−r ∈ J0.

As 1+a+ r ∈ J(R), we see that t+a+ r ∈ J1. According to Theorem 2.6, we complete

the proof. �

Let ϕ be a 3 × 3 matrix over a commutative ring R. Set mid(ϕ) = det(I3 − ϕ) −

1 + tr(ϕ) + det(ϕ).

Corollary 2.10 Let R be a projective-free ring, and let ϕ ∈M3(R). Then ϕ is strongly

J#-clean if and only if

(1) χ(ϕ) ≡ t3
(

mod J(R)
)

; or

(2) χ(ϕ) ≡ (t− 1)3
(

mod J(R)
)

; or

(3) χ(ϕ) has a root in 1 + J(R),tr(ϕ) ∈ 1 + J(R),mid(ϕ) ∈ J(R), det(ϕ) ∈ J(R);or

(4) χ(ϕ) has a root in J(R), tr(ϕ) ∈ 2 + J(R), mid(ϕ) ∈ 1 + J(R), det(ϕ) ∈ J(R).
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Proof Suppose that ϕ is strongly J#-clean. By virtue of Theorem 2.6, there exists a

factorization χ(ϕ) = h0h1 such that h0 ∈ J0 and h1 ∈ J1.

Case I. deg(h0) = 3 and deg(h1) = 0. Then h0 = χ(ϕ) and h1 = 1. As h0 ∈ J0, it

follows from Lemma 2.3 that ϕ ∈ J#
(

M3(R)
)

.

Case II. deg(h0) = 0 and deg(h1) = 3. Then h1(t) = det
(

tI3 − ϕ
)

≡ (t −

1)3(mod J(R)). Set u = 1− t. Then det
(

uI3 − (I3 − ϕ)
)

≡ u3(mod J(R)). According

to Lemma 2.3, I3 − ϕ ∈ J#
(

M3(R)
)

.

Case III. deg(h0) = 2 and deg(h1) = 1. Then h0 = t2 + at+ b and h1 = t− α. As

h0 ∈ J0, we see that h0 ≡ t2(mod J(R)); hence, a, b ∈ J(R). As h1 ∈ J1, we see that

h1 ≡ t−1(mod J(R)); hence, α ∈ 1+J(R). We see that a−α = −tr(ϕ), b−aα = mid(ϕ)

and −bα = −det(ϕ). Therefore tr(ϕ) ∈ 1 + J(R),mid(ϕ) ∈ J(R) and det(ϕ) ∈ J(R).

Case IV. deg(h0) = 1 and deg(h1) = 2. Then h0 = t − α and h1 = t2 + at + b.

As h0 ∈ J0, we see that h0 ≡ t(mod J(R)); hence, α ∈ J(R). As h1 ∈ J1, we see

that h1 ≡ (t− 1)2(mod J(R)), and then a ∈ −2 + J(R) and b ∈ 1 + J(R). Obviously,

χ(ϕ) = t3 − tr(ϕ)t2 +mid(ϕ)t − det(ϕ), and so a− α = −tr(ϕ), b− aα = mid(ϕ) and

−bα = −det(ϕ). Therefore tr(ϕ) ∈ 2 + J(R),mid(ϕ) ∈ 1 + J(R) and det(ϕ) ∈ J(R).

Conversely, if χ(ϕ) ≡ t3
(

mod J(R)
)

or χ(ϕ) ≡ (t − 1)3
(

mod J(R)
)

, then ϕ ∈

J#
(

M3(R)
)

or I3−ϕ ∈ J#
(

M3(R)
)

. Hence, ϕ is strongly J#-clean. Suppose χ(ϕ) has

a root α ∈ 1+J(R) and tr(ϕ) ∈ 1+J(R), det(ϕ) ∈ J(R). Then χ(ϕ) = (t2+at+b)(t−α)

for some a, b ∈ R. This implies that a − α = −tr(ϕ),−bα = −det(ϕ). Hence, a, b ∈

J(R). Let h0 = t2 + at + b and h1 = t − α. Then χ(ϕ) = h0h1 where h0 ∈ J0 and

h1 ∈ J1. According to Theorem 2.6, ϕ is strongly J#-clean.

Suppose χ(ϕ) has a root α ∈ J(R) and tr(ϕ) ∈ 2 + J(R),mid(ϕ) ∈ 1 + J(R) and

det(ϕ) ∈ J(R). Then χ(ϕ) = (t− α)(t2 + at+ b) for some a, b ∈ R. This implies that

a− α = −tr(ϕ), b− aα = mid(ϕ). Hence, a ∈ −2 + J(R),b ∈ 1 + J(R). Let h0 = t− α

and h1 = t2 + at + b. Then χ(ϕ) = h0h1 where h0 ∈ J0 and h1 ∈ J1. According to

Theorem 2.6, ϕ is strongly J#-clean, and we are done. �

3 Matrices Over Power Series Rings

The purpose of this section is to extend the preceding discussion to matrices over

power series rings. We use R[[x]] to stand for the ring of all power series over R. Let

A(x) =
(

aij(x)
)

∈Mn

(

R[[x]]
)

. We use A(0) to stand for
(

aij(0)
)

∈Mn(R).

Theorem 3.1 Let R be a projective-free ring, and let A(x) ∈ M2

(

R[[x]]). Then the

following are equivalent:

(1) A(x) ∈M2

(

R[[x]]) is strongly J#-clean.

(2) A(0) ∈M2(R) is strongly J#-clean.
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Proof (1) ⇒ (2) Since A(x) is strongly J#-clean inM2

(

R[[x]]
)

, there exists an E(x) =

E2(x) ∈ M2

(

R[[x]]
)

and a U(x) ∈ J#
(

M2(R[[x]])
)

such that A(x) = E(x) + U(x)

and E(x)U(x) = U(x)E(x). This implies that A(0) = E(0) + U(0) and E(0)U(0) =

U(0)E(0) where E(0) = E2(0) ∈ M2(R) and U(0) ∈ J#
(

M2(R)
)

. As a result, A(0) is

strongly J#-clean in M2(R).

(2) ⇒ (1) Construct a ring morphism ϕ : R[[x]] → R, f(x) 7→ f(0). Then

R ∼= R[[x]]/kerf , where kerf = {f(x) | f(0) = 0} ⊆ J
(

R[[x]]
)

. For any finitely gener-

ated projective R[[x]]-module P , P
⊗

R

(

R[[x]]/kerf
)

is a finitely generated projective

R[[x]]/kerf -module; hence it is free. Write P
⊗

R

(

R[[x]]/kerf
)

∼=
(

R[[x]]/kerf
)m

for

somemN. Then P
⊗

R

(

R[[x]]/kerf
)

∼=
(

R[[x]]
)m⊗

R

(

R[[x]]/kerf
)

. That is, P/P
(

kerf
)

∼=
(

R[[x]]
)m
/
(

R[[x]]
)m(

kerf
)

witkerf ⊆ J
(

R[[x]]
)

. By Nakayama Theorem, P ∼=
(

R[[x]]
)m

is free. Thus, R[[x]] is projective-free. Since A(0) is strongly J#-clean

in M2(R), it follows from Corollary 2.8 that A(0) ∈ J#
(

M2(R)
)

, or I2 − A(0) ∈

J#
(

M2(R)
)

, or the characteristic polynomial χ
(

A(0)
)

= y2 + µy + λ has a root

α ∈ 1+J(R) and a root β ∈ J(R). If A(0) ∈ J#
(

M2(R)
)

, then A(x) ∈ J#
(

M2(R[[x]])
)

.

If I2 − A(0) ∈ J#
(

M2(R)
)

, then I2 − A(x) ∈ J#
(

M2(R[[x]])
)

. Otherwise, we write

y =
∞
∑

i=0
bix

i and χ(A(x)) = y2−µ(x)y−λ(x). Then y2 =
∞
∑

i=0
cix

i where ci =
i
∑

k=0

bkbi−k.

Let µ(x) =
∞
∑

i=0
µix

i, λ(x) =
∞
∑

i=0
λix

i ∈ R[[x]] where µ0 = µ and λ0 = λ. Then,

y2 − µ(x)y − λ(x) = 0 holds in R[[x]] if the following equations are satisfied:

b20 − b0µ0 − λ0 = 0;

(b0b1 + b1b0)− (b0µ1 + b1µ0)− λ1 = 0;

(b0b2 + b21 + b2b0)− (b0µ2 + b1µ1 + b2µ0)− λ2 = 0;
...

Obviously, µ0 = α+β ∈ U(R) and α−β ∈ U(R) . Let b0 = α. Since R is commutative,

there exists some b1 ∈ R such that

b0b1 + b1(b0 − µ0) = λ1 + b0µ1.

Further, there exists some b2 ∈ R such that

b0b2 + b2(b0 − µ0) = λ2 − b21 + b0µ2 + b1µ1.

By iteration of this process, we get b3, b4, · · · . Then y2 − µ(x)y − λ(x) = 0 has a root

y0(x) ∈ 1+J
(

R[[x]]
)

. If b0 = β ∈ J(R), analogously, we show that y2−µ(x)y−λ(x) = 0

has a root y1(x) ∈ J
(

R[[x]]
)

. In light of Corollary 2.8, the result follows. �
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Corollary 3.2 Let R be a projective-free ring, and let A(x) ∈ M2

(

R[[x]]/(xm)
)

(m ≥

1). Then the following are equivalent:

(1) A(x) ∈M2

(

R[[x]]/(xm)
)

is strongly J#-clean.

(2) A(0) ∈M2(R) is strongly J#-clean.

Proof (1) ⇒ (2) is obvious.

(2) ⇒ (1) Let ψ : R[[x]] → R[[x]]/(xm), ψ(f) = f . Then it reduces a surjective ring

homomorphism ψ∗ :M2

(

R[[x]]
)

→M2

(

R[[x]]/(xm)
)

. Hence, we have a B ∈M2

(

R[[x]]
)

such that ψ∗
(

B(x)
)

= A(x). According to Theorem 3.1, we complete the proof. �

Example 3.3 Let R = Z4[x]/(x
2), and let A(x) =

(

2 2 + 2x

2 + x 3 + 3x

)

∈ M2(R).

Obviously, Z4 is a projective-free ring, and that R = Z4[[x]]/(x
2). Since we have the

strongly J#-clean decomposition A(0) =

(

0 2

2 1

)

+

(

2 0

0 2

)

in M2(Z4), it follows

by Corollary 3.2 that A(x) ∈M2(R) is strongly J
#-clean.

Theorem 3.4 Let R be a projective-free ring, and let A(x) ∈ M3

(

R[[x]]). Then the

following are equivalent:

(1) A(x) ∈M3

(

R[[x]]) is strongly J#-clean.

(2) A(x) ∈M3

(

R[[x]]/(xm)
)

(m ≥ 1) is strongly J#-clean.

(3) A(0) ∈M3(R) is strongly J#-clean.

Proof (1) ⇒ (2) and (2) ⇒ (3) are clear.

(3) ⇒ (1) As A(0) is strongly J#-clean in M3(R), it follows from Corollary 2.10

that A(0) ∈ J#
(

M3(R)
)

, or I3 − A(0) ∈ J#
(

M3(R)
)

, or χ
(

A(0)
)

has a root in J(R)

and tr
(

A(0)
)

∈ 2 + J(R),mid
(

A(0)
)

∈ 1 + J(R), det
(

A(0)
)

∈ J(R), or χ
(

A(0)
)

has a

root in 1 + J(R) and tr
(

A(0)
)

∈ 1 + J(R),mid
(

A(0)
)

∈ J(R), det
(

A(0)
)

∈ J(R). If

A(0) ∈ J#
(

M3(R)
)

or I3 − A(0) ∈ J#
(

M3(R)
)

, then A(x) ∈ J#
(

M3(R[[x]])
)

or I3 −

A(x) ∈ J#
(

M3(R[[x]])
)

. Hence, A(x) ∈M3

(

R[[x]]
)

is strongly J#-clean. Assume that

χ
(

A(0)
)

= t3−µt2−λt−γ has a root α ∈ J(R) and tr
(

A(0)
)

∈ 2+J(R),mid
(

A(0)
)

∈

1 + J(R), det
(

A(0)
)

∈ J(R). Write y =
∞
∑

i=0
bix

i. Then y2 =
∞
∑

i=0
cix

i where ci =

i
∑

k=0

bkbi−k. Further, y3 =
∞
∑

i=0
dix

i where di =
i
∑

k=0

bkci−k. Let µ(x) =
∞
∑

i=0
µix

i, λ(x) =

∞
∑

i=0
λix

i, γ(x) =
∞
∑

i=0
γix

i ∈ R[[x]] where µ0 = µ, λ0 = λ and γ0 = γ. Then, y3−µ(x)y2−
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λ(x)y − γ(x) = 0 holds in R[[x]] if the following equations are satisfied:

b30 − b20µ0 − b0λ0 − γ0 = 0;

(3b20 − 2b0µ0 − λ0)b1 = γ1 + b20µ1 + b0λ1;

(3b20 − 2b0µ0 − λ0)b2 = γ2 + b20µ2 + b21µ0 + 2b0b1µ1 + b0λ2 + b1λ0 − 3b0b
2
1;

...

Let b0 = α ∈ J(R). Obviously, µ0 = trA(0) ∈ 2 + J(R) and λ0 = −midA(0) ∈ U(R).

Hence, 3b20−2b0µ0−λ0 ∈ U(R). Thus, we see that b1 = (3b20−2b0µ0−λ0)
−1(γ1+b

2
0µ1+

b0λ1) and b2 = (3b20−2b0µ0−λ0)
−1(γ2+b

2
0µ2+b

2
1µ0+2b0b1µ1+b0λ2+b1λ0−3b0b

2
1). By

iteration of this process, we get b3, b4, · · · . Then y
3 − µ(x)y2 − λ(x)y − γ(x) = 0 has a

root y0(x) ∈ J
(

R[[x]]
)

. It follows from trA(0) ∈ 2 + J(R) that trA(x) ∈ 2 + J
(

R[[x]]
)

.

Likewise, midA(x) ∈ 1 + J
(

R[[x]]
)

. According to Corollary 2.10, A(x) ∈M3

(

R[[x]]) is

strongly J#-clean.

Assume that χ
(

A(0)
)

has a root 1+α ∈ J(R) and tr
(

A(0)
)

∈ 1+J(R),mid
(

A(0)
)

∈

J(R), detA(0) ∈ J(R). Then det
(

I3−A(0)
)

= 1− trA(0)+midA(0)−detA(0) ∈ J(R).

Set B(x) = I3 − A(x). Then χ
(

B(0)
)

has a root α ∈ J(R) and tr
(

B(0)
)

∈ 2 +

J(R), detB(0) ∈ J(R). This implies that midB(0) = detA(0)− 1+ trB(0)+ detB(0) ∈

1 + J(R). By the preceding discussion, we see that B(x) ∈ M3

(

R[[x]]) is strongly

J#-clean, and then we are done. �

From this evidence above, we end this paper by asking the following question: Let

R be a projective-free ring, and let A(x) ∈ Mn

(

R[[x]])(n ≥ 4). Do the strongly J#-

cleanness of A(x) ∈M3

(

R[[x]]) and A(0) ∈M3(R) coincide with each other?
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