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1.  Introduction

The study of topological systems [1, 2] is an extremely active 
research area. Recent efforts [3] have focused on understanding 
the effects of electron interaction on such systems. Part of this 
effort concentrates on extending [4–7] the symmetry clas-
sification valid for non-interacting systems [8, 9], part of it 
is to map the phase diagrams of existing topological models 
with interaction turned on [10, 11]. One model which has 
received considerable attention is the Kane–Mele–Hubbard 

(KMH) model [12] both analytically [13, 14] and numerically  
[15, 16].

The starting point in topological analyses is usually the 
Berry phase [17–19]. The Berry phase which arises from inte-
grating across the Brillouin zone [20] (Zak phase) corresponds 
to the polarization [21–23] of a crystalline system, while its 
modified versions give topological indices such as the Chern 
number [24] or time-reversal polarization [25]. The Zak phase 
can be viewed as the first in a series of gauge invariant cumu-
lants [26–28], the second corresponding [29] to the variance 
in the center of mass of the electronic charge distribution.

Recently, higher order cumulants were studied [28, 30, 31]. 
It was shown [30] that the third cumulant, also known as the 

Journal of Physics: Condensed Matter

Variational study of the interacting, spinless 
Su–Schrieffer–Heeger model

M Yahyavi1,3 , L Saleem1,3 and B Hetényi1,2

1  Department of Physics, Bilkent University, TR-06800 Bilkent, Ankara, Turkey
2  MTA-BME Exotic Quantum Phases ‘Momentum’ Research Group, Department of Physics,  
Budapest University of Technology and Economics, H-1111 Budapest, Hungary

E-mail: m.yahyavi@bilkent.edu.tr, luqman.saleem@bilkent.edu.tr, hetenyi@fen.bilkent.edu.tr  
and hetenyi@phy.bme.hu

Received 20 June 2018, revised 7 September 2018
Accepted for publication 12 September 2018
Published 11 October 2018

Abstract
We study the phase diagram and the total polarization distribution of the Su–Schrieffer–
Heeger model with nearest neighbor interaction in one dimension at half-filling. To obtain 
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in the other, we go through only insulating states. In the former case, the average polarization 
changes discontinuously after passing through the metallic phase line, while in the latter the 
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skew, corresponds to the so called shift current, the second-
order nonlinear optical response in second harmonic genera-
tion experiments (this work addresses such experiments in a 
Weyl semimetal). It was emphasized, that the skew gives a 
more intuitive picture of the system, than the sum rules valid 
for nonlinear response. Kobayashi et al [31] study the quantity 
Z(q) = 〈Ψ| exp(i2πX̂/L)q|Ψ〉 (L denotes the system size, X̂  
is the total position operator, and q is a real number, integer 
in systems with periodic boundary conditions) in the metallic 
phase. The q  =  1 case was suggested by Resta and Sorella 
[23, 29] for the polarization and its variance. A modification 
to this scheme was suggested by Aligia and Ortiz [32] for lat-
tice systems with fractional fillings. It can be shown that for 
general q this quantity contains the same information as the 
gauge invariant cumulants. In [31] it is shown that the size 
dependence of Z(q) in the metallic phase is universal. From the 
first six cumulants the distribution of the polarization in the 
Rice–Mele (RM) model [33] was reconstructed [28].

In this paper we study the 1D spinless interacting Su–
Schrieffer–Heeger (SSH) model [34]. This model was studied 
via a diagrammatic expansion [36] and the density-matrix 
renormalization group [35]. The spinful version of this model 
was studied by Manmana et  al [37]. Via a Jordan–Wigner 
transformation this model can be transformed into an inter-
acting spin model, which falls into a group of models known 
as the alternating bond spin-1

2 Heisenberg models. Bond alter-
nation opens a gap [38, 39] in spin-1

2 systems, which is analo-
gous to the fact that the SSH model is insulating. The study 
of such models already has a long history [40, 41], recently  
[42, 43] there has been renewed interest due to their topolog-
ical phases [42, 43]. In [42] the topological behavior gauged 
via a string order parameter.

We develop a variational approach by extending the 
Baeriswyl wave function [44, 45] (BWF) to account for the 
alternating hoppings of the SSH. We compare the ground 
state energies to exact diagonalization results for small system 
sizes, finding excellent agreement. The phase diagram we find 
is remarkably similar to that of the KMH model [3, 12]. When 
all hopping parameters are equal, we find a conducting phase 
for small interaction (in our variational treatment a Fermi sea), 
and a correlated insulator with charge density wave ordering 
for large interaction. When the hoppings alternate, the small 
interaction phase is the SSH ground state, but as the inter-
action increases, the system tends towards charge density 
order, which is weakened by the hopping alternation. We also 
construct a parent Hamiltonian for the BWF type wave func-
tion we use. Our construction allows for plotting the curves 
traced out by varying k across the Brillouin zone in the space 
spanned by the components of the Hamiltonian.

We then study the behavior of the polarization distribu-
tion. In particular, we do reconstructions along two paths in 
the parameter space of the model, which connect topologically 
distinct states. Both paths connect two states with finite inter-
action parameter, but with opposite polarity in hopping. One 
path crosses the metallic phase line (the interaction param
eter is constant), while the other passes through the insulating 
regime only (the interaction is varied). We find that in the first 

case, the maximum of the distribution remains constant until 
the metallic phase line is reached, there the distribution flattens, 
and after passing to the other side of the metallic phase line, the 
distribution has a maximum at a different polarization (a jump 
occurred in the Berry phase at the metallic phase line). For the 
second path, the maximum, as well as the other cumulants vary 
smoothly, the distribution ‘walks across’ from one polarization 
to the other. To make sense of these results, we relate them to 
the well-known topological quantum phase transition which 
occurs in the SSH model. In the SSH model chiral symmetry 
gives rise to a symmetry protected topological phase separated 
from a topologically trivial phase by gap closure. Again we 
reconstruct the polarization distribution along two different 
paths. Both paths pass between topologically distinct phases, 
but along one the symmetries are always respected (gap closure 
occurs), while along the other, the symmetries are relaxed. The 
polarization distributions evolve exactly in the same manner.

Our paper is organized as follows. In the following  
section we give the models we study, the form of the BWF, 
the construction of the parent Hamiltonian, and the gauge 
invariant cumulants. In section 3 our results and analyses are 
presented. In section 4 we conclude our work.

2.  Model and methods

2.1.  Spinless, interacting Su–Schrieffer–Heeger model

We study the interacting SSH model in one dimension at half 
filling. This model consists of a hopping parameter, which 
alternates between odd and even bonds, and an interaction 
term if two particles are on nearest neighboring sites. For the 
case of uniform hopping for all bonds, the model can be solved 
by the Bethe ansatz, and it is known that an ideal conductor 
(finite Drude weight) to insulator phase transition takes place.

The Hamilton operator of the model consists of two terms, 
the SSH term (ĥSSH) and the interaction term (ĥV) and can be 
written as

Ĥ =

ĥSSH︷ ︸︸ ︷
−1

2

L∑
n=1

[t + (−1)nδ]c†ncn+1 + H.c.

+

ĥV︷ ︸︸ ︷
V
2

L∑
n=1

nnnn+1

�

(1)

where c†n (cn) creates (annihilates) a particle at site n, nn = c†ncn 
is the density operator at site n. t denotes the average hopping, 
taken as unity in the following, δ denotes the deviation in hop-
ping between odd and even sites. V  is the interaction between 
particles on nearest neighboring sites. This interaction would 
be the leading term for the full Coulomb interaction, since 
configurations with two particles on the same site, do not 
occur due to the Pauli principle. For δ = 0 the ideal conductor 
insulator transition occurs at V = 2 in units of t. In the rest of 
the paper we use units of t. Figure 1 illustrates the model and 
the meaning of the different parameters.
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2.2. The variational wave function

The BWF [44–46, 48] already has a history of successfully 
reproducing the properties of strongly correlated models. It 
was originally developed for the fermionic Hubbard model, 
but it has been applied to the bosonic Hubbard [49] as well as 
quenches interacting spinless fermions [50].

In this section we describe the BWF [44, 45], its extensions 
necessary to account for the alternating hoppings of the SSH 
model, and write down the solution for the variational energy 
in closed form.

The BWF starts with the wave function at infinite interac-
tion (a charge density wave) and acts on this wave function 
with a kinetic energy based projector. In analogy to this idea 
we write

|ΨB(α)〉 = NB exp(−αĥSSH)|Ψ∞〉,� (2)

where α denotes the variational parameter and |Ψ∞〉 stands 
for a perfectly ordered charge density wave, and NB is a nor-
malization constant. Our further calculations are rendered 
easier by the particularly simple form of |Ψ∞〉,

|Ψ∞〉 =
∏

kεRBZ

1√
2
(c†k + c†k+Q)|0〉� (3)

where Q = π  is ordering wave vector (the lattice constant was 
assumed to be unity), the product runs through the reduced 
Brillouin zone (RBZ) and |0〉 is fermionic vacuum state. 
Fourier transforming the Hamiltonian results in

ĥSSH(k) =
[
c†k c†k+π

] [ ε(k) iγ(k)
−iγ(k) −ε(k)

] [
ck

ck+π

]

ĥV = −V
L

∑
k,k′,q

ε(q)c†k+qckc†k′−qck′

�

(4)

where ε(k) = −t cos k, γ(k) = −δ sin k. With the help of 
the Pauli matrix representation of the SSH noninteracting 
Hamiltonian,

ĥSSH(k) = ε(k)σz − γ(k)σy� (5)

the SSH Hamiltonian based projector can be expanded as

exp(−αĥSSH(k)) = cosh(αh(k))ˆ̂I − sinh(αh(k))ˆ̂hSSH(k)
� (6)

where h(k) =
√

t2 cos2 k + δ2 sin2 k, ˆ̂I is the 2-by-2 identity 
matrix, and

ˆ̂hSSH(k) =
ĥSSH(k)

h(k)
,� (7)

a unit vector in the space spanned by ε(k) and γ(k). Now, 
applying the projector (6) on the CDW state (equation (3)) we 
obtain the normalized wave function,

|ΨB(α)〉 =
∏

kεRBZ

A(k)c†k + A(k + Q)c†k+Q√
2 cosh [2αh(k)]

|0〉,� (8)

with

A(k) = cosh [αh(k)]− sinh [αh(k)]
h(k)

ε(k) + iγ(k)
sinh [αh(k)]

h(k)
.

� (9)

Having derived the action of the projector on the CDW 
state, we can now evaluate the variational estimate for the 
ground state energy by calculating the expectation value of 
equation (4) over our extended Baeriswyl wave function. We 
give the expectation values of the SSH Hamiltonian and of the 
interaction separately as

〈ĥSSH〉 = −
∑

k

h(k) tanh [2αh(k)]� (10)

and

〈ĥV〉 =
VL
4

− V
L

3∑
i=1

|Ti|2� (11)

where

T1 =
∑

k

[
1

2 cosh [2αh(k)]
+

iγ(k)
2h(k)

tanh [2αh(k)]
]

T2 =
∑

k

[
ε(k)

2
− ε(k)2

2h(k)
tanh [2αh(k)]

]

T3 =
∑

k

[
ε(k)

2 cosh [2αh(k)]
+

iε(k)γ(k)
2h(k)

tanh [2αh(k)]
]

.

� (12)
For the t − V  model these expressions were derived in [50].

This newly derived wave function gives exact results in two 
extreme limits, V → 0 and V → ∞. In the former the total 
energy becomes equal to the energy of the SSH model, while 
in the latter the total energy tends to zero. In between these 
two opposite extreme limits a comparison of numerically cal-
culated total energy with exact diagonalized calculation and 
optimal minimization parameter is given in the upper panel 
of figure  2 for a small sized system. The extended BWF 
gives results which compare well in all cases, although as δ 
increases, the agreement worsens.

2.3.  Parent Hamiltonian of the Baeriswyl wave function

Visualizing topological phase transitions is greatly aided 
in the case of Hamiltonians which are two-state in k-space 
via plotting the curves traced out by sweeping through the 
Brillouin zone [51]. The standard way is to write the two-state 
Hamiltonian in the form H(k) = h(k) · σ, where h(k) is a 3D 
vector which traces out a closed curve in the space spanned by 
hx(k), hy(k), hz(k).

Figure 1.  Graphical representation of our model Hamiltonian  
(a) and the charge density wave (CDW) state (b). Filled (empty) 
circles indicate lattice sites occupied (not occupied) by particles. 
In (a) V  indicates the interaction, t indicates the average hopping, δ 
denotes the amount by which the hopping alternates between even 
and odd bonds.

J. Phys.: Condens. Matter 30 (2018) 445602
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We can use the results of the previous subsection to con-
struct an effective parent Hamiltonian for the BWF, which is 

also of the form H(k) = h(k) · σ. Our construction consists of 
two steps. First, inspecting equations (10)–(12), we are able to 
write the total energy (apart from the constant shift VL/4) as a 
single sum over k, as E =

∑
k ε̃k. Since equation (12) includes,  

double k-sums, these contributions to ε̃(k) appear as single k-
sums. Second, we consider the coefficients at k and k  +  Q, 
and obtain the angles θk and φk  according to the normalized 
equation

ε̃k

[
cos(θk) sin(θk)e−iφk

sin(θk)eiφk − cos(θk)

] [ sin(θk)
2

− cos(θk)
2 eiφk

]

= −ε̃k

[
sin(θk)

2

− cos(θk)
2 eiφk

]
,

�

(13)

where we equate

A(k)√
2 cosh [2αh(k)]

=
sin(θk)

2

A(k + Q)√
2 cosh [2αh(k)]

= −cos(θk)

2
eiφk .

�

(14)

This procedure guarantees that summing over the RBZ gives 
the correct ground state energy, and that at each k-vector, the 
correct coefficients A(k) and A(k + Q) are obtained.

2.4.  Polarization and gauge invariant cumulants

The gauge invariant cumulant series associated with the 
polarization was first studied by Souza et  al [26]. In a 
general sense it can be derived [27] based on the discrete 
Berry phase (Bargmann invariant [52]). Here we give the 
basic expressions for the gauge invariant cumulants, for the 
reconstruction of the polarization we refer the reader to [28].

Consider a 1D system whose Hamiltonian is periodic in L. 
Taking periodic Bloch functions parametrized by the crystal 
momentum, u(k), and defining γm(k) = 〈u(k)|∂m

k |u(k)〉, the 
first four cumulants take the form

C1 = i
L

2π

∫ π
L

−π
L

dKγ1

C2 = − L
2π

∫ π
L

−π
L

dK[γ2 − γ2
1 ]

C3 = −i
L

2π

∫ π
L

−π
L

dK[γ3 − 3γ2γ1 + 2γ3
1 ]

C4 =
L

2π

∫ π
L

−π
L

dK[γ4 − 3γ2
2 − 4γ3γ1 + 12γ2

1γ2 − 6γ4
1 ].

�

(15)

These quantities can be shown to be gauge invariant. If the 
Wannier functions associated with the Bloch functions are 
sufficiently localized, they correspond to the cumumlants 
of the probability distribution of the total position, and can 
be used in its reconstruction [28]. From the inversion of this 
cumulant series it is also possible to obtain gauge invariant 
moments. The cumulants can be inverted to obtain the gauge 
invariant moments,

Figure 2.  Upper panels: the variational ground state energy per 
particle for (a) δ = 0, and (b) δ = 0.7 based on the Baeriswyl wave 
function compared to exact diagonalization for 12 lattice sites. 
Lower panel: the variational parameter as a function of interaction 
strength for (δ = 0, ±0.3) and (±0.7). Solid lines indicate the 
global minimum in the CDW type insulating phase. Dashed lines 
indicate metastable insulating phases on the metallic side of the 
phase diagram.

Figure 3.  Phase diagram. I and II are SSH states (Hartree–Fock 
approximation). III is a CDW type phase, with finite skew when δ differs 
from zero. The dashed line indicates a Fermi sea (ideal conductor).

J. Phys.: Condens. Matter 30 (2018) 445602
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µ
(1)
C = C1

µ
(2)
C = C2 + C2

1

µ
(3)
C = C3 + 3C2C1 + C3

1

µ
(4)
C = C4 + 4C3C1 + 3C2

2 + 6C2C2
1 + C4

1.
�

(16)

In our model the wave function is of the form given in 
equation (8). The cumulants can be obtained in a straightfor-
ward way, for example,

γm(k) = A∗(k)∂m
k A(k) + A∗(k + Q)∂m

k A(k + Q).� (17)

Using γm(k) the cumulants can be constructed according to 
equation (15), however the integrals and the normalization are 
now over the RBZ.

3.  Results and analysis

The phase diagram of the model according to our calculations 
is shown in figure 3. For all values of δ the variational param
eter at which the total energy is minimized is finite for large 
V  indicating a CDW type insulating phase. As V  decreases, at 
some Vt  (for a given δ), the minimum at finite V  becomes a 
local minimum, with α = ∞ becoming the global minimum, 
meaning that within our variational approximation the phase 
transition is first order (see figure 2). The α → ∞ limit cor-
responds to the SSH state for V = 0, at finite V  it becomes 
the Hartree–Fock state, meaning the wave function is that of 
the SSH model, but the energy is not simply the SSH hopping 
energy, but also the expectation value of the interaction energy. 
A similar scenario was found in [48] for the Hubbard model. 
The small V  phase at δ = 0 is a Fermi sea, while for finite δ 
it is an SSH state. The metastable phase disappears at some 
finite δ. Phase III is an insulating phase. When δ = 0 the skew 
is zero in this phase, when it is finite, a finite skew develops 
(see figure 5). Our phase diagram is qualitatively similar to the 
2D KMH model, where the topologically non-trivial phases 

at small interaction become magnetically ordered insulating 
phases [3, 12].

We also calculated the curves traced out by the vector d 
which defines the parent Hamiltonian derived in section 2.3, 
shown in figure 4. The left panel (a) shows the curve traced 
out by the Brillouin zone along specific points of a curve 
in the parameter space of the Hamiltonian which starts at 
δ = −1, V = 1 and ends at δ = 1 and V = 1. The curve in 
between is an ellipse which does not cross the metallic phase 
line. The curves traced out our cyclic in 3D. At δ = 0 is 
approached the cyclic curves become ‘thinner’ and at δ = 0 
itself the BZ is represented by a line rather than a cyclic curve. 
The right panel (b) shows what happens along the straight line 
V = 1 but δ varying from -1 to 1. This is exactly what hap-
pens in the SSH model, whose Hamiltonian is dz = −t cos(k) 
and dy = −δ sin(k). As δ approaches to zero (gap closure) 
the curve becomes a line along the y-axis. The left panel 
gives some indication of the effect of correlation. Standard 
mean-field theory of the SSH model gives the RM model 
corresponding to an additional term in the dx directions with 
a renormalized on-site potential strength, and whose curves 
(not shown) would be similar to figure 4(b), but with a shift 
in the dx direction. One difference between mean-field theory 
and our BWF based treatment can be seen in the curves of 
figure 4(a).

In figure 5(a) we show the polarization (C1) on the δ − V  
plane. The polarization is take to be zero in the limit V → ∞. 
As V  decreases the absolute value of the polarization increases, 
its sign depends on the sign of δ. For finite δ the polarization 
saturates at a finite value of δ. Particularly interesting is the 
behavior at δ = 0, where the polarization remains the same 
value, but we see that below V < 1.3365... it rises rapidly from 
δ < 0 to δ > 0, almost discontinuously. For V > 1.3365..., the 
rise in C1 across δ = 0 is smooth.

In figure 5(b) we show two paths we have chosen for our 
subsequent analysis. Paths A and B both connect the points 
−1, 1 and 1, 1 on the δ − V  plane, but path A crosses the line 
segment δ = 0, 0 < V < 1.3365..., while B does not, it passes 

Figure 4.  Curves traced out by the Hamiltonian in the Brillouin zone. (a) The correlated system, δ = cos(φ), V = 1 + 4 sin(φ).  
In (b) δ = cos(φ), V = 1. For both panels, the values of the variable φ are indicated in the legend on the right.

J. Phys.: Condens. Matter 30 (2018) 445602
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δ = 0 above the point V = 1.3365.... For the elliptical path the 
moments and cumulants are shown in part (c) of the figure. 
All cumulants and moments change continuously C2 is min-
imum at δ = 0. In contrast to this, along the linear path C1 
changes discontinuously. C2 increases sharply around δ = 0, 
indicating delocalization. All the cumulants change rapidly 
around δ = 0, the even cumulants are even functions, while 
the odd ones are odd.

In figure  6 we show reconstructed polarization distribu-
tions along a chosen set of points along the two different paths 
A and B. Along the elliptical path (B) the polarization dis-
tribution ‘walks across’ smoothly between the two positions 
related by symmetry. The distribution is a smooth function, the 
maximum changes continuously, and the shape of the distribu-
tion indicates a localized state (insulating). In contrast to this, 

when the polarization is reconstructed along the line which 
crosses the line δ = 0, 0 < V < 1.3365..., the maximum of 
the distribution remains fixed in the interval δ > 0, while 
the width of the distribution is increasing (the distribution is 
becoming more delocalized). At δ = 0 the distribution is flat, 
the system is delocalized. We interpret this as a conducting 
state. For δ < 0 the distribution localizes around a different 
maximum. As the absolute value of δ increases the distribu-
tion becomes more localized.

We can relate the effect of the correlation to what hap-
pens around the topologically nontrivial point [19] of the SSH 
and RM models. We take as the definition of the RM model 
to be the SSH model defined above, plus an alternating on-
site potential, which breaks the chiral symmetry, of the form 

∆
∑

j(−1) jc†Jcj , where Δ denotes the strength of the poten-
tial. In figure 7 we show reconstructed polarizations along a 
semi-circle on the δ −∆ plane, and along a line along which 
the model is SSH, with a topological phase transition pro-
tected by symmetry. The gap closure (phase transition) point 
is at δ = ∆ = 0. The symmetry broken semi-circular path 
shows an evolution of the polarization distribution similar to 
the upper panel in figure 6 with the maximum shifting con-
tinuously, while along the linear path, the maximum shifts 
discontinuously between the δ < 0 and δ > 0 cases.

Figure 5.  (a) First cumulant, (C1) or polarization, of the interacing 
SSH model as a function of δ and V . (b) Lines in the δ − V  
plane for which we calculate the cumulants and reconstruct the 
polarization. Two paths are shown between the points −1, 1 and 
1, 1: path A is a straight line, path B is a semi-ellipse. (c) Moments 
and cumulants along the semi-elliptic (B) path. (d) Moments and 
cumulants along the straight line (A) path.

Figure 6.  Reconstructed polarization distributions along the two 
paths shown indicated in figure 5. The upper panel (lower panel) 
shows reconstructed polarizations along the ellipse (straight line) 
between the points −1, 1 to 1, 1 on the δ − V  plane.

J. Phys.: Condens. Matter 30 (2018) 445602



M Yahyavi et al

7

4.  Conclusion

We have developed a variational theory based on the Baeriswyl 
wave function for the SSH model with interaction, calculated 
the phase diagram of the model, and have studied the behavior 
of the polarization distribution as a function of the interaction. 
In our approximate scheme the transition is first order. Overall, 
the phase diagram is similar to the one found for another inter-
acting topological model, the Kane–Mele–Hubbard model  
[3, 12].

It is worth mentioning that for the case of homogeneous 
hopping, an ideal conductor to insulator transition was found. 
This is surprising for a number of reasons. In general, varia-
tional wave functions for correlated systems are not thought to 
be flexible enough to produce phase transitions. For example, 
the Gutzwiller wave function is always metallic [53], and also 
for the Baeriswyl wave function, there exists a proof [47] that 
at finite value of the variational parameter it describes an insu-
lating state. Our finding, however, is that a metal–insulator 
transition does occur, albeit, at a reduced value of the interac-
tion (V = 1.3365...t) compared to the exact result (V = 2t ). 
Thus, for this model, the Baeriswyl wave function is qualita-
tively correct. Moreover, as far as the question of quantitivity 
is concerned, the ground state energy agrees well with exact 
diagonalization results.

For comparison, for the Hubbard model the exact result in 
one dimension is that there is no metal–insulator transition [54], 

and that it is insulating for finite interaction. The Baeriswyl 
wave function is thought to give this behavior as well, at least 
qualitatively, while the Gutzwiller wave function still only 
gives a metallic state. Thus, for both correlated models, the 
Hubbard model and the one treated in this work, the Baeriswyl 
wave function produces qualitatively the correct behavior.

Our study of the reconstructed polarization shows the effect 
of correlation on the phase diagram of the SSH model. It is 
instructive to compare the situation to the RM model, which is 
an SSH model with an on-site potential. This model exhibits a 
topologically non-trivial point (gap closure) at δ = 0 (δ being 
the alternation in hoppings between odd and even bonds) and 
zero onsite potential. When interaction is added to the SSH 
model, the gap closure region is extended, it becomes a line, 
rather than just a point. Strictly speaking, gap closure is not 
accessible in our variational formalism, but the behaviour of 
the reconstructed polarization is identical. When a gap closure 
point, or line, is crossed, the polarization changes discontinu-
ously, while if two states are connected by a path at which 
the gap does not close, the polarization evolves continuously. 
While our approach is variational, therefore approximate, we 
expect the qualitative picture to be robust, since the interaction 
gives rise to a symmetry broken state which is similar to the 
ground state of the RM model. In the RM model the charge 
density wave results from the alternating on-site potential. 
While, broadly speaking, our results suggests that turning on 
the interaction in the SSH model gives rise to similar effects 
as applying an alternating on-site interaction (RM), the differ-
ence is that the gap closure point of the non-interacting model 
becomes a line of points in the presence of interaction (also 
known from the exact solution of the model), while it is still a 
point in the parameter space in the RM case.
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