
978-1-4244-5023-7/09/$25.00 ©2009 IEEE

September 14-16, 2009
METU
Northern Cyprus Campus279

Turkish Keyphrase Extraction Using
Multi-Criterion Ranking

Bahadır Özdemir
Dept. of Computer Engineering

Bilkent University
06800 Bilkent Ankara, Turkey

Email: bozdemir@cs.bilkent.edu.tr

Ilyas Cicekli
Dept. of Computer Engineering

Bilkent University
06800 Bilkent Ankara, Turkey
Email: ilyas@cs.bilkent.edu.tr

Abstract—Keyphrases have been extensively used for indexing
and searching in databases and information retrieval systems. In
addition, they provide useful information about semantic content
of a document. In this paper, we propose an algorithm for
automating Turkish keyphrase extraction. Several features of
candidate phrases are exploited and form the extraction task
as a problem of finding optimal set of candidate phrases. We use
multi-criterion ranking to tackle this problem.

I. INTRODUCTION

Finding a relevant document in library databases or on
Internet is a challenging task that requires successful clustering
and indexing. Keyphrases are extensively used for indexing,
categorization and summarizing of documents. Searching a
word in the keyphrase list of a document instead of full
content reduces search time. In addition, they provide semantic
data about content of the document. Unfortunately, the great
majority of documents do not have author assigned keyphrases
[1]. Automating keyphrase extraction provides benefits for
manual assignment of keyphrases by indexers.

The remaining of this paper is structured as follows. In
section II, It starts with a short description of what is done
previously. Our keyphrase extraction algorithm is explained in
section III. The results of experiments are given in section IV.
Finally, a short discussion about our method and comparison
with previous methods are provided in section V.

II. RELATED WORK

There are several methods for automating keyphrase ex-
traction in English. On the other hand, only two methods
have been developed for Turkish keyphrase extraction. They
are Turkish keyphrase extraction with KEA [2] and Turkish
keyphrase extractor (TurKeyX) [3]. Both of them are extended
from English keyphrase extraction algorithms.

In [1], KEA (Keyphrase Extraction Algorithm) has two
stages to extract keyphrases: Training stage and extraction
stage. In the first stage, a model to identify keyphrases
is created using training documents where author assigned
keyphrases are known. In extraction stage, keyphrases of
a new document are chosen according to this model. The
original KEA uses two features that are calculated for each
candidate phrase: TF × IDF (Term Frequency × Inverse
Document Frequency) and the distance from the beginning of

the document to the first occurrence of the candidate phrase.
KEA uses Naı̈ve Bayes technique to learn two sets of numeric
weights from the discretized feature values. The model created
in training stage determines the overall probability that each
candidate is a keyphrase. Finally, candidate phrases are ranked
according to this probability value and the ones with higher
probability are returned as keyphrases of the document. In
[2], KEA is adopted for Turkish keyphrase extraction. The
difference with the original KEA is using Turkish stemmer
and stopword list instead of English counterparts. Furthermore,
a new feature is added to the algorithm. The new feature is
relative length, calculated as the number of characters in the
phrase divided by the length of the longest candidate phrase.

Another keyphrase extraction method called B&C is pro-
posed by Barker and Cornacchia in [4]. B&C uses noun phrase
heads to extract document keyphrases. B&C exploits statistics
of noun phrases, noun phrase heads and noun phrase lengths.
In contrast with KEA, it does not need a training corpus. B&C
selects top N head nouns according to their frequencies. For
each head noun, all noun phrases that contain same word as
its head are collected. Each noun phrase is assigned a score
calculated as the product of its frequency and length. K high
scored phrases are selected as the keyphrases of the document.
In [3], the approach of TurKeyX to extract Turkish keyphrases
is quite similar to B&C’s. The difference is that TurKeyX
method uses statistics of noun phrases and noun phrase heads.
Moreover, TurKeyX also borrows some features computed in
KEA and Turney’s GenEx [5].

Our method is more similar to TurKeyX than KEA in the
sense that it does not require training data so the performance
does not depend on the corpora used. In addition, most of the
features in our method were also used in TurKeyX. However,
the ranking strategies of two methods in extraction phase are
different.

III. EXTRACTING KEYPHRASES USING MULTI-CRITERION
RANKING

Our keyphrase extraction technique consists of two stages.
In the first stage, candidate phrases are extracted from docu-
ments and features are calculated for each candidate phrase.
In the second stage, a Hasse diagram is created from the set

269

280

of candidate phrases. Finally, an optimal set of keyphrases is
selected using the ranking method described in [6].

A. Selecting Candidate Phrases

We select candidate phrases in a similar way used in
[3]. We consider every noun phrase in the document as a
candidate phrase. To identify noun phrases, we employ a
supervised Turkish part of speech tagger (POS) [7]. The
tagger returns most possible POS tag for each token (word,
punctuation etc) in the document. The tagger also provides
morphological analysis of each word. We use these analyses
for stemming. Next step is to find noun phrases using POS
tags. Noun phrases consist of one head noun and zero or more
premodifying adjectives or nouns [4]. A sub-phrase of a noun
phrase can also be a noun phrase. For this reason, each sub-
phrase is considered as a different candidate. As mentioned
in [3], this method is not an ideal NP-Chunker. Many phrases
identified by this method are not eligible for being a keyphrase.
Therefore, several filters are used to reduce the number of
candidate phrases.

First filter is about stopwords. We use a list of 112 stop-
words [8]. It is also used in KEA and TurKeyX. If a phrase
starts or ends with a stopword, it will be removed from the list
of candidates. Another filter limits the number of words in a
candidate phrase. In our implementation, we eliminate phrases
which consist of more than five words. In addition, we remove
phrases that includes a word having only one or two characters
and not recognized by both morphological analyzer in [7] and
Zemberek [9]. Last two filters are based on n-gram approach
and require stem-based frequency analysis of phrases. A noun
phrase can be a combination of noun phrases like

α = β1 · · ·βk, for k ≥ 2

where α and βi are noun phrases for 1 ≤ i ≤ k. As expected,
α and its sub-phrase, βi, should be in the candidate list. Our
aim is to determine most suitable candidates from such a
combination. Our first frequency filter eliminates sub-phrases
of a suitable candidate. The frequency of a phrase is equal or
less than the frequency of its sub-phrase. However, the ratio
of phrase frequency to sub-phrase frequency should be high if
the phrase is more suitable candidate than its sub-phrase. For
every combination α, we remove its sub-phrase βi from the
list if

f(α)
f(βi)

> Thigh, for 1 ≤ i ≤ k (1)

where f(·) denotes stem-based frequency of its argument.
Another case is that a suitable candidate can occur next to

another noun phrase in a document. In such a condition, the
ratio of frequencies should be low. For every combination α,
we remove the phrase α from the list if

∃i, f(α)
f(βi)

< Tlow, for 1 ≤ i ≤ k. (2)

In our implementation, the values of Thigh and Tlow are
determined empirically as 0.5 and 0.1, respectively.

B. Feature Calculation

The features used in our algorithm are well-known features
used in various keyphrase extraction algorithms. Six features
are calculated for each candidate phrase. They are dispersion,
first occurrence, head noun first occurrence, phrase length,
frequency and head noun frequency. The first one is borrowed
from [10], and the others are similar to the features in [3].
In computation of all features, comparison of words is case-
insensitive and stem-based.

1) Dispersion: In [11], a measure is developed for the
condensation of the term over textual units. Content-bearing
terms have a tendency to be clustered or clumped. If a term
is clustered, fewer textual units would contain the term. The
measure is based on the differences in probability of finding
a content-bearing phrase and not content-bearing phrase in a
textual unit. The expected number of documents containing
the phrase can be found as

E = D ×
[
1−

(
1− 1

D

)T
]

(3)

where D is the number of documents in the corpus, and T is
the total number of occurrences of the phrase. Condensation
clustering of the phrase is defined as

Mc =
N

E
(4)

where N is number of documents that actually contain the
phrase. The dispersion would be one if the phrase is randomly
distributed over documents. The dispersion would be less than
one if it is clustered.

2) First Occurrence: First occurrence feature is the number
of words that precede the phrases first appearance.

3) Head Noun First Occurrence: Head noun first occur-
rence feature is the number of words that precede the first
appearance of the phrases head noun.

4) Phrase Length: Phrase length is the number of words in
the phrase.

5) Frequency: The frequency of the phrase in the docu-
ment.

6) Head Noun Frequency: The frequency of the head noun
of the phrase in the document.

C. Multi-Criterion Ranking

Ranking with Hasse Diagrams is a known method in statis-
tics [6]. However, it has not been used in keyphrase extraction
yet. General approach for ranking objects is to combine all
features into one measure and sort them with respect to
this measure. This method is used in [3]. The problem of
combining measures into one measure is to determine weights
of measures. Another approach for ranking objects is to use
partially ordered sets (posets) described in [6].

1) Partially Ordered Sets and Hasse Diagram: The can-
didate phrases will be denoted by a, b, c, . . . etc. The aim
is to make comparative statements about two given can-
didate phrases a and a′ according to their feature values
(I1, I2, . . . , I6) and (I ′

1, I
′
2, . . . , I

′
6) respectively. If I ′

j ≥ Ij

270

281

a

f

c d

b

e

Poset B

a

d

b c

Poset A

Fig. 1. Hasse diagrams for two different posets.

for all j, then a′ is intrinsically “better” or “bigger” than a,
and we write a′ ≥ a. In the case of a poset, we write a < b if
a ≤ b but a 6= b. One further relation required for ranking in a
poset is covering relation. Candidate phrase b covers candidate
phrase a if a < b and there is no candidate phrase x for which
a < x < b. We write a ≺ b when b covers a.

Hasse Diagram is a way of presenting posets. A point (or
vertex) is plotted for each candidate phrase. Candidate phrase
b is located higher on the paper than a whenever a < b. The
vertices a and b are connected by a straight line segment (an
edge) whenever a ≺ b. Hasse diagrams for two different posets
can be seen in Figure 1. Covering relations in Poset B are
c ≺ a, e ≺ c, f ≺ c, d ≺ b and f ≺ d.

If we try to sort the vertices in Poset A in Figure 1, possible
ranks of vertex a is only 1 and possible ranks of vertex d is
only 4. On the other hand, possible ranks of vertices b and c
are 2 and 3. Thus, there are two possible rankings: a, b, c, d
and a, c, b, d. In the poset literature, rankings are called linear
extensions of a poset. We can use the probability of possible
ranks in order to sort a poset. Rank-interval of a phrase can
be computed using its upper and lower sets. Given S as a set
of elements, then the upper set of element a ∈ S is defined as

Ua = {x ∈ S : x > a} (5)

Similarly, the lower set is defined as

La = {x ∈ S : x < a} (6)

The rank interval of element a can be defined as

|Ua|+ 1 ≤ r ≤ |S| − |La| (7)

where there is a ranking that assigns rank r to element a. The
collection of all linear extensions of S is denoted as Ω. The set
Ω is finite but generally very large. Members of Ω are denoted
by the symbol ω, and the rank which ω assigns to a ∈ S is
written as ω(a). The rank-frequency distribution of element a
is given by

fa(r) = #{ω ∈ Ω : ω(a) = r} (8)

and corresponding cumulative rank-frequency (CRF) distribu-
tion becomes

Fa(r) = fa(1) + fa(2) + · · ·+ fa(r)
= #{ω ∈ Ω : ω(a) ≤ r}.

(9)

a

e

c d

b
Poset C

e

d

c

e

c

d

e

d

b

e

d

c

e

c

d

e

c

a

b c a d

a b

Fig. 2. Hasse diagram for Poset C and its linear extension decision tree.

Poset C and its linear extensions decision tree are given in
Figure 2. There are six linear extensions of Poset C and three
of them assign rank 1 to element a, notationally fa(1) = 3.
Similarly, fa(2) = 2 and fa(3) = 1.

Patil and Taillie propose CRF operator for linearizing a
poset [6]. The operator uses cumulative rank-frequency distri-
butions as new indicator values and creates a new poset from
the original one. This operation is applied iteratively until the
poset becomes linear. In other words, the final poset has only
one linear extension that gives the ranking of objects.

The number of linear extensions of a poset increases with
factorial complexity when the number of objects in the poset
increases. As a result, enumerating all linear extensions of
bigger posets becomes computationally impossible [6]. For
bigger posets, Patil and Taillie propose Markov Chain Monte
Carlo (MCMC) sampling [6].

2) Implementation Details: For each indicator value, higher
values should imply higher possibility to be a keyphrase.
For this reason, we negate the values of dispersion, first
occurrence, head noun first occurrence and phrase length.
Furthermore, there exists an exceptional case for phrase length.
Phrases consisting of less number of words are generally
more preferred as keyphrases by authors. However, two-word
phrases are more preferred than one-word phrases [12]. For
this exceptional case, phrase length of two-word phrases is
considered as one and phrase length of one-word phrases is
considered as two in the implementation.

In experiments of our keyphrase extraction algorithm, posets
of candidate phrases are usually big posets. Therefore, we
first reduce the number of candidate phrases by selecting at
most fifty candidate phrases according to the midpoints of
their rank-intervals. Afterwards, we apply MCMC sampling
technique in linearization of the posets. Finally, first ten
phrases in the sorted list of the poset are offered to user as
keyphrases of the document.

IV. EXPERIMENTS

A. Corpora

Two different corpora are used for experiments. First one
is a collection of Turkish scientific papers obtained from the
online archives of Journal of The Faculty of Engineering and

271

282

TABLE I
SAMPLE KEYPHRASE EXTRACTION FOR GAZI UNIV. JOURNAL CORPUS

Author Assigned KE-MCR

İmalat Hücresi Uzman Sistem
Uzman Sistemler İmalat Hücresi

Esnek İmalat Sistemleri Robot
Yapay Zeka Tezgah

İşlem Sıralaması
Uzman Sistemin
İmalat Sistemi

Makinadan
Algoritmalar

Boşaltma

TABLE II
PERFORMANCE RESULT FOR GAZI UNIV. JOURNAL CORPUS

Number of
Extracted
Phrases

Average
Number of

Matches

Avg. Number of
Author Assigned

Keyphrases

KE-MCR
5 1.03

4.0
10 1.40

TurKeyX
5 0.90

4.0
10 1.37

KEA-TR
5 1.05

3.9
10 1.42

Architecture of Gazi University. The corpus was created by
Pala [2]. The corpus consists of 60 papers in text format and
their author-assigned keyphrases. Second corpus is a collection
of news articles taken from the web pages of newspapers and
news portals. There are totally 30 news articles. This corpus
was created by Kalaycilar [3].

B. Performance Evaluation

Our algorithm returns 10 phrases as keyphrases of the
document (Table I and Table III). Phrases written in italic
match with author assigned keyphrases, or they are considered
as same. Partially matched phrases are not treated as correct
match except that they refer to same person; such as Kerimov
for Islam Kerimov. In addition, acronym of a keyphrase is
also considered as correct match. Sample results of keyphrase
extraction using multi-criterion ranking (KE-MCR) for Gazi
University Journal corpus can be seen in Table I.

Performance comparison of KE-MCR with TurKeyX [3]
and Turkish Keyphrase Extraction with KEA (KEA-TR) [2]
for Gazi University Journal articles is given in Table II.
Performance of algorithms is given for the first 5 and 10
phrases extracted by the algorithm. All documents in Gazi
University Journal corpus are used in testing for KE-MCR
and TurKeyX algorithms. On the other hand, 50 documents
are used in training and only 10 documents are used in testing
for KEA-TR algorithm.

Similar comparison is made for news corpus. Sample
keyphrase extraction for news corpus is given in Table III and

TABLE III
SAMPLE KEYPHRASE EXTRACTION FOR NEWS CORPUS

Author Assigned KE-MCR

Tony Blair Tony Blair
Katolik Kilisesi Katolik

Eski İngiltere Başbakanı Katolik Kilisesine
Bayan Blair

Yılında
Kilise Sistemi

Blair
Başbakan
İngiltere

İşçi Partisi

TABLE IV
PERFORMANCE RESULT FOR NEWS CORPUS

Number of
Extracted
Phrases

Average
Number of

Matches

Avg. Number of
Author Assigned

Keyphrases

KE-MCR
5 1.03

3.3
10 1.47

TurKeyX 5 0.97 3.3

performance result is shown in Table IV. All documents in the
news corpus are used in testing for both algorithms.

V. CONCLUSION AND FUTURE WORK

We propose a method for automating keyphrase extraction
using multi-criterion ranking. As seen in Table II and Table IV,
our method outperforms TurKeyX in both corpora. In addition,
the performance of our method is very close to KEA-TR.
However, the performance of KEA-TR method depends on
training corpus. On the other hand, our method does not
require training corpus, so the performance does not change
drastically from one corpus to another. For example, the
performance of our method in both corpora is equal when
five phrases are extracted and the results are very close for
extracted ten phrases.

We developed a method for Turkish keyphrase extraction.
However, the method is suitable for extending to languages
other than Turkish. Using counterparts for morphological
analyzer, part of speech tagger and stopword list is sufficient
for extension.

We expect that using a reliable NP-Chunker increases
performance considerably. Furthermore, we think that adding
semantic features like node degree in KEA++ [12] may
enhance the performance.

ACKNOWLEDGMENTS

This work is partially supported by The Scientific and Tech-
nical Council of Turkey Grant “TUBITAK EEEAG-107E151”.

REFERENCES

[1] I. Witten, G. Paynter, E. Frank, C. Gutwin, and C. Nevill-manning, “Kea:
Practical automatic keyphrase extraction,” in Proceedings of Digital
Libraries 99 (DL’99), Feb 1999, pp. 254–255.

272

283

[2] N. Pala and I. Cicekli, “Turkish keyphrase extraction using kea,” in
Proceedings of the 22nd International Symposium on Computer and
Information Sciences (ISCIS 2007), Ankara, Turkey, Nov 2007, pp. 1–
5.

[3] F. Kalaycilar and I. Cicekli, “Turkeyx: Turkish keyphrase extractor,”
in Proceedings of the 23rd International Symposium on Computer and
Information Sciences (ISCIS 2008), Istanbul, Turkey, Oct 2008, pp. 1–4.

[4] K. Barker and N. Cornacchia, “Using noun phrase heads to extract
document keyphrases,” in Advances in Artificial Intelligence: 13th
Biennial Conference of the Canadian Society for Computational Studies
of Intelligence, AI 2000, Quebec, Canada, May 2000.

[5] P. Turney, “Learning algorithms for keyphrase extraction,” Information
Retrieval, vol. 2, pp. 303–336, 2000.

[6] G. Patil and C. Taillie, “Multiple indicators, partially ordered sets, and
linear extensions: Multi-criterion ranking and prioritization,” Environ-
mental and Ecological Statistics, vol. 11, no. 2, pp. 199–228, June 2004.

[7] T. Daybelge and I. Cicekli, “A rule-based morphological disambiguator
for turkish,” in Proceedings of Recent Advances in Natural Language
Processing (RANLP 2007), Borovets, Bulgaria, 2007, pp. 145–149.

[8] (2009, April) Turkish stopwords. [Online]. Available: http://www.ranks.
nl/stopwords/turkish.html

[9] (2009, April) Zemberek. [Online]. Available: https://zemberek.dev.java.
net

[10] J.-L. Wu and A. M. Agogino, “Automating keyphrase extraction with
multi-objective genetic algorithms,” in Proceedings of the 37th Annual
Hawaii International Conference on System Sciences (HICSS’04) - Track
4. Washington, DC, USA: IEEE Computer Society, 2004, p. 40104.3.

[11] A. Bookstein, S. Klein, and T. Raita, “Clumping properties of content-
bearing words,” Journal of the American Society for Information Sci-
ence, vol. 49, pp. 49–2, 1998.

[12] O. Medelyan and I. Witten, “Thesaurus based automatic keyphrase
indexing,” in JCDL ’06: Proceedings of the 6th ACM/IEEE-CS joint
conference on Digital libraries, 2006, pp. 296–297.

273

