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ABSTRACT

AN EXACT APPROACH TO MINIMIZE SINGLE 
MACHINE TOTAL WEIGHTED TARDINESS PROBLEM 

WITH UNEQUAL RELEASE DATES

Deniz Ozdemir
M.S. in Industrial Engineering 

Supervisor: Assist. Prof. M. Selim Aktiirk 
August, 1998

In this research, the problem of scheduling a set of jobs on a single machine 
to minimize total weighted tardiness with unequal release dates is considered. 
We present a new dominance rule by considering the time depending orderings 
between each pair of jobs. The proposed rule provides a sufficient condition 
for local optimality. Therefore, if any sequence violates the dominance rule 
then switching the violating jobs either lowers the total weighted tardiness 
or leaves it unchanged. Based on the dominance rule, an algorithm is 
developed which is compared to a number of heuristics in the literature. 
Our computational results indicate that the proposed algorithm dominates 
the competing algorithms in all runs, therefore it can improve the upper 
bounding scheme and can be used in reducing the number of alternatives 
in any enumerative algorithm. Furthermore, the proposed dominance rule 
is incorporated in a branch and bound algorithm in conjunction with lower 
bounding scheme, branching condition and search strcitegy. To the best of our 
knowledge, author know of no other published exact approach for l|rj| 
problem. This enhances contribution of our study in the literature.

Key words: Dominance Rule, Single Machine, Scheduling, Total Weighted 
Tardiness, Release Dates, Heuristics, Branch L· Bound Algorithms.
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ÖZET

ТЕК MAKİNADA FARKLI SİSTEM GİRİŞ ZAMANLARI 
İLE TOPLAM AĞIRLIKLI GECİKME PROBLEMİNE TAM  

SONUÇ BULMA YAKLAŞIMI

Deniz Özdemir
Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Yard. Doç. Dr. M. Selim Aktürk
Ağustos, 1998

Bu araştırmada, tek makinada, farklı sistem giriş zamanlarına sahip bil­
iş kümesinin toplam ağırlıklı gecikmeyi enaza indirgeyerek çizelgelenmesi 
problemi gözönüne alındı. Komşu her iş İkilisinin zamana bağlı sıralanması 
düşünülerek yeni bir baskınlık kuralı sunuldu. Önerilen kural yerel enaza 
indirgemeyi garanti etmekte yani komşu işlerin yerlerinin değiştirilmesi ile 
daha iyi bir amaç fonksiyonu değerinin bulunamayacağını göstermektedir. 
Bu baskınlık özelliklerini kullanan bir algoritma geliştirilerek, literatürdeki 
metotlarla karşılaştırıldı. Sonuçlar, önerilen algoritmanın test edilen bütün 
problemler için rakip algoritmalardan daha iyi sonuç verdiğini gösterdi. 
Bunun sonucu olarak, önerilen algoritmanın üst sınır hesaplarında iyileştirme 
sağlayacağı ve kesin sonuca yönelik tekniklerde alternatif sayısını azaltacağı 
iddia edilebilir. Ayrıca önerilen baskınlık özellikleri bir alt sınır projesi, 
dallandırma şartı ve araştırma stratejisi ile birleştirilerek bir dal & sınır 
algoritması geliştirildi. Tek makinada, farklı sistem giriş zamanları ile toiDİam 
ağırlıklı gecikmeyi enazlama problemi üzerine tam sonuç bulmaya yönelik 
çalışma, tarafımızca bilinmiyor. Araştırmanın bu problem üzerine yapılan tam 
sonuç bulmaya yönelik ilk çalışma olması literatüre katkısını arttırmaktadır.

Anahtar sözcükler: Tek Makinada Çizelgeleme, Toplam Ağırlıklı Gecikmeyi 
Enazlama, Baskınlık Kuralları, Sezgisel Algoritmalar, Dal&Smır Algoritması.
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Chapter 1

Introduction

In last decades interest to scheduling has raised dramatically. Scheduling 
is an important part of strategic planning in industry, since it can have a 
significant impact on all economic activities. Although the term scheduling is 
used frequently in daily life, definition of it is not clear in minds. In very general 
sense, scheduling is “ the process of organizing, choosing and timing resource 
usage to carry out all activities/tasks necessary to produce the desired outputs, 
at the desired times, while satisfying a large number of time and relationship 
constraints among the activities and resources” [35]. It is a decision making 
process which takes place not only in most of manufacturing and production 
systems but in information processing environments and service industries as 
well.

In scheduling theory roughly main approaches are as follows:

• Manual-interval scheduling: arises when precise matching of resources 
and tasks are essential.

• Manual-dispatch scheduling : arises when overall priorities should remain 

fixed while exact timing of tasks can be changed.

• Simulation-dispatch scheduling : is for simple version of manual-dispatch 
scheduling.

1



• Mathematical-exact scheduling : chooses an objective to optimize, 
formulates the problem as mathematical i^rogramming and searches for 
an oiDtimum solution.

• Mathematical-heuristic scheduling: gives an approximation solution to 
formulated mathematical programming.

• Pure expert system scheduling: is for more complicated version of 
manual-dispatch scheduling.

• Mixed artificial intelligence /  Operations research /  Decision support 
systems : attempts to combine all advantages of pure expert systems, 
mathematical systems and decision support systems.

CHAPTER 1. INTRODUCTION 2

In general, scheduling models are classified due to requirements generation, 
(i.e. open shop, closed .shop), processing complexity, (i.e. single stage or 
multi-stage), scheduling criteria and nature of requirement specification, (i.e. 
deterministic or stochastic) [37].

The scheduling models are categorized by specifying the resource configu­
ration and nature of the task. The number of machines, their configuration, 
i.e. series and parallel, number of jobs, etc., are also important aspects in 
scheduling theory. If the set of tasks available for scheduling does not change 
over time, the system is called static, in contrast to cases in which new jobs 
appear over time, where the system is called dynamic.

In this study, we consider a single machine scheduling problem. Analysis of 
single machine environment is important for various reasons. First of all single 
machine problem is simple and special case of all other scheduling problems. 

Results which are gathered from analysis of single machine environment can 
lead to insights into the more complicated case of multi machine or multi 
stage scheduling problems and can provide a basis for heuristics for them. 
In addition, the absence of verification in the simplest case would make 
studies on much more complicated cases needless. In practice, complicated 

scheduling problems can often decomposed into single machine sub-problems.
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For example, single bottleneck in a multi-stage, multi machine environment 
can be considered as single machine problem.

In real life, orders usually do not arrive simultaneously. With increased 
use of computurized real time inventory tracking systems in practice, it is 
possible for a company to estimate expected arrival times of jobs. Information 
regarding these arrivals could be useful, since it may be desirable to wait for 
the arrival of an important job rather than to begin processing a less important 
job available on hand. Although dynamic models are not considered much in 
literatui’e, there is a raising interest on dynamic problems in recent years that 
is what lead us to deal with a dynamic model rather than a static one.

In practice, one of major aims of firms is to increase customer satisfaction. 
Supplier-customer relationship is important in business world. Customers are 
willing to get their orders in a reasonable amount of time which is promised 
cipriori. So to measure customer satisfaction, the objective ‘meeting due dates 
at their promised times’ is concerned. Since this objective is not quantitive, 
it is usually intei'iDreted as there are positive time dependent penalties for 
jobs which are completed after their due dates, but jobs which are completed 
before their due dates are not appreciated. From this interpretation, tardiness 
becomes quantification of the objective ‘meeting due dates’ . Tardiness measure 
is a regular performance measure, i.e. it is non-decreasing in each of the job 
completion times.

In most of the scheduling rules in the literature, job tardiness penalty 
or customer importance is not taken into account. Since firms struggle to 

survive in a competitive environment, an emphasis to coordinate the priorities 
of the firms throughout the functional areas is needed. Firms have variety of 
customers with varying degrees of importance. The importance of a customer 
can depend on a variety of factors, such as the firm’s length of relationship with 
the customer, how frequently they provide business to the firm, how much of the 
firm’s capacity they fill with orders and the potential of a customer to provide 
orders in the future. Some of the customers will be more important than the 
others. Impact of late deliveries, such as loss of customer good will, lost future
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sales and rush shipping costs, differs from customer to customer. Therefore, 
their implied strategic weight should be reflected in job priority. Thus the 
firm’s strategic benefits require to include customer importance information 
into its shop floor control decisions.

We deal with a single machine dynamic problem which is characterized by 
the following conditions. There is a set of n independent, single operation 
jobs. Jobs will be available for processing at pre-determined times, r.j. The 
starting time of each job cannot be before its release date. The job descriptors, 
such as release dates, rj, due dates, dj, processing times, pj, and weights, Wj, 
are deterministic and known in advance. The setup times for the jobs are 
assumed to be independent of job sequence and included in processing times. 
The machine is continuously available and preemption is not allowed, i.e. once 
a job begins to be processed it is processed without interruption. Machine may 
or may not be left idle while there are available jobs in the queue.

In this study, the main objective that we consider is the minimization of 
total weighted tardiness value for dynamic single machine problem. Each job 
has an integer release date, due date, processing time, and a positive weight. 
This problem is harder than minimization of total weiglited tardiness problem 
with equal job release dates, 1| \J2wjTj, or minimization of total weighted 
flow time problem with equal release dates, l\rj\J2wjFj. Since release dates, 
r.j values, are not equal, there may be idle times in the optimal schedule. 
Another reason is that the total weighted tardiness criterion is not a linear 
function of completion times, as in the case of l|rj|

We present a new dominance rule for the single machine total weighted 
tardiness problem with job dependent penalties in a dynamic environment. The 
proposed domincince rule provides a sufficient condition for local optimality. 
We show that if any sequence violates the dominance rule, then switching 
the violating jobs either lowers the total weighted tardiness value or leaves 

it unchanged. We also develop an algorithm based on the dominance 

rule, which is compared to a number of competing heuristics for a set of 
randomly generated problems. Furthermore, the presented results form a
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strong background for making adjacent job interchanges so it can be used 
in reducing the number of alternatives for finding the optimal solution in 
complete enumeration techniques. We also construct a branch and bound 
algorithm which incorporates proposed dominance rule in conjuction with a 
lower bounding scheme, a branching condition and a search strategy. We test 
our algorithm on a series of randomly generated problems.

The remainder of the thesis can be outlined as follows. In the following 
chapter, we give a short review of literciture on total weighted tardiness 
problem along with exact and approximate approaches. We discuss the 
underlying assumptions, give a list of definitions used throughout this thesis, 
and demonstrate our dominance rule in Chapter 3. In Chapter 4, we introduce 
an algorithm which is based on the proposed dominance rule and use it in an 
upper bounding scheme. In Chapter 5, we look at how the proposed dominance 
properties can be incorporated in a branch and bound algorithm in conjuction 
with a branching condition, lower bounding scheme and a search strategy. 
An algorithm is constructed and tested on a number of randomly generated 
problems. Computational results are reported and discussed in Chapter 6. 
Finally, in Chapter 7, after making a short summary, we give some concluding 
remarks along with the future research directions.



Chapter 2

Literature Review

Scheduling plays a crucial role in strategic planning in manufacturing industries 
as well as in service industries. In very rough terms scheduling is the allocation 
of resources over time to perform a collection of tasks. The seminal studies on 
scheduling began in manufacturing at the beginning of this century with the 
work of Henry Gannt and other pioneers. However, it took many years for the 
first scheduling study to be appeared in the operations research literature.

Especially, over the last three decades, a number of books on sequencing 
and scheduling have appeared. These books range from the elementary to the 
more advanced. One of the known textbooks by Bciker [6] gives an excellent 
overview of many aspects of deterministic scheduling. However, in the first 
edition [5], there is no complexity issues since it appeared just before research 
in computational complexity became popular. An introductory textbook 
by French [2.3] covers most of the techniques that are used in deterministic 

scheduling. The more applied text by Morton and Pentico [3.5] presents a 
detailed analysis of a large number of scheduling heuristics that are useful 
for practitioners. A recent book by Pinedo [37] deals with deterministic and 
stochastic models with applications so that the relevance of the theory to the 

real world can be found.

A scheduling problem is described by a triplet a\^\')· The a  field describes



the machines environment and contains a single entry. The /3 field provides 
details of processing characteristics; constraints and may contain no entries, 
a single entry, or multiple entries. The 7 field contains the objective to be 
minimized and usuidly contains a single entry. For the a field, single machine 
(1), identical machines in parallel (Pm), machines in parallel with different 

speeds (Qm)·, unrelated machines in parallel (Rm)·, flow shops [Em), flexible 
flow .shoî s (FFs), oiDen shops (От) and job shops (Jm)·, are examples. Бог the 
fl field, possible entries are release dates (r^), sequence dependent setup times 
(sjA:), preemptions (prmp), blocking (block), no wait (nwt) and recirculation 
(recrc). For the 7 field, some of the objectives discussed in the literature 

are lateness, tardiness, makespan (Стах), maximum lateness (Lmax), total 
weighted completion times (J '̂^ ĵCj), discounted total weighted completion 
times —e’’*̂ ·')), total weighted tardiness (J2‘’-f ĵTj) and weighted number
of tardy jobs (Y^WjUj).

In most of the scheduling rules in the literature customer importance is 
not taken into account. Since firms struggle to survive in a competitive 
environment, an emphasis to coordinate the priorities of the firms throughout 
the functional areas is needed. Firms have variety of customers with varying 
degrees of importance. As stated by Jensen et al. [28], the importance of 
a customer can depend on a variety of factors, such as the firm’s length of 
relationship with the customer, how frequently they provide business to the 
firm and the potential of a customer to provide orders in the future. Therefore, 
we present a new dominance rule for the most general case of total weighted 
tardiness problem.

CHAPTER 2. LITERATURE REVIEW  7

In this study we are dealing with single machine total weighted tardiness 
problem with unequal release dates, i.e. Ijrjj '^WjTj. Although total weighted 
tardiness function is well known due date related penalty function and 
considerable amount of work is done in literature, to the best of our knowledge, 
we know of no other published exact approach on minimizing the total weighted 
tardiness problem with unequal release dates. The problem may be stated as 

follows: There are n independent jobs each has an integer processing time pj, a 
release date Vj, a due date dj, and a positive weight luj. Jobs will be processed
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without interruption on a single machine that can handle only one job at a 
time. A tardiness penalty is incurred for each time unit if job j  is completed 
after its due date dj, such that T j  =  max{0, (C; — d j)}, where C j  and T j  are 
the completion time and the tardiness of job j ,  respectively.

In this chapter, related literature on single machine total weighted tardiness 
with unequal release dates will be discussed. Basic exact and apj^roximation 
approaches will be presented in § 2.1 and § 2.2, respectively. Finally, a summciry 
will be provided in § 2.3.

2.1 Exact Approaches

One of the first results in tardiness scheduling is the well known Elmaghraby 
lemma ([15]). Given a set S of unscheduled jobs which are available at time 
zero, if there is a job k ^ S such that dk >  Y îes Pi then there exists an optimal 
schedule in which k is the last among all jobs in S. Since k will never be tardy 
if we process it last among the jobs in hand, the job can be removed from the 
problem.

Literature focuses on static environment total weighted tardiness problem 
with equal release dates. A number of enumerative solution methods have 
been pro23osed. In 1969, Emmons [16] derives several dominance rules for total 
tardiness problem that restrict the search for an optimal solution. Rinnooy Kan 
et al. [44] and Rachamadugu [40] extend these results for the weighted tardiness 

problem. Using Lagrangian relaxation, Potts and Van Wassenhove [38] propose 
a lower bound which is also used in a branch and bound algorithm. Szwarc and 
Liu [50] present a two-stage decomiDOsition mechanism to 1] \ YiVjTj problem 
when tardiness penalties are proportional to the processing times which proves 
to be powerful in solving the problem completely or reducing it to a much 
smaller problem. Recently, Akturk and Yildirim [4] propose a new dominance 
rule and a lower bounding scheme that provides a sufficient condition for local 

optimality for total weighted tardiness problem, which can be used in reducing
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the number of alternatives in any exact approach.

The exact approaches used in solving the weighted tardiness problem 
with equal release dates, 1| \J2wjTj are tested by Abdul-razaq et al. [1] 
and they use Emmons’ dominance rules to form a precedence graph. The 
dynamic programming algorithms use the same recursion defined on sets of 
jobs, but they generate the sets in lexicographic order (Schräge-Baker [46]) 
and cardinality order (Lawler [33]), respectively. The branch and bound 
algorithms use lower bounds based on transportation problem (Lawler [31]), a 
linear assignment relaxation (Rinnooy Kan et al.[44]), Lagrangian relaxation 
(Fisher [21]), dynamic programming state space relaxation (Abdul-razaq and 
Potts [2]), and reduction of total weighted tardiness problem to total weighted 
completion time problem, i.e. linear and exponential lower bounds proposed 
by Potts and Wassenhove [38]. The branch and bound algorithm which obtains 
a lower bound from a linear function of completion times problem is the most 
efficient and is able to solve problems up to 40 jobs. Abdul-razaq et al. [1] show 
that the most promising lower bounds both in quality and time consumed are 
the linear and exponential lower bounds which are obtained from Lagrangian 
relaxation of machine capacity constraints proposed by Potts and Wassenhove 
[38]. The computational results show that the linear lower bound is superior 
to exponential lower bound.

All of the optimizing approaches discussed above assume that the jobs have 
equal release dates, i.e. all jobs become available at time t. The unequal release 
dates case has also been considered for a number of different optimality criteria.

For single machine minimax lateness problem, l\rj\Lmax·, Schütten et al. 
[47] developed branch and bound algorithm which solves almost all instances 
with up to about 40 jobs to optimality, with family setup times. Grabowski 
et al. [24] propose a branch and bound algorithm based on the eliminative 
properties of a block of jobs. Similar approach of grouping a set of jobs as 
blocks are also used by Chand et al. [9], where they develop decomposition 
results for total completion time criterion with weights equal to 1 such that a 
large problem can be solved by combining optimal solutions for several smaller



CHAPTER 2. LITERATURE REVIEW 10

problems. For the same problem, l\rj\Y^Cj, Ahmadi and Bagchi [3] compare 
six available lower bounds in the literature and show that the lower bound 
based on the optimal solution to the preemptive version of the problem is the 
dominant lower bound. Reeves [42], modifying a number of heuristics, provide 
very good solutions to several large problems in a modest amount of computer 
time.

In 1981, Dessouky and Deogun [13] propose a branch and bound technique, 
coupled with some devices to improve the efficiency of the search to minimize 
the mean flow time when the jobs may have unequal release dates, l|?'j|Fj. 
With unequal job release dates, optimality criterion to minimize total weighted 
completion time, l\rj\J2'< ĵCj, is studied extensively, in the literature. Hariri 
and Potts [27] derive a branch and bound algorithm, which includes several 
dominance rules and lower bound is obtained by performing a Lagrangian 
relaxation. Bianco and Ricciardelli [7] also investigate the same problem, 
pointed out several dominance sufficient conditions and developed a branch 
and bound algorithm. Dyer and Wolsey [14] formulate the problem as a 
mixed integer program by considering a hierarchy of relaxations obtained by 
combining enumeration of initial sequences with Smith’s rule. To minimize 
the weighted number of late jobs, l\rj\J2wjUj, Potts and van Wassenhove 
[39] propose a branch and bound algorithm. Erschler et al. [17] establish a 
dominance relationship within the set of possible sequences for l|i’j|· problem 
independent of the optimality criterion to find a restricted set of schedules. 
In 1992, Chu [10] present a priority rule that satisfies necessary and sufficient 
conditions for local optimality, and based on this priority rule he proposes 
efficient heuristics. He shows that when these heuristics are used as upper 
bounds, they improve branch and bound algorithms to minimize total flow 
time, llrjU ^Fj.

For scheduling with both early and tardy penalties in the environment 
with unequal release dates Ferris and Vlach [18] show that for certain forms of 
objective function, such that ma.x Ej, maxTj, or +  i'j)·, polynomial time
solution is possible. When the objective is to minimize the sum of weighted 
earliness and weighted tardiness costs, Sridharan and Zhou [48] develop a single



CHAPTER 2. LITERATURE REVIEW 11

pciss heuristic which is based on a decision theory. Using simulation, Robb and 
Rohleder [45] investigate the performance of a number of simple algorithms 
and comi^are these simple methods relative to a bound that uses an adjacent 
pairwise interchange algorithm.

For total tardiness objective, Chu and Portmann [12] prove a sufficient 
condition for local optimality which can be considered as a dynamic priority 
rule, and define a dominant subset. Using this dynamic priority rule, in 1992 
Chu [11] proves dominance properties and provides a lower bound polynomially 
computed for total tardiness problem with unequal release dates, l|r,j A
branch and bound algorithm is then constructed using the previous results of 
Chu and Portmann [12] and problems with up to 30 jobs Ccui be solved for 
certcun problem instances, even though computational requirements for larger 
problems tend to limit this approach.

In 1976, Rinnooy Kan shows that total weighted tardiness problem with 
unequal release dates, l\rj\YTj is NP-hard [43]. A year later, in 1977, 
Lawler [32] shows that the total weighted tardiness problem, 1| \YiOjTj, is 
also strongly NP-hard, hence we can deduce that total weighted tardiness 
with unequal release dates problem, l\rj\YwjTj, is also strongly NP-hard 
because the alternatives of inserting machine idle times need to be considered. 
Therefore, only branch and bound approaches or dynamic programming 
approaches seem to be available for single machine totcil weighted tardiness 
problem with unequal I'elease dates for exact solution. Unequal release dates 
and the presence of idle times in an optimal solution destroys the scheme 
of usual dynamic programming approach [11]. Therefore branch and bound 
algorithms are much more convenient.

2.2 Approximation Approaches

Solving realistic scheduling problems in a reasonable amount of time almost 
inevitably requires the use of heuristic methods. Since the implicit enumerative
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algorithms may require considerable computer resources both in terms of 
computation times and memory, it is important to have a heuristic that 
¡provides a reasonably good schedule with reasonable computational effort. 
Therefore, a number of heuristics and dispatching rules have been developed 
in the literature. Large scale problems are usually treated with heuristic 
procedures called dispatching or sequencing rules. These are logical rules for 
choosing which available job to select for processing at a particular work center. 
In using dispatching rules, usually scheduling decisions are made sequentially 
rather than once. For the static dispatching rules, the job priorities do not 
change over time while priorities might change over time for the dynamic 
dispatching rules. A list of dispatching rules is given in Table 2.1. In this 
table, MODD, WPD, WSPT, and WDD are examples of static dispatching 
rules, whereas АТС, COVERT, and X-RM are dynamic ones.

The weighted shortest processing time rule (WSPT), using the ‘natural 
priority’ of job j ,  Wjfpj, or the penalty avoided, works analogously to the SPT 
rule, such that overall tardiness is reduced in congested shops by giving priority 
to short jobs and wj helps in coordinating job priorities. By delaying long jobs, 
WSPT can also achieve a remarkably low total number of tardy jobs without 
using explicit due date information, especially when job earliness is limited by 
dynamic release dates. WSPT rule gives an optimal sequence when all relecise 
dates and due dates are zero.

Vepsalainen and Morton [51] develop and test efhcient dispatching rules for 
the weighted tardiness problem with specified due dates and delay penalties. 
Carroll [8] designed a dynamic rule for average tardiness scheduling to be used 
to incorporate job weights into a slack based approach. The COVERT priority 
index represents the expected tardiness cost per unit of imminent processing 

time, or cost per unit of imminent processing time, or Cost OVER Time. 

Under COVERT rule, jobs are scheduled one at a time; that is, every time the 
machine becomes free, a ranking index is computed for each remaining job j .  
The job with the highest ranking index is then selected to be jDrocessecl next. 
The ranking index is a function of the time t at which the machine becomes 
free as well as the pj, the wj, and the dj of the remaining jobs. The index for
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COVERT can be defined as:

u\ rn 1 ma,x{0,dj - 1 -  Pj),ТГj(t) =  max ( —  max[0 ,1 ---------- ^ ----------- ^ ])
Pj к · pj

Job j  queuing with zero or negative slack is projected to l)e tardy by completion 
with an expected tcvrdiness cost wj and priority index Wj/pj. к is the look cihead 
parameter.

The apparent tardiness cost (АТС) is a composite dispatching rule that 
combines the WSPT rule and the minimum slack (MS) rule. Similar to 
COVERT, under the АТС rule, jobs are scheduled one at a time; the job 
with the highest ranking index is then selected to be processed next. The 
ranking index is a function of time i, pj, Wj, and dj of the remaining jobs. The 
АТС index can be defined as:

Й · “ » ( --------------k -f,--------------)

where p is the average processing time of remaining unscheduled jobs at time 
t and к is the look-ahead parameter. Vepsalainen and Mortoir [51] have shown 
that the АТС rule is superior to other sequencing heuristics for the 1| | Y^WjTj 
problem. It trades off job ’s urgency (slack) against machine utilization, but due 
to the more complex weighted criterion, an additional look ahead parameter 
is needed to assimilate the competing jobs which have different weights. In 
computcitional tests which is done by Rachamadugu and Morton [41], an 
exponential function of the slack was found to be somewhat more efficient. 
Intuitively, the exponential look ahead works by ensuring timely completion of 
short jobs (steep increase of priority close to due date), and by extending the 
look ahead far enough to prevent long tardy jobs from overshadowing clusters 
of shorter jobs.

According to Kanet [29] schedules with inserted idleness, appear to have 
better best case behavior than non-delayed schedules. He concluded that non­
delay schedules may produce reasonably good performance but rarely provide 

a schedule which is optimal. Morton and Ramnath [36] modify the АТС rule 
to allow inserted idleness, which is named the X-RM rule. The X-RM rule 
can be defined as follows: Whenever a resource is idle, assign it a job which
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is either available <it that time or will be available in the minimum processing 
time of any job that is currently available. Clearly X-dispatch policy relies on 
the idle time allowed.

X-RM is a modification of the АТС rule resulted from allowing inserted 
idleness. The procedure starts with calculating АТС priorities, 7r,(i). The 
priorities are multiplied with 1 — [(B · т а х {0,г,· — i j )  /  p], hence a priority 
correction is done to reduce priority of late arriving critical jobs. The pcii’cirneter 
В is suggested to fit to 1.3 + p where p is the average utilization of the machine 
[35], whereas p can be either average processing time, p, or minimum processing 
time, Pmin, as suggested in [35] and [36], respectively.

2.3 Summary

The l]r j]X ]r j problem is proved to be strongly NP-hard [43]. So that, 
l\rj\Y2wjTj problem will also be strongly NP-hard. Therefore, we need 
enumerative algorithms for an exact solution. In enumerative algorithms 
crucial issue is to reduce the number of alternatives in the search space. 
Dominance rules are used to specify dominant set to reduce computational 
effort. Therefore, in Chapter 3, we present a new dominance rule for the single 
machine total weighted tardiness problem with unequal release dates which is 
based on adjacent pairwise interchange method. The proj^osed dominance rule 
provides a sufficient condition for local optimality and it generates schedules 
that cannot be improved by adjacent pairwise interchange methods. If any 
sequence violates the proposed dominance rule then switching the violating 
jobs either lowers the total weighted tardiness or leaves it unchanged.

Implicit enumeration algorithms require high computational effort. Even 

for equal release dates, for an exact solution, 30 jobs seems to be the maximum 
problem size [11]. Since exact approaches are prohibitively time consuming, it 
is important to have a heuristic that provides a reasonably good schedule with 
reasonable computational effort. Based on the dominance rule, we introduce an
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RULE DEEINITION RANK and PRIORITY INDEX

MODD Earliest Modified Due date min {max{d ·̂,/ + pj}}

АТС Apparent Tardiness Cost f Wj / — max (0 y dj — t—Vj) imax TTj = { ^  · exp (--------

X-RM X-dispatch АТС ( / iB inax(0,r, —0 M max {Kjil -------

COVERT Weighted Cost Over Time

WPD Weighted Processing Due date r w 1 1 max {—4-}

WSPT Weighted Shortest Processing Time max {f4}

WDD Weighted Due Date max {|f}

Table 2.1; Dispatching Rules in Literature

algorithm that can be used to improve the total weighted tardiness criterion of 
any sequence by making necessary adjacent pairwise interchanges, in Chapter 
4. We test the efficiency of the proposed approach by comparing it to a number 
of heuristics.

We also look at how the proposed dominance rule can be incorporated 
in a branch and bound (B L· B) algorithm in conjunction with a branching 
condition, lower bounding scheme, and a search strategy, in Chapter 5. We 
present our computational results in Chapter 6.



Chapter 3

Dominance Rule

If it is iDossible to identify a subset of the set of sequences which is guaranteed 
to contain an optimal sequence, this subset is called dominant set. Certain 
potential solutions that lie outside the dominant set can be ignored. In this 
class of problems, the computational demands for the exact solution grow 
exponentially with ¡problem size. Restricting our attention to the dominant 
set reduces the number of alternatives. Therefore, the computational effort 
involved in searching an optimal solution decreases.

In this chapter, we give dominance rules to specify dominant set to reduce 
computational effort for the total weighted tardiness problem with unequal 
release dates. We show that the arrangement of adjacent jobs in an optimal 
schedule depends on their start times. For each pair of jobs, i and j ,  that are 
adjacent in an optimal schedule, there can be a critical value tij such that i 
precedes j  if processing of this pair starts earlier than tij and j  precedes i if 
processing of this pair starts after tij.

This chapter is organized as follows: In §3.1, the problem definition and 
the notation used are given. In §3.2, the proposed dominance rule is exj^lained 
by analyzing 31 possible cases and a summary is given in §3.3.

16
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3.1 Problem Definition and Notation

The single machine total weighted tardiness problem with unequal release 
dates, llvjlY^WjTj, can be defined as follows. There are n independent jobs 
(numbered 1, . . .  ,n) each has an integer pj, rj, dj and a positive luj. .Jobs will 
be ¡processed without interruption on a single machine that can handle only 
one job cit a time. Machine may or may not be left idle while there are some 
available jobs in the queue. A tardiness penalty is incurred for each time unit if 
job j  is completed after its due date, such that Tj =  max{0, (Cj — dj)}, where 
Cj and Tj are the completion time and the tardiness of job j ,  respectively. 
The objective function is to find an optimal sequence that minimizes the total 
weighted tardiness criterion of all jobs given that the starting time of any job 
cannot be before its release date. For convenience the jobs are arranged in an 
FDD indexing convention such that d{ < dj, or di =  dj then pi < pj, or d, =  dj 
and Pi =  Pj then iVi > Wj, or d{ -  dj and pi — pj and Wj =  iVj then < Vj 
for all i and j  such that i < j .  To introduce the dominance rule, consider 
schedules Si =  QiijQi  and =  QijiQi  where Qi cind Q 2 are two disjoint 
subsequences of the remaining n — 2 jobs. Let t be the completion time of jobs 
in Qi and jobs i and j  are available at t, ri < t, Vj <  t.

The following interchange function, Aij{i), is used to specify the new 
dominance properties, which gives the cost of interchanging adjacent jobs i 
and j  whose processing starts at time t, and

Ap-(i) =  fij{t) -  fjiit)

f M  =

0 m axjri,7'j} <  t <  di -  {pi +  pj)

Wi(t +  Pi +  Pj -  di) max{rj, di -  pi -  pj] < t  <  di -  pi 

+  Pj -  i) I'i <  di -  Pi < t < Vj

Wiivj +  Pi +  Pj -  di) 7'i < t  <  min{dj -  pi,rj]

W i P j  max{rj,di —  P i }  < t
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Figure 3.1: Possible graphs of fij{t) 

fij(t) function is given in Figure 3.1.

A ij(f) does not depend on how the jobs are arranged in Qi and Q2 but 
depends on start time t of the pair, and

• if A ij(i) < 0, then j  should precede i at time t.

• if A jj(t) > 0, then i should precede j  at time t.

• if A ij(f) =  0, then it is indifferent to schedule i or j  first.

It is important to note that the dominance conditions derived for 11 | H wjTj 
problem may not be directly extended to the 1| r,· | Y^WjTj problem. A global 
dominance for 1| | Z) problem implies the existence of an optimal sequence
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(a)
12

X WT=36
26 28

(b)
12 14 16

X WT=16
30

(C) X WT=15
14 16 28

Figure 3.2: Three Alternative Schedules for the Tliree-job Example

in which job i precedes job j  is guaranteed and job i dominates job j  for ever}  ̂
time jDoint t. An immediate consequence of allowing different reletise times 
over the 1| \ problem is the need to examine the question of inserted
idle time. To illustrate the role of inserted idle time, consider the following 
three-job example, for which the Gantt charts for three alternative schedules 
are given in Figure 3.2. Let (Job j  \ rj, pj  ̂ dj, wj) =  (1 | 0, 12, 13, 1), 
(2 I 0, 14, 14, 1) and (3 | 14, 2, 16, 2). If we directly implement dominance 
rules proposed by Emmons [16], Rinnooy Kan et al. [44], Rachamadugu [40] or 
Akturk and Yildirim [4], job 1 dominates job 2 for any time i > 0, i.e. global 
dominance. As shown in Figure 3.2.c, the only optimal solution is {2-3-1}, 
since these rules do not consider the impact of inserted idle time on the final 
schedule. In Figure 3.2.a, the sequence {1-2-3} corresponds to a nondelay 
schedule, which never jDermits a delay via inserted idle time when the machine 
becomes available and there is work waiting.

The dominance properties for 1| rj [ Y,WjTj problem can be determined by 
looking at points where the piecewise linear and continuous functions 
and intersect. For clearity, the term gij{t) will be used instead of

The intersection points are denoted as breakpoints if they are in the specified 
interval. A breakpoint is a critical start time for each pair of adjacent jobs after 
which the ordering changes direction such that if f <  breakpoint^ i precedes j  
(or j  precedes i) and then j  precedes i (or i precedes j) .
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Throughout the study, we also use the following definitions.

i conditionally precedes j ,  (i -< j )  if there is at lecist one breiikpoint between 
the pair of jobs such that the order of jobs depends on the start time of this 
pair and changes in two sides of that breakpoint.

i unconditionally precedes j ,  {i j )  the ordering does not change, i.e. 
i always precedes j  when they are adjacent, but it does not imply that an 
optimal sequence exists in which i precedes j .

3.2 Dominance Rule

The proposed rule is based on adjacent pairwise interchange (API) method. 
The API method, which can be used for improving the total weighted 
tcirdiness problem criterion, is crucial for reducing the number of alternatives 
in a complete enumeration. Adjacent pairwise interchange method only 
guarantees local optimality. But if adjacent pairwise interchange method is 
applied to a good heuristic schedule, result may be highly near optimality. 
The proposed rule provides a sufficient condition for local optimality and it 
generates schedules that cannot be improved by adjacent pairwise interchange 
methods. If any sequence violates the proposed dominance rule, then switching 
the violating jobs will either lowers the total weighted tardiness or leaves it 
unchanged.

When all of the possible cases are studied, it can be seen that there are at 

most seven possible breakpoints where functions /¿ ,(i) and <7p(t) intersect.

t% =

1 Widi Wjdj 
U j=  , (Pг+PJ (3.1)

ilj -  dj -  Pi -  Pi(l - (3.2)

t% =  d i - p j  - p i { l  -W j iw i ) (3.3)

/wi{ri +  Pi +  pj - d j )  -  ipi +  pj -  di) (3.4)
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5̂ _  ~ Pj)
 ̂ Wi E Wj

ilj = Wilwjirj + Pi + Pj - d i ) -  {pi + Pj -  dj)

7 _  (Wi -  Wj)pj + WiTj + I0j{dj -  Pi)
îj IWi + Wj

(3.5)

(3.6)

(3.7)

In some cases intersection point occurs at a point where one of the jobs is 
not available, then the release date of the second job is denoted as a breakpoint. 
At intersection points tL and job i should precede job j ,  but job i becomes 
available after the intersection point, hence ri is denoted as a breakpoint. 
Similarly, rj is denoted as a breakpoint instead of and tL.

• t]· will be a breakpoint if ma,x{dj — {pi +  < tjj <  minfd, —

Pi,dj - p j }

• ¿L will be a breakpoint if max{dj· — pi.,dj — (p,· +  pj),r,·} < tL < dj — pj

• t'ij will be a breakpoint if max{dj — P j,n } < i?· < di — pi

• n  will be a breakpoint if either di — {pi + Pj) < tjj < mm{dj — p/, ?\·} or 

dj ~ Pj E t'ij <  Vi

• Vj will be a breakpoint if either dj — {pi +  Pj) < tjj <  mm{di — p;, r ,}  or 

di -  Pi < tJj <  Vj

In order to derive a new dominance rule, we analyze all possible cases. 
Assuming EDD indexing convention in the sequence, following 31 cases are 

exhaustive.

1. di <  dj, piWj < pjWi, pi {wj-wi)  > xoi{dj-di), max{ri,?’j }  <  ¿¿ -(p i+ P i)
OR di < dj, piWj < pjWi, pi{wj -  Wi) > Wi{dj -  di), Vj < di -  (pi +pj)  <

Vi < dj -  (pi +  Pj)

2. di = dj, PiWj > PjWi, max{ri,rj} < d  -  {pi + pj)
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3. di <  d j , p i W j  <  p jW i ,  p i { w j - W i )  <  lOiidj - d i ) ,  m a . x { r i , r j }  <  d i - { p i + p j )  

OR di <  d j ,  piiOj <  p j W i ,  p i i w j  -  lUi) <  iui{dj  -  d i ) ,  Vj <  di -  (pi + p j )  <

n < dj -  ipi +  pj)

di < dj,piWj < pjWi,pj{wj-Wi) > tOj(dj-di), m ax{ri, r j} <  di-(pi+pj)
OR di <  d j ,  p i io j  <  p jW i ,  P j C u j  -  Wi) >  iOj{dj  -  d i ) ,  r j  <  di -  ( p i + p j )  <

n < dj -  (pi + Pj)

5. di = dj, piWj < pjWi, Wi < Wj, m a x {ri,?’ ,■} < d -  {pi +  pj)

6. di < dj,piWj > PjWi, pj{wj-Wi) < ivj{dj-di), m a x {r i,r j} <  di-{pi+pj)
OR di <  d j ,  p iW j  >  PjWi ,  P j { w j  -  Wi)  <  W j i d j  -  d i ) ,  r j  <  di -  (pi  +  p j )  <

n < dj -  (pi +  Pj)

7. di <  d j ,  PiWj  <  PjWi ,  p i { w j  -  lUi) <  W i { d j  -  d i ) ,  Vj <  dj  -  (pi +  p j )  <  I'i <

mcix{di -  Pi, dj -  Pj}

8. di < dj, PiWj < PjWi, rj < dj -  [pi +  pj) < ri < dj -  pj, pi{wj -  to,·) >

Wi(dj -  di)

9. di < dj, WjC'i + Pi + Pj -  dj) < PjWi < piWj, (lOj -  iUi)(ri + pi + pj) <
Wjdj -  Widi, rj < dj -  {pi +Pj) < Vi < dj -  pj 

10. di < dj, lOjiri + Pi + Pj -  dj) > pjWi < piWj, {iVj -  iOi){ri +  pi + p,) <

Wjdj — Widi, rj < dj — {pi + Pj) < ri < dj — pj OR di < dj, pjWi <
w (ri T Pi T Pj - d j ) ,  rj <  dj -  [pi + P j ) <  r-i < dj -  pj

11. di <  d j ,  WjC' i  +  P i +  Pj -  d j )  <  PjWi <  p i W j ,  p j ( w i  -  W j )  >  W j ( d i  -  d j ) ,

r j  <  dj  -  (pi + P j )  <  Vi <  di -  Pi <  d j  -  Pj

12. di < dj, PjWi < PiWj, rj < dj -  {pi + pj) < dj -  pj < ri < di -  pi

13. di <  d j ,  PiWj  <  PjWi  <  W j { r i - \ - p i - \ - p j - d j ) ,  r j  <  d j - { p i - \ - p j )  <  d j - p j  <

n < di -  Pi, piiwj -  Wi) < Wi(ri +  Pi -  di)

14. di <  d j , p i W j  <  PjWi  <  W j { r i + p i + p j - d j ) ,  r j  <  d j - { p i + p j )  <  d j - p j  <

n < di -  Pi, piiwj -  lUi) > Wi(ri + p i -  di)
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15. di < dj, pjWi > Wj{ri + p i +  pj -  dj), r,· < dj -  (p; +pj)  < dj -  pj < <

di -  Pi, Wj{ri +  Pi +  Pj -  dj) < Wi(dj -  di +  Pi)

16. di < dj,pituj < -Wiirj+Pi+Pj-di), ri < di-{pi+pj) < rj < dj-(pi+pj)  <
min{c?i — Pi, dj — Pj}

17. di < dj, Wi(rj + pi+ Pj -  di) < piWj < pjivi, rj < di -  (pi +  pj) < rj <

m\n{dj -  (pi + Pj), di -  Pi}

18. di < dj, piWj < pjWi, ri < di — (pi +  Pj) < rj < di -  pi < dj -  {pi +  Pj) <

Pj

19. di < dj, PjWi < PiWj, ri <  di -  (pi +  pj) <  rj <  dj -  (pi +  pj) < dj -  pj <

di -  Pi

20. di < dj, PiWj > PjWi, ri < di-(pi+pj) < rj < mm{dj-{pi+pj) ,di-pi}  < 
dj -  Pj, Pj{wj -W i)  < Wj{dj — di)

21. di < dj, Wi(rj + Pi + Pj -  di) < piWj < pjWi, pi{iOj -  lUi) > Wi{dj -  di), 
n < d i -  {pi + Pj) < rj < mm{dj -  {pi + pj), di -  pi}

22. di < dj, PiWj > PjWi, (wj -  iVi)(rj T Pi +  Pj) > Wjdj -  Widi, ri <

dj -  {Pi +P j)  < rj <  mm{di -  pi, dj -  pj}

23. di < dj, PiWj > PjWi, (lUj -  tUi)(rj +  pi +  pj) < Wjdj -  Widi, ri <

di -  (Pi +P j)  < dj -  {pi +P j)  < rj < mm{di -  pi, dj -  pj}

24. di < dj, PiWj < Wi{rj +  Pi +  pj -  di) < WiPj, ri < di -  {pi +  pj) <

dj -  (pi +  Pj) <  rj <  -  Pi, dj -  pj}

25. di < dj, Wi{rj +  pi +  Pj -  di) < piWj < pjWi, Wi{dj -  di) > {wj -  Wi)pi,

n < dj -  (pi +Pj) < rj < mm{d{ -  pi,dj -  pj}

26. di <  dj, Wi{rj +  Pi +  Pj -  di) < PiWj < pjiOi, Wi{dj -  di) < {wj -  Wi)pi,

ri <  dj -  (pi +Pj)  < rj <  dj -  Pj <  di -  Pi

27. di < dj, PiWj < PjWi, ri <  dj- {p i+pj)  <  di-pi < r-j <  d j -p j  OR di < dj,

PiWj < pjivi, I'i < di -  ipi + Pj) < di - p i  < rj < dj -  (pi + pj) < dj -  pj
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28. di <  dj, piiOj > WiPj, Vi <  min{c?j -  {pi +  Pj),di -  pi}, mcax{c?j -  (pi +

Pi), di -  Pi} < Vj < dj -  pj, pjii[Wi -  Wj ) > ^ji^j +  Pi -  dj)

29. di < dj, pjWi < PiWj, ri <  di -  pi < Vj < dj -  (p,: +  Pj) < dj -  pj

.30. di < dj, Wiivi +  Pi +  Pj -  di) < Wj{di -  dj +  pj), n < dj -  {pi +  pj) <

di -  Pi < Tj < dj -  Pj

31. di < dj, Wiivi+pi+pj-di) >  iOj{di-dj+pj),pjiwi-Wj) < Wj{rj+pi-dj) ,  
ri <  mm{dj -  (pi +  Pj), d i -p i } ,  max{o?j -  (pi +  Pj), di~pi} < min{?;,·, dj -  

Pi)

3.2.1 di <  dj ,  piWj <  PjWi, pi(wj -  Wi) >  Wi{dj -  c/,;), 
m a x { r j , r j }  <  di -  (pi +  pj)  O R  di <  dj,  piWj <  pjWi,

Pi(Wj -  Wi) >  Wi{dj -  di), Pj <  di -  (pi +  Pj) <  r,; <

dj -  ( P i + P j )

In this case there are two breakpoints tjj and as it can be seen from Figure 
3.3. Following proposition will give the order of jobs at time t for this case.

Proposition 1 If di < dj, piWj < pjiVi, pi(wj — Wi) > Wi(dj — di) and either 

both jobs i and j  are available before di — (pi +  Pj) or job i will be available in 

the time between di — {pi +  pj) and dj — [pi +  pj) then breakpoints t]j and tL
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gii (0

f,(i)

Figure 3.4: Illustration of Proposition 2

are valid and for t < ri, j  -< i, for ri <  t < t]·, i -< j , for t\- <  t <  tL, j  -< i, 
and for t > tL i -< j .

Proof: If rj <  ri until job i becomes available, job j  will be scheduled, and 
vice versa if r{ <  rj then job i will be scheduled for t <  rj. For t <  di — (pi +Pj) 
it is indifferent which job is scheduled first because both jobs will be on time. 
For di -  (pi +  pj) < t < dj -  (pi +  pj), Aij{t) =  Wi{t +  pi +  pj -  di). Since 
di — ipi +Pj) < t, Aij{t) >  0 therefore i -< j  if it is available. Pbr di — {pi +  Pj) < 
t <  dj —pj either i or j  will be tardy, if not scheduled first. Here Aij{t) =  {lOi — 
Wj){t +  p i+p j ) -W idi -W jd j .  At point t\j -  - { p iA p j )  and Aij{t) =  0.
For t <  ib, Aij{t) <  0 and if f > t\j then Aij(t) >  0. So if the processing begins 
up to fb, i -< j  and after fb, j  -< i. If dj — Pj < t < di — pi then j  is always 
tardy but i is not if scheduled first. Here Aij(t) — {t pi +  pj — d,:)rc,· — piiOj. 
Aij(t) will be zero at time tL =  d{ — pj — Pi{l — Wj/iUi). Before i?·, Aij{t) <  0 
so j  -< i and Aij(t) >  0 for t >  f?· so i ^  j  afterwards. If t >  di — pi then both 
jobs will be tardy and Aij(t) =  pjWi —piWj. Since ppcj < pjWi and Aij{t) >  0 , 

therefore i ■< j .  bl

3.2.2 di =  dj, piWj >  PjWi, max{ri, Vj} <  d -  (pi +  Pj)

In this case d{ =  dj =  d so pi < pj by the FDD ordering convention, 

consequently Wj > Wi in order to satisfy the piWj > pjWi condition. In this
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Figure 3.5: Illustration of Proposition 3

case tjj =  d — {pi +  pj), so up to tlj we are indifferent to schedule either i (if 

available) or j  (if available) first and if A ij(i) < 0 for t > t}j, as it can be seen 
in Figure 3.4 that means j  -< i for every t > rj.

Proposition 2 Ifdi =  dj, piWj >  pjWi, max(ri,r,·) <  d -  (pi +  pj) then j  -< i 
whenever job j  is available.

Proof : Up to Vj < t <  t]· both jobs will be on time so we can schedule j  first. 
At i5oint d — [pi +  Pj) nonconstant segments of both fij{t) and gij{t) begins. 
Since slope of = Wi{tPi-\-Pj -  d) <  Wj{t-\-pi+pj -  d) =  slope of gгj{t) 
and WiPj < WjPi then, /¿j(i) <  gij{t) for every t >  t]j. Therefore, Aij{t) <  0 
for t > Vj and j  ^  i. □

3 .2 .3  di <  dj, piWj <  PjWi, pi(wj -  Wj) <  Wj,{dj -  di), 

m a x { r j , r j }  <  di -  {pi Pj)  O R  di <  dj,  piWj <  PjWi,

Pi{Wj -  IVi) <  Wi(dj -  di), Vj <  di -  {pi pj)  <  r,; <

dj -  (Pi +  Pj)

In this case there is no intersection point as it can be seen from Figure 3.5. If 
job i becomes available before job j  then job i unconditionally precedes job j ,  
else ri will be the breakpoint where j  -< i for t <  and i -< j  for t > ij. If



CHAPTER 3. DOMINANCE RULE 27

8n(t)

Figure 3.6: Illustration of Proposition 4

we show that A jj(t) > 0 for all time points after job i becomes avaihible, i.e. 
/i i (0  ^ time points t >  r», then we can show that i -< j  for t >

P roposition  3 If di <  dj, piWj < PjWi, pfwj — wf) <  wfdj  — di) and either 
max{ri, rj]  <  di -  {pi +  pj) or rj <  di~ (pi +  pj) < ri <  dj -  (pi +  pj) then job 
i precedes job j  after job i becomes available.

Proof : Until job i becomes available job j  will be scheduled. Let t =  dj — 
(pi +p j )  then Aij(t) =  (dj — di)wi >  0, since dj > di and gijit) =  0, so i ^  j  at 
time dj — (pi +  pj) if job i is available. Let t =  dj — pj then Aij(t) =  (di +  pi — 
dj)wi — piWj =  (dj -  di)wi -  pi(wj -  rui) >  0 since pfwj — Wi) < (dj -  difwi, so 
z J at time dj — di. If we let t =  di — pi then Aij(t) — pjWi — piWj >  0, since 
PjWi > PiWj. As a result i ^  j  a.t time di — pi. Therefore, the result follows 
j  -< i for t < ri and i j  for t >  rj. □

3 .2 .4  di <  d j ,  PiWj <  PjWi, P j (w j  -  Wi) >  Wj(d j  -  di), 

m a x { v i , r j }  <  di -  (pi A -Pj)  O R  di <  d j ,  ppwj <  pjWi,

P j ( w j  -  Wi) >  Wj(dj  -  di) ,  Vj <  di -  (pi +  P j )  <  Ti <

dj -  (Pi +  Pj)

As it can be seen in Figure 3.6 this case is similar to first case except piWj > 
PjWi so single breakpoint t}j is valid, if rj <  rj. Otherwise, rj is another
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breakpoint where j  -< i for t < Vi; for ri < t  <  t]·  ̂ i -< j  and for t >  ih, j  г.

Proposition 4 If di < dj, pitOj <  pjWi, Pj{wj -  wi) > Wj{dj -  di) and either 
m ax{ri,rj} <  di -  {pi +  pj) or rj <  di -  {pi +  pj) <  ri < dj -  (pi +  pj) then 
there is the breakpoint t]j, and i ■< j  for rj <  t <  tjj, j  -< i for t > tjj.

Proof : In this case tjj can be valid only if the nonconstant segments of fij{t) 
and gij(t) intersect, and tjj =  -  {Pi +  Pj) < di -  pi to be valid. This
leads pj{wj -  to,·) > (dj -  di)wj, since Aij{t) =  pjWi -  piWj <  0 for t >  di -  pi. 
□

3.2.5 di =  dj,  piWj <  PjWi, Wi <  Wj, max{r,;, Vj} <  d - { p i + p j )

This case can be handled as a special case of the first case such that dj = dj — d 

as depicted in Figure 3.7. As discussed in the third case tjj =  d -  {pi +  pj) so 
it is indifferent to schedule either job i (if available) or job j  (if available) hrst 
up to tjj. From FDD ordering convention if di =  dj then pi < pj. Since both 
jobs are available before d — {pi +  pj) there can be a breakpoint if to, < lUj as 

stated below.

Proposition 5 If di =  dj, piWj < PjWi, Wi < Wj and both jobs are available 

before d — ( p i P j )  then there is the breakpoint t^ . After job j  become available 

up to tL j  -< i and i A j  afterwards.
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3.2.6 di <  djy piWj >  pjWi^ Pj(wj -  'w,;) < Wj(dj -  di), 

m a x { r j , r j }  <  di -  (pi A-Pj) O R  di <  dj,  piWj >  pjWi^

P j ( w j  -  Wi) <  Wj(dj  -  di) ,  Vj <  di -  (pi + P j )  <  Ti <

dj — (pi + P j )

This case is similar to case 4 except positions of di—pi and dj —pj as shown in 
Figure 3.8. There is the breakpoint tfj and depending on the relative ordering 
of Vi and rj, ri will also be a breakpoint if r, < rj. Relative positions of di — pi 
and dj- {pi+Pj)  might change such that \idj-di < pj then dj- {p i+pj)  <  d—pi 

else dj — {pi +  pj) > di — pi.

Proposition 6 If di < dj, piWj > PjWi, Pj{wj — Wi) < Wj(dj — di) and either 
m ax{ri,r;} < di -  (pi +  pj) or Vj < di -  (p,· +  pj) < Vi < dj -  (pi +  pj) then 
there is the breakpoint tfj, and i -< j  for ri <  t <  tfj, and j  -< i afterwards.

Proof : Breakpoint tfj will be valid if nonconstant segment of gij{t) intersects 
with the constant segment of fij{t). This is the case iCwiPj =  to jit f j+ p i+ p j-d j)  

while di — Pi < tfj < dj — pj. This leads to the condition of piWj > pjWi for 
tlj <  dj -  Pj and Pj{iOj - w f )  <  Wj{dj -  di) for tL > di - p i .  If dj — pj <  t then 

j  ~< i since Aij(t) =  PjWi -  PiWj < 0. □
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3 .2 .7  di <  d j ,  piWj <  j)jWi, p i (w j  -  Wi) <  Wi{dj -  Vj <  

dj -  (Pi +  Pj)  <  '̂i <  m a x{c /i -  pi, dj -  p j }

In this case we begin to deal with second form of gij(t) graph as it Ccxn be 
seen in Figure 3.9. Graph of gij(t) begins no longer from zero. Since job i 
arrives after di -  (p,· +  Pj) and dj -  {pi + pj) there is an incured fixed cost of 
w-Ci + pi +Pj — dj) until job i arrives because we cannot interchange the jobs. 
As it is seen in the graph there seems to be an breakpoint tL where fij(t) and 
gij{t) intersect. Although /¿j(i) > gij{t) i.e. Aij{t) >  0, for t > tL job i cannot 
precede job j  until it arrives. So ri will behave as a breakpoint. Therefore, 
j  -< i for t < ri and i -< j  for t > Vi.

Proposition 7 If di < dj, piWj <  pjWi, Vj <  dj -  (pi +  pj) <  n <  max{(i,· -  
Pi,dj -  Pj} and pi(wj -  Wi) <  wfdj -  di) then j  -< i for t < ri and i -< j  for 

t > ri.

Proof : It is obvious that we cannot schedule job i until it becomes available. 

Therefore j  -< i for t <  ri. For t >  ri both the graph and Aij(t) function is 

the same as first case so refering to first proposition i -< j  at all time points,

t > I'i. □
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3.2.8 di <  dj,  piWj <  pjWi, rj <  dj -  (pi +  pj)  <  r,; < dj -  p j ,

Pi(w j  -  Wi) >  Wi{dj -  di)

In this case job i an'ives after dj — (pi +  Pj) so until job j  can be scheduled, 
j  -< i for t < Vi- After job i arrives function is similar to first case. So
there are two breakpoints t\· and tL. For Vi < t  <  i· ·, i -< j  and for i · · < t < t··, 
j  -< i and for t > tL again i ^  j .

Proposition 8 If di <  dj, piWj < PjWi, rj <  dj — (p,· + pj) <  Vi < dj — pj and 
Pii'Wj — lUi) > iOi{dj — di) then j  ■< i fo r t  < ri. After job i becomes available up 
to t-j, ri <  t <  tjj, i -< j  and for t]· <  t < tf·, j  -< i and again i ^  j ,  t > t'fj.

Proof : Proof is similar to the proof of Proposition !.□

3.2.9 di <  dj^ W j{r i+ p iA - i : ) j -d j )  <  pjWi <  piWj, ( w j - W i ) ( r i  +

P i + P j )  <  Wjdj -  Widi, Tj <  dj -  (p i-\-pj)  <  Vi <  dj -  p j

This case is similar to case 4, only difference is i arrives after dj — (pi +  pj) so 
until ri job j  can be scheduled. After job i arrives A jj(t) function is similar to 
case four. So there is single breakpoint tjj until which i (if available) precedes 
j  and after tjj j  precedes i.

Proposition 9 If di <  dj, Wj{ri + p i +  pj -  dj) < pjWi <  piWj, rj <  dj -  (pi + 
Pj) <  ri < dj — Pj and {wj — Wi){ri +  Pi +  Pj) < Wjdj — Widi then j  -< i for 
t < I'i, for r i < t <  tjj, i A j  and j  X i, for t > tjj.

Proof: It is obvious that until ri job j  can be scheduled. After job i arrives 

proof is similar to the proof of Proposition 4.D
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Figure 3.10: Illustration of Proposition 10

3 .2 .1 0  di <  dj^ Wjivi +  Pi A- Pj -  d j )  <  pjWi <  piWj,  (w j  -  

щ ) ( г {  +  Pi +  Pj)  >  Wjdj -  Widi, Vj <  dj -  (pi + P j )  <  

T'i <  dj -  Pj OR di <  d j ,  pjWi <  Wj(ri  A-Pi A-Pj -  d j ) ,

Tj <  dj -  {pi +  Pj) <  Vi <  dj -  Pj

In this case, there is no breakpoint, which means job j  unconditionally precedes
job i as shown in Figure 3.10. If we can show that Aij{t) <  0 V i, i.e.
fij(t) <  gijit) for every t, then ;  —> г as stated below.

Proposition 10 If di <  dj, rj <  dj -  {pi + pj) <  < dj -  pj, Wj{ri +  pi +
Pi -  dj) <  PjWi <  piWj, and (wj -  Wi){ri + Pi + Pj) > Wjdj -  Widi then j  —> i 

for  every t.

Proof: The maximum value of / ¡ j (t) =  pjWi and the minimum value of gij{t) = 
Wj{ri +  pi +  Pj -  dj). If Wj{ri +  Pi + Pj -  dj) < pjWi < piWj then gij{t) >  fij(t) 
only if gijivi) >  fij(ri); i.e. Wj{ri +  pi +  pj -  dj) >  гоДг,· +  pi +  pj -  di). This 
inequality is equivalent to {wj-Wi){ri+piA-pj) >  Wjdj-Widi, so gij(t) >  fij{t) 

for every t leading to j  i. □

3.2.11 di <  dj,  W j (r iA -p iA -p j -d j )  <  pjWi <  piWj,  P j ( w i - W j )  >  

Wj(di - d j ) ,  Pj <  dj -  (pi A-Pj)  <  Ti <  di -  pi <  dj -  p j
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Figure 3.11: Illustration of Proposition 11

This case is similar to previous one except d{ — pi is always less than dj — pj 
and the nonconstant segment of gij{t) intersects with the constant segment 
of As it can be seen from Figure 3.11, this difference results in two
intersection points tL and tL. Since tL < n,  r*· is also denoted as a breakpoint 
in addition to tL. The following proposition can be used to specify the order 

of jobs at time t.

Proposition 11 If di <  dj Wj{ri +  pi +  pj -  dj) <  pjivi < piWj, Pjiwi -  lOj) >  

Wj{di - dj) and r,· < dj -  {pi +  pj) <  ?%· <  di -  pi < dj -  pj then there are two 
breakpoints ri and t]j, and j  -< i for  t < ri, i ~< j  for  ri < t < and j  ^  i, 

afterwards.

Proof : Only job j  is available until job i arrives at time r,. After r,·, there 
is a breakpoint tfj if the nonconstant segment of gij{t) intersects with the 
constant segment of fijit). This is the case if wipj -- Wj{tL +  pi +  pj -  dj) 
while di — Pi <  t'̂ j < dj — pj. This leads to the condition of piWj > pjWi for 
tf. < dj -  Pj and pj{wj -  wf) <  iOj{dj -  df) for tL > di -  pi. If dj -  pj < t then 

j  i since Aij{t) =  pjWi -  PiWj < 0. □

3.2.12 di < dj,  PjWi <  PiWj, Vj <  dj -  (pi +  p j )  <  dj -  p j  <

Ti <  di -  Pi
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In this case we begin to deal with third form of gij{t) graph as it can be seen 
in Figure 3.12. Since job i arrives after dj — pj, graph of gij(t) begins from 

and decreases in the region dj—pj < t <  Vi because we cannot 

interchange the jobs until I'i. Since in this case the maximum value of /p (t) =  
PjWi is less than the minimum value of gij{t) =  piWj, job j  unconditionally 
precedes job i, j  i, as stated below.

Proposition 12 If di <  dj, pjWi < piWj, and rj <  dj -  {p, + pj) < dj -  pj <  

n < di -  Pi then j  ^  i.

3.2.13 di <  dj, piWj <  PjWi <  Wj{vi +  pi +  pj -  dj), rj <  

dj -  (Pi +  Pj) <  dj -  Pj < Vi <  di -  Pi, piiwj -  Wi) <

Wiivi +  Pi -  di)

In this case as it is seen in Figure 3.13 there is an intersection point where 
constant segments of fij{t) and gij{t) intersects. Although > gij{t) i.e.
A p(f) > 0, job i cannot precede job j  until it arrives. So r,· will be the only 
breakpoint. Up to rp j  can be scheduled first and i -< j  for t > Vi.

Proposition 13 If di <  dj, rj <  dj -  {pi + pj) <  dj -  pj <  7\ <  di -  pi, 

Pi(iUj -  Wi) < Wi{ri +  Pi -  di) and prwj < pjWi < iOj{ri + pi +  pj -  dj) then 

j  -K i for  t <  ri and i -< j  for  t > n .
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Proof : Nonconstant segments of fij(t) and gij{t) intersect only if fij(t) <  
gij{t) at t = dj -  pj and fij{t) > gij{t) at t =  ri. At time t = dj -  pj, 
fijidj -  Pj) = Wi{d.j - d i  + Pi) and gij{dj -  pj) = iOj{ri + pi + pj -  dj). We know 
that dj — Pj < di — Pi, so dj — di +  pi < pj. From this inequality it follows that 
Wiidj-di+pi) < WiPj < Wj{riPpi+pj-dj). Therefore, fijidj-pj) < gij(dj-pj). 
And at t =  Ti, fij{ri) > gij{ri), i.e. tufri +  pi +  pj -  di) > piWj consequently 
Piiwj -  Wi) <  Wiiri +  Pi -  di), as stated above. □

3 .2 .1 4  di <  d j ,  piWj <  pjWi <  w j { r i  +  p,; +  pj  -  d j ) ,  Vj <  

dj -  (pi +  Pj)  <  dj -  Pj <  Vi <  di -  Pi, p i (w j  -  Wi) >  

m ( r i  +  Pi -  di)

Until job i becomes available, job j  is scheduled. After job i becomes available, 

since PiWj < pjWi, fij{t) intersects gij{t) at point t ·̂. After tf·, A ijit) > 0 so 

i -< j.

Proposition 14 If di <  dj, piWj <  pjWi <  Wj{ri +  pi +  pj -  dj), rj <  dj -  

ipi + Pi) < dj -  Pj <  r; < di -  Pi and pi{iOj -  Wi) >  w fr i  + pi -  di) then j  A i 

for  t <  t̂ ij and i ^ j ,  for  t >  t̂ ij.

Proof : For t < ri it is obvious that j  precedes i. If dj — Pj < t < di — pi 
then job j  is always tardy but job i is not if scheduled first. Here Aijit) =
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(t+pi +  pj — di)wi — piiuj. will be zero at time =  di—pj — pi{l — iujfwi).

Before tL, t <  A ij(i) < 0 so j  -< i and Nij{t) >  0 for t > tL so i ^  j  
afterwards. On the otherhand, if t >  di — pi then both jobs will be tardy and 

=  pjWi — piWj. Since piWj < pjWi, and Aij(t) >  0 implies that i -< j .  
Therefore, for t <  i?·, j  -< i and i -< j  for t > tfyO

3 .2-15 di < d j ,  pjWi >  Wj(ri -\ -Pi-l ·P j -dj) ,  rj <  d j - {p i -\ -p j )  <  

d j - P j  <  Ti <  d i - p i ,  Wj(ri-\-pi-\-pj-dj) <  Wi(dj-di -Ppi)

In this case again there exists intersection point tL before r,· so ri is the only 
breakpoint. For t <  job j  precedes job i and for t > Vi, job i precedes job j.

Proposition 15 7/ di < dj, rj <  dj -  {pi +  Pj) < dj -  pj <  r»· < di -  pi and 
Wj{ri-PpiApj -  dj) < iUi{dj -  di +pi) then j  -< i for t < r'i and i -< j  for t > r'i.

Proof : Until job i becomes available, it is trivial, j  -< i for t <  rj. At t =  r,·, 
Aijiri) = Wi{ri + Pi +  Pj -  di) -  PiWj. We know that r,· > dj -  pj, therefore 
Wiiri + Pi + Pj -  dj) - PiWj > Wi{dj -  di + pi) -  ppvj > Wi{dj -  di +Pi)~  ro, (r; + 
Pi + Pj — dj) >  0, from the condition of the case. So i ■< j  for rj < t  < di — pi. 
At t =  di -  Pi, Aijidi -  Pi) =  WiPj -  PiWj >  0, therefore i -< j ,  for t > ri. □

3.2.16 di <  dj,  PiWj <  iUi(rj-Ppi-\-pj-di),  Vi <  d i - ( p i + P j )  <

Pj <  dj -  (pi + P j )  <  m m { d i  -  pi, dj -  p j }

In this case we begin to deal with second form of fij{t) graph which begins no 
longer from zero. Since job j  arrives after di — (pi +  pj) there is an incured 
fixed cost of wfi'i +  pi +  pj — di) until job j  arrives. In this case there is no 
breakpoint and job i precedes job j  at all points.

Proposition 16 Ifdi <  dj, piWj < iOi{rj+pi+pj-di) andri < di-{pi+pj) <  

rj < dj -  (pi +Pj )  < min{f/i -  Pi, dj -  pj} then i ^  j.
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Proof : The maximum point of gij{t) =  pitOj and the minimum point of 
=  Wiivj +  Pi +  pj — di). Since piWj < iOi{rj +  pi +  pj — di)  ̂ at all points 

-  gij{t) > 0 . As a result i j .n

3.2 .17 di <  dj  ̂ u)i(rj +  Pi +  Pj — di) <  PiWj <  pjWi, r,; <

di -  (pi +  Pj)  <  Tj <  miri{o?j -  {pi -\-pj) ,di  -  p i )

This case is similar to the case above. At every time point faC)  > gij{i) so 
job i precedes job j  at every iDoint.

Proposition 17 If di <  dj, Wi{rj + pi +  pj — di) < piWj <  PjtOi, and r'i <  

di -  (pi +P j)  < rj <  min{d,· -  {pi +  Pj), di -  pi} then i j .

Proof : In this case Wi{rjPpi-\-pj — di) < piWj. Therefore, fijit) can dominate 
gij{t) only if fijidj -  Pj) > PiWj at f =  dj -  pj where gij(dj -  pj) - piWj. If 
dj - p j  > di - p i  then fij{dj - p j )  =  PjiOi > piWj and fij{t) dominates gijit). If 
dj — Pj < di — Pi then fij{dj — pj) = wfdj — di + pi) > piWj. In both situation 
fij(t) > gij{t), consequently Aij(t) > 0 for all t and i ^  j. □

3.2.18 di <  dj  ̂PiWj <  pjWi, ri <  di-(pi-\-pj) < Vj <  di~pi <

dj -  (Pi - \ - P j ) <  dj -  Pj

In this case again, at every time point t, fij{t) > gij{t) so job i unconditionally 
precedes job j  at every time point.

Proposition 18 Ifdi <  dj, piWj <  pjWi andr, < d i - {p i+ p j )  <  r,· < di~pi <  

dj -  {pi + P j )  <  dj -  Pj then i j .

Proof : For t <  dj — {pi +  pj) job j  will not be tardy but since di — pi <  

dj — [pi +P j )  job i will be tardy if not scheduled first; so for t <  dj — {pi +Pj ) ,  

i -< j .  For t > dj — {pi +  Pj), both jobs will be tardy if they are not scheduled
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first. Aijit) =  fij(t) -  gij{t) = lUiPj -  WjPi > 0 so i ^  j  for t > dj -  (pi + Pj)·, 
resulted in unconditional precedence of job i j .  □

3.2.19 di <  dj^ pjWi <  piWj, r\· < di -  (pi -p Pj) <  Vj <  

dj -  (Pi -PPj) <  dj -  pj < d i -  Pi

In this case we have single breakpoint tL which is the intersection point of 
nonconstant segments of and gij{t). Up to ¿h, i ^  j  and ordering of jobs
changes after tjj.

Proposition 19 Ifdi <  dj, ri <  di-{pi-\-pj) <  rj <  dj — (pi +  pj) <  d j —pj <  

di — Pi and pjWi < piivj then i <  j  for  t < t]j and j  -< i, t > t\j.

Proof : Until rj only job i is available so z -< j .  For rj <  t <  dj — (pi +  pj), 
Aij(t) =  Wi{t +  Pi +  Pj -  di) >  0 since t >  dj -  (pi +  pj), so i -< j .  For 

dj -  (Pi +  Pj) < t < d j -  Pj at breakpoint t]j =  -  (pi +  pj), ^ij{t) =
0. Nij(t) >  0 before and A jj(i) < 0 after consequently i -< j  for 
di — (Pi +  Pj) <   ̂ <  t]j and j  -< i for tL < t <  dj — pj. For dj — Pj < t <  di — pi,
Aij{t)  -  Wi(t +  Pi +  Pj -  di) -  WjPi - WiPj -  lUjPi + luft -  (di -  pi)) <  0
since both WiPj — WjPi < 0 and w fi  — (di — pi)) < 0, j  -< i. After di — pi, 
Aij(t) =  WiPj — WjPi < 0, so jf -< z for i >  di — pi- □

3.2.20 di <  dj,  piWj >  PjWi, Vi <  d i - {p i -\ -p j)  <  Vj <  min{<ij —

iPi +  Pj) ,d i  -  Pi] <  dj -  Pj,  p j {w j  -  Wi) <  Wjidj -  di)

In this case there is single breakpoint tfj = dj — pi — Pj{l — lUi/wj) where 

nonconstant segment of gij{t) intersects with upper segment of fij{t).

Proposition 20 If di < dj, Vi < di — (pi +Pj) < rj <  min{dj — (pi +pj),di — 
Pi} < dj — Pj, Pj{wj — Wi) < Wj(dj — di) and piWj > pjWi then i -< j  for t < tfj 
and j  -< i, t >  t'ij.
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Proof : Up to r.j only job i is available so i -< j .  After r,, function of
this case is similar to case 6. So proof can clone similar to proof of Proposition
6.D

3 .2 .2 1  di <  d j ,  Wi(rj -\-pi-\-pj-di)  <  piWj <  pjWi^ p i { w j - W i )  >

Wi(dj -  di)^ I'i <  di -  (pi +  pj)  <  r-j <  m m { d j  -  (pi +  

P j ) , d i - P i }

This case is similar to case 1. The only difference is that job j  becomes available 
after di — (pi +Pj)· There are two breakpoints t]· and tf·. So job i precedes job 
j  until time for ¿h < t <  i?· job j  precedes job z, and job i again precedes 
job j  after i?·.

Proposition 21 I f di <  dj, w f  rj +  p i+ p j  -  di) < piWj <  PjWi, ri < d i ~  [pi +  
Pj) < rj < min{cfj — (jxi +Pj), di —pi} and Pi(i0j — ivi) > Wi{dj — di), then i -< j  
for t < t\j, j  -< i for t}j < t < tL, and again i -< j  for t > tfj.

Proof : Proof is similar to the proof of Proposition !.□

3 .2 .2 2  di <  d j ,  PiWj >  PjWi, (w j  — Wi) {r j  +  Pi +  P j )  >  '^jdj —

Widi, r,: <  dj -  ( p i + P j )  <  Vj <  min{c/i -  pi, dj -  p j ]

In this case as it can be seen in Figure 3.14 there is a single intersection point, 
tfj. Furthermore, fijit) > gij{t) for t < tfj, and gij{t) > fij{t) afterwards. But 
the intersection point occurs before both jobs become available, i.e. tfj < rj, 
hence rj becomes a critical decision point as discussed in Proposition 22.

Proposition 22 If di <  dj, piWj >  PjWi, ri <  dj — {pi + pj) <  rj <  min{d,· — 
Pi,dj — Pj} and {wj — Wi){rj +pi +  pj >  Wjdj — Widi), then i -< j  if t < rj and 

j  A i, afterwards .
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Figure 3.14: Illustration of Proposition 22

Proof : Before rj, we should schedule job i. As defined earlier A jj(i) =  —

gij(t). If we let t =  rj then A ,j(i) =  W i{r j+ p i+ p j -d i ) -W j { r j+ p i+ p j -d j )  <  0 
since (wj — Wi){vj +  Pi +  Pj) > Wjdj — Widi, so j  ^  i aX t =  rj. As piWj > PjWi 
for t >  Vj, gij{t) > fij{t) afterwards. Consequently, A.ij(t) <  0 and j  A i. □

3.2.23 di <  dj,  piWj >  pjWi, (wj -  Wi)(rj +  pi +  pj)  <  wjdj -  
W id i,  Vi <  d i - ( p i - \ - p j )  <  d j - ( p i - P p j )  <  Vj <  min{<ii- 

Pi. dj -  P j }

In this case we have single breakpoint tj- which is the intersection point of 
nonconstant segments of and gijit). So i -< j  up to breakpoint tj· and
j  -< i afterwards.

Proposition 23 Ifdi < dj, piWj > pjWi, {wj—Wi){rj+pi-\-pj) < Wjdj —widi, 
ri < di -  (pi +  Pj) < dj -  {pi +p j)  < I'j < mm{di -  pi, dj -  pj] then i -< j  for 
t < and j  -< i for t >  t]At).

Proof : Until rj only job i is available so i X j .  For ry < t <  dj — pj, 
Aij{t) =  Wi{t +  Pi +  Pj — di) -  Wj(t +  Pi +  Pj -  dj). Aij{t) will be zero at 

dij =  ~ (Pi +  Pi)’ > 0 for t < t}j and Aij(t) <  0 for t > t\j. So
i X j  for Ti < t  <  and j  X i for t >  tP.n
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3.2.24 di <  dj,  piWj <  Wi{vj +  pi +  Pj -  di) <  lUiPj  ̂ I'i <

d i - { p i -\ - p j )  <  d j - { p i A - p j )  <  Vj <  m m { d i - p i , d j - p j }

There is no breakpoint for this case and i unconditionally precedes j  for every 
time point.

Proposition 24 If di < dj, r,· < di -  {pi +  Pj) < dj -  {pi + pj) <  rj <  

min{dj· — Pi, dj — Pj} and piWj < wfrj + pi + pj — di) < WiPj then i ^  j .

Proof : The maximum value of gij{t) function is piWj and the minimum value 
of fij(t) =  Wi{rj +p i  + p j  — di) > PiWj so fijit) > Pijft) for every time point t. 
Therefore, A îj{t) =  fij{t) — gijft) >  0 for Vi, consequently i j .  □

3.2.25 di <  dj,  iUi(rj-\-pi-\-pj-di) <  ppuj <  pjWj, iV i{d j -d i )  >

( w j - W i ) p i ,  Vi <  d j - (p i -P P j )  <  Vj <  m m { d i - p i , d j - p j }

This time there are two intersection points, t̂ j and tjj. Since at time i® job j  
is not available, release date of job j  will behave as a breakpoint. Until Vj, job 
i is scheduled. After job j  becomes available, up to tL, j  ■< i and then i ■< j,  
afterwards.

Proposition 25 Ifdi <  dj, w f r j + p i + p j  -  di) < prwj < pjWi, r,· < dj -  (pi +  
Pj) < rj <  min{di — pi,dj — pj} and Wi{dj — di) >  (wj — Wi)pi then i -< j  for 
t < f'j) j  V i for rj < t  <  t\j, and i -< j  for t > tjj.

P ro o f : Until job j  becomes available, job i can be scheduled. At i =  rj,

Aij{t) =  Wiirj +  Pi +  Pj -  di) -  Wj{rj +  P i+  Pj -  dj) =  (wi(rj +  pi +  p, -
di) — WjPi) +  Wj(rj +  Pj — dj). Since both wfrj  +  p, +  pj — di) — WjPi <  0 and 
Wj{rj + Pj — dj) < 0, Ap(rj) < 0 so y ■< i t = rj. For r,· < t < dj — pj, 
Aijit) =  Wi{t +  Pi +  Pj -  dj) -  Wj(t +  p i +  Pj -  dj). Aij{t) will be zero at tjj 
and for t < tjj, Aij(t) <  0 while for t > tjj, Aij{t) >  0. For constant segments
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since pjWi is greater than piWj and Aij{t) >  0 consequently i -< j .  Therefore 
i -< j  for t < rj, j  -< i for Vj < t  <  th, and i -< j  for t > t]j. □

3.2.26 di <  dj, 'Wi(rj-\-pi-\-pj-di) <  piWj <  PjWi^ iUi{dj -di)  <

(wj -  Wi)pi^ r.i <  dj -  (pi +  pj)  <  rj <  dj -  pj <  di -  pi

In this case there are two intersection points, and tfj. Since tfj =  iUifwj(rj + 
Pi +Pj — di) — (pi +pj — dj) < rj , job i is scheduled until job j  becomes available. 
So i -< j  for t <  rj, j  -< i for rj <  t <  tL, and then i -< j  for t > tL.

Proposition 26 If di <  dj, lufrj +  pi +  pj — di) < piWj < pjWi, ri <  dj — 
{pi +  Pj) < fj < dj — Pj < di — Pi and wfdj — di) < {lOj — Wi)pi then i ■< j  for  

t < '>']> j  ^  T'j "A o-nd i -< j  for t > t'-j.

Proof : This case is similar to case 21, with only exception is that since r.j 
arrives after dj — (pi +Pj)  breakpoint tjj is not valid. Intersection point is at tfj 
and rj behaves as a breakpoint. Up to rj proposition 26 is obvious, i -< j  and 
after rj proof can done using the similar arguments in the proofs of propositions 
1 and 21. □

3 .2 .2 7  di <  d j ,  PiWj <  PjWi, Vi <  dj — (pi-\-pj) <  d i —pi <  Vj <  

dj -  Pj O R  di <  dj ,  PiWj <  pjivi,  r*  <  di -  (pi +  pj)  <

di -  Pi < T j  <  dj -  (pi -\-pj) <  dj -  Pj

In this case since the minimum value of fij{t) = WiPj > piWj, the maximum 

value of gij{t) and A q(f) > 0 for all t values. So job i unconditionally precedes 

job j , i  j .

Proposition 27 If di <  dj, piWj < pjioi and either Tj < dj — {pi +  Pj) <

di-pi  < Vj < d j - p j  orri <  d i - {p i+p j )  < di-pi  < rj < d j - {p iA p j )  < d j -p j  
then job i unconditionally precedes job j  for Vi.



CHAPTER 3. DOMINANCE RULE 43

3.2 .28 di <  dj

m a x { d j  — (pj

W j ( r j + p i - d j )

dj, piWj >  WiPj, ri <  m m { d j  -  (pi +  Pj) ,d i  -  p i } ,

' i - \ - P j ) , d i - p i }  <  Tj <  d j - p j ,  p j i w i - i u j )  >

In this case second (lower) constant segment of fijit) intersects with 
nonconstant segment of gij{t) at breakpoint tf·. Until tL, i -< j ,  and j  -< i 
cifterwards.

Proposition 28 If di <  dj, piWj > WiPj, ri <  min{(ij -  {pi pj),di -  pi], 
max(dj — {pi +  Pj), d, — pi] < rj <  dj — pj and pj{iOi — toj) > Wj{rj +  pi — dj) 
then breakpoint t^ is valid. Therefore i -< j  for t < tfj, and j  -< i for t >  t?·.

Proof: At f =  rj, Aij{t) =  PjWi-Wj{rj+pi+pj—dj) > 0 because >
iOj(rj+pi — dj), consequently i -< j .  And at i =  dj—pj, Aij(t) — pjWi—WjPj < 0 
from the condition pjWi < WjPj, hence j  -< i for t > dj — pj. Since sign of 
Aij{t) changes, there must be a breakpoint between rj and dj —pj. Aij{t) =  0 
if t — dj — Pi — pj{\ — WiIWj) — tfj. As a result, i -< j  for t < ffj and j  -< i for 

f >  tf .̂O

3.2 .29 di < dj, pjWi < piWj,  ?%· <  d i~ p i  < Vj <  d j - { p i + p j )  <

dj -  Pj

Similar to the case above, in this case second (lower) constant segment of fij{t) 
intersects with nonconstant segment of gij{t) at breakpoint ffj. Until ffj, i -< j ,  
and j  -< i afterwards.

P rop osition  29 If di <  dj, r̂  <  di — pi < rj < dj — (pi +  Pj) < dj — pj and 

PjWi < PiWj then breakpoint tfj is valid and same as Proposition 28 i ■< j  for

t < tfj, and for t >  tfj, j  ■< i.

P ro o f : At i =  rj, Aij{t) =  pjWi >  0, consequently i -< j .  At t =  dj — pj, 
Aij{t) =  PjWi — WjPj <  0 because pjWi < WjPj. Therefore, j  -< i after dj — pj.



CHAPTER 3. DOMINANCE RULE 44

Since sign of Aij{t) changes there must be a breakpoint between Vj and dj — p j .  

Nij{t) =  0 if i =  tfj. As a result, i -< j  for t < t]j and j  A i for t >  tlj. □

3.2.30 di <  dj^ Wi(ri +  Pi +  2̂>j -  dj) <  Wj{di -  dj +  p j) ,

Ti <  dj -  (pi -^P j)  <  di -  Pi <  Vj <  dj -  Pj

In this case there is a single intersection point, where job j  is not available 
at that time. So job i will be scheduled until job j  becomes available. Release 
date of job j ,  rj will be the single breakpoint. For t < vj, job i precedes job j  
and job j  precedes job i for t > rj.

P rop osition  30 If di <  dj, Vi < dj — {pi +  pj) < di — pi < rj <  dj — pj and 
Wi{vi +  Pi +  Pj — di) < Wj{di — dj +  Pj) then i j  for t < rj and j  A i for 
t > rj.

P ro o f : Until job j  becomes available, it is trivial. Ai t =  rj, Aij(rj) —

WiPj -  iUj{rj + P i +  Pj -  dj) -  Wi{rj +  Pi +  Pj -  di) -  Wj{pj +  di -  dj) -  (wi +  

+  Pi ~ î) ^  0? since both u;,(r,· +  Pi +  Pj — di) < Wj{pj +  di — dj) and 
—(wi +  Wj){rj +  Pi — di) <  0. So j  -< i for rj <  t < dj — pj and at t =  dj — pj, 
Aij(di — Pi) =  WjPi — pjWi <  0. Therefore, j  -< i for t > dj — pj, resulted in 
i -< j  for t < rj and j  -< i for t > rj.O

3.2.31 di <  dj, Wi(ri-\-pi + P j  -  di) > iUj(di -  dj +  J9j ) ,  Pj{wi -

IVj) <  Wjiv j  -\-pi -  d j ) ,  Vi <  min{i/^· -  (pi P j ) ,d i  - p i } ,  

m A x { d j  -  (pi +  P j) ,  di -  P i }  <  m m { r j ,  dj -  p j }

In this case there is an intersection point tjj where constant segments of fij(t) 

and gij{t) intersects. At this time job i is not available. Although fijit) < fJij(i) 
i.e. Aij(t) <  0, job j  cannot precede job i until it arrives. So up to rj, i can 

be scheduled and after rj, j  ■< i.
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Proposition 31 If di <  dj, Pj{wi — Wj) < Wj{rj + pi — dj), ri <  min{f(,· — 

iPi +  Pi)> di -p i }>  max{dj -  (pi +  di -  p j  < min{r,·, -  pj} and lofri +  
Pi +  Pi ~ di) >  Wj{di — dj +  Pj) then i ^  j  for t < ri and j  -< i for t >  ri.

Proof : There will be intersection point tjj, if nonconstant segments of fij{t) 
and gijit) intersect. This is possible only if at time t =  di — pi, fij(dj — pj) > 
gijidj -  Pj), i.e. wfrj  + pi + pj -  di) > Wj{di + pj -  dj) and at t - r-j 
fijirj) < giji^j), i.e. lUiPj < Wj{rj Ppi -\-pj -  dj). Consequently pj{iUi -  Wj) < 
Wj{rj +  Pj — dj), as stated above. □

Hence, analyzing all possible cases, the theoretical background of the 
proposed dominance rule is presented. We show that there are certain time 
jDoints, called breakpoints, in which the ordering might change for adjacent 
jobs. It is seen that at most three breakpoints can be valid at the same time. 
As a result, we Ccin state the following general rule to improve given schedules. 
This general rule provides the sufficient condition for local optimality, and it 
generates schedules that cannot be improved by adjacent job interchanges. 
General Rule:

/F (i) m&x{di -  Pi, dj -  (pi +  Pj),r^} < tL < dj -  pj 

THEN^,) IF^2) Tj < ri

THEN( 2 ) j  a  i iov t < ri, 
i -< j  for r'i < t < ffj, 
j  i for t > tfj,

ELSE( 2 ) i -< j  for t < tfj.> (2 )

j  ■< i for t >  t]j.

E N D I F ^ 2)

ELSE(i) ma.x{dj —pj,ri}  <  tL < di — pi

THEN(z) IF(i) max{dj -  {p iF p j ) , r i ]  < t]j <  dj -  pj

T H E N ( , )  I F ( , )  r j  <  n  

THENf^a) j  -< i for t < ri, 
i -< j  for r i < t <  t\j, 
j  X i for t]j < t <  i?·, 
i ^  j  for t > tfj,

ELSE(s) i -< j  for t < tjj,
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j  -< i for t]j < t <  t 
i ■< j  for t > tf

tjy

o ’
ENDIF,( 5)

ELSE^4) /F(6) r-i < Vj

THEN(e) i -< j  ior t < Vj,
j  -< i for Vj < t < t  
i ■< j  for t > tfj,

KV

ELSE^cy) j  -< i for t <  tfj,
i -< j  for t >  tfj,

ENDM\e)
ENDIF .̂i)

ELSE(^3 ) IF(7 ) max{ri,?v,(fy -  {p iA p j ) ]  <  t\· <  rnin{d, -  - P j ]

THEN^y) IF(s) i'i < dj -  {pi +  pj) < rj 
THEN(s) i -< j  for t < rj, 

j  ^  i for 7-j <  t < 
i -< j  for t >  tlj,

ELSE(s) /i'(9) Tj < ri

THEN^q) j  -< i for t < r,, 
i ■< j  for Vi < t  <  t] ,̂ 
j  X i for t > tL,

ELSE(^q) i -< j  for t <  
j  ^  i for t >

ENDIF(^)
ENDIF(8)

ELSE r̂) /F(io) EITH ER  dj -  {pi F Pj) < < mm{di -  p „r ,·} O R

di -  Pi < tjj <  rj
THEN ( iq) i -< j  for t < rj, 

j  -< i for t >rj ,
ELSE .̂o) IF(n) EITH ER  di -  (p, +  pj) < t% < mm{d, -  p,,n}  O R

dj -  Pj <  tf- <  n

THEN^ii) j  -< i for t < ri 
i X j  for t > ri, 

ELSE^ii'l IF(i2) '>3 ^  rj
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T H E N(12) i j

ELSE(\2) j  *
E N D IF ( i2)

EN DIF(\i îoj'i,i)

Let U denote the set of all jobs, V  the set of pairs { i , j )  for which Aiijit) 
has at least one breakpoint tij, i , j  G V. The largest of these breakpoints is 
equal to ti =  max((j)gK{th,i?,·, The following lemma can be used quite 
effectively to find an optimal sequence for the reniciining jobs on hand after a 
time point t;.

P rop osition  32 If t > ti then the weighted shortest processing time (WSPT)  
rule gives an optimal sequence for the remaining unscheduled jobs.

P roof: The ti is the last breakpoint for any pair of jobs i, j  on the time
scale. For every job pair there is either a breakpoint or unconditional
ordering {i —y j).  The WSPT rule holds for i j.  If there is a breakpoint 
then for t >  tij the job having higher Wj/pj is scheduled first, so WSPT again 
holds. Both jobs should be available before a breakpoint if· >  max{r,-,?’j }  for 
k =  1,2,3 so that ti =  max{iL, i?·}. For t > ti, consider a job i which 
conflicts with the WSPT rule, then we can have a better schedule by making 
adjacent job interchanges which either lowers the total weighted tardiness value 
or leaves it unchanged. If we do the same thing for all of the remaining jobs, 
we get the WSPT sequence. □

It is a well-known result that the WSPT rule gives an optimal sequence for 
the 1| I WjTj problem either when all due dates are zero or all jobs are tardy, 
i.e. t > maxj^u{dj — Pj}· The problem reduces to total weighted completion 
time problem, 1| | X]! WjCj, which is known to be solved optimcilly by the WSPT 
rule, in which jobs are sequenced in nonincreasing order of Wjfpj. We know 

that ti <  maxj^u{dj —Pj}, so we enlarge the region for which the l|rj| JjtOjTj 

problem can be solved optimally by the WSPT rule.
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3.3 Summary

We prove that there are certain time points, called breakpoints, in which 
the ordering might change for adjacent jobs for the total weighted tardiness 
problem with unequal release dates. We find seven such breakpoints and 

showed that at most three of them can be valid at the same time. We introduce 
a new dominance rule and enlarge the region for which the l\rj\Y^WjTj 
problem reduces to 1| \J2wjCj problem, hence it can be solved optimally 
by the WSPT rule. Therefore, the proposed dominance rule can be used as 
a good pruning device for any exact algorithm. In Chapter 4, we present 
the effect of dominance rule on the upper bounding scheme. We developed 
a B & B algorithm in Chapter 5 and present the computational results of 
the algorithm in Chapter 6. We have proved that the dominance properties 
provide a sufficient condition for local optimality, so we are going to describe an 
algorithm which takes its background from the proposed dominance rule and 
can be used to improve the total weighted tardiness criterion of a sequence given 
by a dispatching rule by making necessary adjacent pairwise interchanges.



Chapter 4

Upper Bounding Scheme

For scheduling problems, the implicit enumerative algorithms which guarantee 
optimality may be costly in terms of computational times and memory usage. 
Therefore, several heuristics and dispatching rules have been proposed in the 
literature as discussed in Chapter 2. We introduce an algorithm to demonstrate 
how the proposed dominance rule can be used to improve a secjuence given 
by a dispatching rule. We show that if any sequence violates the proposed 
dominance rule, switching the violating jobs either lowers the total weighted 
tardiness or leaves it unchanged. We also show that the total weighted tardiness 
value given by the sequence generated by the algorithm is always less than or 
equal to the value given by the sequence generated by the heuristic, i.e. the 
proposed algorithm always dominates the competing algorithms.

Outline of this chapter will be as follows : In §4.1, the algorithm is 
presented, and the experimental design and the computational results are 
demonstrated in §4.2. Finally, a short summary is given in §4.3.

49
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4.1 Algorithm

The 1| I "WjTj problem is proved to be strongly NP-hard by Rinnooy and Kan 
[43]. Therefore l|rj| Y^WjTj problem is also strongly NP-hard. For l|rj| Y^WjTj 
problem, even with equal weights, 30 job is an upper limit for some problem 
instances, (Chu [11]). Since exact approaches are prohibitively time consuming, 
it is important to have a heuristic that provides a reasonably good schedule with 
reasonable comiDutational effort. Therefore, a number of heuristics had been 
developed for this problem in the literature as summarized in Table 2.1. To 
improve dispatching rules and heuristics in the literature, proposed dominance 
rule can be applied.

Now, we will introduce an algorithm based upon the dominance rule that 
can be used to improve the total weighted tardiness criterion of any sequence 
S by making necessary adjacent pairwise interchanges. Let stq[k] denote 
index of the job in the position in the given sequence S and I[k] denote 
the idle time inserted before k̂  ̂ position in the given sequence S, such that 
I[k] =  max{0, rse<j[A:+i] ~ 0 ·  algorithm can be summarized as follows:

Set  ̂ =  1 and t — 0.

While k < n — 1 do begin
Set i — seq[A:] and j  — seq[^ +  1]

/F(a) z < j  THEN^,)

IF{2 ) max{di -  pi, dj — (pi +p j ) ,  rj}  < t}· < dj -  pj, and < t T H E N(2 ) 
t =  t — Pseq[k-i] — ^[^]) recalculate /[A:], change order of i and j ,  set

k — k — 1

ELSE{ 2 ) IF(z) max{dj <  t?· < di -  pi THEN^^)

IF(4 ) maxfdj -  (pi +  Pj),ri,r j}  < t]j <  min{di -  pi,dj -  pj} , and

t}j < t <  t% THEN(4)

t =  t — Pseq[k-i] ~  -̂ [̂ ]) recalculate /[A;], change order of i and j ,  set 
k =  k — 1

ELSE(^4 ) IF( 5̂ ) rj <  t <  and either t]j <  max{dj -  [pi +  Pi)-,ri,rj] or 

t\- >  min{di' -  Pi, dj -  pj]  THEN(^5)
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t = t — Pseq[k-i] ~ I[k], recalculate I[k], change order of i and set 
k = k — 1

ELSE(^5 ) IF\q) max{d,· -  (pi +  Pj),Vi,rj} <  tl· <  minfdi -  pi,cij -  

p,} THEN(e)
IE(7) Ti < dj -  {pi + Pj) < rj and Vj < t  < ¿h THEN[7) 
t = t — Pseq[k-i] ~ recalculate /[A:], change order of i and j ,  set 

k ^ k - 1

ELSE(7) IF(s) < t THEN^s)
t = t — Pseq[k-i] ~ [̂ ]̂) recalculate I[k], change order of i and set 

k = k — 1
ELSEf^s) -̂ -̂ (9)  ̂ either dj — (pi + pj) < tfj < min{dj· — Pi,rj} or

di -  Pi < tjj < rj THEN{q)
t =  t — Pseq[k-i] ~ recalculate I[k], change order of i and j ,  set

A: = A: — 1
ELSE^^q) a = a + Pi and A; = A; + 1.
ENDIF^g)

ENDI  -F(8,7,6,5,4,3,2)
ELSE(i) IF(io) ma.x{di — pi,dj — {pi + Pj),rj} < tf- < dj -  pj, and 

rj < A < A?· THEN^io)
t = t — Psgq[k_i] — I[k], recalculate I[k], change order of i and j ,  set 

k = k — I

ELSE^io) IF(n) ma,x{dj < di -  pi THEN(n)
/F (i2) max{dj — (pi + P i),r,,rj} < t]j < dj — pj  ̂ rj <  A and either A < Â  

or A > A?· T H E N(1 2 )
t — t — Pseq[k-i] ~  recalculate /[A:], change order of i cind j ,  set

k = k — 1
ELSE(i2) /F (i3) a > tfj and either tjj <  max{cAj -  (pi + Pj),ri,rj} or 

t}j >  min{di -  pi,dj -  Pj} THEN(iz)

t = t — Pseq[k-i] ~  -̂ [̂ ]) recalculate I[k], change order of i and _y', set 
k = k - l

ELSE(iz) IF(u) naax{c/j -  (pi + < t\j < m\n[di -  pi,dj -

p,] THEN(,,^
IF(x5) ri < dj -  {pi + Pj) < rj and A > Ah THEN^ir,)
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t =  t — Pse<;[k-i] ~  I[k]i recalculate /[A;], change order of i and j ,  set 
k =  k - l

ELSE{'y^) iF(ie,) ri < t  <  t}j and rj < t THEN^iq)

t — t — Pseq[k-i] — I[k], recalculate I[k], change order of i and set 
k =  k - l

ELSE{i^) IF{\-j) Tj <  t and either di — (p,· +  pj) < tfj <  minfdj — Pj,?·,·} or 

dj - P j  < tij <  fi TH EN (i7)

t — t — Pseq[k-i] ~  recalculate /[A:], change order of i and j ,  set 
k =  k - l

EL/SE^i7 'j t ~  t Pi u.nd k — k P \

ENDM\^7)

£WZ)/i (̂16,15,14,13,12,ll,10,l)
End.

If initial dispatching rule permits a machine to stay idle, these idle times 
should be handled in the algorithm. If there is no idleness in the schedule, all 
I[k] =  0, V A:, we do not need to update I[k] values each time. By using this 
algorithm which takes its background from the proposed dominance properties, 
we can improve any sequence given by any dispatching rule. Therefore, the 
total weighted tardiness value given by the sequence generated by the algorithm 
is always less than or equal to the value given by any sequence generated by 
the heuristic.

Let us consider the following 10-job example to explain the proposed 
algorithm. In this example jobs are initially scheduled by the X-RM rule, 
X-dispatch АТС rule, with В =  2 and p =  which is discussed in detail 
in Chapter 2. Initial ordering is given in Table 4.1, along with the sequence, 
S, release date, rj, processing time, pj, weight, lOj, due date, d,, starting 

time, t, and weighted tardiness, W T, of each job j .  The final schedule after 
implementing the proposed algorithm on the schedule given by the X-RM rule 
is also given in Table 4.1.

The algorithm works as follows: We start from the first job of the given
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sequence. For each adjacent job pair, we compare the start time of this pair 
with precedence relations given by the proposed dominance rule. Up to i =  10, 
the sequence generated by the X-RM rule does not conflict with the dominance 
rule. But job 7 in the position violates the dominance rule when compared 
to job 5 in the N’'' position at time t =  10. The breakpoint j  is equal to 18.11, 
which is greater than t =  10, that means 5 ^  7 at time t =  10. Therefore, an 
interchange should be made. There is no idle time before job 7 so /[3] =  0, 
then t is set to 10 — Pseq[3 ] =  6 and k — k — I = 3 .  Since the job in P''' 
position is changed, algorithm returns one step back to check the dominance 
rule between the jobs at position k and /? +  1, i.e. jobs 2 and 5. We proceed 
on, another interchange is made at t =  23 between jobs 9 and 6, and then 
between jobs 8 and 6, and finally between jobs 10 and 4. Notice that, after all 
necessary interchanges are performed on the sequence generated by the X-RM 
rule, the total weighted tardiness dropped from 61 to 21 giving an inq^rovement 
of (61 — 21) /  61 =  66%. For this example, the optimum solution is also equal 
to 21.

4.2 Computational Results

In this section, we first describe the experimental design, i.e. the fcictors 
considered in testing the heuristics against the proposed dominance rule. Then, 
the detailed computational results will be demonstrated.

4.2.1 Experim ental Design

We tested the proposed algorithm on a set of randomly generated problems 
on a Sun-Sparc 20 workstation using Sun Pascal. The proposed algorithm was 
compared with a number of heuristics on problems with 50, 100, and 150 jobs 
that were generated as follows. For each job j ,  an integer processing time pj 

and an integer weight Wj were generated from two uniform distributions [1, 10] 
and [1, 100] to create low or high variation, respectively. Instead of finding
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clue dates directly, we generated slack times between due dates cind earliest 
completion times, i.e. dj — {pj Ppi) from a uniform distribution between 0 and 

where 3 different /3 values [0.05, 0.25, 0.5] are used. Release dates, 
Tj, are generated from a uniform distribution ranging from 0 to ¿is
suggested by Chu [11], where 4 different a Vcilues [0.0, 0.5, 1.0, 1.5] are used. 
As summarized in Table 4.2, a total of 144 example sets were considered and 20 
replications were taken for each combination, giving 2880 randomly generated
runs.

We have claimed that if any sequence violates the dominance rule, then the 
proposed algorithm either lowers the weighted tardiness or leaves it unchanged. 
In order to show the efficiency of the proposed approach, a number of heuristics 
were implemented on the same problem sets. These dispatching rules and 
their priority indexes are summarized in Table 4.3. The MODD, WPD, 
WSPT and WDD and are examples of static dispatching rules, where as 
АТС, COVERT, X-RM, KZRM, X-KZRM, and AGG are dynamic ones. The 
proposed algorithm starts from the first job of the given sequence and proceed 
on as outlined in §4.1.

Under COVERT rule, jobs are scheduled one at a time; that is, every time 
the machine becomes free, a ranking index is computed for each remaining job 
j .  The job with the highest ranking index is then selected to be processed next. 
The ranking index is a function of the time t at which the machine becomes 
free as well as the pj, the wj, and the dj of the remaining jobs. The index for 
COVERT can be defined as;

/ Ч /Wi , max(0,d,· — f — p,·),.
ТГj{t) =  max (—  max[0,1 ---------- ^ ------------—])

Pj  ̂ ' Pj
.Job j  queuing with zero or negative slack is projected to be tardy by completion 
with an expected tardiness cost wj and priority index Wjfpj. к is the look ahead 
parameter and is set to 2. The original results proved COVERT superior to the 
competing rules, including a truncated SPT, in mean tardiness performance

((larroll [8]).

T h f '  tidrcIjnnHN ( Л Ч ' С О  fV c o i i j p Q H j l . n  jypfvtc  h i n g  i U u j t

combines the WSPT rule and the minimum slack (MS) rule. Similar to
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COVERT, under the АТС rule, jobs are scheduled one at a time; the job 
with the highest ranking index is then selected to be processed next. The 
rcinking index is a function of time t at which the machine become free as well 
as pj, Wj, cind dj of the remaining jobs. The АТС index can be defined as;

. , ( ( ) =  ^  ■ exp
Pj к ■ p

where we set the look-ahead parameter A; at 2 as suggested in [35], p is the 
average processing time of remaining unscheduled jobs at time t.

X-RM is a modification of the АТС rule resulted from allowing inserted 

idleness. The procedure starts with calculating АТС priorities, 7r,(f). The 
priorities are multiplied with 1 — [{B ■ max{0, vj — t}) /  p], В  is suggested to fit 
to 1.5+p where p is average machine utilization, whereas p can be either average 
processing time, p, or minimum processing time, Pinim as suggested in [35] and 
[36], respectively. In our study, we compared four different combinations of 
В  and p values such that X-RM I =  (1.6,p), X-RM II =  (2,p), X-RM III 

=  (Еб,Ртги)» and X-RM IV =  (2 ,p„i„).

In addition to the dispatching rules in literature, we construct new 
heuristics, based on АТС rule and decision theory aproach of Kanet and Zhou 
[30]. The KZRM is a local search heuristic that combines the АТС rule of 
Morton and Racharnadugu [41] cind decision theory approach of Kanet and 

Zhou [30]. The decision theory approach defines the alternative courses of 
action, at each decision juncture, evaluate the consecpiences of each alternative 
according to a given criterion, and choose the best alternative. In the KZRM, 
we first calculate АТС priorities for all available jobs and generate all possible 
scenarios putting one of the available jobs first, and ordering the remaining 
ones by their АТС priorities. After making valuation of each scenario by 

calculating the objective function, i.e. Fj =  Y^WjTj where job j  is scheduled 

first, we choose the scenario with the minimum Fj value, and schedule job j .

We perform this procedure iteratively until all jobs are scheduled. Therefore, 
the KZRM rule can be also called filtered beam search with a beam size of 
one.
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An other heuristic used in the study is the combination of X-RM rule with 
decision theory approach of Kanet and Zhou [30], what we referred as X-KZRM. 
The X-KZRM is different from KZRM in the way that X-RM priorities are used 
instead of АТС priorities. So that inserted idle times are allowed throughout 
the generated schedule.

finally, we develop a new search procedure in this study, and denoted 
as AGG, abbreviation of “aggregation” . Although X-RM rule is designed to 
consider unavailable jobs at time t, priority of late arriving jobs are reduced 
with a multiplier. This priority correction may be resulted in high penalties 
for late arriving jobs such a way that priority of any late arriving job can be 
the highest. On the other hand, scheduling a less critical job until a critical 
job becomes available, might result in a better schedule. Therefore, in search 
procedure AGG, combination of a late arriving critical job, with a job inserted 
between time t and release date of the particular “hot” job, is compared with 
the job having highest priority at time t. After choosing job к with highest 
АТС priority, AGG procedure searches for a job couple that one of them ( job 
s) is available in the current time and the other one (job h) will be available in 
the period between current time and earliest completion time of job к and will 
have higher АТС priority than job к whenever it becomes available. These two 
jobs are “aggregated” and act as a single high priority job if there is no idle 
time between them, i.e. Vh < t +  ps- If such a “aggregated” job couple exists 
and at time t partial objective value of partial sequence {s — /г — к] is less or 
equal to the partial objective value of partial sequence {k — h — s} then jobs s 
and h are scheduled sequentially, else АТС rule is applied.

The results which are averaged over 960 runs for each heuristic, are 
tcibulated in Tables 4.4, 4.5, and 4.6 for 50, 100, and 150 job cases, 
respectively. For each heuristic, the average weighted tardiness before and after 
implementing the proposed algorithm along with the average improvement.

(improv), the average real time in centiseconds used for the heuristic and
algorithm, and the average number of interchanges, (interch), are summarized. 
Finally, we performed a paired t-test for the difference between the total 
weighted tardiness values given by the heuristic and the algorithm for each
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run, and these t-test values are reported in the last column. Although the 
real time depended on the utilization of system when the measurements were 
taken, it gives correct intuition about the computational requirements, since 
the cpu times were so small that we could not measure them accurately. In 
general, the actual cpu time is considerably smaller than the real time. The 
average improvement for each run is found as lollows: improv — ^ x
100, if F(S^) ^  0, and zero otherwise, where F(S''') is the totcil weighted 
tardiness value obtained by the heuristic and F(S^^) is the total weighted 
tardiness obtained by the algorithm, which takes the sequence generated by 
the heuristic as an input.

4.2.2 Com putational Analysis
Among the competing rules, a local search based KZRM rule performs better 
than others, although it requires considerably higher computational effort than 
others. X-RM rules are overall second for the averaged results and weighted 
COVERT and AGG also give quite good results in average. The static MODD, 
WDD, WPD, and WSPT perform poorly in a dynamic environment since they 
do not consider availability of jobs while sequencing the jobs.

Furthermore, quite large t-test values on the average improvement indicate 
that the proposed algorithm provides a significant improvement on all rules, 
and the amount of improvement is notable at 99% confidence level for all 
heuristics. Therefore, we can easily conjecture that the proposed algorithm 
dominates the competing rules because the average weighted tardiness value 
is always less than or equal to those obtained from the heuristics in each 
run. When we analyze the individual heuristics, we perform 12.1 pairwise 
interchanges on the average for the X-RM IV rule and improve the results by 
9.4% for 50 jobs case. On the other hand, the average number of interchanges 
increases to 55.17 for the WPD rule with a 30.8% improvement. The amount 
of improvement over the KZRM rule might seem a small percentage, but 

considering the fact that KZRM rule requires 65801.26 centiseconds on the 
average to find a schedule for 150-job case, whereas our proposed algorithm
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l^rocedure either 100 or 250 times to construct the “best” schedule. At the 
second phase we use our algorithm to guarantee local optimality.

In Table 4.9, we summarize the number of times the value of a heuristic 
outperforms others before and after implementing the algorithm over 2880 
runs. Slight changes can occur in the table when GRASP is iterated 250 
times as stated in parentheses. Since X-KZRM and AGG rules performed 
poorly, and required high computational effort, we exclude X-KZRM and AGG 
from the further study. Notice that more than one heuristic can have the 
“best” value for a certain run, if there is a tie. It can be seen that before 
applying the proposed dominance rule GRASP works better than the X-RM 
IV rule for 50 job case, such that X-RM IV outperforms other heuristics 138 
times while GRASP {a =  0.8, 250 iterations) has the “best” results for 186 
times. But after implementing the dominance rule, X-RM IV gives better 
results in a significantly less computational time. For n =  150, the average 
retd time consumed for improving X-RM IV is 7.3 centiseconds while the 
minimum computation time for GRASP is 9379.67 centiseconds for a  =  0.5 
with 100 iterations. When we compare GRASP with the KZRM rule for 
n =  50, GRASP with a =  0.5 used 947.46 centiseconds for 100 iterations 
and 2371.92 centiseconds for 250 iterations, while the KZRM rule gave 324 
“best” results in 820.1 centiseconds and applying the dominance rule increased 
the number of best results to 457 in 1 centisecond on the average. In sum, our 
computational results show that a problem guided heuristic such as X-RM cind 
KZRM supported by our proposed dominance rule to ensure local optimality 
perform better than a random search based GRASP cilgorithm in terms of 
computational time requirements as well as total weighted tardiness measure.

4.3 Summary

In this chapter, we develop a new algorithm for the l\rj\J2'< ĵTj problem, 
which gives a sufficient condition for local optimality, uising adjacent pairwise 

interchange method. Therefore, a sequence generated by the proposed
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algorithm, that is bcised on the dominance rule, cannot be improved by adjacent 
job interchanges. The ¡proposed algorithm is implemented on a set of heuristics 
including the X-RM and KZRM rules that different combinations of АТС 
rule with the decision theory approach of Kanet and Zhou [30] to implement 
principles of АТС to dynamic environment. Our computational experiments 
indiccite that the amount of improvement is statistically significant for all 
heuristics and the proposed algorithm dominates the competing rules in all
runs.

In the next chapter, we will describe how the proposed dominance rule can 
be incorporated in a branch and bound algorithm, in conjunction with a lower 
bounding scheme and a search strategy.
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X-RM RULE DOMINANCE RULE

s JOBS C Pj W j clj t WT JOBS t WT

1 1 1 2 3 10 1 0 1 1 0

2 3 5 1 6 15 5 0 3 5 0

3 2 6 4 4 11 6 0 2 6 0

4 7 9 5 9 28 10 0 5 10 0

5 5 7 6 2 24 15 0 7 16 0

6 8 21 2 7 30 21 0 6 21 5

7 9 21 4 8 36 23 0 8 28 0

8 6 18 7 5 27 27 35 9 30 0

9 10 18 10 9 49 34 0 4 34 16

10 4 11 5 1 23 44 26 10 39 0

Total Weighted Tardiness 61 21

Table 4.1: A Numerical Example

FACTORS #  of LEVELS SETTINGS

Number of Jobs 3 50,100,150

Processing time variability 2 [1,10] , [1, 100]

Weight variability 2 [1,10] , [1, 100]

Release Date Range, a 4 0.0, 0.5, 1.0, 1.5

Due Date Range, /? 3 0.05, 0.25, 0.5

Table 4.2: Experimental Design
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RULE DEFINITION RANK and PRIORITY INDEX

MODD Earliest Modified Due date min {max{dj, t + Pj}}

АТС Apparent Tardiness Cost max 7Г,· -  · exp

X-RM X-dispatch АТС max {ТГ,(1

COVERT Weighted Cost Over Time max max[0,1

WPD Weighted Processing Due date max { - ^ }lp,d, j
WSPT Weighted Shortest Processing Time max { ^ }1 Pj J
WDD Weighted Due Date m ax{^}

KZRM Kanet and Zhou Approach to АТС АТС with a look-ahead mechanism

X-KZRM Kanet and Zhou Approach to X-RM X-RM with a look-ahead mechanism

AGG Special Aggregation Approach Insert hot job before max тг,

Table 4.3: Competing Heuristics in Literature
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E  wjTj REAL TIME T-TEST

Heuristic Before After Improv Before After Interch VALUE

MODD 147938 143623 3.9 % 2.25 1.23 7.42 11.47

АТС 98061 96994 7.6 % 2.52 1.11 12.12 13.71

X-RM I 98646 97359 9.6 % 4.49 1.04 12.04 12.53

X-RM II 98232 97027 9.3 % 3.83 1.30 11.98 13.59

X-RM III 98242 96975 10.5 % 3.99 1.26 12.30 12.66

X-RM IV 97706 96540 9.4 % 3.94 1.21 12.10 12.76

COVERT 100056 99656 2.0 % 2.67 0.95 1.68 11.77

WPD 111425 100545 30.8 % 2.09 2.05 55.17 13.53

WSPT 111480 100319 32.1 % 1.95 2.08 49.06 11.05

WDD 133086 120018 20.5 % 1.73 1.66 36.44 10.42

KZRM 96142 96059 0.3 % 820.10 1.08 0.93 7.70

X-KZRM 253426 230340 11.9 % 3842.89 4.54 30.49 12.84

AGG 112562 110894 9.8 % 97.24 3.82 15.20 15.40

Table 4.4: Computational Results for n =  50
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REAL TIME T-TEST

Heuristic Before After Improv Before After Interch VALUE

MODD 626526 612541 2.5 % 8.19 4.19 22.64 12.89

АТС 410803 408156 6.0 % 9.94 3.26 29.47 15.29

X-RM I 414423 411303 6.5 % 15.98 3.72 29.94 14.73

X-RM II 413506 410406 6.7 % 15.80 3.67 29.51 14.43

X-RM III 412953 410056 6.0% 15.62 3.17 29.47 15.28

X-RM IV 412131 409261 5.8 % 15.31 3.37 29.48 15.39

COVERT 417285 416191 1.3 % 8.81 3.83 3.79 12.98

WPD 485685 436516 31.3 % 7.16 5.91 216.76 13.86

WSPT 474567 428902 32.0 % 6.99 6.10 181.87 10.62

WDD 600836 539149 18.3 % 7.33 5..54 133..36 10.96

KZRM 405050 404791 0.7 % 12309.86 3.27 2.43 10.04

X-KZRM 1136842 1045669 10.8 % 62290.90 14.22 113.32 13.86

AGG 454307 450278 8.6 % 490..58 13.68 40.96 16.44

Table 4.5: Computational Results for n =  100
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REAL TIME T-TEST

Heuristic Before After Improv Before After Interch VALUE

MODD 1390614 1366306 1.9 % 18.54 7.8 42.13 13.23

АТС 909104 904634 4.7 % 21.91 7.76 48.53 15.06

X-RM I 935756 930374 5.4 % 37.06 7.72 48.50 12.26

X-RM II 934892 929421 5.6 % 36.66 7.31 48.16 12.20

X-RM III 914631 909759 6.8 % 37.43 7.52 48.39 15.00

X-RM IV 913304 908522 5.5 % 37.39 7.30 47.85 14.94

COVERT 919108 917518 1.1 % 20.69 7.59 5.64 13.22

WPD 1091802 975884 31.2 % 14.97 13.15 466.43 13.01

WSPT 1050406 950104 31.4 % 15.29 12.49 380.16 10.15

WDD 1373981 1250450 20 % 15.43 10.75 243.79 10.69

KZRM 895869 895406 0.3 % 65801.26 9.35 4.21 11.32

X-KZRM 2626104 2453433 8.55 % 107301.76 9.43 210.21 12.45

AGO 976480 970106 8.35 % 461.91 8.24 69.54 17.17

Table 4.6: Computational Results for n =  150

Heuristic
E

Before After Improv

X-RM IV
Plow 17708 17593 5.1 %

'̂ low') Phigh 156515 155473 5.1 %

'l̂ high’) Plow 149672 148689 6.8%

"̂ higĥ  Phigh 1324627 1315287 6.3%

KZRM

'l̂ low') Plow 17411 17402 0.4%

'̂ low4 Phigh 153878 153780 1.0%

'̂ higĥ  Plow 148689 147065 0.6%

'l̂ high'f Phigh 1315287 1300914 0.9 %

Table 4.7: Detailed Computational Results for n =  100
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Due Date Release Date Range

Range E  WjTj 0.0 0.5 1.0 1.5

0.05 Before 1878243 618489 67185 10670

After 1876162 61.3286 63338 9568

0.25 Before 1279710 336989 3725 177
After 1274486 .3317.53 2944 151

0.5 Before 666379 86926 438 83

After 65.3312 82547 419 83

Table 4.8: Comparison of the X-RM IV rule with the Proposed Rule for n =  100

Heuristic

#  O F  JO B S =  50 #  O F  JO B S =  100 #  O F  JO BS =  150

Before A fter Before A fter Before A fter

M O D D  I'ter .#  =  100  (Нег.ф -  250) 97 100 98 100 93 99

X -R M  I ¿ ie r .#  =  100 {iter.# =  250) 140 330 156 277 136 252 (251)

X -R M  II iter.#· = 100(iter.# =  250 131 323 155 284 123 238 (237)

X -R M  III iter.# =  100 (iter.# =  250) 147 366 183 293 167 320 (319)

X -R M  IV  iter.# -  W0{iter.# = 250) 138 385 159 299 149 288 (287)

А Т С  iter.# =  100 (R e?·.#  =  250) 82 269 86 220 73 199 (198)

C O V E R T  iter.# = 100{iter.# = 250) 100 (99 ) 134 (132) 95 123 93 118

W P D  iter.# =  100(iter.# =  250) 6 102 11 80 22 73

W S P T  iter.# =  100 (г^ ег .#  =  250) 5 147 6 101 14 87

W D D  iter.# =  100 (г^ ег .#  =  250) 9 41 11 38 9 26

K Z R M  iter.# =  1 0 0 ( it s r .#  =  250) 3 2 4 (32 3 ) 4 5 7 (45 6 ) 2 24 (22 3) 5 46 (54 2 ) 233 606

G R A S P »  =  0 .5 a  =  0 .8 a =  0 .5 a =  0 .8 Q' =  0 .5 O' =  0 . 8

iter.# =  100 153 183 103 117 106 112

iter.# = 250 154 186 103 121 105 112

Table 4.9: Number of Best Results



Chapter 5

Branch L ·  Bound Algorithm

In this part of the study, we propose a branch and bound (B & B) algorithm 
to solve l\rj\J2'WjTj problem. Since the problem is deduced to be strongly 
NP-hard, enumerative algorithms such as branch and bound or dynamic 
programming (DP) approaches are widely used to find exact solutions. Unequal 
release dates and the presence of idle times in the optimal schedule destroy the 
scheme of usual DP approach [11]. Therefore, using B & B algorithm is much 
more convenient.

To the best of our knowledge, there is no lower bound in the literature 
developed for l\rj\J2'^jTj problem. So we use linear lower bound developed 
by Potts and van Wassenhove for 1| \Ĵ  tUjTj problem [38]. We also adapted 
the lower bounding procedure developed by Hariri and Potts for l\rj\Y^iUjCj 
problem [27] by making additional calculations to implement to our problem. 
In our algorithm, we calculate both lower bounds at each node and choose the 

best one as a lower bound of the node.

A B & B algorithm must maintain knowledge of the remaining unsolved 
subproblems, either by maintaining a list or through other logical means. The 
subproblems that have not been shown to be inferior and whose subproblems 
have not yet been generated are called active subproblems. It is sufficient to 

solve or fathom all active subproblems to determine the optimum; this is not

67
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easy since new problems are being generated as old ones cire eliminated. So 
ordering strategy for which problem to tackle next is also an important issue. 
There are two basic search methods: At best first search algorithm (BPS), 
at each decison point the ¡martial sequence with lowest lower bound is selected 
from the active subproblems. At depth first search algorithm (DPS), same basic 
structure is used as BPS algorithm but at each decision point the subproblem 
at the greatest depth is chosen. In other words, at DPS last in first out (LIPO) 
rule is applied to the set of active subproblems.

We have already developed a set of new dominance properties that reduces 
the number of alternatives in the dominant set for l\rj\YliUjTj problem. In 
this chapter we will incorporate our dominance rule, by proposing additional 
dominance properties in a B & B algorithm along with two different lower 
bound schemes and a branching strategy which is hybrid combination of both 
BPS and DPS algorithms.

In § 5.1 we present some dominance properties, which can be utilized in a 
B & B algorithm. The lower bounding scheme is discussed in § 5.2. The B & 
B algorithm is described and illustrated with a simple example in §5.3 cind § 
5.4, respectively. Pinally, a summary is provided in § 5.5.

5.1 Dominance Properties

In this section, we present some dominance properties to eliminate a number of 
dominated solutions in a B & B algorithm, before calculating its lower bound. 
Dominance rules are very effective when the lower bounding scheme of the 
algorithm is rather weak. Dominance rules allow to eliminate a node which 
has a lower bound that is less than the optimum schedule in the search tree.

In the remainder of the study, the following notations will be used:

• J Set of all jobs that should be scheduled.

• S(t) Set of scheduled jobs at time t.



CHAPTER 5. BRANCH & BOUND ALGORITHM 69

• U{t) Set of unscheduled jobs at time t.

• A(t) Set of unscheduled and available jobs at time t.

• B {t) Set of unscheduled and unavailable jobs at time t.

• wTi(S) weighted tardiness of job i in schedule S.

• wTi-j-k{S) weighted tardiness of subschedule {i — j  — k} in S.

Let J be the set of jobs that should be scheduled; U(t) =  Ait) U B{t) 
denote set of unscheduled jobs at time t where A{t) is the set of unscheduled 
jobs which are available at time t and B{t) is the set of unscheduled jobs that 
are not available at time t.

At time t, from available jobs if there is such a job that has minimum 
processing time and due date while having highest weight, then this job 
dominates all other unscheduled jobs.

P rop osition  33 If there is a job i G A{t) such that pi <  minjgf/(i){pj}, Wi > 
maxjg[/(f){iOj}, and d{ < vs\\r\.ĵ u[t){dj} then there is an optimal schedide in 
which job i will be the first job of the remaining sequence.

P ro o f : Suppose in schedule S, i is not the first job at time i, i.e 3 j  € U{t)

is scheduled before job i. Then
wTiiS) =  Wi · max{0, max{i, rj} +  pj +  pi — di}

wTj(S) =  Wj ■ max{0, max{i, Tj} pj — dj}

Construct new schedule S' by interchanging positions of job i and j .  Then 
wTj(S') =  Wj ■ m ax{0,m ax{i +  p ;,rj} +  pj — dj} 
luTiiS') — Wi · max{0, t +  pi — di}

If both jobs are nontardy in schedule 5, i.e. max{C?’j }  Tpi < di, since 
di < dj then t Pi pj <  di < dj and rj +  pj +  pi < di < dj. Therefore, 
t +  Pi <  di resulted in wTi{S') =  0 and max{i +  PiiTj} +  pj <  dj resulted in 
wTj{S') =  0. This means that changing positions of job i and job j  does not 

affect the objective function value.
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If job j  is not tardy but job i is tardy in schedule S\ i.e. max{i, rj}+ p j+ p i > 
di and m ax{t,r j} +  p./ < dj, then

iuTj-i{S) -  wTi-jiS') =  iüi[max{t, rj} +  pj +  pi -  di] -  Wi max{0, t +  pi -  di)

—Wj max{0, max{t +  pi, r,·} +  pj — dj}

>  züi[max{i,r j }  +  P j  + P i  -  d i ]  -  iU i [ t  + p i  -  d i ]

-iüj[max{t + p i , r j }  + p j  -  d j ]

=  Wi[max{t,rj} -  i] +  {wi -  iUj)pj 

+Wj[dj — max{t +  pi, rj}] > 0

so interchanging jobs j  and i will improve the current schedule.

In schedule S, the completion time of job j  is less than the completion 
time of job i. Furthermore, due date of j  is higher than job i so when job j  
is tardy, job i will also be tardy. When both jobs are tardy problem becomes 
total weighted completion time problem for these two jobs and the job having 
higher ^  is scheduled first. Therefore, scheduling job i before job j  gives 
better objective function value. Thus interchanging positions of jobs i and 
we obtain a new schedule which is at least as good tis S. We can iterate this 
process until job i precedes all unscheduled jobs at time t.O

On the contrary, if any unscheduled job has maximum processing time, 
lowest weight, latest due date, and maximum release date at time t then all 
other unscheduled jobs will dominate it.

P rop osition  34 For any job k ^ U {t) at time t, if 
i) I'k >  maxigj7((){ri}, and 

a) pk > maxi^u{t){Pi}, and 
in) dk > maxi^u(t){di), and

iv) xok <  minig[/(/){inj} then job k can be placed at the last position of the 
remaining sequence.

P ro o f : Suppose in schedule 5, k is not the last job, i.e « 6 J is scheduled



CHAPTER 5. BRANCH & BOUND ALGORITHM 71

after job Then

wTkiS) =  Wk · max{0, max{f, r^} A pk ~  4 }  

wTi{S) =  Wi ■ max{0, max{t, r^} +  pk +  Pi -  4 }

Construct new schedule S' by interchanging positions of job i and k. Then 
wTkiS') =  Wk ■ max{0, max{t +  pi, ri +  p,, r*} +  pk -  4 }  

wTiiS') =  Wi ■ max{0, max{t, r j  +  pi -  d j

If both jobs are nontardy in schedule S, i.e. m ax{t,ri;} +  pk +  Pi <  4  then 

t +  Pk +  Pi <  4 ,  rk +Pk +  Pi < di- Since rk > ri then max{t, ?%■} +  pi <  di so 

wTi{S') =  0 and max{i +  Pi,Vi +Pi,Vk} +  pk <  dk so ioTk{S') =  0. This means 

that changing positions of job i and job k does not affect the objective value.

If job k is not tardy but job i is tardy in schedule S i.e. max{t, rk}+Pi+Pk > 
di and max{t,rfc} +  p/t <  4  then

wTk-iiS) -  wTi-k{S') =  roi[max{Cr^} +  pk +  P i  -  4 ]

—vji max{0, m ax{i, rj·} +  pi — 4 }

-tyfcmax{0,max{t +  pi,ri +  Pi,rk} + Pk -  4 }

>  tOi[max{i, rk} +  Pk +  pi -  4 ]  -  'tu,[max{t, ri} +  Pi -  di 

-Wk[ma,x{t A pi, ri +  p,·, r^} +  pk -  4 ]

=  tui[max{i,rfc} -  m axICrJ] +  (wi -  Wk)pk 

Arok[dk -  max{t +  pi,i\ +  pi, 7· }̂] >  0 

so interchanging jobs j  and k will improve schedule.

In schedule 5 , the completion time of job k is less than the completion time 

of job i. Furthermore, due date of job k is higher than job i so when job k 

is tardy, job i also will be tardy. When both jobs are tardy, problem turns 

out to be total weighted completion time problem for these two jobs and the 

job having higher ^  is scheduled first. So scheduling job i before job k gives 

better objective function value. Thus interchanging positions of jobs i and k, 
we obtain a new schedule which is at least as good as S. We can iterate this 

process until all jobs precedes job A;.D
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If jobs are “dense” , then at time t, no matter how long its processing time is, 
an unscheduled job with higher weight, less due date, release date and earliest 
completion time dominates the others.

Proposition 35 //max,e[/(i){ri} < m m k e B ( t ) , j e A ( t ) { i ' k + P k H + P j }
are two jobs belonging to U{t) such that rj <  I'k, max{i, r j}+p,· <  max{i,r/;} +
P k ,  W j  > W k  and dj < dk then job j  dominates job k at time t.

Proof : Consider a schedule S, such that at time t job k is scheduled, then 
there is a set of Q jobs followed by job j .  Construct another schedule S' by 
interchanging the positions of j  and k. Partial weighted tardiness of schedules 
S and S' are
roTA,_Q_j(,S’) =  Wk-ma,x{0, max{t, rk }+ P k -d k } +  ivTQ{S) +  Wj-ma,x{0, {t, r/,} +  

Pk + P q  +  Pi -  dj]
wTj^Q^kiS') = Wk ■ max{0,max{i,rj} + pj +  pq +  Pk -  4 }  +  wTq (S') +  wj ■ 
rnax{0, max{t, rj} + pj — dj]
where pq is the total processing time of jobs in Q. If both jobs are not tardy in 
schedule S, i.e. ma,x{t,rk]Apk+PQ+Pj < dj, then as Vj < rk, m a x { i , < 
d j  and since d j  <  d k ,  m ax{t,rj} +  P k  +  P q  +  P j  < 4  so w T j - Q - k { S ' )  = 0. 
Therefore, interchanging positions of job j  and job k weighted tardiness of the 
schedule will not be affected.

If job k is not tardy but job j  is tardy in schedule S i.e. m ax{i,?’fc} + P k  + 

PQ A Pj > dj and max{i,?’it} +  Pfc <  4  then
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i v T k - Q - j ( S )  -  w T j - Q - k ( S ' )  = ti;j[max{i,r^} + p k  +  P q  + P j  -  d j ]  +  ■ioTq (5’) -  w T q { S ' )

-Wk  max{0, max{i, ?·,·} + pj + Pg + Pk ~  4 }

—Wj max{0, max{i, Vj} +  pj — dj}

>  Wj[max{i, T k ]  + Pk + P q  +  Pj -  dj]

-w;fc[max{i, r j}  + pj +  pq +  Pk -  4 ]

-to j[m a x {i,r j]  +  Pj - dj] +  ivTq {S) -  luTgiS')

= ( w j  -  W k ) { p k  + P q ) +  W j  ■ [max{i, r̂ } -  max{/, r̂ }]

+Wk ■ [ 4  -  m ax{i,r j} -  Pj] +  w Tq {S) -  w Tq {S') > 0 

so interchanging jobs j  and k will improve the objective function value.

In schedule S completion time of job k is less than job j  and due date of k 

is higher than job j  so when job k is tardy, job j  also will be tardy. When both 
jobs are tardy wT(S) — wT{S') value will increase by I'k} TPk ~ dk).

Therefore, scheduling job j  before job k gives better objective function value.
□

Similar to proposition 34, at any time f, job with latest release date will be 
dominated by the jobs with less processing time, earlier due date, and higher 
weight.

Proposition 36 Let j  be a job that at time t, rj =  rnax,gf;(i){?’«}· There is 
an optimal schedule in which job j  is preceded by any job k € U{t) such that 

Pj > Pk, Wj <  Wk, and dj >  dk.

P ro o f : Similar to Proposition 34 consider a schedule S such that the job j  
precedes job k. We construct a new schedule S' by interchanging the positions 
of jobs j  and k. In the proof of Proposition 34, we already showed that from two 
adjacent jobs the one with earlier release date and due date, shorter processing 
time, and higher weight dominates the other job. This property is transitive
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as long as all jobs are available. Since job j  is the job with latest release date, 
all unscheduled jobs will be available, when job j is scheduled. Therefore, a 
job will dominate job j  if it has shorter processing time, earlier due date, and 
higher weight. □

At any time t, an unscheduled job with higher weight, higher processing 
time and earlier due date dominates another unscheduled job, if its possible 
earliest completion time (ECT) value is lower than the other.

P rop osition  37 Given two jobs at time t, such that i , j  G U{t). If pi > p.j, 
rnax{t,r,·} -\-pi <  m ax{i,r j} A pj, di < dj, and Wi >  Wj then job i dominates j  
at time t.

P ro o f : Let’s consider a schedule S with job j  scheduled before job i.

Interchange the positions of jobs j  and i in schedule S'. Then
■wTj{S) =  Wj · m ax{0 ,m ax{i,rj} +  pj — dj}

wTi(S) =  Wi ■ m ax{0 ,m ax{t,r j·} +  pj + pg + pi -  di}
wTj{S') =  Wj · m ax{0, max{ii,r,·} +  pi + pg + Pj — dj}
wTi{S') — Wi ■ m a x {0 ,m a x {i,r j +  p,· — d,·}
Pi > Pj and Ti T Pi < Tj +  pj implies that Vi < Vj. If both jobs are nontardy 
in schedule A, then similar to Proposition .35 interchanging these jobs will not 
affect objective function value.

If job j  is not tardy but job i is tardy in schedule 6', interchange function 
will be
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w Tj-Q -i(S ) -  loT i-Q -j(S ') -  iOi[max{/, r j}  +  pj +  pQ +  pi -  di\ +  wTq {S) -  wTq{S')

—Wi max{0, m ax{i, r j  +  pi — c/,·}

~Wj max{0, m ax{i, r J  + pi +  pq +  pj -  dj}

>  tOi[max{i, r j}  +  pj +  pq +  Pi -  f/,·] +  luTqiS) -  tuTq(S')

-W i[m ax{i, r j  +pi -  di] -  tOj[max{i, rJ  +  pi +  pq +  pj -  i/,·]

=  iyi[m ax{i,rj} -  m a x {i,r j]  +  (lUi -  iUj){pj +  pq)

+Wj[dj -  {pi +  m ax{i,ri})] +  wTq(S) -  wTq{S') >  0 

so interchanging jobs j  and i will decrease total weighted tardiness value.

When both jobs are tardy, wT(S) — wT(S') value will increase by 
zi;j[max{t, r j] -\-pj — dj\. Considering all possible cases, scheduling job i before 
job j  gives better objective value. Thus interchanging positions of jobs j  and 
i, we obtain a new schedule which is at least as good as ShD

If all jobs are available at time t, or new job will be arrived after all available 
jobs are processed then set of available jobs forms a job block, where the 
dominance rules of Rinnooy Kan et al. [44] and Akturk and Yildirim [4] can 
be applied.

Proposition 38 If either 'fZjeA{t)Pj +  ̂ ^ -^(0 = ^
unscheduled jobs belonging to A{t) will form a block of jobs such that dominance 
theorem developed by Rinnooy Kan et al. [ f f j  o.'̂ d Akturk and Yildirim [ j ]  for 
1] problem can be applied. In other words, if one of the following

conditions is satisfied job i precedes job j  in an optimal sequence:

i) Vi < Pj> '̂ i ^  ^  ^'^^^{dj',T,heBjPh +  P j};
i i )  w i  >  W j ,  d i  <  d j ,  a n d  d j  >  f f h e s - A i  P h  ~  P j i  

i i i j d j  >  E h e s - A i  P h

or if di < dj. Pi > Pj and Wi < Wj, then job j  precedes job i j  ^  i for t > tij.

P ro o f : B(t) =  0, means that all unscheduled jobs are available. For jobs
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j  € A{t) problem turns out to be 1| \Ŷ  WjTj. Else if i <

minfcgB(i){rfc} then all available unscheduled jobs will be scheduled before any 
new job becomes avciilable. Then problem turns out to be 1| | ^  WjTj problem 
for jobs j  E A{t) because time needed for arrival of new job is more than total 
processing time of all available unscheduled jobs. For 1| \Y^WjTj problem 
Rinnooy Kan et al. proved validity of first three conditions [44], and validation 
of last condition is shown by Akturk and Yildirim [4] Since for jobs j  G A(t) 
problem is equivalent to 1| | Y^WjTj problem, these rules can be used to prune 
some branches. □

We already showed that for any pair of jobs i and j ,  if time is greater than 
all breakpoints then scheduling job with higher ^  gives optimum ordering for 
those jobs. Hence if all ¡possible breakpoints are passed then the WSPT rule 
will give an optimum sequence for the remaining jobs as proved in Proposition 
32 in Chapter 3.

If scheduling even the job with shortest processing time at time t makes 
all unscheduled jobs tardy, then problem turns out to 1| [J^WjCj problem so 
WSPT rule will give an optimum sequence for the remaining unscheduled jobs.

P rop osition  39 Ifm m {t +  mmj^A(t){pj},mmk^B{t){rk+Pk}} >
then the WSPT rule gives an optimum sequence for the remaining unscheduled

jobs.

Proof : min{t +  mmj^A{t){pj},^^^keB{t){f'k +  Pfc}} '̂̂ e earliest completion 
time of first job scheduled after time t. When earliest possible completion 
time of first schedule exceeds due date of all unscheduled jobs, this means 
that all unscheduled jobs are tardy jobs, hence our problem is equivalent to 
the 1| I Yi,WjCj problem whose optimum schedule is obtained using the WSPT 
rule as shown by Smith [49].□

A schedule can be optimum only if it is one of elements of the active schedule 
set. Following proposition is needed to guarantee active schedule condition.
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P rop osition  40 If t + miiijgyi(i){pj} < Vk then k G B{t) will not be scheduled 
at time t.

P ro o f : A feasible schedule is called active if no operation can be completed 
earlier by altering processing sequences on machines and not delaying any other 
operation. A schedule which gives optimum sequence must be in the set of 
active schedules. Since scheduling job k at time t violates active schedule, it is 
possible to insert a job before job k̂  without delaying any other job. Therefore, 
the proof follows. □

We should also check local optimality, by checking the proposed dominance 

rule.

P rop osition  41 Let job k' be the last scheduled job in the sequence, at time t 
such that processing of job k' starts at time t'. For all unscheduled jobs i 6 U(t) 
if scheduling job i at time t violates proposed dominance rule, i.e. i -< j  at time 
t' then job i will not be scheduled at tim.e t.

P ro o f : We already showed that if any adjacent two jobs violate proposed 
dominance rule then interchanging these jobs either improves objective function 
or leaves it unchanged. So if Q\k'iQ2 sequence violates proposed dominance 
rule then interchanging job k' and job i will either improve the sequence or 
leave it unchanged. Therefore, in branch and bound tree, branch containing 
schedule S =  Q\k'iQ2 will be fathomed sooner or later.□

5.2 Lower Bounding

To the best of our knowledge, there is no lower bound in the literature 
developed for l\rj\Y,WjTj. Using lower bounds developed for 1| \Y,WjTj 
problem can be one of the alternatives. But lower bounds for 1| \Y,WjTj 
problem are either not practical to use due to extensive computational 
requirements or not so powerful even if the release dates are equal. From
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the different lower bounds derived for 1| \Y,iOjTj problem, the linear lower 
bound proposed by Potts and van Wassenhove [38] is the most advantageous 
one concerning the computational time. It can be computed in polynomial 
time. Although it has a weak lower bound value, it is suggested to be used in 
B & B algorithms for large 1| | Y,WjTj problems {n >  30) due to low memory 
requirements [1].

To use the linear lower bound, we should reUix the cissumption that every 
job cannot be scheduled before its release date. But when relative range 
of release dates is rather large, i.e. if release dates of the jobs are loose, 
linear lower bound will be very ineffective. Therefore we adapted another 
lower bound which is mainly developed for i\rj\J^WjCj problem by making 
minor changes in the calculations. Lower bounding procedure for l|?y| Y,WjCj 
problem developed by Hariri and Potts [27], /6//p, can be adapted to lb = 
Ibnp — Ylj^jWjclj and used in the algorithm. This lower bound is expected to 
perform better when release dates are loose.

As bounding scheme of our algorithm, we calculated both lower bounds 
linear lower bound (/6z,/jv) and lower bound adapted from Hariri and Potts 
(/¿2 =  Ibnp — Ylj^j'Wjdj) at each node and take the best of these two as a 
lower bound of the particular subsequence. We discuss these tower bounds in 
detail below.

5.2.1 Linear Lower Bound

A lower bound which is originally developed for 1] [Y^iUjTj can be used as 

a lower bound for 1|7’,·] problem. Because if we replace all Vj values
with zero, r'· =  0, l|rj =  r) — 0]^tOjTj problem is equivalent to 1] 
problem. For the samepj, wj, and dj values total weighted tardiness value for 
equal release dates is always less or equal to the total weighted tardiness value 
with unequal release dates. Therefore lower bounds derived for 1] \J2 wjTj 
problem can also be used as a lower bound when release dates are unequal as 

shown in the following proposition.
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P roposition  42 Given a problem II, construct a new problem II' in which the 
jobs are scheduled by relaxing the problem under the assumption that the jobs 
are simultaneously available at time zero. The following relation holds:

Ibn' ^  ^
where iJ2wjTj)}i is the optimal total weighted tardiness of problem 11 and Ibw 
is any lower bound value obtained for  1| \ YjwjTj problem.

P roof: Since /¿n' is any lower bound value for 1| \Y^WjTj problem in the 
literature, first part of the inequality is clear from the definition. Let Cy] =  Ci 
be the completion time of ĵ  ̂ scheduled job, job i, in the schedule obtained 
from /¿n' where job i becomes available at time r[j] =  r,· and let C[̂ > =  C[ be 
the completion time of job i in the same schedule where all jobs are assumed 
to be available at time zero.
For the scheduled job C'y·̂  =  p[j] < r[i] +  ppj =  C[ij

For the 2"'̂  scheduled job C'[2] =  C y]+p[2] <  C'[i]+P[2] <  rnax{C'[i],r[2]} +p[2] =

C [2]

Continue in the same way
For .scheduled job =  C¡J_^]+py] < Cy-i]+py] <  m ax{q j_i], =

resulted in Cy·̂  <  Cy] for all j  — {1,2, ..,n }
Since weighted tardiness of job j ,  WjTj =  Wj ■ max{0, Cj — dj]

{iVjTj)Y\i =  ryj-max{0, Cj —dj} < roj·max{0, Cj — dj) =  [wjTj)w (j =  l,2 ,...,?r) 
results in (J2wjTj)’̂ , <  .d

The linear lower bound is originally obtained by Potts and Van Wassenhove 
[.38] by using the Lagrangian relaxation. Abdul-razaq et al. [1] show that it 
may also be derived by reducing the objective (total weighted tardiness) to a 
linear function. For job i {i — 1, ...,n ), we have

iViTi — Wi maxfCt· — dj·, 0} >  ly ma.x{Ci — di, 0} >  ufC i — d{)

where Wi >  « ; >  0 and Ci is the completion time of job i. Let u =  (tq, ..., 'U„) 
be a vector of linear weights, i.e. weights for the linear function C{ — di, chosen 

so that 0 < Ui < iVi. Then a lower bound is given by the following linear
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function
n n

LBlin {u) =  'Y^UiiCi -  di) <  -  ¿¿,0}
¿=1 ¿=1

This shows that the solution of total weighted completion time problem 
provides a lower bound on the total weighted tardiness problem. We know 
total weighted completion problem can be solved optimally by Smith’s [49] 
shortest weighted processing time rule in nonincreasing order of

Ideally, nonnegative values of u would be selected to maximize the linear 
lower bound, LB u n {u )̂  subject to Ui < lui for each job i. To obtain these 
best values Abdul-razaq et al. [1] suggested not to use the subgradient 
optimization method suggested by Fisher [22] and Goeffrion[25], because it 
is comiDutationally expensive to apply. They used the noniterative heuristic 
method of Potts and Van Wassenhove [38] to determine values for u.

To present the noniterative heuristic to obtain the linear lower bound, first, 
we obtain a heuristic method to obtain job completion times C[  ̂ (* =  1, - ..n). 
Then the vector of linear weights u is chosen to maximize LBu n {u)·, subject 
to the condition that the heuristic sequence is an optimal solution of total 
weighted completion time. A linear programming {P ) of the form

iP)

maximize LB (z) =  ciiZi 

subject to biZi > bi^iZi+i, i =  1, ...,n — 1

0 < Zi < Ci, i =  1, ...,n

where Ci is a constant, and E and Ci are nonnegative constants {i =  l,...,yr), 
can be solved to find u. When a( =  CE — b{ =  1/p,:, Ci =  Wi and Zi — Ui, 
the solution of the problem (P ) yields the lower bound LBl in {u).

Observe that for any jobs h and i where h < i, we get biZi < bhZh < bhCh. 

Let’s define,
c' =  min ibhCi,/bi},i =

.··**}
If we add the constraints

0 < Zi < c'i, i =  1, ...,n
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the solution to problem (P) does not change. Since c' <  C{ (i =  1, the.se
new constraints imply the original constraints 0 < Zi < Ci {i =  l ,. . . ,n )  which 
therefore may be dropped. The following algorithm is used to obtain LBlin 
by Potts and van Wassenhove. In the algorithm the variable LB  indiccites the 
lower bound value.
Linear Lower ~Bound(LBu n (u)):

Step 1. Set D =  0, LB =  0 and k =  1.

Step 2. Set D — D +  akibk. If Z) <  0 go to Step 4.

Step 3. Set LB  =  LB  +  Dbkc'f. and set P  =  0.

Step 4. If  ̂ =  ?r, stop. Otherwise set A; =   ̂+  1 and go to Step 2.

The linear lower bound takes an initial sequence as input. It is showed by 
Akturk and Yildirim [4] that the WSPT rule performs well in a reasonable 
computation time. Therefore, we use the WSPT rule to determine an initial 
sequence.

5.2.2 Lower Bound 2
We now derive a lower bounding procedure for l|7’j| WjTj problem, based on 
the lower bound for l\rj\YwjCj problem, proposed by Hariri and Potts [27]. 
From the definition of tardiness, tardiness of job j  is 
Tj =  max{0, Cj — dj} where Cj is the completion time of job j .  Since 
Cj — dj < Tj for all j  =  {1 ,2 ,.., n}
Wi { C j  — d j )  =  W j C j  — W j d j  < W j T j  for all =  {1,2,.., ?r}. In sum

E  WjCj -  E  Wjdj <  E  WjTj

So for any problem, H, in a given schedule, S, total weighted completion time 

of S', Y w jC j < YiOjTj +  Y^Wjdj.

constant

Therefore, if lb is any lowerbound value for l|rj | Y w jC j problem 
lb < Y w jC j <  Y w jT j+ Y w jd j  results in Ib—Y w jdj < Y w jT j. So Ib—Y'Wjdj
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value provides a lower bound for 1|г̂ | Y^WjTj problem.

This property can be used in a lower bound scheme easily. Our next lower 
bound is derived by Ccilculating lower bound value of a partial sequence with 
proposed algorithm of Hariri and Potts and by subtracting total weighted 
due dates of unscheduled jobs, we update lower bound value for l\rj\Y  ̂WjTj 
problem. Hariri and Potts obtain a lower bound by performing a Liigrangean 
relaxation of each release date constraint Ci > -{■ pi {i =  1 , after which
it is replaced by a weaker constraint C{ > r · +  p, for some r· <  I'l. This gives 
the Lagrangean laroblem

L{X) - min{5^ WiCi +  Х(г\ + p i -  Ci)} (5.1)
¿=1 ¿=1

where A =  (A i,..., A„) is a vector of non-negative multipliers; the minimization 
is over all processing orders of the jobs with Ci (i =  1,..., ?г) subject to machine 
capacity constraints and to the constraints Ci >  r) +  /Л'. We can write 5.1 as

L(X) =  m in{^^ w'iCi] +  £  X{ri -I- Pi) (5.2)
¿=1 i=l

where - lOi — Xi (i =  1, ...,n). Thus, the Lagrangean problem is of the same 
form as the original problem but each job has a new release date r' and a new 
weight w[. The choice of multipliers is restricted to the range 0 < A; < Wi 
{i =  l , . . ,n )  to ensure that L{X) does not become arbitrarily small. Original 
values of the release dates, i.e. r[ =  rj are chosen but Hariri and Potts [27] 
restrict the choice of multipliers so that the Lagrangean problem can be solved 
easily. This is achieved by maximizing L{X) subject to the condition that 
the sequence generated by the earliest start time (EST) heuristic with job 
completion times, C  ̂ =  ri-f-pi, C* — max{r,·, C f-ij+ P ; (i =  2,.., ?i), where jobs 
are renumbered so that the scheduled job is job k, solves the Lagrangecin 
problem by yielding weights w'· (i =  l , . . ,n )  which satisfy the conditions of 
theorem, stating that a sequence is optimum if the jobs within each block Sj  

are sequenced in nonincreasing order of ^  [27]. Thus, for each block Sj  that

(wi -  Xi)/pi <  (iUi_i -  Ai_i)/pi_i, for г =  г<, -t- 1, ..,vj 

where job vj is the last job in a block if C*. <  I'i for i =  Vj -f 1, ..,n. A set
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of jobs S j  =  { u j , . . , V j }  forms a block if the following conditions are satisfied: 
(Hariri and Potts [27])

(a) Uj =  1 or job Uj — 1 is the last job in a block;
(b) job i is not the last job in a block for i · tij, ,.,Vj — 1;
(c) job Vj is the last job in a block.

L(X) is maximized by choosing A =  A*, where

0 if f =  tij, j =  l,..,k

max{0, Wi +  (A*_i -  } if i=Uj +  1, Vj
A* = (5.3)

Having found C* (i =  1 ,..,« )  as suggested by [27] and using 5.3, lower bound 
for \\rj\'^WjCj can be written as

LB  =  L{\') =  J 2 w .c :  +  ¿ A n n  +  R -  C,·)
¿=1 ¿=n

Furthermore, improvement of this bound is also possible [27]. Based on the 
A*, the jobs in the EST order are reordered within each block in nondecreasing 
order of A* to give the permutation tt =  {7t(1), 7t(2), .., 7r(n)} such that Sj  =  

{7riuj),Tr(uj +  l),..,7r(u j)} and < .. <  for all j .  Other
definitions in the lower bound calculations are as follows:

-  {7r(uj +  -  1)} for h -  1,2,.., Vj -  Uj j  =  1,2,.., k,

S.

3
( 0) 5,

, , 0   \* _ \*r̂ j 7̂t(Uj-f/i-l)

=  Eig5('o(ri· +P i).

for /i =  1,2, ..,Vj -  Uj j  =  1, 2,.., A:, 

for A =  1,2,.., Vj — Uj j  =  1,2,.., k,

In addition, /3ĵ  ̂ denotes the sum of completion times for the jobs in Sf'’̂  
when they are sequenced according to the SRPT rule, for h =  1,2, ...,Uj — Uj]
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j  =  1, 2, Improved lower bound is

k V j - U j

LB'^LB + ^ Y ^
j = l  h=l

where it is assumed that any summation is zero when its lower limit exceeds 
its upper limit.

Therefore,
/62 =  LB' — ^  Wjdj

will give a lower bound value for l|rj| Y^wjTj problem. At time t, at any node, 
if partial schedule is S{t) then

lb2^iuTiS(t)) + L B '{U ( t ) ) -  lOjdj
j € U { t )

will be a lower bound of the particular node, where iuT{S(t)) is the partial total 
weighted tardiness of the partial schedule and U(t) is the set of unscheduled 
jobs at time t.

5.3 The B B Algorithm

We now present our B & B algorithm which incorporates domincuice rule 
proposed in Chapter 3, and dominance properties discussed in § 5.1. In any 
B & B method, there are three main components, namely a lower bounding 
scheme, a branching condition and a search strategy. A node at level k of the 
search tree corresponds to a partial sequence, P, in which jobs scheduled from 
the beginning of the schedule up to level k and a partial sequence, Q, of jobs 
scheduled at the end of the schedule. Node at level k+1 of the tree is denoted 
as P — i..Q, where P  and Q are the defined partial sequences and job i is 
scheduled to A; +  position of the schedule. Before any new node is created, 
the dominance properties of § 5.1 are checked. For each possible candidate 

partial sequence, both linear lower bound (Ibi) and 11)2 are calculated. Lower 
bound of the partial schedule is determined by choosing maximum of those.
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two lower bounds. If lower bound of the sequnce is larger than upper bound, 
node is fathomed else it is inserted to an active stack.

By jumping all over the tree searching for a subproblem with minimum 
lower bound, best first search (BPS) method keeps a good strategic 
understanding of the overall decision tree. Although total number of steps 
for optimum solution is relatively small, since full solution is generated at 
very late steps of the algorithm, BPS requires a large storage spcice. Size of 
active stack grows exponentially and even for small sized problems, memory 
requirement is infeasible. As an alternative, depth first search (DPS) method 
looks for very quick full solution by following minimum lowerbounds right to 
the bottom of the tree and then by backtracking searches that part of the tree. 
Бог DPS memory requirement is quite small, but depending on the place of 
first solution DPS might spend a great deal of time in the wrong part of the 
tree.

To take advantages of both search methods, we use a hybrid approach 
of BPS and Dĥ S as a search strategy. Maximum number of subproblems in 
the active stack is limited with a predetermined number, which is determined 
intuitively. Up to the certain stack size, BPS algorithm is applied to get a 
general picture of solutions in all parts of the tree. Relatively bad partial 
sequences are detected at BPS method. When active stack size hits the allowed 
stack size, algorithm passes to DPS algorithm at lower levels of the tree, to 
obtain full solution. Algorithm works as follows:

The В L· В Algorithm

STE P 0 [Initialization] Set seq <— 0, <— oo, U r[ij, .S' <— 0, P  <— 0, Q <—
0, and last <— n. Calculate the breakpoint matrix. Determine ti <—

STE P 1 [Global Dominance] If any job i € A{t) satisfies proposition 33 then set 

'5'[iC7] P <— max{P +  Pi,rmin}, P  <- {P  -  *}, and seq <— seq +  1. 
If seq < last then repeat Step 1. Else if loTs < ub, set S *— S and
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■ub <— wTs then goto Step 7.

STE P 2 [Global Dominance] If any job i 6 U(t) satisfies proposition 34 then set 
E[iast] h ^  lO'Si — 1) and Q <— {i — Q }. If seq < last then repeat 
Step 2. Else if wTs < ub, set S e- S and ub xoTs then goto Stej) 7.

STE P 3 [Reduction to 1| j Y^WjCj] If T > ti then schedule every unscheduled job 

i G U{t) in nonincreasing order of If tuTs < ub, set S <— S and 
ub <— wTs then goto Step 7.

STE P 4 [Eliminating #  of Alternatives] If either i —> j  (from propositions 38 
or 41) or i -< j  at time T for every unscheduled job j  G U{t) (from 
propositions 35, 36, 37, or 41) and i ^  j ,  then set 6)seg] ^  h T ^  

max{f^ +  Pi,rmin}·, P <— {P  — ¿}, and seq <— seq +  1. If seq < last then 
goto Step 1. Else if xuTs < ub, set S <— S and ub <— luTs then goto Step 
7.

STE P 5 [Selecting Subproblem] For every unscheduled job j  G U{t) which is not 
dominating .S'[se9-i] at T due to propositions 35, 36, 37, 38, and 41 such 

that rj <  min{T +  PminArk +  Pk)keB(t-)}] where pmin =  minfcg^(ic){pfc}, 
let lbp-j_,Q +— m ax{/6i , /62}· If lbp-j..Q < ub for any unscheduled job 
j  G U(C), insert it to active stack, AS, then store tp-j„Q <— iriaxli“̂ ,r,·} 
and seqp-j„Q <— seq. Else goto step 7.

STE P 6 [Upper Bounding] If A,S' ^  0 and size — AS < M ax — Stack — Size pick 
partial schedule { P —j..Q }  with min lbp-j„Q from AS (BFS). Else if AS ^  
0 pick job j  with LIFO rule (DFS). Set P[4e,] <— j ,  T e- rnax{U+pj, rmhi}, 
P <— {P  — j ]  and seq <— seq +  1. if seq < last then goto step 1. Else if 
wTs < ub, set S <— S and ub <— wL's-

STE P 7 [Branching] Eliminate all subsequences with lb > ub from AS. If AS ^  0 
and size — A,S' < Max — Stack — Size pick partial schedule {P  — j }  
with m in/6p_y.Q from AS (BFS). Else if A,S' 7̂  0 pick job j  with LIFO 

rule (DFS). Set U <— ip-y.g +  P j ,  5[se9] ^  j-> P  ^  {P  ~ j )  ^
seqp-j„Q +  1 then goto step 1.

STE P 8 [Report Optimum Solution] Else report P,opt S.
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Initially, there is no scheduled job and by calculating tjj, i?·, and ifj values 
for all job pairs (breakpoint matrix), the time point, where the problem 
reduces to 1| | WjCj j^roblem is determined. First two steps searches if there is 
any global domince relationship at T. If job i satisfies conditions of proposition 
33 then we increase current time to maximum of completion time of the job i 
or to the earliest release date of the unscheduled jobs, r-min i>nd searches next 
dominant job. Else if job i satisfies conditions of proposition 34, it is dominated 
by all unscheduled jobs. Then, job i is scheduled to the last position. Counter 
Icist is decreased by 1 and another dominated job is searched.

Otherwise, if T > t( then all unscheduled jobs are scheduled in 

lincre 
namely.
nonincreasing order of ^  and algorithm jumps to branching condition. Step 7

Else if T < ti, dominance properties are checked and dominated jobs are 
eliminated. For every unscheduled job two lower bounding procedui'es are 
implemented and the lower bound lb is set to the mciximum of them. If the 
lower bound is less than or equal to the upper bound, that partial sequence is 
inserted to active stack by recording the start time and sequence of last job. If 
AS size is less than maximum allowed stack size, partial schedule with lowest 
lower bound is extracted from AS, else the last inserted partial schedule is 
extracted. Updating current time, U, scheduling candidate job i with sequence 
seqp-i„Q a new subtree is grown by returning to Step 1.

If a full solution is obtained, in Step 7, weighted tardiness of the schedule is 
calculated. If weighted tardiness of the schedule is less than the current upper 

bound, ub, incumbent schedule, S, and upper bound, ub is updated.

Eliminating all subproblems with lower bounds larger than ub from active 
stack, AS is kept active. If AS is not empty then either partial schedule with 

lowest lower bound is extracted from AS, if AS size is less than predetermined 
maximum stack size; or the last inserted partial schedule is extriicted, if AS size 
exceeds maximum stack size. Updating current time, U, scheduling candidate 

job i with sequence seqp-i..Q a new subtree is grown by returning to Step 1. If 

AS is empty the incumbent schedule S is reported as optimal.
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job 1, job 2, or job 4.

For jobs 1, 4, and 2, both lowerbounds Ibi and Ib̂  give the same value. For 
job 1 LB\ - min{54;54) =  54, for job 2 LB 2 =  75, and for job 4 LB̂ i — 84. 
Active stack size is equal to 3. Since it is less than maximum stack size, 
3 < 5, best-first-search (BFS) method is used. Therefore, partial sequences 
{4} and { 2} are added to active stack (AS). Scheduling job 1 to seq =  0, set 
C =  m ax{9,6} =  9, and increase seq by 1. Since there is no global dominance, 
unconditional or conditional precedence relationships, we return to step 5. Jobs 
2 and 4 satisfy active schedule condition (proposition 40). Lowerbound of 
partial sequence {1 — 4} is LB 1 - 4  =  max{48;48} =  48 and lowerbound of 
{1 — 2} is LB \ ^ 2  =  max{46.8; 46.8} =  46.8. Therefore, {1 —4} is added to AS. 
Schedule job 2 to seq =  1, 5[i] <— 2. Set C =  m ax{14,6} =  14, increase seq to 2. 
Since there is no global dominance and 14 < =  22, we return to step 4. Jobs
3, 4, and 5 are possible candidates. But if 4 =  10/3 is valid. So for i > r4 =  6, 
job 4 precedes job 2, i.e. 4 2. Therefore, job 4 cannot be scheduled after job
2 while their processing starts at i =  9. L B i-2 - 3  =  max{51.4; 73.0} =  73 and 
LB i- 2 - 5  =  max{46;46} =  46. Partial sequence {1 — 2 — 3} is added to active 
stack.

Currently active stack size (AS-size), AS — size > 5 so branching will 
continue with depth-first-search (DFS) method. Update seq ·«— seq -|- 1 and 
C =  m ax{21, 6} =  21, At seq =  3 jobs 3, 0, and 4 are possible candidates. 
But due to proposition 37, job 4 precedes job 5, 4 -< 5 if their processing 
starts at time, t — 14. Therefore, job 4 cannot be scheduled as immediate 

successor of job 5. LB\-2 - s - 2, -■ max{45.0; 45.0} =  45.0 and L B i-2 - 5 - 0  =  
max{49.0; 103.0} =  103.0. Since our search strategy is DFS, we schedule job
3 at seq 3, set C =  max{29,6} =  29 and pass to lower level, seq seq -)- 1. 
At T =  29 > i/, seq =  4 problem reduces to 1| \ Y^WjCj problem and WSPT 
rule gives optimum sequence for remaining unscheduled jobs. So sequence 

{1 — 2 — 5 — 3 — 0 — 4} gives ub =  97. Since L B i- 2 - 5 - 0  =  109 > 97, it is deleted 
from active stack.

At step 7 with minLB — 48 partial sequence {1 — 4} is extracted from
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active stack with C =  18 and seq =  1. Jobs 2, 5, 3, and 0 are possible 
candidates. All candidates will be inserted to AS. Lower bounds are calculated 
as follows: L B i-4 - 0  =  min{68; 74} =  74, L B i-4 -s  =  min{44;44} =  44, 
L5 i_4_5 =  min{40.33; 40.17} =  40.33, and LBi_4 - 2  =  rnin{44.4; 44.4} =  44.4. 
Partied sequence with minimum lower bound {1 — 4 — .5} is picked while other 
partial sequences ai’e added to AS. C is updated to 23 and level is increased 
by 1, seq =  seq + 1 = 2. Since C > ti branch is solved using WSPT rule for 
remaining unscheduled jobs, {1 — 4 — 5 — 0 — 3 — 2} and ub is set to 90.

Since A,S' — size =  7 > 5, last inserted partial sequence { 1 — 4 — 2} is 
extracted with C =  23, seq — 2. This branch can be solved by using proposition 
32 again, and the WSPT rule gives the objective value of 67. Setting ub — 
67, all partial sequences, except {1 — 4 — 3} is deleted. Setting C — 25, 
seq =  2, { 1 — 4 — 3} is extracted from active stack. C > ti so problem 
reduces to 1| \YiwjCj. As a result of sequencing remaining unscheduled jobs 
in nonincreasing order of ub is set to 57. Since AS is empty set, there 
is no other node to open. Passing to step 8, branch and bound algorithm is 
terminated.

In summary, the optimum schedule is {1 — 4 — 3 — 0 — 2 — 5} and the 
minimum value of the total weighted tardiness is 57.

In order to demonstrate the lower bound calculations, let’s calculate the 
lower bound for the partial sequence of {1 — 2 — 3} at time t =  22. The partial 
total weighted tardiness of this partial sequence is equal to 1, and the set of 
unscheduled jobs are S — {0 ,4 ,5 }. Summary calculations of Ibi is given in 
Table 5.2. For calculation of /62, there is single block of jobs. Si. Calculations 
for /62 are summarized in Tables 5.3 and 5.4.

So lower bound at this node is equal to L B i- 2 - 2, =  max{51.4; 73.0} =  73 
given by lower bound adapted from Hariri and Potts [27]. When the relative 
range of release dates are rather loose, like the ones in our example, a lower 

bound which considers these release dates performs better. As shown in Figure 
5.1, the linear lower bound of Potts and van Wassenhove [38] which is expected 
to provide better lower bound values in general, is not able to fathom neither
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the partial sequence {1 — 2 — 3} nor (1 — 2 — 5 — 0). On the contrary, we expect 
linear lower bound to perform better than the lower bound of Hariri and Potts, 
when relative range of release dates is tight and jobs become avciilable in a short 
range.

5.5 Summary

In this chapter, we looked at how the proposed dominance rule can be 
incorporated in a branch and bound algorithm in conjunction with a branching 
condition, lower bounding scheme, and a search strategy. There is no lower 
bounding algorithm in the literature specifically developed for l|rj| 
problem. But lower bounds for 1| \J2wjTj problem can be used directly as 
a lower bound for our problem when relative range of release dates are tight, 
i.e. problems are ’’ dense” . Lower bounds for l|rj| Y^WjCj problems can also be 
adapted to l|rj| Y^WjTj problems. So we used linear lower bound developed by 
Potts and Van Wassenhove for 1| | J^WjTj [38] and we adapted the lower bound 
developed by Hariri and Potts for problem [27] by making minor
changes in their procedure. In our algorithm we calculated both lower bounds 
at each node and chose the best one as lower bound of the node. As search 
sti’citegy, we derived a hybrid approach of best first search (BFS) algorithm and 
depth first search (DFS) algorithm. At upper levels of B & B tree, we used 
BFS algorithm up to a certain predetermined stack size. When active stcick 
size exceeded the maximum allowed size, DFS method is applied to the set of 
active subproblems.

We have already developed a set of new dominance properties that we 
can utilize in any exact approach. A B & B algorithm is proposed which 
incorporates our dominance rule, by implementing additional dominance 
properties, a lower bounding scheme and a hybrid branching strategy. The 
proposed B & B algorithm is explained step by step with a simple example.

We tested the proposed algorithm with a set of randomly generated
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problems. In the following chapter, we will describe the experimentell design 
and report a computational analysis of the B & B algorithm.
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Job# 0 1 2 3 4 5

Pi 2 6 5 7 9 6

’’i 22 3 7 15 6 15
d j 24 9 13 22 15 21

W j 1 9 1 3 3 1

Table 5.1: Job Set Parameters for Example Problem

job# 1 2 3 0 4 5

W i  =  Ci 9 1 3 1 3 1

Pi 6 5 7 2 9 6
Wj

Vi
- - - 0.5 0..33 0.17

di 9 13 22 24 15 21

Ci 9 14 22 24 33 39

a i - - - 0 18 18

bi 0.17 0.2 0.14 0.5 0.11 0.17

< - - - 0.4 1.8 1

D - - - 0 162 108

wT 0 1 0 0 32.4 18

Table 5.2: A Summary of Calculations for lb\ =  51.4
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Job# 1 2 3 0 4 5

Ti 3 7 15 22 6 15

Pi 6 5 7 2 9 6
W i  -  Ci 9 1 3 1 3 1

9 13 22 24 15 21

Ci 9 14 22 24 33 39
0 1 0 0 18 18

W i ( C i 0 1 0 0 54 18

A.· - - - 0.14 0 0

Ai(Ci -  Vi -  P i ) - - - 0 0 0

/62 initial 0 1 0 0 54 18

Table 5.3: Summary of Initial Calculations for /¿2 =  73

i 51 /4 b\ Pi Mi ( « - 6 »
0 {0,4, .5} 0 60 72 0

1 {4,5} 0 37 36 0

2 {5} 1.4 21 21 0

lb'2 = /¿2 initial + 0

Table 5.4: Summary of Improvement Calculations for /62 =  73



Chapter 6

Computational Analysis

The briinch and bound algorithm presented in the previous chapter is 
imiDlemented at Unix environment using C language. We will study the 
performance of the algorithm in this chapter.

Although customer orders may not arrive simultaneously in real life 
problems, to the best of our knowledge, we know of no other published exact 
approach for \\rj\Y^WjTj problem. Since, there is no other exact algorithm, 
currently, only way to reach an optimum solution is complete enumeration. 
Even for l|ry| problem, there is only one published study of Chu [11], 
where constructed B & B algorithm can solve problems with up to 30 jobs for 
certain problem instances. Computational requirements for larger problems 
tend to limit this approach. \\7'j\Y^WjTj problem is the general case of 
l|r,|^Tj problem. Therefore, it is much more difficult than equal weight 
case. 30 job barrier seems an upper limit for l\rj\J2wjTj problem.

This chapter is organized as follows: In § 6.1, the experimental design will 
be described. Computational results with a set of randomly generated problems 
will be presented in § 6.2. Finally, our findings will be summarized in § 6.3.

95
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6.1 Experimental Design

To test the efficiency of constructed B & B algorithm presented in Chapter 5, 
it is coded in C Icinguage. The program is comi^iled with Gnu C compiler using 
-02 optimizer option and run on a SPARC Station 10 under SunOS 4.1.3.

The proposed algorithm is tested on a series of randomly generated 
problems in the same way suggested by Chu [11]. Example problems were 
generated as follows: For each job j ,  an integer processing time pj and an 
integer weight wj were generated from a uniform distribution [1, 10]. Instead 
of finding due dates directly, we generated slack times between due dates and 
earliest completion times, i.e. dj — {pj +Pi) from a uniform distribution between 
0 and /dJCj-iPj where 3 different ¡1 values [0.05, 0.25, 0.5] are used. Release 
dcites, rj  ̂ai'e generated from a uniform distribution ranging from 0 to a Pj 
as suggested by Chu [11], where 4 different a values [0.0, 0.5, 1.0, 1.5] are used. 
As summarized in Table 6.1, a total of 12 example sets were considered and 10 
replications were taken for each combination, giving 120 randomly generated 
problems. Effectiveness of the proposed algorithm is tested with 10, 15, and 
20 jobs case.

Any B & B algorithm has 3 main components, namely a lower bounding 
scheme, a branching condition and a search strategy. In chapter § 5.2 two 
different lower bounding procedures are discussed to calculate a lower bound 
for total weighted tardiness criterion. These procedures are compared in terms 
of number of nodes that are eliminated for each example set. As a search 
strategy, a hybrid approach of best first search (BPS) method and depth first 
search (DFS) methods, which are discussed in § 5.3, is used. Although total 
number of steps for optimum solution is relatively small, since full solution 
is generated at very late steps of the algorithm, BPS requires a large storage 
space. On the other hand, depth first search (DPS) method looks for very 
quick full solution by following minimum lowerbounds right to the bottom 
of the tree and then by backtracking searches that part of the tree. Por DPS 
memory requirement is quite small, but depending on the place of first solution 

DPS might spend a great deal of time in the wrong part of the tree.
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To take advantages of both search methods the maximum number of 
subproblems in the active stack is limited with a predetermined number. In 
our implementation, maximum stack size is decided to be equal to 5000, an 
average number determined after a number of test runs. When maximum stack 
size is equal to 5000, BFS algorithm is active at first 4-10 levels, depending on 
the chacteristics of the problem, then В & В algorithm passes to DP'S method 
without causing any memory problems.

Enumerative algorithms, such as В & В, not only requires high compu­
tational effort and large memory requirement, but computation time needed 
may not be practical. To prevent our algorithm to solve problems in very large 
computational time, we limited maximum node size to be 4 000 000 nodes.

6.2 Computational Results

There are primarily two main performance measures for any B & B algorithm, 
which are the number of nodes in the final search tree to find optimum solution 
and the corresponding computation time. In Table 6.2, we present the results 
of the propoised algorithm for job size equal to 10, 15, and 20. We also provide 
the minimum, average, and maximum values of each measure.

For 10 job case, although it’s computationally not practical but complete 
enumeration is still possible. Obviously, considering 10! =  3628800 nodes will 
be both highly time consuming and computationally inefficient. Using the 
proposed algorithm, number of nodes visited in the search tree ranges from 
8 to 9103 nodes for 120 different random problem, where on the average of 
10 replications, 4027.8 nodes is considered in the worst case, for a =  0.0 and 
¡3 =  0.50. Overall mean of number of nodes opened is 758.9. Algorithm works 
very fast and computational time required for any problem does not exceed 
10.36 seconds as CPU time, in the worst case, namely for a =  0.5 and ¡3 — 0.5. 
CPU times for 10 job is less than 1 second for all instances except the cases 

(a =  0.0, ^ =  0.5) and [a =  0.5, /3 =  0.5).
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Бог 15 job case, complete enumeration requires 15! =  1.3 · 10̂  ̂ nodes. It is 
unpractical to try to get optimum solution by visiting all possible sequences. 
Even for 10 jobs, commercial optimization software packages, like CPLEX, Eiil 
to give oiDtimum solution with its node and time limits. Therefore, any method 
to solve even 15 job problems will be a contribution to the literature. By the 
way, our algorithm solves problems with 15 jobs, visiting maximum 2332666 
nodes, for the hardest case, namely a =  0 and /9 = 0.50. For the same 
combination average number of nodes considered is 882934.2, which is 1.5 · 10® 
times less than the node number in complete enumeration. For simpler cases, 
number of nodes needed to find an optimum solution decreases down to 14 for 
15 job case, for a =  0.0, /3 =  0.05. Overall average number of nodes considered 
is 205272. Computational time required for optimum solution depends on the 
number nodes visited. For harder problem instances, CPU times are on the 
average 1615.68 ~  27 minutes. Problem .set with (a =  0.5, /3 =  0.5), where 
CPU time is around an hour, is the worst case.

For 20 jobs case, for simple problem examples with loose due dates and 
loose release dates, {¡I =  0.50, a >  1.0), which usually resulted in nontardy 
schedules, algorithm performs very fast with visiting quite less number of nodes. 
In the same way, at problem instances with tight release dates and due dates 
(P =  0.05, a =  0.0), after scheduling first few jobs, all jobs become tardy 
and problem reduces to 1| Algorithm finds optimum solution using
the WSPT rule, in short time. When or =  1.5, algorithm finds an optimum 
solution at 37.83 seconds for ¡3 =  0.25 and for ¡3 — 0.5 the maximum time 
required for optimum solution is 0.08 seconds. On the other hand, limiting 
cases are occured when release dates or due dates are not so tight or loose, 
namely, ct =  0.5 or ¡3 =  0.25. For (a = 0.0, ¡3 =  0.5) or [a =  0.5, /3 =  0.5) 
cases, algorithm exceeded the maximum node limit of 4 million and failed to 
find an optimum solution 5 and 3 times, out of 10 replications, respectively. 
These two cases are our limiting cases, where both computational times and 
number of nodes considered in the search tree reached at an unpractical point. 
For the abandoned cases computational time exceeded 10 000 seconds.

Any B & B algorithm has three main components, namely a lower bounding
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scheme, a branching condition and a search strategy. In § 5.2, two different 
bounding procedures are discussed to calculate a lower bound for total weighted 
tardiness criterion. These procedures are comiDared in Table 6.3, in terms of 
number of nodes that are eliminated for each example set, with the minimum, 
average and the maximum values. The number of nodes considered is also 
provided in the table.

a value indicates the tightness of relative range of release dates. Since linear 
lower bound of Potts and van Wassenhove is originally designed for 1| | Y îOjTj 
problem, we expect lb\ to perform better when a value is rather low. When 
a =  0.0, all release dates are equal to zero, in other words, 1 \vj \ WjTj problem 
reduces to 1| \ Y w jT j problem. For those cases, linear lower bound performs 
quite efficiently, eliminating 6722.8 nodes on the average for jl =  0.25, for 
20 jobs, and the average number of nodes considered is 1977373.2. For this 
particular instance, /62 can eliminate at most 1188 nodes. For /3 =  0.25, due 
date values are spreaded on the time horizon, which prevents problem to reduce 
to 11 I WjCj problem. So we can conjecture that node elimination would occur 
at upper levels of tree. For a  =  0.5, again linear lower bound performs better 
than /62, when (3 =  0.25 or (3 =  0.50. Number of nodes fathomed from the 
search tree increases up to 835307 for 15 job. But these problem instances are 
the most difficult ones, where only local dominance properties can be applied. 
Therefore, resulting node size in the B & B tree is also large. When a =  1.0 
or a =  1.5, a lower bound algorithm, which does not consider the release dates 
of jobs, produces very weak bounds. Therefore, when a =  1.0 and a =  1.5, 
/62 performs better than Ihi. For (a — 1.0, ¡3 — 0.05) /62 fathoms 5432 nodes 
on the average for 20 jobs problem, while linear lower bound can fathom only 
695.1 nodes on the average, resulting in 115840.5 nodes visited on the tree for 
searching an optimum solution.

(3 value of the problem instance also affects the performance of lower 
bounds. When j3 =  0.05 slack time between due dates and earliest completion 
time will be so tight that after first few levels of scheduling in the search tree, 
all jobs become available, consequently problem reduces to 1| | Xj) WjTj problem. 
Therefore, lb2 , derived from the algorithm of Hariri and Potts performs quite
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well. Whatever, the a value is for jl =  0.05, /62 performs better than linear 
lower bound. For {a =  0.5, /3 =  0.05) for all job sizes, number of nodes 
fathomed by lb% is more than the number of nodes fathomed by /61.

Although none of the lower bounding algorithms is dominating, linear lower 
bound seems more efficient. Especially, when relative range of due dates is 
large, i.e. due dates are loose {¡3 =  0.25 or 0.5), /¿>2 provides very weak bound 
because of subtraction of weighted due dates. Therefore, it fails to eliminate 
nodes from the search tree, even the relative riinge of release dates are also 
loose, q; =  1.0 or 1.5. For example for 20 job case, when ¡3 =  0.25 and a =  1.5, 
/62 can eliminate maximum 774 nodes and 151.4 nodes on the average, while 
linear lower bound eliminates .3017 nodes on the average and number of nodes 
eliminated rises up to 15370 for the same case. Notice that, linear lower bound 
does not consider unequal release dates, therefore it is expected to be very weak 
when a is large. From these results, we can conjecture that lower bounding 
scheme used is very weak and better lower bounding procedures would improve 
the algorithm, considerably.

When we look at the efficiency of dominance properties, that are proposed 
in Chapter 5, most frequently used property is getting use of the WSPT rule 
to find an optimum sequence for remaining jobs, whenever partial schedule 
satisfies propositions 32 or 39. Since in general, sooner or later, at lower levels of 
tree, all remaining jobs become tardy, problem reduces to 1| | Y^WjCj problem 
and the WSPT rule gives optimum sequence for remaining unscheduled jobs. 
Especially, for /9 =  0.05, where due dates are tight, the WSPT rule seems to 
be the most efficient dominance property to eliminate number of alternatives 
in the search tree. For greater ^ values, i.e. ¡3 — 0.25 and ¡3 — 0.5, impact of 
this property decreases gradually. Although for 15 jobs case, average number 

of nodes fathomed using proposition 32 is 605379.1, total number of visited 
nodes is also very high, 882934.2 on the average. This indicates that although 
proposition 32 is used frequently in the search tree, the WSPT rule becomes 
active at lower branches of the tree. To give an idea about how effective 
dominance properties in the algorithm, the average number of nodes fathomed 
using dominance properties proposed in § 5.1, are summarized in Table 6.4
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and 6.5 for 10 and 15 jobs case, respectively. Since Proposition .32 covers and 
extends WSPT region defined by Proposition 39, nodes are fathomed using 
Pro2?osition 32 before Proposition 39 becomes effective, these two propositions 
are comi^ared together.

Proposition 37, which states that any job f, with greater i^rocessing time, 
greater weight, earlier due date but smaller earliest completion time than job 
j ,  precedes j  at time t, is also quite effective to fathom nodes in the algorithm. 
Especially for a  =  0.5, where most of dominance rules and lower bounding 
schemes perform weak, proposition 37 eliminates jobs with snicill processing 
times but greater earliest completion times due to their release date. For (cv = 
0.5, /3 =  0.5) average number of nodes fathomed by proposition 37 is 550728.5, 
where other dominance proj^erties eliminates around 150000 nodes and lower 
bounding schemes eliminates 9466.7 and 15901.4 nodes on the average by Ibi 

and /¿2, respectively.

Dominance rule, proposed in Chapter 3, is also used frequently to fathom 
nodes in the B & B tree. Although average number of nodes fathomed by 
dominance rule is rather low for ^ — 0.05 in general, effect of dominance 
rule increases for larger /3 values. For ¡3 =  0.5, where due dates are loose, 
proposition 32 starts to operate at lower levels of tree. But proposed dominance 
rule operates quite efficient such that it fathoms 233 nodes on the average for 15 
jobs problem when a — 1.0, while number of nodes eliminated by proposition
32 is equal to 38.2 and number of nodes fathomed by proposition 37 is equal 
to 278.9.

We also compare efficiency of proposed dominance rule, comparing number 
of nodes eliminated by the proposed rule with number of nodes eliminated using 
Emmons global dominance properties [16], including Akturk and Yildirim’s 
extention [4] in Proposition 38. Results are summarized in Table 6.6.

Since the environment is dynamic, Emmons dominance properties fail to 
fathom nodes at almost all problem instances. Becau.se, at particular time 
f, the dominance rule, proposed at Chapter 3, together with proi^ositions
33 and 34 of Chapter 5 covers Emmons global domince rule and eliminates
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the node, before Emmons rules become active. For a =  0.0 case, when jobs 
become available simultaneously at time zero, global dominance relationships 
are possible. Therefore, Emmons dominance theorem operates quite well. For 
(a  =  0.0, ¡1 — 0.5), Emmons global dominance rules fathom .3676 nodes on the 
average for 15 jobs case and 9420 nodes on the average for 20 jobs case. But 
our proposed dominance rule still performs better.

6.3 Summary

In this chapter, we tested the B & B algorithm constructed at Chapter 
5. Currently, there is no other exact algorithm for optimum solution of 
l\rj\Y^WjTj problem. It is unpractical to try to find an optimum solution 
by complete enumeration. Even for 10 jobs, commercial optimization software 
¡packages fail to find an optimum solution, therefore, any method to solve even 
15 job problems will be a contribution to the literature. By the way, our 
algorithm solves problems with 15 jobs, visiting maximum 2332666 nodes, for 
the hardest case. Pi’oposed algorithm employed two different lower bounding 
procedures, one is the linear lower bound for 1| \ '^xojTj and other one
is a modification of lower bounding procedure of Hariri and Potts [27] for 
Ih’il l̂ y subtracting weighted due dates of unscheduled jobs. The.se
procedures are compared in terms of number of nodes that are eliminated 
for each example set. Although none of the lower bounding algorithm is 
dominating, the linear lower bound seems to be more efficient. Especicilly, 
when relative range of due dates is large, i.e. due dates are loose — 0.25 
or 0.5), procedure modified from Hariri and Potts provides very weak bound 
values. Therefore, it fails to eliminate nodes from the search tree, even the 
relative range of release dates are also loose, a =  1.0 or 1.5. Linear lower 
bound does not consider unequal release dates, therefore it is expected to be 
very weak when a is large. From these results, we can conjecture that lower 

bounding scheme used is very weak and better lower bounding procedures 

would improve the algorithm, considerably.
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When the efficiency of proposed dominance properties are analyzed, 
reducing problem to 1| \ J2'^jCj problem and finding an optimum sequence 
for I'emaining jobs using WSPT rule is the most efficient Wciy to decrease the 
number of nodes visited. For the instances where this rule does not work 
effectively, proposition 37 and dominance rule proposed at Chapter 3, perform 
relatively better than the other properties.
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FACTORS #  of LEVELS SETTINGS

Number of Jobs 3 10,15,20

Processing time variability 1 [1,10]

Weight variability 1 [1,10]

Release Date Range, a 4 0.0, 0.5, 1.0, 1.5

Due Date Range, ¡3 3 0.05, 0.2.5, 0.5

Table 6.1; Experimental Design for B & B Algorithm
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#  O F  N O D E S CF^U T IM E S

a 0 n m in avg m ax m in avg mcix

10 10 17.6 35 0 0.01 0.02

0 .05 15 14 52.4 123 0.05 0 .15 0 .43

20 144 352 .7 892 0.22 0.65 1.6

10 110 352 .5 1083 0 .08 0 .27 0 .43

0 .0 0 .25 15 5812 28275 110256 8.4 45 .9 7 111.34

20 508709 1977373 .2 3997319 181.78 1569.33 5377 .5

10 249 4027 .8 8467 0.25 2 .83 6.51

0 .50 15 44605 552206 .9 1929861 70.91 569 .45 2151 .05

20 2317148 2902084 4000000* 2050 .8 307 1 .33 4548 .42

10 51 198 560 0 .02 0 .13 0 .37

0 .05 15 1166 27818.5 110942 0 .77 18.34 77.34

20 58074 712961 .4 1646857 71.85 386 .9 7 738 .63

10 98 1224.8 3433 0 .06 1.07 3 .28

0 .5 0 .25 15 67604 882934 .2 2332666 29.09 365 .8 6 869 .4 6

20 111179 1129594 3191291 337 .05 1765.66 4 920 .73

10 122 1833.9 9103 0.1 2 .09 10.36

0 .50 15 11264 772334 .9 2022782 50.60 1615.68 3 728 .18

20 42 1107718.1 4000000* 0 .08 1348.15 4811 .51

10 64 649.1 4405 0.02 0 .26 1.7

0 .05 15 1075 368 4 .6 6976 0.95 4 .97 12.18

20 6029 115840.5 766128 9.11 160.92 8 22 .83

10 44 315 .6 1318 0 .03 0 .23 1.15

1.0 0 .25 15 434 182145 .8 1603228 0 .63 535 .92 3463 .32

20 48 593646 .4 3062195 0 .03 1107.02 3452 .31

10 9 292 .3 2251 0 0 .26 1.88

0 .50 15 17 946 .8 5031 0 .02 2.74 17.73

20 18 443117 1449397 0.02 1336.74 367 9 .33

10 18 102.3 625 0 .02 0 .05 0 .30

0 .05 15 81 410 .6 939 0.04 0 .23 0 .77

20 551 66543.1 323115 2.4 54 .07 113.04

10 12 68 134 0.02 0.05 0 .10

1.5 0 .25 15 78 8 620 .9 66380 0 .06 3 0 .26 293.01

20 20 6781 .5 50538 0 .03 37 .83 248 .90

10 8 25.2 64 0 0 .02 0 .03

0 .50 15 16 3833 .6 33997 0 10.33 100.60

20 19 61.1 148 0.02 0.05 0 .08

Table 6.2: Results of Computational Experiments
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#  O F  N O D E S #  of Nodes E lim . L B l #  of Nodes Elim . L B 2

a /3 n m in avg m ax m in avg m ax m in avg m ax

10 10 17.6 35 0 0 .3 3 0 0 0

0.05 15 14 52.4 123 0 4.1 29 0 0.1 1

20 144 352 .7 892 0 7.8 17 0 0.2 2

10 110 352 .5 1083 9 29.6 80 0 0.2 2

0 .0 0 .25 15 5812 28275 110256 22 392 .3 1270 0 0.5 3

20 508709 1977373 .2 3997319 0 6722 .8 48047 0 124.4 1188

10 249 4027 .8 8467 51 259 712 0 0.05 4

0 .50 15 44605 552206 .9 1929861 196 1168.8 5288 0 29.9 215

20 2317148 2902084 4000000* 0 3871 .4 11673 0 292.2 647

10 51 198 560 1 5.3 12 6 29.8 106

0.05 15 1166 27818.5 110942 0 35.3 228 3 744.8 2269

20 58074 712961 .4 1646857 0 159.5 655 416 5440.1 13525

10 98 1224.8 3433 3 30 95 0 24.4 66

0.5 0 .25 15 67604 882934 .2 2332666 0 4244.1 14877 0 4985 .6 20778

20 111179 1129594 3191291 0 7954 65950 0 1282 6999

10 122 1833 .9 9103 36 458 .4 1271 2 48.3 144

0 .50 15 11264 772334 .9 2022782 0 9 466 .7 835307 22 15901.4 74902

20 42 1107718.1 4000000* 0 67127 .42 219602 0 8543.71 34415

10 64 649.1 4405 0 3.3 9 6 28.5 61

0 .05 15 1075 3684 .6 6976 0 171.4 1461 215 715 .9 1783

20 6029 115840.5 766128 0 695.1 4437 13 5432 28473

10 44 315 .6 1318 14 38 .7 86 1 26 79

1.0 0 .25 15 434 182145 .8 1603228 72 6460 .2 25332 53 2012.4 5736

20 48 593646 .4 3062195 0 78999.5 292332 0 15535 58342

10 9 292 .3 2251 0 38.1 207 0 45.9 280

0 .50 15 17 946 .8 5031 0 773 .7 4462 0 108.4 852

20 18 443117 1449397 0 92902.5 343297 0 27116 77965

10 18 102.3 625 0 1 3 0 8 18

0 .05 15 81 410 .6 939 0 31 .7 132 1 66.2 173

20 551 66543.1 323115 0 852 .5 7938 93 1153.7 6954

10 12 68 134 0 10.8 69 0 10.4 41

1.5 0 .25 15 78 8 620 .9 66380 0 2323.1 20909 0 2679 .8 25890

20 20 6781 .5 50538 0 3017 15370 0 151.4 774

10 8 25.2 64 0 3 10 0 0 .8 6

0 .50 15 16 3 833 .6 33997 0 1919.3 18993 0 1110.6 11040

20 19 61.1 148 0 2.2 12 0 0 .7 4 1

Table 6.3: Comparison of Lower Bounding Procedures
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NUMBER OF NODES ELIMINATED

a 13 Prop. 33 Prop. 34 Prop. 35 Prop. 37 Prop. .32 & 39

0.0

0.0.5 0.4 0.4 0 0 14.8

0.25 7.7 17.5 30.7 83.9 281.8

0.50 281.6 159.9 329.8 1315 2842.9

0..5

0.05 1.3 0.7 14.5 45.1 133

0.25 1.52.2 34.2 70.1 457.6 726.4

0..50 379.1 61.8 61.3 767.9 630.7

1.0
0.05 97.6 3.1 21.5 221.3 305.9

0.25 75.1 15.2 14.1 43.2 103.4

0.50 122.7 3.5 17.2 98.1 3.8

1..5

0.05 40.4 5.5 5.3 13.4 11.3

0.25 19.9 0.2 2 6 2.7

0..50 6.6 3.2 0.9 2.3 0

Table 6.4: Comparison of Propositions for n =  10
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NUMBER OF NODES ELIMINATED

a P Prop. 33 Prop. .34 Prop. 35 Prop. 37 Prop. 32 & .39

0.0

0.05 0.6 0.2 0.6 2.9 47.7

0.25 326.9 121 4095 16.308.3 24232.6

0..50 56444.8 224.7 82113 731882.2 287373.1

0.5

0.05 369.7 9.1 10026.5 12572.1 20305.6

0.25 41510.4 33.5 79044.4 4316.32.8 605379.1

0.50 148071.8 173 18744.7 550728.5 180714.3

1.0
0.05 .383.3 65.8 608 829.5 1501.1

0.25 47.347 443.9 2728.3 172280.2 18278.3

0..50 233 3 43 278.9 .38.2

1.5

0.05 85.1 52.3 18 70.9 21.9

0.25 1751.6 0.8 412.3 2051.7 139.3

0.50 808.5 13.4 783.7 8.38.1 0

Table 6.5: Comparison of Propositions for n =  15
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NUMBER OF NODES ELIMINATED

JOB SIZE = 10 JOB SIZE = 15 JOB SIZE = 20

a /5 Prop. Rule Emmons’ Prop. Rule Emmons’ Prop. Rule Emmons’

0.0.5 0 0 2.3 0 24.4 0
0.0 0.25 16.6 0.5 .5351.8 0 1618986 9.1

0.50 234.6 24.3 145782.8 3676 970258 9420

0.05 23.6 0 29674.9 0.8 6389.53.5 0

0..5 0.25 116.7 0 359225.3 0 542673.7 0
0..50 148.5 0 366717.8 0 108321.4 404.8

0.05 83.4 0 904.1 0 32097.2 0
1.0 0.25 15.3 0 82449.8 0 61199.3 0

0.50 14.8 0 22 0 760003.7 0

0.05 11.4 0 .56.9 0 21.329.2 0

1..5 0.25 1.4 0 1325.9 0 495.2 0

0..50 0 0 106.3 0 0.8

Table 6.6: Comparison of Proposed and Emmons’ Dominance Rule



Chapter 7

Conclusion

This chapter provides a brief summary of the contributions of this study and 
addresses wide range of directions for future research. In this thesis, we have 
considered dynamic single machine total weighted tardiness iDroblern such that 
release dates are unequal. The assumptions that we have made throughout 
this study were:

• There is a set of n independent, single operation jobs.

• Jobs are available for processing at predetermined times, i.e. relecise 
dates.

• The starting time of each job cannot be before its release date, rj.

• The setup times for the jobs are independent of job sequence and included 
in processing times.

• The machine is continuously available but machine may or may not be 
left idle while there are available jobs in the queue.

• Once an operation begins, it proceeds without interruption.

• The job descriptors such as release dates, rj, due dates, dĵ  processing 
times, pj, and weights, Wj, are deterministic and known in advance.

no
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• Each job has an integer release date, due date, processing time and a 
positive weight.

7.1 Contributions

We showed that for any pair of jobs, i and j ,  that are adjacent in a schedule, 
there are certain time points, called as breakpoints, in which the ordering 
might change for adjacent jobs. In other words, the arrangement of adjacent 
jobs in an oi^timal schedule depends on start times of the pair. When cill 
the possible cases are analyzed, it is seen that there are at most seven 
possible critical time points. But in some cases, critical point occurs at 
a point that one of jobs is not available, then release date of the second 
job is denoted as a breakpoint. We showed that at most three breakpoints 
can be valid at a time. Based on these results, we have developed new 
dominance properties. Dominance properties provide conditions under which 
certain potential solutions can be ignored. By exploiting dominance properties, 
the extensive calculations required by exact solution methodologies can be 
curtailed considerably. Restricting attention to the dominant set reduces the 
number of alternatives, therefore the computational effort involved in searching 
for an optimal solution reduces substantially. The proposed dominance rule 
provides a sufficient condition for local optimality. We have shown that if any 
sequence violates the dominance rule, then switching the violating jobs either 
lowers the total weighted tardiness value or leaves it unchanged.

We have developed an algorithm based on the dominance rule, which was 
compared to a number of competing heuristics for a set of randomly generated 
problems. The proposed algorithm was implemented on a set of heuristics 

including the X-RM and KZRM rules that different combinations of АТС 
rule with the decision theory approach of Kanet and Zhou [30] to implement 
l̂ rinciiDles of АТС to dynamic environment. Our computational experiments 
indicated that the amount of improvement was statistically significant for all 
heuristics and the proposed algorithm dominated the competing rules in all
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runs. Therefore it can improve upper bounding scheme and can be used to 
reduce number of alternatives for finding the optimum solution in any exact 
approach.

We also looked at how the proposed dominance rule can be incorporated 
in a B & B algorithm in conjunction with a branching condition, a lower 
bounding scheme and a search strategy. There is no lower bound algorithm in 
the literature designed for l|7‘j| problem. So we adapted lower bounding
procedure of Hariri and Potts for l\i'i\Y^WjCj problem by making minor 
modifications in the procedure. We also used linear lower bound developed 
by Potts and van Wassenhove for 1| problem to get a lower bound
value for l\rj\Y^iOjTj problem.

Almost all of the studies mentioned earlier in the literature review use a 
best first enumeration scheme (BPS) as a search strategy. As a search strategy, 
we derived a hybrid approach of best first search (BPS) and depth first search 
(DPS) enumeration schemes. At the upper levels of B & B tree, we used 
BPS algorithm up to a certain predetermined stack size. When active stack 
size exceeded the maximum allowed size, DPS method is applied to the set of 
active subproblems.

We ¡proposed additional dominance properties and all proposed dominairce 
pro2Derties are embedded in the B & B algorithm. We tested the proposed 
algorithm with a series of randomly generated problems. The algorithm Ccin 
solve problems with up to 20 jobs. Computational requirements lor larger 
problems tend to limit this approach.

Although customer orders may not arrive simultaneously in real-life 
problems, to the best of our knowledge, the authors knows of no other published 
exact ai^proach for l\rj\Y^WjTj problem. This enhances contribution of our 

study in the literature.
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7.2 Future Research Directions

There are several future research directions emanating from this research study;

• The proposed dominance rule may be extended to more complicated 
scheduling environments such as flow shops, open shops, and job shops.

• The lower bounding scheme that is used in the B &: B algorithm is very 
weak. Concentrating on lower bounds, new lower bound procedures may 
be proposed. More efficient lower bounding schemes may be incorporated 
to the algorithm.

• The proposed algorithm is based on an adjacent pairwise interchange 
method. Investigating non adjacent pairs or adjacent triples of jobs, 
different dominance properties may be detected and dominance rule may 
be extended.

• The results found may be incorporated to local search approaches for 
scheduling problems.

• Total weighted tardiness scheduling problem with stochastic job descrip­
tors, such cis release dates and due dates in time windows, can also be 
examined.



Bibliography

[1] Abdul-razaq, T.S., Potts, C.N., and Van Wassenhove, L.N.,“A survey 
of algorithms for the single-machine total weighted tardiness scheduling 
problem” , Discrete Applied Mathematics, 26 (1990) 235-253.

[2] Abdul-razaq, T.S. and Potts, C.N., “Dynamic programming state-space 
relaxation for single machine scheduling” , Journal of Operations Research 
Society, 39 (1988) 141-152.

[.3] Ahmadi, R.H., and Bagchi, U., “Lower bounds for single-machine 
scheduling problems” . Naval Research Logistics, 37 (1990) 967-979.

[4] Akturk, M.S., and Yildirim M.B., “A new lower bounding scheme for 
the total weighted tardiness problem” . Computers & Operations Research 
25/4 (1998) 26.5-278.

[.5] Baker, K.R., Introduction to Sequencing and Scheduling, (1974), Wiley, 
New York.

[6] Baker, K.R., Elements of Sequencing and Scheduling, (1994), Dartmouth 
College, Hanover, NH.

[7] Bianco, L., and Ricciardelli, S., “ Scheduling of a single machine to 
minimize total weighted completion time subject to release dates” , Naval 

Research Logistics Quarterly, 29/1 (1982), 151-167.

[8] Carroll, D.C., “A dynamic priority rule for sequencing against due dates” , 
PH.D. Thesis, Sloan School of Management, (1965), MIT, U.S.A.

114



BIBLIOGRAPHY 115

[9] Chand, S., Traub, R. and Uzsoy, R., “ Single-machine scheduling with 
dynamic arrivals; decomposition results and an improved algorithm” , 
Naval Research Logistics, 43 (1996) 709-719.

[10] Chu, C., “ A branch-and-bound algorithm to minimize total flow time 
with unequal release dates” , Naval Research Logistics, 39 (1992) 859-875.

[11] Chu, C., “ A branch-and-bound algorithm to minimize total tardiness with 
unequal release dates” . Naval Research Logistics, 39 (1992) 265-283.

[12] Chu, C., and Portmann M. C .,“ Some new efficient methods to solve 
the n\\\ri\Y^Ti scheduling problem” , European Journal of Operational 
Research, 58 (1992) 404-413.

[13] Dessouky, M. I., and Deogun J. S., “ Sequencing jobs with unequal ready 
times to minimize mean flow time” , SIAM Journal of Computing, 10/1 
(1981) 192-202.

[14] Dyer, M.E., and Wolsey, L.A., “Formulating the single sequencing 
problem with release dates as a mixed integer program” . Discrete Applied 
Mathematics, 26 (1990) 255-270.

[15] Elmaghraby, S., “The one machine sequencing problem with delay costs” . 
The Journal of Industrial Engineering, 19 (1968) 105-108.

[16] Emmons, H., “One machine sequencing to minimize certain functions of 
job tardiness” . Operations Research, 17/4 (1969) 701-715.

[17] Erschler, J., Fontan, G., Merce, C., and Roubellat, F., “A new dominance 
concept in scheduling n jobs on a single machine with ready times and 
due dates” . Operations Research, 31 (1983) 114-127.

[18] Ferris, M. C., and Vlach, M., “Scheduling with earliness and tardiness 
penalties” . Naval Research Logistics, 39 (1992), 229-245.

[19] Feo, T.A., and Resende, M.G.C., “Greedy randomized adaptive search 
procedures” . Journal of Global Optimization, 6 (1995) 109-133.



BIBLIOGRAPHY 116

Feo, T.A., Scirathy, K., and McGahan, J., “A GRASP for single 
machine scheduling with sequence dependent setup costs and linear delay 
penalties” , Computers L· Operations Research, 23/9 (1996) 881-895.

[21] Fisher, M.L, “A dual algorithm for the one-machine scheduling problem” . 
Mathematical Programming , 11 (1976) 229-251.

[22] Fisher, M.L, “The Lagrangian relaxafion for solving integer programming 
models” . Management Science, 27 (1981) 1-18.

[23] French, S., Sequencing and Scheduling: An Introduction to the Mathemat­

ics of Job-Shop, (1982), Horwood, Chichester.

[24] Grabowski, J., Nowicki E., and Zdrzalka, S., “ A block approach for single 
machine scheduling with release dates and due dates” , European Journal 
of Operational Research, 26 (1986), 278-285.

[25] Goeffrion, A.M., “Lagrangian relaxation for integer programming” . 
Mathematical Programming, 2 (1974) 82-114.

[26] Ghosh, .J.B., “Computational aspects of the maximum diversity problem” . 
Operations Research Letters, 19 (1996) 17-5-181.

[27] Hariri, A.M.A, and Potts, C.N., “An algorithm for single machine 
sequencing with release dates to minimize total weighted completion 
time” . Discrete Applied Mathematics, 5 (1983) 99-109.

[28] Jensen, J.B., Philipoom, P.R., and Malhotra, M.K., “Evaluation of 
scheduling rules with commensurate customer priorities in job shops” , 
Journal of Operations Management, 13/3 (1995) 2L3-228.

[29] Kanet J.J., “Tactically delayed versus non-delay scheduling: an experi­
ment investigation” , European Journal of Operational Research, 24 (1986) 

99-105.

[30] Kanet J.J., and Zhou Z., “ A decision theory approach to priority dispatch­
ing for job shop scheduling” . Production and Operations Management, 2/1 

(1993) 2-14.



BIBLIOGRAPHY 117

[31] Lawler, E. L., “On scheduling with deferral costs” , Management Science, 
11 (1964) 280-288.

[32] Lawler, E. L., “A ‘Pseudopolynomial’ algorithm for sequencing jobs to 
minimize total tardiness” . Annals of Discrete Mathematics, 1 (1977) 331- 
342.

[33] Lawler, E. L., “Efficient implementation of dynamic programming 
algorithms for sequencing problems” , BW 106, Mathematisch Centrum, 
(1979) Amsterdam.

[34] Lenstra, J.K., Rinnooy Kan, A.H.G., and Brucker, P., “Complexity of 
machine scheduling problems” . Annals of Discrete Mathematics, 1 (1977) 
343-362.

[35] Morton T.E., and Pentico, D.W., Heuristic Scheduling Systems With 
Applications to Production Systems and Project Management, .John 
Wiley&Sons, Inc., New York, 1993.

[36] Morton, T.E., and Ramnath, P., “Guided forward search in tardiness 
scheduling of large one machine problems” , in: D.E. Brown and W.T. 
Scherer (eds.). Intelligent Scheduling Systems, Kluwer, USA, 1995.

[37] Pinedo, M., Scheduling: Theory, Algorithms and Systems, Prentice Hall, 
New Jersey, 1995.

Potts, C.N., and Van Wassenhove, L.N., “A branch and bound algorithm 
for total weighted tardiness problem” . Operations Research, 33/2 (1985) 
363-377.

Potts, C.N., and Van Wassenhove, L.N., “Algorithms for scheduling 
a single machine to minimize the weighted number of late jobs” . 

Management Science, 34 (1988) 843-858.

[40] Rachamadugu, R.M.V., “A note on weighted tardiness problem” . Opera­

tions Research, 35/3 (1987) 450-452.



BIBLIOGRAPHY 118

[41] Rachamadugu, R.M.V. and Morton, T.E., “Myopic heuristics for the 
single machine weighted tardiness problem” , Working Paper, Graduate 
School of Industrial Administration, (1981), Carnegie Mellon University, 
U.S.A.

[42] Reeves, C., “Heuristics for scheduling a single machine subject to unequal 
job release times” , European Journal Of Operational Research^ 80 (1995), 
397-403.

[43] Rinnooy Kan, A.H.G., Machine Scheduling Problems: Classification, 
Complexity and Computations, Nijholf, The Hague, 1976.

[44] Rinnooy Kan, A.H.G., Lageweg, B.J., and Lenstra, J.K., “Minimizing 
total costs in one-machine scheduling” . Operations Research, 23 (1975) 
908-927.

[4.5] Robb, D..J., and Rohleder T.R., “ An evaluation of scheduling heuristics 
for dynamic single-processor scheduling with early tardy costs” . Naval 
Research Logistics, 43 (1996), .349-364.

[46] Schräge, L., and Baker, K.R., “Dynamic programming solution of 
sequencing problems with precedence constraints” . Operations Research, 
26 (1978) 444-449.

[47] Schütten, J.M..J., Van de Velde, S.L., and Zijm, W.H.M., “Single­
machine scheduling with release dates, due dates and fcimily setup times” , 
Management Science, 42/8 (1996), 116.5-1174.

[48] Sridharan, V., and Zhou, Z., “A decision theory based scheduling- 
procedure for single-machine weighted earliness and tardiness problems” , 
European Journal of Operational Research, 94, (1996), 292-301.

[49] Smith, W.E., “Various optimizers for single-stage production” . Naval 
Research Logistics Quarterly, 3 (1956) 59-66.

[50] Szwarc, W., and Liu, .J.J., “Weighted tardiness single machine scheduling 
with ¡proportional weights” . Management Science, 39/5 (1993) 626-632.



BIBLIOGRAPHY 119

[51] Vepsalaineri, A.P.J., and Morton, T.E., “Priority rules for job shops with 
weighted tardiness costs” , Management .Science, 33/8 (1987) 1035-1047.



VITA

Deniz Özdemir was born on October 16, 1973 in Ankara, Turkey. She received 
her high school education at Istanbul Atatürk Fen Lisesi in Istanbul, Turkey. 
She has graduated from the Department of Industrial Engineering, Bilkent 
University, in 1996. In October 1996, she joined to the Department of Industrial 
Engineering at Bilkent University as a research assistant. From that time to 
the present, she worked with Assist. Prof. M. Selim Aktürk for her graduate 
study at the same department.

120


