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ABSTRACT

AN EXACT APPROACH TO MINIMIZE SINGLE
MACHINE TOTAL WEIGHTED TARDINESS PROBLEM
WITH UNEQUAL RELEASE DATES

Deniz Ozdemir
M.S. in Industrial Engineering
Supervisor: Assist. Prof. M. Selim Akturk
August, 1998

In this research, the problem of scheduling a set of jobs on a single machine
to minimize total weighted tardiness with unequal release dates is considered.
We present a new dominance rule by considering the time depending orderings
between each pair of jobs. The proposed rule provides a sufficient condition
for local optimality. Therefore, if any sequence violates the dominance rule
then switching the violating jobs either lowers the total weighted tardiness
or leaves it unchanged. Based on the dominance rule, an algorithm is
developed which is compared to a number of heuristics in the literature.
Our computational results indicate that the proposed algorithm dominates
the competing algorithms in all runs, therefore it can improve the upper
bounding scheme and can be used in reducing the number of alternatives
in any enumerative algorithm. Furthermore, the proposed dominance rule
is incorporated in a branch and bound algorithm in conjunction with lower
bounding scheme, branching condition and search strategy. To the best of our
knowledge, author know of no other published exact approach for L|r;| 3" w; 1}

problem. This enhances contribution of our study in the literature.

Key words: Dominance Rule, Single Machine, Scheduling, Total Weighted

Tardiness, Release Dates, Heuristics, Branch & Bound Algorithms.
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OZET

'TEK MAKINADA FARKLI SISTEM GIRI$ ZAMANLARI
ILE TOPLAM AGIRLIKLI GECIKME PROBLEMINE TAM
SONUC BULMA YAKLASIMI

Deniz Ozdemir
Endistri Muhendisligi Bolumu Yiiksek Lisans
Tez Yoneticisi: Yard. Dog¢. Dr. M. Selim Akturk
Agustos, 1998

Bu aragtirmada, tek makinada, farkll sistem girig zamanlarina sahip bir
ig kimesinin toplam agirhkli gecikmeyi enaza indirgeyerek cizelgelenmesi
problemi gozoénine alindi. Komsu her is ikilisinin zamana bagh siralanmasi
diigtiniilerek yeni bir baskinhk kurali sunuldu. Onerilen kural yerel enaza
indirgemeyi garanti etmekte yani komsu islerin yerlerinin degistirilmesi ile
daha iyi bir amag¢ fonksiyonu degerinin bulunamayacagimi gostermektedir.
Bu baskinhk o6zelliklerini kullanan bir algoritma gelistirilerek, literattrdeki
metotlarla karsilagtirildi. Sonuglar, onerilen algoritmanin test edilen butin
problemler icin rakip algoritmalardan daha iyi sonug verdigini gosterdi.
Bunun sonucu olarak, onerilen algoritmanin st sinir hesaplarinda iyilegtirme
saglayacagl ve kesin sonuca yonelik tekniklerde alternatif sayisimi azaltacag:
iddia edilebilir. Ayrica oOnerilen baskinlik ozellikleri bir alt sinir projesi,
dallandirma sgart1 ve aragtirma stratejisi ile birlegtirilerek bir dal & smir
algoritmasi geligtirildi. Tek makinada, farkl: sistem girig zamanlar ile toplam
agirlikli gecikmeyi enazlama problemi tizerine tam sonu¢ bulmaya yonelik
caligma, tarafimizca bilinmiyor. Aragtirmanin bu problem tizerine yapilan tam
sonu¢ bulmaya yonelik ilk ¢aligma olmasi literatiire katkisini arttirmaktadir.

Anahtar sozcikler: Tek Makinada Cizelgeleme, Toplam Agirlikli Gecikmeyi
Enazlama, Baskinhk Kurallari, Sezgisel Algoritmalar, Dal&Sinir Algoritmas.
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Chapter 1

Introduction

In last decades interest to scheduling has raised dramatically. Scheduling
is an important part of strategic planning in industry, since it can have a
significant impact on all economic activities. Although the term scheduling is
used frequently in daily life, definition of it is not clear in minds. In very general
sense, scheduling is “the process of organizing, choosing and timing resource
usage to carry out all activities/tasks necessary to produce the desired outputs,
at the desired times, while satisfying a large number of time and relationship
constraints among the activities and resources”[35]. It is a decision making
process which takes place not only in most of manufacturing and production

systems but in information processing environments and service industries as

well.

In scheduling theory roughly main approaches are as follows:

e Manual-interval scheduling: arises when precise matching of resources

and tasks are essential.

e Manual-dispatch scheduling : arises when overall priorities should remain

fixed while exact timing of tasks can be changed.

e Simulation-dispatch scheduling : is for simple version of manual-dispatch

scheduling.
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e Mathematical-exact scheduling : chooses an objective to optimize,
formulates the problem as mathematical programming and searches for

an optimum solution.

e Mathematical-heuristic scheduling: gives an approximation solution to

formulated mathematical programming.

e Pure expert system scheduling: is for more complicated version of

manual-dispatch scheduling.

e Mixed artificial intelligence / Operations research / Decision support
systems : attempts to combine all advantages of pure expert systems,

mathematical systems and decision support systems.

In general, scheduling models are classified due to requirements generation,
(i.e. open shop, closed shop), processing complexity, (i.e. single stage or
multi-stage), scheduling criteria and nature of requirement specification, (i.e.

deterministic or stochastic) [37].

The scheduling models are categorized by specifying the resource configu-
ration and nature of the task. The number of machines, their configuration,
i.e. series and parallel, number of jobs, etc., are also important aspects in
scheduling theory. If the set of tasks available for scheduling does not change
over time, the system is called static, in contrast to cases in which new jobs

appear over time, where the system is called dynamic.

In this study, we consider a single machine scheduling problem. Analysis of
single machine environment is important for various reasons. First of all single
machine problem is simple and special case of all other scheduling problems.
Results which are gathered from analysis of single machine environment can
lead to insights into the more complicated case of multi machine or multi
stage scheduling problems and can provide a basis for heuristics for them.
In addition, the absence of verification in the simplest case would make
studies on much more complicated cases needless. In practice, complicated

scheduling problems can often decomposed into single machine sub-problems.
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For example, single bottleneck in a multi-stage, multi machine environment

can be considered as single machine problem.

In real life, orders usually do not arrive simultaneously. With increased
use of computurized real time inventory tracking systems in practice, it is
possible for a company to estimate expected arrival times of jobs. Information
regarding these arrivals could be useful, since it may be desirable to wait for
the arrival of an important job rather than to begin processing a less important
job available on hand. Although dynamic models are not considered much in
literature, there is a raising interest on dynamic problems in recent years that

is what lead us to deal with a dynamic model rather than a static one.

In practice, one of major aims of firms is to increase customer satisfaction.
Supplier-customer relationship is important in business world. Customers are
willing to get their orders in a reasonable amount of time which is promised
apriori. So to measure customer satisfaction, the objective ‘meeting due dates
al their promised times’ is concerned. Since this objective is not quantitive,
it is usually interpreted as there are positive time dependent penalties for
jobs which are completed after their due dates, but jobs which are completed
before their due dates are not appreciated. From this interpretation, tardiness
becomes quantification of the objective ‘meeting due dates’. Tardiness measure
is a regular performance measure, i.e. it is non-decreasing in each of the job

completion times.

In most of the scheduling rules in the literature, job tardiness penalty
or customer importance is not taken into account. Since firms struggle to
survive in a competitive environment, an emphasis to coordinate the priorities
of the firms throughout the functional areas is needed. Firms have variety of
customers with varying degrees of importance. The importance of a customer
can depend on a variety of factors, such as the firm’s length of relationship with
the customer, how frequently they provide business to the firm, how much of the
firm’s capacity they fill with orders and the potential of a customer to provide
orders in the future. Some of the customers will be more important than the

others. Impact of late deliveries, such as loss of customer good will, lost future
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sales and rush shipping costs, differs from customer to customer. Therefore,
their implied strategic weight should be reflected in job priority. Thus the
firm’s strategic benefits require to include customer importance information

into its shop floor control decisions.

We deal with a single machine dynamic problem which is characterized by
the following conditions. There is a set of n independent, single operation
jobs. Jobs will be available for processing at pre-determined times, r;. The
starting time of each job cannot be before its release date. The job descriptors,
such as release dates, r;, due dates, d;, processing times, p;, and weights, w;,
are deterministic and known in advance. The setup times for the jobs are
assumed to be independent of job sequence and included in processing times.
The machine is continuously available and preemption is not allowed, i.e. once
a job begins to be processed it is processed without interruption. Machine may

or may not be left idle while there are available jobs in the queue.

In this study, the main objective that we consider is the minimization of
total weighted tardiness value for dynamic single machine problem. Each job
has an integer release date, due date, processing time, and a positive weight.
This problem is harder than minimization of total weighted tardiness problem
with equal job release dates, 1| |3 w;T}, or minimization of total weighted
flow time problem with equal release dates, 1|r;| 5" w;Fj. Since release dates,
r; values, are not equal, there may be idle times in the optimal schedule.
Another reason is that the total weighted tardiness criterion is not a linear

function of completion times, as in the case of 1|r;| 3 w; F}.

We present a new dominance rule for the single machine total weighted
tardiness problem with job dependent penalties in a dynamic environment. The
proposed dominance rule provides a sufficient condition for local optimality.
We show that if any sequence violates the dominance rule, then switching
the violating jobs either lowers the total weighted tardiness value or leaves
it unchanged. We also develop an algorithm based on the dominance
rule, which is compared to a number of competing heuristics for a set of

randomly generated problems. Furthermore, the presented results form a
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strong background for making adjacent job interchanges so it can be used
in reducing the number of alternatives for finding the optimal solution in
complete enumeration techniques. We also construct a branch and bound
algorithm which incorporates proposed dominance rule in conjuction with a
lower bounding scheme, a branching condition and a search strategy. We test

our algorithm on a series of randomly generated problerns.

The remainder of the thesis can be outlined as follows. In the following
chapter, we give a short review of literature on total weighted tardiness
problem along with exact and approximate approaches. We discuss the
underlying assumptions, give a list of definitions used throughout this thesis,
and demonstrate our dominance rule in Chapter 3. In Chapter 4, we introduce
an algorithm which is based on the proposed dominance rule and use it in an
upper bounding scheme. In Chapter 5, we look at how the proposed dominance
properties can be incorporated in a branch and bound algorithm in conjuction
with a branching condition, lower bounding scheme and a search strategy.
An algorithm is constructed and tested on a number of randomly generated
problems. Computational results are reported and discussed in Chapter 6.
Finally, in Chapter 7, after making a short summary, we give some concluding

remarks along with the future research directions.



Chapter 2
Literature Review

Scheduling plays a crucial role in strategic planning in manufacturing industries
as well as in service industries. In very rough terms scheduling is the allocation
of resources over time to perform a collection of tasks. The seminal studies on
scheduling began in manufacturing at the beginning of this century with the
work of Henry Gannt and other pioneers. However, it took many years for the

first scheduling study to be appeared in the operations research literature.

Especially, over the last three decades, a number of books on sequencing
and scheduling have appeared. These books range from the elementary to the
more advanced. One of the known textbooks by Baker [6] gives an excellent
overview of many aspects of deterministic scheduling. However, in the first
edition [5], there is no complexity issues since it appeared just before research
in computational complexity became popular. An introductory textbook
by French [23] covers most of the techniques that are used in deterministic
scheduling. The more applied text by Morton and Pentico [35] presents a
detailed analysis of a large number of scheduling heuristics that are useful
for practitioners. A recent book by Pinedo [37] deals with deterministic and

stochastic models with applications so that the relevance of the theory to the

real world can be found.

A scheduling problem is described by a triplet o|3]y. The « field describes
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the machines environment and contains a single entry. The f field provides
details of processing characteristics; constraints and may contain no entries,
a single entry, or multiple entries. The v field contains the objective to be
minimized and usually contains a single entry. For the « field, single machine
(1), identical machines in paralle]l (Pm), machines in parallel with different
speeds (@), unrelated machines in parallel (R,,), flow shops (F},), flexible
flow shops (F'F}), open shops (O,,) and job shops (J,,,), are examples. For the
/3 field, possible entries are release dates (r;), sequence dependent setup times
(sjx), preemptions (prmp), blocking (block), no wait (nwt) and recirculation
(recrc). For the + field, some of the objectives discussed in the literature
are lateness, tardiness, makespan (C),.), maximum lateness (L,q,), total
weighted completion times (3° w;C}), discounted total weighted completion

times (3 w;(1—e"%)), total weighted tardiness (3" w,;T};) and weighted number

of tardy jobs (3 w;Uj;).

In most of the scheduling rules in the literature customer importance is
not taken into account. Since firms struggle to survive in a competitive
environment, an emphasis to coordinate the priorities of the firms throughout
the functional areas is needed. Firms have variety of customers with varying
degrees of importance. As stated by Jensen et al. [28], the importance of
a customer can depend on a variety of factors, such as the firm’s length of
relationship with the customer, how frequently they provide business to the
firm and the potential of a customer to provide orders in the future. Therefore,
we present a new dominance rule for the most general case of total weighted

tardiness problem:.

In this study we are dealing with single machine total weighted tardiness
problem with unequal release dates, i.e. 1|r;| 3 w;T;. Although total weighted
tardiness function is well known due date related penalty function and
considerable amount of work is done in literature, to the best of our knowledge,
we know of no other published exact approach on minimizing the total weighted
tardiness problem with unequal release dates. The problem may be stated as
follows: There are n independent jobs each has an integer processing time p;, a

release date r;, a due date d;, and a positive weight w;. Jobs will be processed
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without interruption on a single machine that can handle only one job at a
time. A tardiness penalty is incurred for each time unit if job j is completed
after its due date d;, such that T} = max{0,(C; — d;)}, where C; and T} are

the completion time and the tardiness of job j, respectively.

In this chapter, related literature on single machine total weighted tardiness
with unequal release dates will be discussed. Basic exact and approximation
approaches will be presented in § 2.1 and § 2.2, respectively. Finally, a summary

will be provided in § 2.3.

2.1 Exact Approaches

One of the first results in tardiness scheduling is the well known Elmaghraby
lemma ([15]). Given a set S of unscheduled jobs which are available at time
zero, if there is a job k € .S such that dy > 3”;cs pi then there exists an optimal
schedule in which k is the last among all jobs in 5. Since & will never be tardy

if we process it last among the jobs in hand, the job can be removed from the

problem.

Literature focuses on static environment total weighted tardiness problem
with equal release dates. A number of enumerative solution methods have
been proposed. In 1969, Emmons [16] derives several dominance rules for total
tardiness problem that restrict the search for an optimal solution. Rinnooy Kan
et al. [44] and Rachamadugu [40] extend these results for the weighted tardiness
problem. Using Lagrangian relaxation, Potts and Van Wassenhove [38] propose
a lower bound which is also used in a branch and bound algorithm. Szwarc and
Liu [50] present a two-stage decomposition mechanism to 1| | 3 w;T; problem
when tardiness penalties are proportional to the processing times which proves
to be powerful in solving the problem completely or reducing it to a much
smaller problem. Recently, Akturk and Yildirim [4] propose a new dominance
rule and a lower bounding scheme that provides a sufficient condition for local

optimality for total weighted tardiness problem, which can be used in reducing
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the number of alternatives in any exact approach.

The exact approaches used in solving the weighted tardiness problem
with equal release dates, 1| |> w,T; are tested by Abdul-razaq et al. [l]
and they use Emmons’ dominance rules to form a precedence graph. The
dynamic programming algorithms use the same recursion defined on sets of
jobs, but they generate the sets in lexicographic order (Schrage-Baker [46))
and cardinality order (Lawler [33]), respectively. The branch and bound
algorithms use lower bounds based on transportation problem (Lawler [31]), a
linear assignment relaxation (Rinnooy Kan et al.[44]), Lagrangian relaxation
(Fisher [21]), dynamic programming state space relaxation (Abdul-razaq and
Potts [2]), and reduction of total weighted tardiness problem to total weighted
completion time problem, i.e. linear and exponential lower bounds proposed
by Potts and Wassenhove [38]. The branch and bound algorithm which obtains
a lower bound from a linear function of completion times problem is the most
efficient and is able to solve problems up to 40 jobs. Abdul-razaq et al. [1] show
that the most promising lower bounds both in quality and time consumed are
the linear and exponential lower bounds which are obtained from Lagrangian
relaxation of machine capacity constraints proposed by Potts and Wassenhove
[38]. The computational results show that the linear lower bound is superior

to exponential lower bound.

All of the optimizing approaches discussed above assume that the jobs have
equal release dates, i.e. all jobs become available at time ¢. The unequal release

dates case has also been considered for a number of different optimality criteria.

For single machine minimax lateness problem, 1|r;|Lyq., Schutten et al.
[47] developed branch and bound algorithm which solves almost all instances
with up to about 40 jobs to optimality, with family setup times. Grabowski
et al. [24] propose a branch and bound algorithm based on the eliminative
properties of a block of jobs. Similar approach of grouping a set of jobs as
blocks are also used by Chand et al. [9], where they develop decomposition
results for total completion time criterion with weights equal to 1 such that a

large problem can be solved by combining optimal solutions for several smaller
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problems. For the same problem, 1|r;| 3= C;, Ahmadi and Bagchi [3] compare
six available lower bounds in the literature and show that the lower bound
based on the optimal solution to the preemptive version of the problem is the
dominant lower bound. Reeves [42], modifying a number of heuristics, provide
very good solutions to several large problems in a modest amount of computer

time.

In 1981, Dessouky and Deogun [13] propose a branch and bound technique,
coupled with some devices to improve the efficiency of the search to minimize
the mean flow time when the jobs may have unequal release dates, 1|r;|F;.
With unequal job release dates, optimality criterion to minimize total weighted
completion time, 1|r;| > w;C;, is studied extensively, in the literature. Hariri
and Potts [27] derive a branch and bound algorithm, which includes several
dominance rules and lower bound is obtained by performing a Lagrangian
relaxation. Bianco and Ricciardelli [7] also investigate the same problem,
pointed out several dominance sufficient conditions and developed a branch
and bound algorithm. Dyer and Wolsey [14] formulate the problem as a
mixed integer program by considering a hierarchy of relaxations obtained by
combining enumeration of initial sequences with Smith’s rule. To minimize
the weighted number of late jobs, 1|r;| > w;U;, Potts and van Wassenhove
[39] propose a branch and bound algorithm. Erschler et al. [17] establish a
dominance relationship within the set of possible sequences for 1|r;|- problem
independent of the optimality criterion to find a restricted set of schedules.
In 1992, Chu [10] present a priority rule that satisfies necessary and sufficient
conditions for local optimality, and based on this priority rule he proposes
efficient heuristics. He shows that when these heuristics are used as upper

bounds, they improve branch and bound algorithms to minimize total fow

time, 1jr;| > F}.

For scheduling with both early and tardy penalties in the environment
with unequal release dates Ferris and Vlach [18] show that for certain forms of
objective function, such that max £;, max L;, or °(E; + L;), polynomial time
solution is possible. When the objective is to minimize the sum of weighted

earliness and weighted tardiness costs, Sridharan and Zhou [48] develop a single
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pass heuristic which is based on a decision theory. Using simulation, Robb and
Rohleder [45] investigate the performance of a number of simple algorithms
and compare these simple methods relative to a bound that uses an adjacent

pairwise interchange algorithm.

For total tardiness objective, Chu and Portmann [12] prove a sufficient
condition for local optimality which can be considered as a dynamic priority
rule, and define a dominant subset. Using this dynamic priority rule, in 1992
Chu [11] proves dominance properties and provides a lower bound polynomially
computed for total tardiness problem with unequal release dates, 1|r;| > 7;. A
branch and bound algorithm is then constructed using the previous results of
Chu and Portmann [12] and problems with up to 30 jobs can be solved for
certain problem instances, even though computational requirements for larger

problems tend to limit this approach.

In 1976, Rinnooy Kan shows that total weighted tardiness problem with
unequal release dates, 1|r;|> T; is NP-hard [43]. A year later, in 1977,
Lawler [32] shows that the total weighted tardiness problem, 1| |3 w;Tj, is
also strongly NP-hard, hence we can deduce that total weighted tardiness
with unequal release dates problem, 1jr;|>" w;T}, is also strongly NP-hard
because the alternatives of inserting machine idle times need to be considered.
Therefore, only branch and bound approaches or dynamic programming
approaches seem to be available for single machine total weighted tardiness
problem with unequal release dates for exact solution. Unequal release dates
and the presence of idle times in an optimal solution destroys the scheme
of usual dynamic programming approach [11]. Therefore branch and bound

algorithms are much more convenient.

2.2 Approximation Approaches

Solving realistic scheduling problems in a reasonable amount of time almost

inevitably requires the use of heuristic methods. Since the implicit enumerative
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algorithms may require considerable computer resources both in terms of
computation times and memory, it is important to have a heuristic that
provides a reasonably good schedule with reasonable computational effort.
Therefore, a number of heuristics and dispatching rules have been developed
in the literature. Large scale problems are usually treated with heuristic
procedures called dispatching or sequencing rules. These are logical rules for
choosing which available job to select for processing at a particular work center.
In using dispatching rules, usually scheduling decisions are made sequentially
rather than once. For the static dispatching rules, the job priorities do not
change over time while priorities might change over time for the dynamic
dispatching rules. A list of dispatching rules is given in Table 2.1. In this
table, MODD, WPD, WSPT, and WDD are examples of static dispatching
rules, whereas ATC, COVERT, and X-RM are dynamic ones.

The weighted shortest processing time rule (WSPT), using the ‘natural
priority’ of job j, w;/p;, or the penalty avoided, works analogously to the SPT
rule, such that overall tardiness is reduced in congested shops by giving priority
to short jobs and w; helps in coordinating job priorities. By delaying long jobs,
WSPT can also achieve a remarkably low total number of tardy jobs without
using explicit due date information, especially when job earliness is limited by
dynamic release dates. WSPT rule gives an optimal sequence when all release

dates and due dates are zero.

Vepsalainen and Morton [51] develop and test efficient dispatching rules for
the weighted tardiness problem with specified due dates and delay penalties.
Carroll [8] designed a dynamic rule for average tardiness scheduling to be used
to incorporate job weights into a slack based approach. The COVERT priority
index represents the expected tardiness cost per unit of imminent processing
time, or cost per unit of imminent processing time, or Cost OVER Time.
Under COVERT rule, jobs are scheduled one at a time; that is, every time the
machine becomes free, a ranking index is computed for each remaining job j.
The job with the highest ranking index is then selected to be processed next.
The ranking index is a function of the time ¢ at which the machine becomes

free as well as the p;, the w;, and the d; of the remaining jobs. The index for
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COVERT can be defined as:

; 0,d; =t —p;
7;(t) = max (& max[0,1 — max(0, d; p")])
j k- pj
Job j queuing with zero or negative slack is projected to be tardy by completion
with an expected tardiness cost w; and priority index w;/p;. k is the look ahead

parameter.

The apparent tardiness cost (ATC) is a composite dispatching rule that
combines the WSPT rule and the minimum slack (MS) rule. Similar to
COVERT, under the ATC rule, jobs are scheduled one at a time; the job
with the highest ranking index is then selected to be processed next. The
ranking index is a function of time ¢, p;, w;, and d; of the remaining jobs. The
ATC index can be defined as:

—maz (0, d; —t — pj)

we
7i(t) = — - exp .

where p is the average processing time of remaining unscheduled jobs at time
t and k is the look-ahead parameter. Vepsalainen and Morton [51] have shown
that the ATC rule is superior to other sequencing heuristics for the 1] | 3w, T}
problem. It trades off job’s urgency (slack) against machine utilization, but due
to the more complex weighted criterion, an additional look ahead parameter
is needed to assimilate the competing jobs which have different weights. In
computational tests which is done by Rachamadugu and Morton [41], an
exponential function of the slack was found to be somewhat more efficient.
Intuitively, the exponential look ahead works by ensuring timely completion of
short jobs (steep increase of priority close to due date), and by extending the
look ahead far enough to prevent long tardy jobs from overshadowing clusters

of shorter jobs.

According to Kanet [29] schedules with inserted idleness, appear to have
better best case behavior than non-delayed schedules. He concluded that non-
delay schedules may produce reasonably good performance but rarely provide
a schedule which is optimal. Morton and Ramnath [36] modify the ATC rule
to allow inserted idleness, which is named the X-RM rule. The X-RM rule

can be defined as follows: Whenever a resource is idle, assign it a job which
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is either available at that time or will be available in the minimum processing
time of any job that is currently available. Clearly X-dispatch policy relies on

the idle time allowed.

X-RM i1s a modification of the ATC rule resulted from allowing inserted
idleness. The procedure starts with calculating ATC priorities, 7;(t). The
priorities are multiplied with 1 — [(B - max{0,7; — t}) / p], hence a priority
correction is done to reduce priority of late arriving critical jobs. The parameter
B i1s suggested to fit to 1.3 4 p where p is the average utilization of the machine
[35], whereas p can be either average processing time, p, or minimum processing

time, Pmin, as suggested in [35] and [36], respectively.

2.3 Summary

The 1|r;| > T; problem is proved to be strongly NP-hard [43]. So that,
Lr;| 3 w;T; problem will also be strongly NP-hard. Therefore, we need
enumerative algorithms for an exact solution. In enumerative algorithms
crucial issue is to reduce the number of alternatives in the search space.
Dominance rules are used to specify dominant set to reduce computational
effort. Therefore, in Chapter 3, we present a new dominance rule for the single
machine total weighted tardiness problem with unequal release dates which is
based on adjacent pairwise interchange method. The proposed dominance rule
provides a sufficient condition for local optimality and it generates schedules
that cannot be improved by adjacent pairwise interchange methods. If any
sequence violates the proposed dominance rule then switching the violating

jobs either lowers the total weighted tardiness or leaves it unchanged.

Implicit enumeration algorithms require high computational effort. Iven
for equal release dates, for an exact solution, 30 jobs seems to be the maximum
problem size [11]. Since exact approaches are prohibitively time consuming, it
is important to have a heuristic that provides a reasonably good schedule with

reasonable computational effort. Based on the dominance rule, we introduce an
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RULE DEFINITION RANK and PRIORITY INDEX
MODD Farliest Modified Due date min {max{d;,t+ p;}}

ATC Apparent Tardiness Cost max m; = {%JJ- exp (— ((i,_f;j—t—p’)}

X-RM X-dispatch ATC max {m;(1 — B‘L‘(ﬁo'r—t))}
COVERT Weighted Cost Over Time max {%’j— max[0,1 — Eﬂ@%ﬁ#ﬁ]}

WPD Weighted Processing Due date max {%’j}—

WSPT | Weighted Shortest Processing Time max {;—ﬁ'j—}

wWDD Weighted Due Date max {%’f}

Table 2.1: Dispatching Rules in Literature

algorithm that can be used to improve the total weighted tardiness criterion of

any sequence by making necessary adjacent pairwise interchanges, in Chapter

4. We test the efficiency of the proposed approach by comparing it to a number

of heuristics.

We also look at how the proposed dominance rule can be incorporated

in a branch and bound (B & B) algorithm in conjunction with a branching

condition, lower bounding scheme, and a search strategy, in Chapter 5. We

present our computational results in Chapter 6.




Chapter 3

Dominance Rule

If it is possible to identify a subset of the set of sequences which is guaranteed
to contain an optimal sequence, this subset is called dominant set. Certain
potential solutions that lie outside the dominant set can be ignored. In this
class of problems, the computational demands for the exact solution grow
exponentially with problem size. Restricting our attention to the dominant
set reduces the number of alternatives. Therefore, the computational effort

involved in searching an optimal solution decreases.

In this chapter, we give dominance rules to specify dominant set to reduce
computational effort for the total weighted tardiness problem with unequal
release dates. We show that the arrangement of adjacent jobs in an optimal
schedule depends on their start times. For each pair of jobs, 7 and 7, that are
adjacent in an optimal schedule, there can be a critical value t;; such that ¢
precedes j if processing of this pair starts earlier than ¢;; and j precedes 7 if

processing of this pair starts after ¢;;.

This chapter is organized as follows: In §3.1, the problem definition and
the notation used are given. In §3.2, the proposed dominance rule is explained

by analyzing 31 possible cases and a summary is given in §3.3.

16
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3.1 Problem Definition and Notation

The single machine total weighted tardiness problem with unequal release
dates, 1|r;| > w;T}, can be defined as follows. There are n independent jobs
(numbered 1,...,n) each has an integer p;, r;, d; and a positive w;. Jobs will
be processed without interruption on a single machine that can handle only
one job at a time. Machine may or may not be left idle while there are some
available jobs in the queue. A tardiness penalty is incurred for each time unit if
job j is completed after its due date, such that T; = max{0, (C; — d;)}, where
C; and T; are the completion time and the tardiness of job j, respectively.
The objective function is to find an optimal sequence that minimizes the total
weighted tardiness criterion of all jobs given that the starting time of any job
cannot be before its release date. For convenience the jobs are arranged in an
EDD indexing convention such that d; < d;, or d; = d; then p; < p;, or d; = d;
and p; = p; then w; > wj, or d; = d; and p; = p; and w; = w; then r; < r;
for all 7 and j such that : < j. To introduce the dominance rule, consider
schedules S| = Q1jQ2 and Sy = @Q17:Q2 where @); and (), are two disjoint
subsequences of the remaining n — 2 jobs. Let ¢ be the completion time of jobs

in ) and jobs ¢ and j are available at ¢, r; <, r; < ¢

The following interchange function, A;;(¢), is used to specify the new
dominance properties, which gives the cost of interchanging adjacent jobs ¢

and j whose processing starts at time ¢, and

Aii(t) = fi;(t) — fu(t)

0 ma,x{rl-,rj} <t<d; — (p,' + ])J')
wi(t +pi+p; —di) max{rj,di—p —p;} <t <di—p;
fii(t) = wi(r; +pj — 1) 1 <di—p <t <y

wi(rj +pi+pj —di) ri <t < min{d; — pi, 7}

wip; max{r;,d; — p;} <t



CHAPTER 3. DOMINANCE RULE 18

PW;
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w, (r s +pj—di)
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d,-p, |

Figure 3.1: Possible graphs of f;;(t)

fij(t) function is given in Figure 3.1.

A;;(t) does not depend on how the jobs are arranged in @, and @, but
depends on start time ¢ of the pair, and

o if A;;(¢t) <0, then j should precede ¢ at time ¢.

e if A;;(t) > 0, then ¢ should precede j at time ¢.

o if A;;(t) =0, then it is indifferent to schedule z or j first.

It is important to note that the dominance conditions derived for 1| | 3 w; T}

problem may not be directly extended to the 1|r; |3 w;T; problem. A global

dominance for 1] | 3 w;T; problem implies the existence of an optimal sequence



“"HAPTER 3. DOMINANCE RULE 19

(a) 1 2 3 Y Wr=36
19 % 28
) 1 s 2 Y Wr=16
12 14 16 30
(c) 2 3 1 YWr=15
14 16 %8

Figure 3.2: Three Alternative Schedules for the Three-job Example

in which job 7 precedes job j is guaranteed and job ¢ dominates job j for every
time point £. An immediate consequence of allowing different release times
over the 1] |3 w;T; problewn is the need to examine the question of inserted
idle time. To illustrate the role of inserted idle time, consider the following
three-job example, for which the Gantt charts for three alternative schedules
are given in Figure 3.2. Let (Job j | rj, pj, dj, w;) = (1|0, 12, 13, 1),
(20,14, 14, 1) and (3 | 14, 2, 16, 2). If we directly implement dominance
rules proposed by Emmons [16], Rinnooy Kan et al. [44], Rachamadugu [40] or
Akturk and Yildirim [4], job 1 dominates job 2 for any time t > 0, i.e. global

dominance. As shown in Figure 3.2.c, the only optimal solution is {2-3-1},

since these rules do not consider the impact of inserted idle time on the final
schedule. In Figure 3.2.a, the sequence {1-2-3} corresponds to a nondelay
schedule, which never permits a delay via inserted idle time when the machine

becomes available and there is work waiting,.

The dominance properties for 1| 7; | w;T; problem can be determined by
looking at points where the piecewise linear and continuous functions f;(t)
and f;;(t) intersect. For clearity, the term g;;(¢) will be used instead of fi(t).
The intersection points are denoted as breakpoints if they are in the specified
interval. A breakpointis a critical start time for each pair of adjacent jobs after
which the ordering changes direction such that if ¢ < breakpoint, ¢ precedes j

(or j precedes i) and then j precedes 7 (or ¢ precedes j).
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Throughout the study, we also use the following definitions.

i conditionally precedes j, (¢ < ) if there is at least one breakpoint between
the pair of jobs such that the order of jobs depends on the start time of this

pair and changes in two sides of that breakpoint.

i unconditionally precedes j, (+ — 7) the ordering does not change, i.e.
i always precedes j when they are adjacent, but it does not imply that an

optimal sequence exists in which ¢ precedes j.

3.2 Dominance Rule

The proposed rule is based on adjacent pairwise interchange (API) method.
The API method, which can be used for improving the total weighted
tardiness problem criterion, is crucial for reducing the number of alternatives
in a complete enumeration. Adjacent pairwise interchange method only
guarantees local optimality. But if adjacent pairwise interchange method is
applied to a good heuristic schedule, result may be highly near optimality.
The proposed rule provides a sufficient condition for local optimality and it
generates schedules that cannot be improved by adjacent pairwise interchange
methods. If any sequence violates the proposed dominance rule, then switching

the violating jobs will either lowers the total weighted tardiness or leaves it

unchanged.

When all of the possible cases are studied, it can be seen that there are at

most seven possible breakpoints where functions f;;(t) and g;;(t) intersect.

widi - w]-d]-

ty = ——2= = (pi+p) (3.1)
¢ J

th = dj = pi = pi{1 = wifw;) (3.2)

ty = di — pj = pi(1 — w;/w;) (3.3)

ti = w;/wi(ri + pi + pj — d;) — (pi + pj — i) (3.4)
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5 (w; — wi)p; + wjr; + w;(d; — pj) oL
t“ = — . («3."))
w; + w;
t3; = wifwi(r; + pi + p; — di) — (pi + p; — d;) (3.6)
Wi — w:)p; " (d: — p; _
th _ ( w;)p; j|_:U)rJ + w;(d; — p;) (3.7)
w; + wj

In some cases intersection point occurs at a point where one of the jobs is
not available, then the release date of the second job is denoted as a breakpoint.

5

7i» job 7 should precede job j, but job ¢ becomes

At intersection points t§; and ¢
available after the intersection point, hence r; is denoted as a breakpoint.

Similarly, r; is denoted as a breakpoint instead of t7; and tf;.

o t!; will be a breakpoint if max{d; — (p; + p;),7i,7;} < t}; < min{d; —
pi,di — pi}

o t% will be a breakpoint if max{d; — pi,d; — (pi +p;),7;} < t}; < dj — p;

o t7; will be a breakpoint if max{d; — pj,ri} < ; < di — p;

o r; will be a breakpoint if either d; — (p; + p;) < t}; < min{d; — p;,»;} or
d]' —p; < t?j <

o r; will be a breakpoint if either d; — (pi + p;) < ti; < min{d; — p;,r;} or
di —pi <t <r;

In order to derive a new dominance rule, we analyze all possible cases.

Assuming EDD indexing convention in the sequence, following 31 cases are

exhaustive.

1. d; < dj, piw; < pjw;, pi(wj—wi) > wi(d; —d;), max{r;,r;} < di—(pi+p;)
OR d; < dj, piw; < pjw;, pi(w; — w;) > wi(d; —d;), r; < di ~ (pi +pj) <
r; < dj — (pi + pj)

2. d; = dj, piw; > pjw;, max{ri i} <d—(p; + p;)
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10.

11.

12.

13.

14.

d; < dj, prw; < pjwi, pi(w; —w;i) < wi(dj—d;), max{ri,r;} < di—(pi+p;)
OR d; < d;, piw; < pjwi, pi(w; —w;) < wildj — di), vy < di — (pi +py) <
ri <dj — (pi +pj)

d; < dj, piw; < pjwi, pj(w;j—w;) > w;(dj—d;), max{ry,r;} < di—(pi+p;)
OR d; < dj, Diw; < p;jwi, pj(wj —wi) > wj(_dj — di), Tj <d;— (pi —I-pj) <
ri < dj — (pi + ps)

d; = dj, piw; < pjw;, w; < wj, max{r;,r;} <d—(pi+ p;)

d; < dj, piw; > pjw;, pi(w;—w;) < w;(d;j—d;), max{r;,r;} < di—(pi+p;)

OR d; < dj, piw; > pjw;, pj(w; —w;) < w;(dj —d;), r; < di — (pi +p;) <
ri < dj = (pi +p))

d; < dj, piw; < pjwi, pi(w; —w;) <wi(d; —di), vy <dj—(pi+p;) <ri <
max{d; — pi,d; — p;}

d; < dj, pow; < pywi, r; < dj — (pi + pj) < i < dj — py, pi(w; — w;) >
wi(d; — d;)

di < dj, wi(ri + pi + pj — d;) < pjwi < paw;, (w; —wi)(ri +pi + pj) <
wjd]- —wid;, r; < dj — (p,' + pj) <r < d]' —Pj

d; < dj, wilri + pi + p; — d;) = pyw; < powy, (w; —w)(ri + p; +pj) <
wid; — wid;, r; < dj — (pi +pj) <ri <dj—p; OR d; < dj, pjw; <
wi(ri +pi +pj —d;), r; < dj — (pi +p;) Sri < dj — p;

d; < dj, wi(ri + pi + p; — dj) < pjw; < pow;, pi(w; —w;) > w;(d; — dj),
ri <dj—(pi+pj) <ri<di—pi <dj—p;

d; < dj, pjw; < paw;j, r; < dj— (pi+p;) <dj—p; <ri <di —pi

d; < dj, piwj < pjw; < wi(ri+p;i+p;—d;), r; < dj—(pit+p;) <dj—p; <
ry <d; — pi, Pi(wj - wi) < wi(Ti +pi — di)
d; < dj, piw; < pjw; < wi(ri+pi+p;—d;), r; < dj—(pi+p;) <dj—p; <
r < di = pi, pi(w; — wi) > wi(ri + p; — d;)
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15.

16.

17.

18.

19.

20.

21.

23.

24,

25.

26.

27.

di < dj, pjwi 2 wi(ri +pi+pj —dj), v < dj— (pi+p;) <dj—p; <1 <
d; — pi, wi(ri + pi + pj — dj) <wi(d; — d; + p;)

di < dj, piwj < wilrj+pitpi—di), ri <di—(pitp;) <rj < dj—(pitp;) <
min{d; — p;, d; — p;}

d; < dj, wi(rj + pi +p; — di) < piw; < pjwi, i < di— (pi+pj) <7 <
min{d; — (p; + p;j),di — pi}

d; < dj, piw; < pijw;, 7 < d; — (pi -I-p]') <1y < di—pi < (l]' — (]),' —I—p]‘) <
dj — pj

d; < dj, pjwi < piwj, ri S di — (pi+p;) S <dj—(pit+p;) <dj—p; <
di — pi

d; < dj, piwj > pjwi, i < di—(pit+p;) < r; <min{d;—(pi+p;),di—pi} <
d; — pj, pi(w; — wi) < w;(d; — d;)

di < dj, wilrj + pi + pj — di) < prw; < pjwi, pi(w; — wi) > wild; — di),
ri < di — (pi +p;) <r; <min{d; — (p; + p;),di — pi}

d; < d;, pw; > pjwi, (wj —wi)(r; + pi + pj) 2 wid; — widi, r; <
dj — (pi + pj) <r; < min{d; — p;, d; — p;}

d; < d;, pwj > pjw;, (w; — w)(r; + pi +p;) < wid; — widi, 7 <
di — (pi + p;) < dj — (pi + pj) <7j <min{d; — pi, d; - p;}

di < dj, piw; < wi(rj +pi +pj —di) < wipj, ri < di — (pi +p;) <
dj — (pi + p;j) < rj <min{d; —pi,d; —p;}

d; < dj, wilry + pi + pj — di) < piw; < pjwi, wild; — di) 2 (w; — wi)pi,
ri < dj — (pi +p;) <rj <min{d; — p;,d; — p;}

d; < dj, wi(r; + pi + pj — di) < piw; < pjwi, wi(d; — di) < (wj —wi)pi,
ri <dj — (pi+p;) <rj <dj —p; <di—p;

d; < dj, prwj < pjwi, i < dj—(pitp;) < di—pi <r; < dj—p; ORd; < dj,
piw; < pjwi, 1i < di — (pi +pj) <di —pi <7y < dj —(pi +p;) <dj —p;
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time

Figure 3.3: Illustration of Proposition 1

28. d; < dj, piw; > wipj, ri < min{d; — (pi + p;), di — pi}, max{d; — (p; +
pi)di — pi} <rj < dj —pj, pilwi —wj) > wj(r; +pi — dj)

29. d; < dj, pjw; < piwj, i <di —py < v <dj —(pi +pj) <dj —pj

30. di < dj, wi(T,' + pi +Pj — di) < wj(d,- — d]' + ])j), r, < d_,' — (p,‘ + pj) <
d; —p <7y < d]' —Dj

31. d; < dj, wi(ri+pi+p;—di) > wi(di—d;+p;), pj(wi—w;) < wilrj+pi—d;),
r; < min{d; —(p; +p;), di —pi}, max{d; — (pi+p;),di—p:i} < min{r;,d; —
pi}

3.2.1 d; < dj, pw; < pjwi, pi(w; —w;) > wi(d; — d;),
max{r;,rj} < di — (pi +pj) OR d; < dj, piw; < pjw;,
pi(w; — w;) > wi(d; — d;), rj < di—(pi+p;) <1 <
dj — (pi + p;)

In this case there are two breakpoints t}; and t; as it can be seen from Figure

3.3. Following proposition will give the order of jobs at time ¢ for this case.

Proposition 1 If d; < dj, pyw; < pjwi, pi(w; —w;) > wi(d; — d;) and either
both jobs i and j are available before d; — (p; 4 p;) or job ¢ will be available in

the time between d; — (p; + p;) and d; — (p; + p;) then breakpoints tj; and t};
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time

Figure 3.4: Illustration of Proposition 2

are valid and fort < r;, 7 <z, forr; <t < t}j, 1 < 3, for t}j <t< ‘t?j, 7 <z,
and fort > t?j 1<7.

Proof: If r; < r; until job ¢ becomes available, job j will be scheduled, and
vice versa if r; < r; then job ¢ will be scheduled for ¢t < r;. For t < d; —(p; +p;)
it is indifferent which job is scheduled first because both jobs will be on time.
For d; — (pi + pj) <t < d; — (pi + pj), Diz(t) = wi(t + pi + p; — d;). Since
di—(pi+p;) < t, Ay(t) > 0 therefore ¢ < j if it is available. For d; — (pi+p;) <
t < dj—pj either ¢ or 7 will be tardy, if not scheduled first. Here A;;(1) = (w; —
w;)(t+pi +pj) —wid; —w;d;. At point tj; = widizwyd; (pi+pj) and Aj;(t) = 0.

Wy — Wy
Fort <ti;, Ay(t) < 0andift > t}; then Ay(t) > 0. Soif the processing begins
up to t}j, t < 7 and after t}j, J =< Itd; —p; <t <d;—p; then j is always

tardy but ¢ is not if scheduled first. Here A;;(¢) = (¢t + pi + p; — di)w; — piw;.
Aij(t) will be zero at time ¢; = di — p; — pi(1 — w;/w;). Before t3;, Ay(t) <0
so j < and Ay;(t) >0 fort > t?j so ¢ < j afterwards. If t > d; — p; then both
jobs will be tardy and A;;(t) = pjw; — piw;. Since pw; < pjw; and Ay;(t) > 0,

therefore 1 < 5. O

3.2.2 d;, =dj, piw; > pjw;, max{r;,r;j} <d— (pi+p;)

In this case d; = d; = d so p; < p; by the EDD ordering convention,

consequently w; > w; in order to satisfy the pyw; > pjw; condition. In this
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time

Figure 3.5: lllustration of Proposition 3

case t}j =d — (pi + p;), so up to t}j we are indifferent to schedule either i (if
available) or j (if available) first and if Ay;(t) <0 for t > t;, as it can be seen

in Figure 3.4 that means y < ¢ for every ¢ > r;.

Proposition 2 If d; = d;, p;w; > pyw;, max(r;,r;) < d— (pi + pj) then j <1

whenever job j is available.

Proof : Uptor; <t < t}j both jobs will be on time so we can schedule j first.
At point d — (p; + p;) nonconstant segments of both f;(¢) and g;;(¢t) begins.
Since slope of fi;(t) = wi(t + pi + p; — d) < w;(t + p; + p; — d) = slope of g;;(t)
and w;p; < w;p; then, fij(t) < gi;(t) for every t > tj;. Therefore, A;(t) <0
fort > r;and y <1. O

3.2.3 d, < dj', Diw; < DjWi, ])i(’LUj - wi) < w,(d] - d,j),
max{r;,7;} < di — (pi + p;) OR d; < d;, piw; < pjw;,
pi(w; —w;) < wild; —di), vj < di = (pi+pj) < 1i <
dj = (pi +pj)

In this case there is no intersection point as it can be seen from Figure 3.5. If

job 7 becomes available before job j then job ¢ unconditionally precedes job j,

else r; will be the breakpoint where j < i for t < r; and 1 < j for t > r;. If
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Figure 3.6: Illustration of Proposition 4

we show that A;;(t) > 0 for all time points after job ¢ becomes available, 1.e.

fij(t) > gij(t) for all time points ¢ > r;, then we can show that ¢ < j for ¢ > r;.

Proposition 3 If d; < d;, piw; < pjw;, pi(w; — w;) < wi(d; — d;) and either
max{r;,rj} < d;—(pi+p;) orr; < di—(pi+p;) <ri < dj—(pi+pj) then job

i precedes job j after job ¢ becomes available.

Proof : Until job ¢ becomes available job j will be scheduled. Let ¢t = d; —
(p: + p;) then Ay;(t) = (dj — di)w; > 0, since d; > d; and g;(t) = 0,507 < j at
time d; — (p; + p;) if job 7 is available. Let ¢ = d; — p; then Ay;(t) = (d; + p; —
d;)w; — piw; = (dj — di)w; — pi(w; —w;) > 0 since p;(w; —w;) < (d; — d;)w;, so
i < j at time d; — d;. If we let t = d; — p; then Ay;(t) = pjw; — pyw; > 0, since
pjw; > piw;. As a result 7 < j at time d; — p;. Therefore, the result follows

j<ifort<r;and:<jfort>r;. O

3.24 d; < dj, pwj < pjwi, pi(w; — wi) > wi(d; — di),
max{r;,r;} < d; — (p; +p;j) OR d; < d;, piw; < pjw;,
pj(wj — wi) > wi(d; — di), vj < di — (pi +pj) < 7 <
dj — (pi + pj)

As it can be seen in Figure 3.6 this case is similar to first case except p;w; >

pjw; so single breakpoint t}; is valid, if r; < r;. Otherwise, r; is another
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i

Figure 3.7: Illustration of Proposition 5

breakpoint where j <4 for ¢t < ry; for r; <t < t}j, i < j and for t > t}j,j <

Proposition 4 If d; < d;, piw; < pjw;, pj(w; — w;) > w;(d; — d;) and cither
max{r;,r;} < di — (pi +p;) orr; < di — (pi +p;) < ri < dj — (pi + pj) then
there is the breakpoint tgj, and 1 <7 forr; <t < t}j, g =<1 fort> t}j,

Proof : In this case t}j can be valid only if the nonconstant segments of f;(¢)
and g;;(t) intersect, and tj; = %:—Z’%il —(pi + pj) < di — pi to be valid. This
leads pj(w; —w;) > (dj — d;)wj, since Ai;(t) = pjw; — piw; <0 for t > d; — p;.
(]

3.2.5 d; = dj, piw; < pjwi, w; < wj, max{ry,r;} < d—(p;+p;)

This case can be handled as a special case of the first case such that d; = d; = d
as depicted in Figure 3.7. As discussed in the third case tj; = d — (p; + p;) so
it is indifferent to schedule either job : (if available) or job j (if available) first
up to t};. From EDD ordering convention if d; = d; then p; < p;. Since both
jobs are available before d — (p; + p;) there can be a breakpoint if w; < w; as

stated below.

Proposition 5 If d; = d;, pyw; < pjwi, w; < w; and both jobs are available
before d — (pi + p;) then there is the breakpoint t?j. After job j become available
up to t3; j <1 and i < j afterwards.

time
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Figure 3.8: Illustration of Proposition 6

3.2.6 d; < dj, pw; > pjwi, pijw; —w) < wild; — di),
max{r;,r;} < di — (pi +p;) OR d; < dj, pow; > pjw;,
pj(w; — wi) < wi(dj —di)y 7 < di = (pi+pj) <70 <
d; — (pi + pj)

This case is similar to case 4 except positions of d; — p; and d; — p; as shown in
Figure 3.8. There is the breakpoint t?j and depending on the relative ordering
of r; and r;, r; will also be a breakpoint if r; < r;. Relative positions of d; — p;
and d; —(p;+p;) might change such that if d;—d; < p; then d;—(p;+p;) < di—p;
else d; — (pi + p;) > di — pi-

Proposition 6 If d; < dj, piw; > pjw;, pj(w; — w;) < w;(d; — d;) and either
max{ry,r;} < di — (pi +p;) orr; < di — (pi +p;) < i < dj — (pi + pj) then
there is the breakpoint t7;, and i < j for r; <t <%, and j < i afterwards.
Proof : Breakpoint t}; will be valid if nonconstant segment of g;;(t) intersects
with the constant segment of fi;(t). This is the case if w;p; = w;(t;+pi+p;—d;)
while d; — p; <t} < d; — p;. This leads to the condition of piw; > pjw; for
t;f’j < d; — pj and pj(w; —w;) < w;(d; — d;) for t?j >d;~pi. f dj —p; <tthen
j < i since Ayj(t) = pjw; — paw; < 0. O
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Figure 3.9: Illustration of Proposition 7
3.2.7 d; < dj, piw; < pjw;, pi(w; —w;) < wi(d; — d;), r; <
d; — (pi + pj) < ri < max{d; — p;,d; — p;}

In this case we begin to deal with second form of g;;(t) graph as it can be
seen in Figure 3.9. Graph of g;;(t) begins no longer from zero. Since job i
arrives after d; — (p; + p;) and d; — (pi + p;) there is an incured fixed cost of
w;(r; + p; + p; — d;j) until job ¢ arrives because we cannot interchange the jobs.
As it is seen in the graph there seems to be an bhreakpoint tfj where f;;(t) and
gii(t) intersect. Although fi;(t) > gi;(t) i.e. Ay;(t) > 0, for ¢ >t job i cannot
precede job j until it arrives. So r; will behave as a breakpoint. Therefore,

g <ifort<r;and¢=<jfort>r;.

Proposition 7 If d; < d;, piw; < pjw;, rj < dj — (pi + p;) <y < max{d; —
pi,d; — pi} and pi(w; — w;) < wi(d; — d;) then j < ¢ fort <r; and i < j for
t Z ;.

Proof : It is obvious that we cannot schedule job ¢ until it becomes available.
Therefore j < i for t < r;. For ¢ > r; both the graph and Aj;(t) function is
the same as first case so refering to first proposition : < j at all time points,

t>r. O
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3.2.8 d; < dj, piwj < pjwi, 7 < dj — (pi +pj) < i < dj — pj,
pi(w; — w;) > wi(d; — d;)

In this case job ¢ arrives after d; — (p; + p;) so until r; job j can be scheduled,
j <1 for t < r;. After job ¢ arrives A;;(t) function is similar to first case. So

3

‘here ar o - 1 . ; ; y
there are two breakpoints t;; and t7;. Forr; <t <t} i < j and for th <t <t

j < and for ¢t > t}; again ¢ < j.

Proposition 8 If d; < d;, pyw; < pjw;, r; <d; — (pi+pj) <ri<dj—p; and
pi(w; —w;) > wi(d; —d;) then j <1 forl < r;. After job i becomes available up
1 3

to til].J r <t < t}j, i <jand fort;; <t <t} j < and again i < j, t > ;.

Proof : Proof is similar to the proof of Proposition 1.0

3.2.9 dz S dj, 'wj(7'i+pi+pj—dj) S pjw,; S p,-wj, (wj—wi)('r,;ﬁ—
Pi +])j) < wjd]- — w;d;, r; < dj — (_pi +])j) <r < dj —Pj

This case is similar to case 4, only difference is ¢ arrives after d; — (p; + p;) so
until 7; job j can be scheduled. After job ¢ arrives A;;(¢) function is similar to
case four. So there is single breakpoint t}; until which i (if available) precedes
j and after t}; j precedes 1.

Proposition 9 Ifd; < d;, wi(ri +pi + p; — d;) < pjw; < pwj, rj < dj— (pi +
p;) <1 < dj —p; and (wj —w)(ri + pi +p;) < wid; — wid; then j < i for
t <y, form <t <th, i <4 andj <1, fort >t}

Proof: It is obvious that until r; job 7 can be scheduled. After job ¢ arrives

proof is similar to the proof of Proposition 4.0
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Figure 3.10: Illustration of Proposition 10

di < dj, wi(ri +pi +p;j —d;) < pjw; < paw;, (wj —
wi)(ri + pi + pj) > wid; —wid;, v < dj — (ps + pj) <
r; < dj —p; OR d; < dj, pjw; < wi(r; + pi + pj — dj),
rj < dj = (pi+pj) < ri <dj —p;

In this case, there is no breakpoint, which means job j unconditionally precedes

job 4 as shown in Figure 3.10. If we can show that A;(t) < 0V ¢, ie.

fi;(t) < gi5(t) for every t, then j — ¢ as stated below.

Proposition 10 If d; < d;, r; < dj — (pi +p;) < v < dj — pj, wi(ri +pi +
p; — d;) < pjwi < paw;, and (w; — w;)(ri + pi + p;) 2 wid; —wid; then j — i

for every t.

Proof: The maximum value of f;;(t) = pjw; and the minimum value of ¢;;(t) =
w;i(ri +pi +pj — dj). Ewi(ri +p; +pj — dj) < pyw; < pow; then gi;(¢) = fi;(t)
only if g;;(r:) > fij(ri); i.e. wi(ri + pi + p; — dj) > wi(ri + p; + p;j — di). This
inequality is equivalent to (w; —w;)(ri +p;+p;) 2> w;d; —wid;, so gi;(t) 2> fii(®)

for every t leading to j — . O

3.2.11

d; < dj, ’lUj(’)“i—I-pi—l-pj—dj) < pjw; < piw;, pj(wi—wj) >
wj(di —dj), v < dj — (pi+pj) < 1i < di — pi < dj — p;
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Figure 3.11: Illustration of Proposition 11

This case is similar to previous one except d; — p; is always less than d; — p;
and the nonconstant segment of g¢;;(t) intersects with the constant segment
of fi;(t). As it can be seen from Figure 3.11, this difference results in two
intersection points ¢f; and tf;. Since t; < ry, r; is also denoted as a breakpoint
in addition to t;. The following proposition can be used to specify the order

of jobs at time ¢.

Proposition 11 If d; < d;j w;(ri +pi + p; — d;) < pjw; < piwj, pi(w; —w;) >
w;(d; — dj) and r; < dj — (pi + p;) <r; <di —pi < d; —p; then there are two
breakpoints r; and t7;, and j <1 fort <y, i <y forr; <t <%, and § <1,

afterwards.

Proof : Only job j is available until job ¢ arrives at time r;. After r;, there
is a breakpoint t}; if the nonconstant segment of g;;(¢) intersects with the
constant segment of fi;(t). This is the case if wip; = w;(t3; + pi + p; — d;)
while d; — pi < t}; < d; — p;. This leads to the condition of p;w; > pjw; for
t2, < d; — p; and p;(w; —w;) < w;(d; — d;) for t%; > d; — p;. If dj —p; <t then

j <4 since Aj(t) = pjwi —piw; < 0. O

3.2.12 d; < dj, pjw; < paw;, r; < dj — (pi +pj) < dj —p; <
ri < d; — Di



CHAPTER 3. DOMINANCE RULE 34

w(rdpprd)r -t .

time

| |
1 T
d-(p+p) d -p, r d-p
Figure 3.12: Illustration of Proposition 12

In this case we begin to deal with third form of g¢;;(¢) graph as it can be seen
in Figure 3.12. Since job : arrives after d; — p;, graph of g;;(¢) begins from
w;(r;+pi+p;—d;) and decreases in the region d;—p; < ¢ < r; because we cannot
interchange the jobs until r;. Since in this case the maximum value of f;;(t) =
pjw; is less than the minimum value of g;;(t) = piwj, job j unconditionally

precedes job ¢, j — ¢, as stated below.

Proposition 12 If d; < d;j, pjw; < piw;, and r; < d; — (pi +pj) < dj —p; <
ri < d; — p; then j — 1.

(VAN

3.2.13 d; < dj, piw; < pjw; < ’LUj(?‘,j +pi +pj— dj), 7
dj — (pi +p;) <dj —p; <ri <di— piy pi(wj —w;) <
wi(r; + pi — d;)

In this case as it is seen in Figure 3.13 there is an intersection point ¢?; where
constant segments of fi;(t) and g;;(¢) intersects. Although fi;(t) > ¢i;(t) i.e.
A;j(t) > 0, job 7 cannot precede job j until it arrives. So r; will be the only

breakpoint. Up to r;, j can be scheduled first and ¢ < j for ¢ > r;.

Proposition 13 If di < dj, rj < dj — (pi+pj) < dj —p; < ri < di —pi,
pi(w; — w;) < wiri + pi = di) and pyw; < pjw; < wi(ri +pi +p; — dj) then
j<ifort<riandi<j fort>r.
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Proof : Nonconstant segments of fi;(t) and g¢;;(¢) intersect only if fi;(¢) <
g:;(t) at t = dj — p; and fi;(t) > gi;(t) at t = ri. At time ¢ = d; — pj,
fii(d; — p;) = wi(d; — di +p;) and gi;(d; — pj) = wi(ri+pi +p; — d;). We know
that d; — p; < di — pi, so dj — d; + p; < p;. From this inequality it follows that
wi(dj—di+pi) < wip; < wi(ri+pi+p;j—d;). Therefore, fij(dj—p;) < gij(d;—p;).
And at t = 7y, fi;(ri) > gij(ri), i.e. wi(ri + pi + p; — di) > p;w; consequently
pi(w; — w;) < wi(r; + pi — d;), as stated above. O

3.2.14 d; < dj, piw; < pjw; < wi(r; +p;i +p;j —d;), r; <
dj — (Pi +pj) < dj —p; <1 < di — Dis pi(wj — w,;) >
w;(r; + pi — di)

Until job 7 becomes available, job j is scheduled. After job ¢ becomes available,
since piw; < pjwi, fij(t) intersects gi;(t) at point . After t3;, Ay(t) > 0 so
i<

Proposition 14 If d; < d;, pow; < pjw; < wi(ri + pi+p; — d;), v < dj —
(pi +p;) < dj —pj <1 <di —p; and pi(w; —w;) > wi(ri + pi — di) then j <2
fort <t¥ and i< j, fort >t

Proof : For t < r; it is obvious that j precedes i. If dj —p; <t < di — p;

then job j is always tardy but job i is not if scheduled first. Here Aj;(t) =
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(t+pi+pj — di)wi—piw;. Ay(t) will be zero at time t}; = di—p;—pi(1 —w; /w;).
Before t‘?j, t < t‘%, Aij(t) < 0s0oj <4 and Ay(t) > 0 for ¢ > t?j 50 i < j
afterwards. On the otherhand, if ¢ > d; — p; then both jobs will be tardy and
Ai;(t) = pjwi — piw;. Since piw; < pjw;, and Ay (t) > 0 implies that 7 < j.

Therefore, for t < t%, j<tand ¢ <jfort> t?j,l:l

3.2.15 d; < dj, pjw; > wi(ri+pi+p;j—d;), r; < dj—(pi+p;) <
dj—p; < ri < di—piy wi(ri+pitp;—d;) < wi(d;—d;i+p;)
In this case again there exists intersection point ¢j; before r; so r; is the only

breakpoint. For ¢ < r;, job j precedes job ¢ and for ¢t > r;, job 7 precedes job j.

Proposition 15 If d; < d;, r; < d;j — (pi+pj) <dj —p; <r; < di — p; and
wi(r;+pi +pj —d;) <wi(d; —di+p;) then 3 <1 fort <r; andi < j fort >r;.

Proof : Until job ¢ becomes available, it is trivial, 7 < for ¢ <r;. Att =1,
Ay(ry) = wiri + pi + pj — di) — piwj. We know that r; > d; — p;, therefore
wi(r; 4 pi + pj — d;) — piwj 2> wi(d; — di + pi) — piw; 2> wi(d; —di 4 pi) —w;(r +
pi + p; — d;) > 0, from the condition of the case. So ¢ < j for r; <t <d; — p;.
At t = d; — pi, Aij(di — pi) = wip; — piw; > 0, therefore ¢ < j, for ¢t > »;. O

3.2.16 d; < d;, pwj < wi(rj+pi+pj—di), r; < di—(pit+pj) <
rj < dj — (pi +pj) <min{d; — p;, d; — p;}

In this case we begin to deal with second form of f;;(t) graph which begins no
longer from zero. Since job j arrives after d; — (p; + p;) there is an incured
fixed cost of w;(r; + pi + p; — d;) until job j arrives. In this case there is no

breakpoint and job ¢ precedes job j at all points.

Proposition 16 Ifd; < d;, pyw; < wi(rj+pi+pi—di) andri < di—(pi+p;) <
r; < dj — (pi + pj) < min{d; — pi,d; — p;} then i — ;.
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Proof : The maximum point of ¢;;(¢) = p;w; and the minimum point of
fi(t) = wi(rj 4+ pi + p; — d;). Since p;w; < wi(r; + p; + p; — d;), at all points
A;(t) = fij(t) — gi;(t) > 0. As aresult 7 — 5.0

3.2.17 d; < dj, w,j(Tj + pi +pj — d’) < pw; < pwg, 1 <
di — (pi +p;j) <r; < min{d; — (p; + p;), d; — p;}

This case is similar to the case above. At every time point ¢, fi;(¢) > ¢,;(t) so

job ¢ precedes job j at every point.

Proposition 17 If d; < d;, wi(r; + pi + p; — di) < piw; < pjw;, and r; <
di — (pi + p;) < rj <min{d; — (p; + p;),d; — p;} then i — j.

Proof : In this case w;(r; +pi +p; —d;) < piw;. Therefore, f;;(t) can dominate
gi;(t) only if fij(d; — p;) > piw; at t = d; — p; where g;;(d; — p;) = pyw;. I
d; — p; > d; — pi then fi;(dj — pj) = pjwi > pyw; and fi;(t) dominates g;;(t). If
d; — p; < d; — p;i then fi;(d; — p;) = wi(d; — d; + pi) > piw;. In both situation
fi;(t) > ¢ij(t), consequently A;;(t) >0 for allt and 7 — j. O

3.2.18 d; < dj, piw; < pjwiy 1 < di—(pi+pj) < rj < di—p; <
dj — (pi +p;) < dj — pj

In this case again, at every time point ¢, f;;(t) > ¢;;(t) so job 7 unconditionally

precedes job j at every time point.

Proposition 18 Ifd; < d;, ppw; < pjw; andr; < di—(pi+p;) <r; <di—p; <
dj — (pi +p;) <dj —pj then 1 — ;.

Proof : For t < d; — (p; + pj) job j will not be tardy but since d; — p; <
d; — (pi + p;) job ¢ will be tardy if not scheduled first; so for ¢ < d; — (pi + p;),
i < j. For t > dj — (p; + p;), both jobs will be tardy if they are not scheduled
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first. Ay;(t) = fij(t) — gi;(t) = wip; —w;pi 2 0s0o ¢ < j for t > dj — (p; + pj),

resulted in unconditional precedence of job 7,7 — 3. O

3.2.19 d; < (lj, pjw; < piw;, 1; < d; — (p; ‘|‘]?j) < r; <
dj = (pi +p;) <dj —p; < di —ps

In this case we have single breakpoint t}j which is the intersection point of
nonconstant segments of f;;(t) and g;;(t). Up to t};, 7 < j and ordering of jobs

changes after ¢};.

Proposition 19 Ifd; <d;, r; < di—(pi+p;) <rj <dj—(pi+p;) <d;—p; <
d; — pi and pjw; < pyw; then ¢ <3 fort < t}j and 3 <1, t> t}j.

Proof : Until ; only job : is available so 1 < 7. For r; <t < d; — (p; + p;),
Ay(t) = wi(t + p; +pj —di) > 0since t > d; — (p; + pj), so i < j. For
dj — (pi + p;) <t < dj — p; at breakpoint tj; = -——”‘jﬁ:iﬁﬁjd = (pi + i), Ayj(t) =
0. Ay(t) > 0 before t}; and A;(t) < 0 after t};, consequently ¢ < j for
di—(pi+p;) <t <thandj <ifortj <t<dj—p;. Fordj—p; <t<di—pi
Aij(t) = wilt + pi + pj — di) —wipi = wip; — w;p; + wilt — (di — p;)) < 0
since both w;p; — w;p; < 0 and w;(t — (d; — p;)) < 0, 3 < @. After d; — p;,
Aj(t) = wip; —w;p; < 0,803 <ifort>d;—p;. O

3.2.20 d; <dj, piw;j > pjwi, r; < di—(pi+p;j) < rj < min{d;—
(pi + pj)sdi — pi} < dj — pj, pj(wj —w;) < w;i(d; — d;)

In this case there is single breakpoint t}; = d; — pi — p;(1 — w;/w;) where

nonconstant segment of g;;(¢) intersects with upper segment of fi;(t).

Proposition 20 Ifd; < d;, r; < d; — (pi + pj) <r; < min{d; — (p; + p;),di —
pi} < d; —p;, pi(w; —w;) <wj(d; —d;) and ppwj > pjw; then i < j fort < t;"j
and j <1, t >t}
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Proof : Up to r; only job 7 is available so ¢ < j. After r;, A;;(¢) function of
this case is similar to case 6. So proof can done similar to proof of Proposition

6.0

3.2.21 d; < dj, wi(rj+pi+pi—di) < piw; < pjwi, pi(w;—w;) >
wi(d; — di)y ri < di — (pi +pj) < rj < min{d; — (p; +
pj), dz - pz}

This case is similar to case 1. The only difference is that job j hecomes available
after d; — (p; +p;). There are two breakpoints ¢}; and ¢};. So job ¢ precedes job
J until time t}j, for t}j <t< t?j job 3 precedes job i, and job ¢ again precedes

job j after t3;.

PI'OpOSitiOll 21 Ifd, < d]‘, wi(_rj +pi +p; —d,’) < piw; < pjwg, 15 < d; — (_pi +
pj) <r; < 1’I111’l{d7 — (Pi -|-p]'),d,' —p,'} and p.,'(w]- - 10,~) > wl(d] — di), then 1 < j
fort <t} j <1 for t}j <t<t and again i < j fort > t?j.

1) 1)

Proof : Proof is similar to the proof of Proposition 1.0

3.2.22 d; < dj, paw; > pywi, (wj — w;)(r; + pi +pj) > wid; —
widiy r; < dj — (pi +pj) < rj < min{d; — p;,d; — p;}

In this case as it can be seen in Figure 3.14 there is a single intersection point,
t3;. Furthermore, fi;(t) > gi;(t) for t < t;, and g;;(t) > fi;(?) afterwards. But
the intersection point occurs before both jobs become available, i.e. t?j <1,

hence r; becomes a critical decision point as discussed in Proposition 22.

Proposition 22 If d; < d;, p;w; > pjw;, ri < d; — (pi + p;) < r; < min{d; —
pi,d; — p;} and (w; —wi)(r; + pi + pj 2> wid; — wid;), then @ < j if t <r; and
j <1, afterwards .
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Figure 3.14: Illustration of Proposition 22

Proof : Before r;, we should schedule job 7. As defined earlier A;;(t) = fi;(¢)—
gii(t). If welett = r; then Aj;(t) = wi(r;+pi+pj—di)—w;(rj+pi+p;—d;) <0
since (w; — w;)(r; + pi + pj) > w;d; —wid;, so § <1 at t =r;. As pyw; > pjw;
for ¢ > r;, gij(t) > fi;(t) afterwards. Consequently, A;;(t) <0 and 7 <. O

3.2.23 d; < dj, piw; > pjwi, (wj —wi)(rj + pi +p;) < w;d; —
wids, r; < di—(pi+p;) < dj—(pi+pj) <r; < min{d; -
pi,dj — pj}

In this case we have single breakpoint t}j which is the intersection point of
nonconstant segments of fi;(t) and g;;(t). So ¢ < j up to breakpoint t}; and

J <t afterwards.

Proposition 23 Ifd; < d;, piw; > pjw;, (wj —w;)(r; +pi+pj) < wid; —wd;,
r, < d; —(pi+pj) <dj — (pi + pj) <rj <min{d; — pi,d;j — p;} then i < j for
L<ty, and j <1 fort >th(t).

Proof : Until »; only job ¢ is available so ¢ < j. For r; < ¢ < d; — py,
Aii(t) = wi(t + pi + pj — di) — wi(t + pi + pj — dj). Ay;(t) will be zero at
1= 2hmeh (g opn), Aij(t) > 0 for t < t] and Ay(t) < 0 for ¢ > th. So

wi—wj

i < j forr; <t <th,and j <ifort> ti;.0
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3.2.24 d; < dj, piwj < wi(rj +pi +pj —di) < wipj, 1 <
di—(pi+p;) < dj—(pi+p;) < rj < min{d; —pi,d;—p;}

There is no breakpoint for this case and ¢ unconditionally precedes j for every

time point.

Proposition 24 If d; < d;, ri < d; — (pi+p;) < dj —(pi+p;) <15 <
min{d; — pi,d; — p;} and pyw; < wi(rj + pi+pj — di) < wip; then i — j.

Proof : The maximum value of g;;(t) function is p;w; and the minimum value
of fij(t) = wi(r; + pi + pj — di) > piw; so f;;(t) > g:;(t) for every time point ¢.
Therefore, A;j(t) = fij(t) — ¢:5(t) > 0 for Vi, consequently 7 — j. O

3.2.25 d; <dj, wi(rj+pi+pj—di) < piwj < pjw;, wi(dj—d;) >
(wj—w.,;)p,-, r; < dj—(pi+pj) <r; < Inin{di_]-7i7dj_pj}

This time there are two intersection points, t?j and t};. Since at time t?,j job 3
is not available, release date of job j will behave as a breakpoint. Until r;, job
¢ is scheduled. After job j becomes available, up to t{;, j <4 and then ¢ < j,

afterwards.

Proposition 25 Ifd; < d]', wi(rj +pi +p; —di) < piw; < pjw;, 1 < d]' — (pi =+
p;j) < r; < min{d; — p;,d; — p;} and wi(d; — di) > (w; — w;)p; then ¢ < j for

t<rj;j=<iforr; <t<th and i <j fort>t].

Proof : Until job j becomes available, job ¢ can be scheduled. At ¢ = rj,
Ayi(t) = wilrj + pi + pj — di) = wj(rj + pi + pj — dj) = (wi(rj +pi + pj —
d;) — w;p;) + w;(r; + p; — dj). Since both w;(r; + pi + p; — di) — w;p; < 0 and
w;(r; + pj —dj) <0, Aij(r;) <0soj <iatt=r; Forr; <t<d;—pj,
Ai(t) = wi(t + pi + pj — dj) — w;i(t + pi + p; — dj). Ay;(t) will be zero at t}j

and for t < t};, Aj;(t) < 0 while for ¢ > t};, A;;(t) > 0. For constant segments
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since p;w; is greater than p;w; and A;;(t) > 0 consequently ¢ < j. Therefore

i< jfort<rj,j=<iforr; <t<t,andi<jfort>t). O

3.2.26 d; <dj, wi(rj+pi+pj—d;) < piw; < pjw;, wi(dj—d;) <
(wj —wi)pi, i < dj — (pi+pj) <r; <dj—p; < di —p;

In this case there are two intersection points, t; and 3. Since t$; = w;/w;(r; +
pi+p;—d;)—(pi+p;j —d;) < r;,job i is scheduled until job j becomes available.

Soi<jfort<rjj~<iforr; <t<t} and theni < j fort > t.

Proposition 26 If d; < d;, wi(r; +pi + pj — di) < pow; < pjw;, r; < dj —
(pi +pj) <7y < dj — Pj < di — Di and w,(d] — d,) < ('LU]‘ —_ wi)pi then 1 < J fO'I‘
t<rj,j=iforr; <t<thandi<j fort >ty

Proof : This case is similar to case 21, with only exception is that since r;
arrives after d; — (p; +p;) breakpoint t}; is not valid. Intersection point is at ¢;
and r; behaves as a breakpoint. Up to r; proposition 26 is obvious, ¢ < j and
after r; proof can done using the similar arguments in the proofs of propositions

1 and 21.0

3.2.27 d; < dj, piwj < pjwiy i < dj—(pitp;) <di—pi <rj <
dj —p; OR d; < dj, piwj < pjw;, 73 < di — (pi +pj) <
di — pi <7j < dj — (pi +p;) <dj —p;

In this case since the minimum value of f;;(t) = w;p; > p;w;, the maximum

value of ¢;;(t) and A;;(t) > 0 for all ¢ values. So job ¢ unconditionally precedes

job 3,1 — 7.

Proposition 27 If d; < d;, piw; < pjw; and either r; < dj — (pi + p;) <
di—p; <1j <dj—pj orr; < di—(pitp;) <di—pi <rj <dj—(pit+p;) <dj—p;

then job i unconditionally precedes job j for Vt.
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3.2.28 d; <dj, piwj > wipj, ri < min{d; — (p; + p;),di — pi},
max{d; — (pi+p;),di—p;} <r;j <dj—pj, pj(w;—w;) >
w;(r; + pi — d;)

In this case second (lower) constant segment of f;;(¢) intersects with
nonconstant segment of g;;(t) at breakpoint ¢%;. Until t2, i < j, and j < 1

afterwards.

Proposition 28 If d; < d;, p;w; > wip;, 7 < min{d; — (p; + pj),d; — pi},
max{d; — (pi + pj), di — pi} <r; < dj —p; and pj(w; —w;) > w;(r; + p; — d;)
then breakpoint t7; is valid. Thereforei < j fort <%, and j <1 fort > tZ.
Proof: Att =r;, Ajj(t) = pjwi—w;(r;+pi+p;j—d;) > 0 because p;(w;—w;) >
w;(r;+pi—d;), consequently ¢ < 7. And at t = d;—p;, Aj;(t) = pjuw;—w;p; <0
from the condition pjw; < w;p;, hence j < i for t > d; — p;. Since sign of
A;;(t) changes, there must be a breakpoint between r; and d; — p;. A;;(t) =0
if t =d; —pi — pi(l —wi/w;) = t%,. Asaresult,i < jfor t <t and j <1 for
t> 7.0

3.2.29 d; < dj, Pjw; < piWj, 1y < d.,j—]),j <r; < dj—(pi+])j) <
dj — pj

Similar to the case above, in this case second (lower) constant segment of f;;(t)
intersects with nonconstant segment of g;;(t) at breakpoint ¢j;. Until %, ¢ < j,

and j <1 afterwards.

Proposition 29 [fd; < d;, r; < d; —p; <r; <dj — (pi +pj) <d; —p; and
pjw; < piw; then breakpoint tfj is valid and same as Proposition 28 1 < 7 for
t <t} and fort > t3, j < 1.

Proof : At t = rj, Ajj(t) = pjw; > 0, consequently ¢ < j. At t = d; — pj,
A;i(t) = pjw; — w;p; < 0 because pjw; < w;p;. Therefore, j < ¢ after d; — p;.
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Since sign of A;;(t) changes there must be a breakpoint between r; and d; — p;.

Ai(t)=0ift =1} Asaresult,i < jfor t <t} and j <7 for ¢t > t¥. 0

3.2.30 d; < dj, wi(ri +pi +pj — di) < wildi — d; + pj),
ri <dj — (pi+p;) <di—p; <r; < dj—p;j

In this case there is a single intersection point, t?'i where job 7 is not available
at that time. So job z will be scheduled until job j becomes available. Release
date of job 7, r; will be the single breakpoint. For ¢t < »;, job ¢ precedes job j

and job j precedes job ¢ for t > r;.

Proposition 30 Ifd; < d;, r; <d; — (pi +pj) <di —p; <rj <d; —p; and
wi(ri + pi +pj — di) < wi(di —d; +p;) theni < j fort <r; and j < i for
¢ Z r.

Proof : Until job j becomes available, it is trivial. At ¢ = r;, Ay(r;) =
wip; — wi(ry + pi + pj — dj) = wilrj + pi + pj — di) — wi(p; + di — dj) — (w; +
w;)(r; + pi — d;) <0, since both w;(r; + pi + p; — di) < wj(p; + d; — d;) and
—(w; +wj)(rj+pi —di) 0. S0y <iforr; <t <d; —p; and at t = d; — p;,
Aii(d; — pi) = wijp; — pjw; < 0. Therefore, j < ¢ for ¢t > d; — p;, resulted in
i1 <jfort<rjandy <ifort>r;.0

3.2.31 d; < dj, wi(ri+pi+pj—di) > wi(d;—dj+p;), pi(w; —
w;) < wi(rj +pi —dj), ri < min{d; — (p; + p;), di — pi},
max{d; — (p; + p;),di — p;} < min{rj,d; — p;}

In this case there is an intersection point t7; where constant segments of fi;(t)
and g¢,;(t) intersects. At this time job ¢ is not available. Although f;(t) < g;(t)
i.e. A;(t) <0, job j cannot precede job i until it arrives. So up to r;, ¢ can

be scheduled and after rj, j < 1.
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Proposition 31 If d; < d;, pj(w; — w;) < wi(r; + pi — d;), r; < min{d; —
(pi + pj)sdi — pi}, max{d; — (p; + pj),di — pi} < min{r;,d; — p;} and w;(r; +
pi+pj—di) >wi(di —dj +pj) theni < j fort <r; and j < fort > r;.

Proof : There will be intersection point ¢7., if nonconstant segments of f;;(¢)

17?

and g¢;;(t) intersect. This is possible only if at time ¢ = d; — p;, fi;(d; — p;j) >

gii(d; — p;), ie. wi(r; +pi +p; —di) > wi(d; + p; — d;) and at t = 7

f,] r;) < gii(r5), i.e. wip; < wji(rj+ p; +p; — dj). Consequently p;(w; —w;) <
d;),

w;(r; + pj — as stated above. O

Hence, analyzing all possible cases, the theoretical background of the
proposed dominance rule is presented. We show that there are certain time
points, called breakpoints, in which the ordering might change for adjacent
jobs. It is seen that at most three breakpoints can be valid at the same time.
As a result, we can state the following general rule to improve given schedules.
This general rule provides the sufficient condition for local optimality, and it
generates schedules that cannot be improved by adjacent job interchanges.
General Rule:

[Fy max{d; — pi,d; — (pi + p;), 7} < th; < dj — p;

THENq) [Fgr; <r;

THEN@)j <1 fort<mr,
i < j forr; <t <t
j%ifort>t2~
ELSEg 1< jfort< t”,
]%zf01t>t”,
ENDIF)
ELSEqy IF5) max{d; — p;j,ri} <t} <di —pi
THEN@g) I Fay max{d; — (pi + p;),m:} < t; < dj —p;
THEN@u [Fsyry <r;
THENs) j <ifort <,
i < g forr; <t <t

13
j=iforty <t<t,
i < j fort >3,

ELSEg i < j for t < tj;,
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j<iforth <t <t
z’%jfort>l?j,
ENDIFs
ELSE4y IFg ri <r;
THENg) © < jfor t <y,
j=<iforr; <t <2

ij
i < j for t > (3,
ELSE) j < i for t <,
1 < g for t > t‘?j,
ENDI F)
ENDIF

ELSEsy [Fry max{r;,rj,d; — (pi + p;)} < t,-lj < min{d; - pi,d; — p;}

THEN@) [Figyri < dj — (pi +p;) <r;
THEN@g ¢ < jfort <rj,
J=<iforr; <t < t}j,
i < g fort >,
ELSEg) [Fgyr; <r;
THENg) j <1fort<rg
i < j for ry <t <t

j <1fort >t}

ij)
ELSEg i< j for t <L,
J <ifort >t}
ENDIF
ENDIFg,

ELSE@7y IFy0) EITHER d; — (pi + pj) < t?j
d; —p; < i,7] <r;
THENoyi < j for t <rj,
J <tfort>r;,
ELSEqe IFuy EITHER d; — (p; + p;) < t;
dj —pj < tfj < r
THENquyy j <tfort <,
t <j fort>r,
ELSEqy) IFygyri <7j

< min{d; - p;,rj} OR

< min{d; — p;,r} OR

46
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THENu i —J

ELSEqq) ) — ¢

ENDIF3
ENDIF;1,1073,1)

Let U denote the set of all jobs, V' the set of pairs (z,7) for which A;;(¢)
has at least one breakpoint ¢;;, ¢,7 € V. The largest of these breakpoints is

equal to ¢ = maX(i,j)eV{t}j,t?j,t?j}. The following lemma can be used quite
effectively to find an optimal sequence for the remaining jobs on hand aflter a

time point {;.

Proposition 32 Ift¢ > t; then the weighted shortest processing time (WSPT)

rule gives an optimal sequence for the remaining unscheduled jobs.

Proof: The ¢ is the last breakpoint for any pair of jobs 7, j on the time
scale. For every job pair (,7), there is either a breakpoint or unconditional
ordering (i — 7). The WSPT rule holds for 2 — 7. If there is a breakpoint
then for ¢ > ¢;; the job having higher w;/p; is scheduled first, so WSPT again
holds. Both jobs should be available before a breakpoint tfj > max{r;,r;} for
k = 1,2,3 so that t; = max{t];,t%,1};
conflicts with the WSPT rule, then we can have a better schedule by making

}. For t > t;, consider a job 2 which

adjacent job interchanges which either lowers the total weighted tardiness value
or leaves it unchanged. If we do the same thing for all of the remaining jobs,

we get the WSPT sequence. O

It is a well-known result that the WSPT rule gives an optimal sequence for
the 1] | 3 w;T; problem either when all due dates are zero or all jobs are tardy,
i.e. t > maz;eu{d; — p;}. The problem reduces to total weighted completion
time problem, 1| | ¥ w;C}, which is known to be solved optimally by the WSPT
rule, in which jobs are sequenced in nonincreasing order of w;/p;. We know
that t; < mazjcy{d; — p;}, so we enlarge the region for which the 1|r;| > w;T;

problem can be solved optimally by the WSPT rule.
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3.3 Summary

We prove that there are certain time points, called breakpoints, in which
the ordering might change for adjacent jobs for the total weighted tardiness
problem with unequal release dates. We find seven such breakpoints and
showed that at most three of them can be valid at the same time. We introduce
a new dominance rule and enlarge the region for which the 1|r;| 3 w;1T)}
problem reduces to 1| |> w;C; problem, hence it can be solved optimally
by the WSPT rule. Therefore, the proposed dominance rule can be used as
a good pruning device for any exact algorithm. In Chapter 4, we present
the effect of dominance rule on the upper bounding scheme. We developed
a B & B algorithm in Chapter 5 and present the computational results of
the algorithm in Chapter 6. We have proved that the dominance properties
provide a sufficient condition for local optimality, so we are going to describe an
algorithm which takes its background from the proposed dominance rule and
can be used to improve the total weighted tardiness criterion of a sequence given

by a dispatching rule by making necessary adjacent pairwise interchanges.



Chapter 4
Upper Bounding Scheme

For scheduling problems, the implicit enumerative algorithms which guarantee
optimality may be costly in terms of computational times and memory usage.
Therefore, several heuristics and dispatching rules have been proposed in the
literature as discussed in Chapter 2. We introduce an algorithm to demonstrate
how the proposed dominance rule can be used to improve a sequence given
by a dispatching rule. We show that if any sequence violates the proposed
dominance rule, switching the violating jobs either lowers the total weighted
tardiness or leaves it unchanged. We also show that the total weighted tardiness
value given by the sequence generated by the algorithm is always less than or
equal to the value given by the sequence generated by the heuristic, i.e. the

proposed algorithm always dominates the competing algorithms.

Outline of this chapter will be as follows : In §4.1, the algorithm is
presented, and the experimental design and the computational results are

demonstrated in §4.2. Finally, a short summary is given in §4.3.

49
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4.1 Algorithm

The 1] | 3 w;Tj problem is proved to be strongly NP-hard by Rinnooy and Kan
[43]. Therefore 1|r;| ¥ w;T; problem is also strongly NP-hard. For 1|r;| > w;T;
problem, even with equal weights, 30 job is an upper limit for some problem
instances, (Chu [11]). Since exact approaches are prohibitively time consuming,
it is important to have a heuristic that provides a reasonably good schedule with
reasonable computational effort. Therefore, a number of heuristics had been
developed for this problem in the literature as summarized in Table 2.1. To
improve dispatching rules and heuristics in the literature, proposed dominance

rule can be applied.

Now, we will introduce an algorithm based upon the dominance rule that
can be used to improve the total weighted tardiness criterion of any sequence
S by making necessary adjacent pairwise interchanges. Let seq[k] denote
index of the job in the k** position in the given sequence S and I[k] denote
the idle time inserted before kt* position in the given sequence S, such that

I[k] = max{0, rseqpr+1) — t}. The algorithm can be summarized as follows:

Set k=1and t =0.
While £ < n — 1 do begin
Set 7 = seq[k] and j = seq[k + 1]
[Fayi< j THEN,
IF(yy max{d; — pi,d; — (pi + p;), 73} <t <dj —pj, and t}; <t THEN(,)
t = t — pseqk—1)] — I[k], recalculate I[k], change order of 7 and j, set
k=k—1
ELSEq) 1F5) max{d; — p;,ri} < t?j <d; —p; THEN,
IFuy max{d; — (pi + pj),ri,r;} < t};, < min{d; — pi,d; — p;}, and
th <t <tli THEN)
t =t — Pyegii—1) — I[k], recalculate I[k], change order of i and j, set
k=k—1
ELSE@y [Fisyr; <t <t} and either t}; < max{d; — (p; + p;), 7,7} or
ti; > min{d; — pi,d; — p;} THENs
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t = t — pyegi—1) — I[k], recalculate I[k], change order of ¢ and j, set
k=k—1
ELSEw) IFg max{d; — (p; + p;),ri,r5} < t}; < min{d; — pi,d; —
pi} THEN4)
IFzyri <dj— (pi+p;) <rjand r; <t <t THENqx
t =t — pseqk—1) — I[k], recalculate I[k], change order of ¢ and j, set
k=k—1
ELSEqx) 1Fg t; <t THEN)
t = t — pseqh—1] — I[k], recalculate I[k], change order of ¢ and j, set
k=k-1
ELSE@g) IFg)t > r; and either d; — (p; + p;) < t{; < min{d; — p;,r;} or
di —pi < t]; <r; THEN)
t = t — psegk—1) — I[K], recalculate I[k], change order of ¢ and j, set
k=k—1
ELSEgyt=t+p; and k =k + 1.
ENDIFg,
ENDIFg765.432)
ELSEwy IFu max{d; — pi,d; — (pi + p;),r;} < t; < dj — p;, and
r; <t <2 THEN0,
t =t — Pyeqik—1) — I[k], recalculate I[k], change order of ¢ and j, set
k=k—1
ELSEqoy IFuyy max{d; — pj,ri} <t} < di —pi THEN(yy
I Fyy max{d; — (pi + p;),ri,r5} < tl; < dj —pj, rj <t and either ¢ < t];
or t >t THEN,
t = t — pseqi—1) — I[k], recalculate I[k], change order of i and j, set
k=k-1
ELSEqy) IFqz t > t; and either tj; < max{d; — (pi 4 p;), 7,75} or
ti; > min{d; — p;,d; — pj} THE N3
t =t — Psegie—1) — I[k], recalculate I[k], change order of z and j, set
k=k—1
ELSEqus) IFay max{d; — (pi + p;),ri,75} < t; < min{d; — pi,d; —
pi} THENq4)
[Fusyri < dj — (pi+pj) <rjand t > t}, THEN;5)
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t = t — pseg—1)] — I[K], recalculate I[k], change order of : and j, set
k=k—1
ELSEs) tFueyr <t < t}j and r; <1t THEN(IG)
t = t — psegi—1] — I[K], recalculate I[k], change order of ¢ and j, set
k=k—1
ELSE@e) 1Fa7y r; <t and either d; — (p; + p;) < t; < min{d; — p;,»;} or
d; —p; < t'?]- <r; THE N
t = t — Peqi—1) — I[K], recalculate I{k], change order of ¢ and j, set
k=k—1
ELSEqnt=t+p and k=k+1
ENDIFy7
EN DI F6,15,14,13,12,11,10,1)
End.

If initial dispatching rule permits a machine to stay idle, these idle times
should be handled in the algorithm. If there is no idleness in the schedule, all
Ilk] = 0, V k, we do not need to update I[k] values each time. By using this
algorithm which takes its background from the proposed dominance properties,
we can improve any sequence given by any dispatching rule. Therefore, the
total weighted tardiness value given by the sequence generated by the algorithm
is always less than or equal to the value given by any sequence generated by

the heuristic.

Let us consider the following 10-job example to explain the proposed
algorithm. In this example jobs are initially scheduled by the X-RM rule,
X-dispatch ATC rule, with B = 2 and p = p, which is discussed in detail
in Chapter 2. Initial ordering is given in Table 4.1, along with the sequence,
S, release date, r;, processing time, p;, weight, w;, due date, d;, starting
time, ¢, and weighted tardiness, WT', of each job j. The final schedule after
implementing the proposed algorithm on the schedule given by the X-RM rule

is also given in Table 4.1.

The algorithm works as follows: We start from the first job of the given
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sequence. For each adjacent job pair, we compare the start time of this pair
with precedence relations given by the proposed dominance rule. Up to ¢ = 10,
the sequence generated by the X-RM rule does not conflict with the dominance
rule. But job 7 in the 4** position violates the dominance rule when compared
to job 5 in the 5 position at time ¢ = 10. The breakpoint t§’7 is equal to 18.11,
which is greater than ¢ = 10, that means 5 < 7 at time ¢ = 10. Therefore, an
interchange should be made. There is no idle time before job 7 so I[3] = 0,
then ¢ is set to 10 — peegsp = 6 and & = £ — 1 = 3. Since the job in 4th
position is changed, algorithm returns one step back to check the dominance
rule between the jobs at position k and k£ + 1, i.e. jobs 2 and 5. We proceed
on, another interchange is made at { = 23 between jobs 9 and 6, and then
between jobs 8 and 6, and finally between jobs 10 and 4. Notice that, after all
necessary interchanges are performed on the sequence generated by the X-RM
rule, the total weighted tardiness dropped from 61 to 21 giving an improvement

of (61 —21) /61 = 66%. For this example, the optimum solution is also equal
to 21.

4.2 Computational Results

In this section, we first describe the experimental design, i.e. the factors
considered in testing the heuristics against the proposed dominance rule. Then,

the detailed computational results will be demonstrated.

4.2.1 Experimental Design

We tested the proposed algorithm on a set of randomly generated problems
on a Sun-Sparc 20 workstation using Sun Pascal. The proposed algorithm was
compared with a number of heuristics on problems with 50, 100, and 150 jobs
that were generated as follows. For each job j, an integer processing time p;
and an integer weight w; were generated from two uniform distributions [1, 10]

and [1, 100] to create low or high variation, respectively. Instead of finding
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due dates directly, we generated slack times between due dates and earliest
completion times, i.e. d; — (p; + p;) from a uniform distribution between 0 and
B Y51 pj where 3 different 3 values [0.05, 0.25, 0.5] are used. Release dates,
rj, are generated from a uniform distribution ranging from 0 to a 377 p; as
suggested by Chu [11], where 4 different « values [0.0, 0.5, 1.0, 1.5] are used.
As summarized in Table 4.2, a total of 144 example sets were considered and 20

replications were taken for each combination, giving 2880 randomly generated

runs.

We have claimed that if any sequence violates the dominance rule, then the
proposed algorithm either lowers the weighted tardiness or leaves it unchanged.
In order to show the efficiency of the proposed approach, a number of heuristics
were implemented on the same problem sets. These dispatching rules and
their priority indexes are summarized in Table 4.3. The MODD, WPD,
WSPT and WDD and are examples of static dispatching rules, where as
ATC, COVERT, X-RM, KZRM, X-KZRM, and AGG are dynamic ones. The
proposed algorithm starts from the first job of the given sequence and proceed

on as outlined in §4.1.

Under COVERT rule, jobs are scheduled one at a time; that is, every time
the machine becomes free, a ranking index is computed for each remaining job
j. The job with the highest ranking index is then selected to be processed next.
The ranking index is a function of the time ¢ at which the machine becomes
free as well as the p;, the w;, and the d; of the remaining jobs. The index for

COVERT can be defined as:

w; max(0,d; — t — p;)
7;(t) = max (— max[0,1 — 27 d
§0) = max (2 botonly

Job j queuing with zero or negative slack is projected to be tardy by completion
with an expected tardiness cost w; and priority index w;/p;. k is the look ahead
parameter and is set to 2. The original results proved COVERT superior to the

competing rules, including a truncated SPT, in mean tardiness performance

(Carroll [8]).

The apparent tavdiness cost (ATCY) is a composite dispatching rnle that

combines the WSPT' rule and the minimum slack (MS) rule. Similar to
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COVERT, under the ATC rule, jobs are scheduled one at a time; the job

with the highest ranking index is then selected to be processed next. The

ranking index is a function of time ¢ at which the machine become free as well

as p;, w;, and d; of the remaining jobs. The ATC index can be defined as:
—maz (0, dj —t — P]'))

W
mi(t) = =L - ex
1() »; exp ( k~]3

where we set the look-ahead parameter k at 2 as suggested in [35], p is the

average processing time of remaining unscheduled jobs at time ¢.

X-RM is a modification of the ATC rule resulted from allowing inserted
idleness. The procedure starts with calculating ATC priorities, 7;(¢). The
priorities are multiplied with 1 — [(B-max{0,7; —t}) / p], B is suggested to fit
to 1.34+p where p is average machine utilization, whereas p can be either average
processing time, p, or minimum processing time, p,,;,, as suggested in [35] and
[36], respectively. In our study, we compared four different combinations of

B and p values such that X-RM I = (1.6,5), X-RM II = (2,7), X-RM III
= (1.6, prmin ), and X-RM IV = (2, ppin)-

[n addition to the dispatching rules in literature, we construct new
heuristics, based on ATC rule and decision theory aproach of Kanet and Zhou
[30]. The KZRM is a local search heuristic that combines the ATC rule of
Morton and Rachamadugu [41] and decision theory approach of Kanet and
Zhou [30]. The decision theory approach defines the alternative courses of
action, at each decision juncture, evaluate the consequences of each alternative
according to a given criterion, and choose the best alternative. In the KZRM,
we first calculate ATC priorities for all available jobs and generate all possible
scenarios putting one of the available jobs first, and ordering the remaining
ones by their ATC priorities. After making valuation of each scenario by
calculating the objective function, i.e. F; = Y w;T; where job j is scheduled
first, we choose the scenario with the minimum F; value, and schedule job j.
We perform this procedure iteratively until all jobs are scheduled. Therefore,

the KZRM rule can be also called a filtered beam search with a beam size of

one.
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An other heuristic used in the study is the combination of X-RM rule with
decision theory approach of Kanet and Zhou [30], what we referred as X-KZRM.
The X-KZRM is different from KZRM in the way that X-RM priorities are used

instead of ATC priorities. So that inserted idle times are allowed throughout

the generated schedule.

Finally, we develop a new search procedure in this study, and denoted
as AGG, abbreviation of “aggregation”. Although X-RM rule is designed to
consider unavailable jobs at time ¢, priority of late arriving jobs are reduced
with a multiplier. This priority correction may be resulted in high penalties
for late arriving jobs such a way that priority of any late arriving job can be
the highest. On the other hand, scheduling a less critical job until a critical
job becomes available, might result in a better schedule. Therefore, in search
procedure AGG, combination of a late arriving critical job, with a job inserted
between time ¢ and release date of the particular “hot” job, is compared with
the job having highest priority at time ¢{. After choosing job k with highest
ATC priority, AGG procedure searches for a job couple that one of them ( job
s) is available in the current time and the other one (job A) will be available in
the period between current time and earliest completion time of job & and will
have higher ATC priority than job k whenever it becomes available. These two
jobs are “aggregated” and act as a single high priority job if there is no idle
time between them, i.e. r, <t 4 p,. If such a “aggregated” job couple exists
and at time ¢ partial objective value of partial sequence {s — h — k} is less or
equal to the partial objective value of partial sequence {k — h — s} then jobs s

and h are scheduled sequentially, else ATC rule is applied.

The results which are averaged over 960 runs for each heuristic, are
tabulated in Tables 4.4, 4.5, and 4.6 for 50, 100, and 150 job cases,
respectively. For each heuristic, the average weighted tardiness before and after
implementing the proposed algorithm along with the average improvement,
(improv), the average real time in centiseconds used for the heuristic and
algorithm, and the average number of interchanges, (interch), are summarized.
Finally, we performed a paired t-test for the difference between the total

weighted tardiness values given by the heuristic and the algorithm for each
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run, and these t-test values are reported in the last column. Although the
real time depended on the utilization of system when the measurements were
taken, it gives correct intuition about the computational requirements, since
the cpu times were so small that we could not measure them accurately. In
general, the actual cpu time is considerably smaller than the real time. The
average improvement for each run is found as follows: improv = ﬂi&%@ X
100, if F/(S*) # 0, and zero otherwise, where F(S") is the total weighted
tardiness value obtained by the heuristic and F(SP#®) is the total weighted

tardiness obtained by the algorithm, which takes the sequence generated by

the heuristic as an input.

4.2.2 Computational Analysis

Among the competing rules, a local search based KZRM rule performs better
than others, although it requires considerably higher computational effort than
others. X-RM rules are overall second for the averaged results and weighted
COVERT and AGG also give quite good results in average. The static MODD),
WDD, WPD, and WSPT perform poorly in a dynamic environment since they

do not consider availability of jobs while sequencing the jobs.

Furthermore, quite large t-test values on the average improvement indicate
that the proposed algorithm provides a significant improvement on all rules,
and the amount of improvement is notable at 99% confidence level for all
heuristics. Therefore, we can easily conjecture that the proposed algorithm
dominates the competing rules because the average weighted tardiness value
is always less than or equal to those obtained from the heuristics in each
run. When we analyze the individual heuristics, we perform 12.1 pairwise
interchanges on the average for the X-RM IV rule and improve the results by
9.4% for 50 jobs case. On the other hand, the average number of interchanges
increases to 55.17 for the WPD rule with a 30.8% improvement. The amount
of improvement over the KZRM rule might seem a small percentage, but
considering the fact that KZRM rule requires 65801.26 centiseconds on the

average to find a schedule for 150-job case, whereas our proposed algorithm
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procedure either 100 or 250 times to construct the “best” schedule. At the

second phase we use our algorithm to guarantee local optimality.

In Table 4.9, we summarize the number of times the value of a heuristic
outperforms others before and after implementing the algorithm over 2880
runs. Slight changes can occur in the table when GRASP is iterated 250
times as stated in parentheses. Since X-KZRM and AGG rules performed
poorly, and required high computational effort, we exclude X-KZRM and AGG
from the further study. Notice that more than one heuristic can have the
“best” value for a certain run, if there is a tie. It can be seen that before
applying the proposed dominance rule GRASP works better than the X-RM
IV rule for 50 job case, such that X-RM IV outperforms other heuristics 138
times while GRASP (a = 0.8, 250 iterations) has the “best” results for 186
times. But after implementing the dominance rule, X-RM IV gives better
results in a significantly less computational time. For n = 150, the average
real time consumed for improving X-RM IV is 7.3 centiseconds while the
minimum computation time for GRASP is 9379.67 centiseconds for o« = 0.5
with 100 iterations. When we compare GRASP with the KZRM rule for
n = 50, GRASP with o = 0.5 used 947.46 centiseconds for 100 iterations
and 2371.92 centiseconds for 250 iterations, while the KZRM rule gave 324
“hest” results in 820.1 centiseconds and applying the dominance rule increased
the number of best results to 457 in 1 centisecond on the average. In sum, our
computational results show that a problem guided heuristic such as X-RM and
KZRM supported by our proposed dominance rule to ensure local optimality
perform better than a random search based GRASP algorithm in terms of

computational time requirements as well as total weighted tardiness measure.

4.3 Summary

In this chapter, we develop a new algorithm for the 1|r;|3 w;T; problem,
which gives a sufficient condition for local optimality, uising adjacent pairwise

interchange method. Therefore, a sequence generated by the proposed
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algorithm, that is based on the dominance rule, cannot be improved by adjacent
job interchanges. The proposed algorithm is implemented on a set of heuristics
including the X-RM and KZRM rules that different combinations of ATC
rule with the decision theory approach of Kanet and Zhou [30] to implement
principles of ATC to dynamic environment. Our computational experiments
indicate that the amount of improvement is statistically significant for all
heuristics and the proposed algorithm dominates the competing rules in all

runs.

In the next chapter, we will describe how the proposed dominance rule can
be incorporated in a branch and bound algorithm, in conjunction with a lower

bounding scheme and a search strategy.
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X-RM RULE DOMINANCE RULE

S|{JOBS |rj [pj {w;|d; | t |WT|JOBS | ¢ WT
1 1 1121311101 0 1 1 0
2 3 51116 [15]5 0 3 5 0
3 2 6|4 |4 (116 0 2 6 0
4 7 91519 128110 0 5 10 0
) 5 7162 |24|15] 0 7 16 0
6 8 2012 |7 (3021 0 6 21 5
7 9 2114 | 8 13623 0 8 28 0
8 6 181 7 [ 5 27127} 35 9 30 0
9 10 18110 9 |49 | 34 0 4 34 16
10 4 1115 1 (2344 26 10 39 0
Total Weighted Tardiness 61 21

Table 4.1: A Numerical Example
FACTORS # of LEVELS SETTINGS
Number of Jobs 3 50,100,150

Processing time variability 2 (1,10], [1, 100]
Weight variability 2 [1,10], [1, 100]

Release Date Range, o 4 0.0, 0.5, 1.0, 1.5
Due Date Range, 3 0.05, 0.25, 0.5

Table 4.2: Experimental Design

61
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RULE DEFINITION RANK and PRIORITY INDEX

MODD Earliest Modified Due date min {max{d;,t+ p;}}

ATC Apparent Tardiness Cost max m; = {%’i exp (—= ((Ligf_t_p’)}

X-RM X-dispatch ATC max {m;(1 - BHL"(];O’”_—“)}
COVERT Weighted Cost Over Time max {%’f max[0,1 — %(Ov:];ﬂz_)]}

WPD Weighted Processing Due date max {]—)lﬁ;

WSPT Weighted Shortest Processing Time max {;—ﬁ'j-}

WDD Weighted Due Date max {%’-IL}

KZRM Kanet and Zhou Approach to ATC ATC with a look-ahead mechanism
X-KZRM | Kanet and Zhou Approach to X-RM | X-RM with a look-ahead mechanism

AGG Special Aggregation Approach Insert hot job before max;

Table 4.3: Competing Heuristics in Literature
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> w;T; REAL TIME T-TEST

Heuristic | Before | After | Improv | Before | After | Interch | VALUE
MODD | 147938 | 143623 | 3.9 % 2.25 1.23 7.42 11.47
ATC | 98061 | 96994 7.6 % 2.52 1.11 12.12 13.71
X-RM I | 98646 | 97359 9.6 % 4.49 1.04 12.04 12.53
X-RM II | 98232 | 97027 9.3 % 3.83 1.30 11.98 13.59
X-RM III | 98242 | 96975 | 10.5 % 3.99 1.26 12.30 12.66
X-RM IV | 97706 | 96540 9.4 % 3.94 1.21 12.10 12.76
COVERT | 100056 | 99656 2.0 % 2.67 0.95 1.68 11.77
WPD | 111425 | 100545 | 30.8 % 2.09 2.05 55.17 13.53
WSPT | 111480 | 100319 | 32.1 % 1.95 2.08 49.06 11.05
WDD | 133086 | 120018 | 20.5 % 1.73 1.66 36.44 10.42
KZRM | 96142 | 96059 0.3 % 820.10 | 1.08 0.93 7.70
X-KZRM | 253426 { 230340 | 11.9 % | 3842.89 | 4.54 30.49 12.84
AGG | 112562 | 110894 | 9.8 % 97.24 3.82 15.20 15.40

Table 4.4: Computational Results for n = 50
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> w;T; REAL TIME T-TEST

Heuristic | Before After | Improv | Before | After | Interch | VALUE
MODD | 626526 | 612541 | 2.5 % 8.19 4.19 22.64 12.89
ATC | 410803 | 408156 | 6.0 % 9.94 3.26 29.47 15.29
X-RM 1| 414423 | 411303 | 6.5 % 15.98 3.72 29.94 14.73
X-RM II | 413506 | 410406 | 6.7 % 15.80 3.67 29.51 14.43
X-RM III | 412953 | 410056 | 6.0 % 15.62 3.17 29.47 15.28
X-RM IV | 412131 | 409261 | 5.8 % 15.31 3.37 29.48 15.39
COVERT | 417285 | 416191 1.3 % 8.81 3.83 3.79 12.98
WPD | 485685 | 436516 | 31.3 % 7.16 5.91 | 216.76 13.86
WSPT | 474567 | 428902 | 32.0 % 6.99 6.10 | 181.87 10.62
WDD | 600836 | 539149 | 18.3 % 7.33 5.54 | 133.36 10.96
KZRM | 405050 | 404791 | 0.7 % | 12309.86 | 3.27 2.43 10.04
X-KZRM | 1136842 | 1045669 | 10.8 % | 62290.90 | 14.22 | 113.32 13.86
AGG | 454307 | 450278 | 8.6 % 490.58 | 13.68 | 40.96 16.44

Table 4.5: Computational Results for n = 100
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Yw;T; REAL TIME T-TEST

Heuristic | Before After | ITmprov | Before | After | Interch | VALUE
MODD | 1390614 | 1366306 | 1.9 % 18.54 7.8 42.13 13.23
ATC | 909104 | 904634 4.7 % 21.91 7.76 48.53 15.06
X-RM I | 935756 | 930374 5.4 % 37.06 7.72 48.50 12.26
X-RM I | 934892 | 929421 5.6 % 36.66 7.31 48.16 12.20
X-RM III | 914631 | 909759 6.8 % 37.43 7.52 48.39 15.00
X-RM IV | 913304 | 908522 | 5.5 % 37.39 7.30 | 47.85 14.94
COVERT | 919108 | 917518 1.1 % 20.69 7.59 5.64 13.22
WPD | 1091802 | 975884 | 31.2 % 14.97 13.15 | 466.43 13.01
WSPT | 1050406 | 950104 | 31.4 % 15.29 12.49 | 380.16 10.15
WDD | 1373981 | 1250450 | 20 % 15.43 10.75 | 243.79 10.69
KZRM | 895869 | 895406 0.3 % 65801.26 | 9.35 4.21 11.32
X-KZRM | 2626104 | 2453433 | 8.55 % | 107301.76 | 9.43 | 210.21 12.45
AGG | 976480 | 970106 | 8.35% 461.91 8.24 | 69.54 17.17

Table 4.6: Computational Results for n = 150

2 wily
Heuristic Before After | Tmprov
Wiows Plow 17708 17593 51 %
X-RM IV | wiow, Phign | 156515 | 155473 | 5.1 %
Whigh, Plow | 149672 | 148689 6.8%
Whigh, Phigh | 1324627 | 1315287 | 6.3%
Wiow, Plow 17411 17402 0.4%
KZRM | Wigw, Prigh | 153878 | 153780 1.0%
Whigh, Plow | 148689 | 147065 0.6%
Whigh, Phigh | 1315287 | 1300914 | 0.9 %

Table 4.7: Detailed Computational Results for n = 100
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Due Date Release Date Range

Range | ) w;T; 0.0 0.5 1.0 L.5
0.05 Before | 1878243 | 618489 | 67185 | 10670
After | 1876162 | 613286 | 63338 | 9568

0.25 Before | 1279710 | 336989 | 3725 | 177

After | 1274486 | 331753 | 2944 | 151

0.5 Before | 666379 | 86926 | 438 83

After | 653312 | 82547 | 419 83
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Table 4.8: Comparison of the X-RM IV rule with the Proposed Rule for n = 100

# OF JOBS = 50 # OF JOBS = 100 # OF JOBS = 150
Heuristic Before After Before After Before After
MODD iter.#t = 100 (:ter.# = 250) 97 100 98 100 93 99
X-BRM I iter.4t = 100 (iter.# = 250) 140 330 156 277 136 252 (251)
X-RM II iter.# = 100(iter.# = 250 131 323 155 284 123 238 (237)
X-RM III iter.# = 100 (cter.#¢ = 250) 147 366 183 293 167 320 (319)
X-RM 1V iter.4t = 100(iter.# = 250) 138 385 159 299 149 288 (287)
ATC iter.4t = 100(iter.4 = 250) 82 269 86 220 73 199 (198)
COVERT iter.# = 100(iter.# = 250) 100(99) 134(132) 95 123 93 118
WPD iter.# = 100(iter.# = 250) 6 102 11 80 22 73
WSPT iter.# = 100(iter.4 = 250) 5 147 6 101 14 87
WDD iter.# = 100(iter.# = 250) 9 41 11 38 9 26
KZRM iter.# = 100(iter.4 = 250) 324(323) | 457(456) | 224(223) | 546(542) 233 606
GRASP a=0.5 o =028 o =0.5 a=08 [ a=0.5 =08
tter.# = 100 153 183 103 117 106 112
wter.# = 250 154 186 103 121 105 112

Table 4.9: Number of Best Results




Chapter 5

Branch & Bound Algorithm

In this part of the study, we propose a branch and bound (B & B) algorithm
to solve 1|r;| 5> w;T; problem. Since the problem is deduced to be strongly
NP-hard, enumerative algorithms such as branch and bound or dynamic
programming (DP) approaches are widely used to find exact solutions. Unequal
release dates and the presence of idle times in the optimal schedule destroy the

scheme of usual DP approach {11]. Therefore, using B & B algorithm is much

more convenient.

To the best of our knowledge, there 1s no lower bound in the literature
developed for 1|r;| 3> w;T; problem. So we use linear lower bound developed
by Potts and van Wassenhove for 1| | 3-w;T; problem [38]. We also adapted
the lower bounding procedure developed by Hariri and Potts for 1|r;| 3 w;C;
problem [27] by making additional calculations to implement to our problem.

In our algorithm, we calculate both lower bounds at each node and choose the

best one as a lower bound of the node.

A B & B algorithm must maintain knowledge of the remaining unsolved
subproblems, either by maintaining a list or through other logical means. The
subproblems that have not been shown to be inferior and whose subproblems
have not yet been generated are called active subproblems. It is sufficient to

solve or fathom all active subproblems to determine the optimuin; this is not

67



CHAPTER 5. BRANCH & BOUND ALGORITHM 68

easy since new problems are being generated as old ones are eliminated. So
ordering strategy for which problem to tackle next is also an important issue.
There are two basic search methods: At best first search algorithm (BFS),
at each decison point the partial sequence with lowest lower bound is selected
from the active subproblems. At depth first search algorithm (DFS), same basic
structure is used as BI'S algorithm but at each decision point the subproblem
at the greatest depth is chosen. In other words, at DF'S last in first out (LIFO)

rule is applied to the set of active subproblems.

We have already developed a set of new dominance properties that reduces
the number of alternatives in the dominant set for 1|r;| 3" w;7}; problem. In
this chapter we will incorporate our dominance rule, by proposing additional
dominance properties in a B & B algorithm along with two different lower

bound schemes and a branching strategy which is hybrid combination of both

BFS and DFS algorithms.

In § 5.1 we present some dominance properties, which can be utilized in a
B & B algorithm. The lower bounding scheme is discussed in § 5.2. The B &
B algorithm is described and illustrated with a simple example in §5.3 and §

5.4, respectively. Finally, a summary is provided in § 5.5.

5.1 Dominance Properties

In this section, we present some dominance properties to eliminate a number of
dominated solutions in a B & B algorithm, before calculating its lower bound.
Dominance rules are very effective when the lower bounding scheme of the
algorithm is rather weak. Dominance rules allow to eliminate a node which

has a lower bound that is less than the optimum schedule in the search tree.

In the remainder of the study, the following notations will be used:

o J — Set of all jobs that should be scheduled.

e S(t) — Set of scheduled jobs at time ¢.
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o U(t) — Set of unscheduled jobs at time ¢.

e A(t) — Set of unscheduled and available jobs at time ¢.

e B(t) — Set of unscheduled and unavailable jobs at time ¢.
e wT;(S) — weighted tardiness of job ¢ in schedule S.

wT;—j—k(S) — weighted tardiness of subschedule {7 — j — k} in S.

Let J be the set of jobs that should be scheduled; U(t) = A(t) U B(t)
denote set of unscheduled jobs at time ¢ where A(t) is the set of unscheduled
jobs which are available at time ¢ and B(¢) is the set of unscheduled jobs that

are not available at time ¢.

At time ¢, from available jobs if there is such a job that has minimum
processing time and due date while having highest weight, then this job

dominates all other unscheduled jobs.

Proposition 33 If there is a job i € A(t) such that p; < minjeyuy{p;}, wi >
max;evy{w;}, and d; < minjey{d;} then there is an optimal schedule in

which job © will be the first job of the remaining sequence.

Proof : Suppose in schedule S, ¢ is not the first job al time ¢, 1.e 3 j € U(t)
is scheduled before job :. Then

wT;(S) = w; - max{0, max{¢,r;} + p; + pi — d;}

wT;(S) = w; - max{0, max{t,r;} + p; — d;}

Construct new schedule S by interchanging positions of job 7 and j. Then
wT;(5') = w; - max{0, max{t + p;,7;} + p; — d;}

wTi(S") = w; - max{0,t + p; — d;}

If both jobs are nontardy in schedule S, i.e. max{t,r;} +p; +p: < d;, since
di < dj thent+p,+p; < di <dj; and r; + p; + pi < di < d;. Therefore,
t + p; < d; resulted in wT;(S’) = 0 and max{t + p;,7;} + p; < d; resulted in
wT;(S'") = 0. This means that changing positions of job 7 and job j does not

affect the objective function value.
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If job 7 is not tardy but job ¢ is tardy in schedule S, i.e. max{t,r;}+p;+p; >
d; and max{t,r;} + p; < d;, then

wli_i(S) — wli—;(5") = wilmax{t,r;} + p; + pi — d;] — w; max{0,¢ + p; — d;}
—w; max{0, max{t + pi,r;} + p; — d;}
> wimax{t,r;} + p; +pi — di] —wilt + pi — d}]
—wj[max{t + pi,r;} + p; — dj]
= w;[max{t,r;} — t] + (wi — w;)p;

+w;[d; — max{t + pi,7;}] >0

so interchanging jobs j and ¢ will improve the current schedule.

In schedule S, the completion time of job j is less than the completion
time of job i. Furthermore, due date of j is higher than job 7 so when job j
is tardy, job 1 will also be tardy. When both jobs are tardy problem becomes
total weighted completion time problem for these two jobs and the job having
higher #- is scheduled first. Therefore, scheduling job ¢ before job j gives
better objective function value. Thus interchanging positions of jobs ¢ and j,
we obtain a new schedule which is at least as good as S. We can iterate this

process until job ¢ precedes all unscheduled jobs at time ¢.0

On the contrary, if any unscheduled job has maximum processing time,
lowest weight, latest due date, and maximum release date at time ¢ then all

other unscheduled jobs will dominate it.

Proposition 34 For any job k € U(t) at time t, if

i) re > maxey){ri}, and

i) pr > maxieu){p:i}, and

ii) di > maxey(){d:}, and

w) wy < mingeyy{wi} then job k can be placed at the last position of the

remaining sequence.

Proof : Suppose in schedule S, k is not the last job, i.e ¢ € J is scheduled
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after job k. Then

wTi(S) = wy, - max{0, max{¢, 7} + px — di}

wT;(S) = w; - max{0, max{¢t,rx} + pr + p;i — di}

Construct new schedule S’ by interchanging positions of job ¢ and k. Then
wTi(S") = wy, - max{0, max{t + pi,r; + pi, 7e} + px — di.}

wT3(S") = w; - max{0, max{t,r;} + pi — d;}

If both jobs are nontardy in schedule S, i.e. max{t,rs} + pr + p; < d; then
t+ pe +pi < diy e+ pr+ pi < d;. Since i 2> 7; then max{t,r;} + p; < d; so

wT;i(S") = 0 and max{t + pi, 7 + pi, 7} + pr < di so wTy(S’) = 0. This means

that changing positions of job ¢ and job k does not affect the objective value.

If job & is not tardy but job z is tardy in schedule S i.e. max{¢, 7y} +p;+pr >

d; and max{t,rx} + pr < di then

WTi—i(S) — wTi—(5) = wilmax{¢t,rt} + pr + p; — d}]
—w; max{0, max{t,r;} + p; — d;}
—wy max{0, max{t + pi,r; + pi,*x} + pr — di.}
> wi[max{t,rx} + px -+ pi — ;] — wi[max{¢,r;} + p; — d;]
—wi[max{t + pi,ri + pi, i} + pr — di]
= w;[max{t,r,} — max{t,r;}] + (w; — wi)px
+wi[dy — max{t + pi,r; + pi, i }] > 0

so interchanging jobs j and k will improve schedule.

In schedule 5, the completion time of job & is less than the completion time
of job ¢. Furthermore, due date of job k is higher than job : so when job &
is tardy, job ¢ also will be tardy. When both jobs are tardy, problem turns
out to be total weighted completion time problem for these two jobs and the
job having higher 5;’—} is scheduled first. So scheduling job z before job £ gives
better objective function value. Thus interchanging positions of jobs z and £,
we obtain a new schedule which is at least as good as 5. We can iterate this

process until all jobs precedes job k.0
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If jobs are “dense”, then at time ¢, no matter how long its processing time is,
an unscheduled job with higher weight, less due date, release date and earliest

completion time dominates the others.

Proposition 35 If max;cy){r:} < Mingep(r) jea) {7, +Pr,t+p;} and j and k
are two jobs belonging to U(t) such that r; < ry, max{t,r;}+p; < max{t,r:}+

Pr, w; > wg and d; < di then job j dominales job k al time t.

Proof : Consider a schedule 5, such that at time ¢ job k is scheduled, then
there is a set of () jobs followed by job j. Construct another schedule S’ by
interchanging the positions of j and k. Partial weighted tardiness of schedules
S and S’ are

wTk—qg-;(S) = wi-max{0, max{t, ri} +pr —di } + 0T (S) +w; max{0, {¢,rx} +
Px +po +p;j — dj}

wli_g-x(S") = wy - max{0, max{t,r;} + p; + po + px — di} + wTp(S") + w; -
max{0, max{t,r;} + p; — d;}

where pg is the total processing time of jobs in (). If both jobs are not tardy in
schedule S, i.e. max{t,ri}+pr+pg+p; < d;, then as r; < ry, max{t,r;}+p; <
d; and since d; < di, max{t,r;} + pr + po + p; < di so wlj-g-r(S’) = 0.
Therefore, interchanging positions of job j and job k weighted tardiness of the

schedule will not be affected.

If job k is not tardy but job j is tardy in schedule S i.e. max{¢t,rx} + pr +

pg +p; > d; and max{t,ri} + py < di then
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wli-q-;(5) — wTi—q-k(5") = wj[max{t,rc} + p + po + p; — d;] + wIH(S) — wTp(S")

—wy max{0, max{t,»;} + p; + po + px — di}
—w; max{0, max{t,r;} + p; — d;}
> wjlmax{t, ¢} + pi + po + p; — dj
—wi[max{t, 7} + p; + po + pr — di]
—wj[max{t,r;} + p; — d;] + wTp(S) — wlp(S)
= (wj —wi)(pr + po) + w; - [max{t,r} — max{t,r;}]
tw - [de —max{t,r;} — p;] + wTp(S) ~ wlp(S) >0

so interchanging jobs 5 and k will improve the objective function value.

In schedule S completion time of job & is less than job j and due date of k&
is higher than job 5 so when job k is tardy, job j also will be tardy. When both
jobs are tardy wT'(.S) —wT'(S") value will increase by wyi(max{¢t, 7y} + pr — di).

Therefore, scheduling job j before job &k gives better objective function value.

a

Similar to proposition 34, at any time ¢, job with latest release date will be
dominated by the jobs with less processing time, earlier due date, and higher

weight.

Proposition 36 Let j be a job that at time t, r; = maxcup){ri}. There is
an optimal schedule in which job j is preceded by any job k € U(t) such that
i 2 Pk, w; < wi, and dj > dy.

Proof : Similar to Proposition 34 consider a schedule S such that the job j
precedes job k. We construct a new schedule S’ by interchanging the positions
of jobs 7 and k. In the proof of Proposition 34, we already showed that from two
adjacent jobs the one with earlier release date and due date, shorter processing

time, and higher weight dominates the other job. This property is transitive
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as long as all jobs are available. Since job j is the job with latest release date,
all unscheduled jobs will be available, when job j is scheduled. Therefore, a
job will dominate job j if it has shorter processing time, earlier due date, and

higher weight.O

At any time ¢, an unscheduled job with higher weight, higher processing
time and earlier due date dominates another unscheduled job, if its possible

earliest completion time (ECT) value is lower than the other.

Proposition 37 Given two jobs at time t, such that v,j € U(t). If p; > p;,
max{t,r;} + p; < max{t,r;} +p;, di <d;, and w; > w; then job i dominates j

at titme t.

Proof : Let’s consider a schedule S with job j scheduled before job 1.
Interchange the positions of jobs j and 7 in schedule S’. Then

wT;(S) = w; - max{0, max{t,r;} + p; — d;}

wTi(S) = w; - max{0, max{t,r;} + p; + po + p: — d;}

wT;(5') = w; - max{0, max{¢,r:} + p; + pq + p; — d;}

wT;(S') = w; - max{0, max{t,r;} + p; — d;}

pi 2 pj and r; + p; < r; + p; implies that r; < ;. If both jobs are nontardy
in schedule 5, then similar to Proposition 35 interchanging these jobs will not

affect objective function value.

I job j is not tardy but job ¢ is tardy in schedule S, interchange function

will be
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wlj-g-i(5) — wli—q-;j(5") = wilmax{t,r;} + p; + po + pi — di] + wIp(S) — wlp(S')
—w; max{0, max{t,r;} + p; — d;}
—w;max{0, max{t,r:} + p; + po + p; — d;}
> wilmax{t,r;} + p; + pq + pi — di] + wIp(S) — wlp(S)
—wilmax{t,r:} + pi — di] — w;{max{t,ri} + pi + po + p; — dj
= wi[max{t,r;} — max{¢,r:}] + (wi — w;)(p; + po)

+w;{d; — (p; + max{t,r;})] + wTlp(S) — wlg(S’) >0

so interchanging jobs j and 7 will decrease total weighted tardiness value.

When both jobs are tardy, wT(S) — wT'(S’) value will increase by
wj[max{t,r;} + p; — d;]. Considering all possible cases, scheduling job 7 before
job 7 gives better objective value. Thus interchanging positions of jobs j and

7, we obtain a new schedule which is at least as good as 5.0

If all jobs are available at time ¢, or new job will be arrived after all available
jobs are processed then set of available jobs forms a job block, where the
dominance rules of Rinnooy Kan et al. [44] and Akturk and Yildirim [4] can

be applied.

Proposition 38 If either Zjcawp; +t < mingep{rr} or B(t) = 0 then
unscheduled jobs belonging to A(t) will form a block of jobs such that dominance
theorem developed by Rinnooy Kan et al. [{{] and Akturk and Yildirim [{] for
L |3 w;T; problem can be applied. In other words, if one of the following
conditions is satisfied job 1 precedes job j in an optimal sequence:

i) pi < pj, wi 2 wj, and di < max{d;, Chep, pr+ i}

Who; > w;, di < dj, and d; > Ypes_a, Ph— Pj;

wi)d; 2 Yohes-a; Ph

or if d; < dj, p; 2 p; and w; < wj, then job j precedes job 1 j — 1 fort > 1;;.

Proof : B(t) = {, means that all unscheduled jobs are available. For jobs
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j € A(t) problem turns out to be 1| |Zw;T;. Else if Zicapypi +1¢ <
mingep(y{rs} then all available unscheduled jobs will be scheduled before any
new job becomes available. Then problem turns out to be 1| |3 w;T; problem
for jobs j € A(t) because time needed for arrival of new job is more than total
processing time of all available unscheduled jobs. For 1| |3 w;T; problem
Rinnooy Kan et al. proved validity of first three conditions [44], and validation
of last condition is shown by Akturk and Yildirim [4] Since for jobs j € A(t)

problem is equivalent to 1| | 3~ w;T; problem, these rules can be used to prune

some branches.O

We already showed that for any pair of jobs ¢ and j, if time is greater than
all breakpoints then scheduling job with higher o gives optimum ordering for
those jobs. Hence if all possible breakpoints are passed then the WSPT rule

will give an optimum sequence for the remaining jobs as proved in Proposition

32 in Chapter 3.

If scheduling even the job with shortest processing time at time ¢ makes
all unscheduled jobs tardy, then problem turns out to 1| |3 w;C; problem so

WSPT rule will give an optimum sequence for the remaining unscheduled jobs.

Proposition 39 [fmin{t+minje4(;){p;}, mingepy{re+pe}} > max;ep({di}
then the WSPT rule gives an optimum sequence for the remaining unscheduled

jobs.

Proof : min{t + minjea(){p;}, mingep){rx + pr}} is the earliest completion
time of first job scheduled after time ¢t. When earliest possible completion
time of first schedule exceeds due date of all unscheduled jobs, this means
that all unscheduled jobs are tardy jobs, hence our problem is equivalent to

the 1| | 3- w;C; problem whose optimum schedule is obtained using the WSPT

rule as shown by Smith [49].0

A schedule can be optimum only if it is one of elements of the active schedule

set. Following proposition is needed to guarantee active schedule condition.
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Proposition 40 Ift + minjea){p;} < v then k € B(t) will not be scheduled

at time t.

Proof : A feasible schedule is called active it no operation can be completed
earlier by altering processing sequences on machines and not delaying any other
operation. A schedule which gives optimum sequence must be in the set of
active schedules. Since scheduling job k at time ¢ violates active schedule, it is

possible to insert a job before job k, without delaying any other job. Therefore,

the proof follows. O

We should also check local optimality, by checking the proposed dominance

rule.

Proposition 41 Let job k' be the last scheduled job in the sequence, at time t
such that processing of job k' starts at time t'. For all unscheduled jobsi € U(t)
if scheduling job 1 at time t violates proposed dominance rule, i.e. 1 < j at time

t' then job ¢ will not be scheduled at time t.

Proof : We already showed that if any adjacent two jobs violate proposed
dominance rule then interchanging these jobs either improves objective function
or leaves it unchanged. So if Q1k"2()2 sequence violates proposed dominance
rule then interchanging job &' and job ¢ will either improve the sequence or
leave it unchanged. Therefore, in branch and bound tree, branch containing

schedule S = Q1k'2Q); will be fathomed sooner or later.C

5.2 Lower Bounding

To the best of our knowledge, there is no lower bound in the literature
developed for L|r;] S w;T;. Using lower bounds developed for 1| |3 w;T;
problem can be one of the alternatives. But lower bounds for 1| |3 w;T;
problem are either not practical to use due to extensive computational

requirements or not so powerful even if the release dates are equal. From
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the different lower bounds derived for 1| |3 w;T; problem, the linear lower
bound proposed by Potts and van Wassenhove [38] is the most advantageous
one concerning the computational time. It can be computed in polynomial
time. Although it has a weak lower bound value, it is suggested to be used in

B & B algorithms for large 1| | 3- w;T; problems (n > 30) due to low memory

requirements [1].

To use the linear lower bound, we should relax the assumption that every
job cannot be scheduled before its release date. But when relative range
of release dates is rather large, i.e. if release dates of the jobs are loose,
linear lower bound will be very ineffective. Therefore we adapted another
lower bound which is mainly developed for 1|r;| > w;C; problem by making
minor changes in the calculations. Lower bounding procedure for 1{r;| 3 w;C;
problem developed by Hariri and Potts [27], lbyp, can be adapted to b =
lbgp — 32;es w;d; and used in the algorithm. This lower bound is expected to

perform better when release dates are loose.

As bounding scheme of our algorithm, we calculated both lower bounds
linear lower bound ({brn) and lower bound adapted from Hariri and Potts
(lby = lbyp — ¥ jej w;d;) at each node and take the best of these two as a

lower bound of the particular subsequence. We discuss these lower bounds in

detail below.

5.2.1 Linear Lower Bound

A lower bound which is originally developed for 1| |3 w;T; can be used as
a lower bound for 1jr;| > w;T; problem. Because if we replace all r; values
with zero, r; = 0, l|r; = r7 = 0| 3" w;T; problem is equivalent to 1| | 3> w;T}
problem. For the same p;, w;, and d; values total weighted tardiness value for
equal release dates is always less or equal to the total weighted tardiness value
with unequal release dates. Therefore lower bounds derived for 1| |3 w;T)}

problem can also be used as a lower bound when release dates are unequal as

shown in the following proposition.
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Proposition 42 Given a problem 11, construct a new problem I in which the
jobs are scheduled by relaxing the problem under the assumption that the jobs
are simultaneously available at time zero. The following relation holds:

lo < (2w T < (X w;Th)

where (3 w;T;)f; is the optimal total weighted tardiness of problem II and lbyy

is any lower bound value obtained for 1| |3 w;T; problem.

Proof: Since lby is any lower bound value for 1| | Y w;T; problem in the
literature, first part of the inequality is clear from the definition. Let Cp; = C;
be the completion time of j** scheduled job, job ¢, in the schedule obtained
from lby where job ¢ becomes available at time r; = r; and let Cp = C] be
the completion time of job 7 in the same schedule where all jobs are assumed
to be available at time zero.

For the 1% scheduled job C[’I] =pp <+ e = Cpy

For the 2™ scheduled job C[’2] = C[,l] +pp2) < Crp+ppg) < max{Chyj, 7121} + 2 =
Clay

Continue in the same way

For j** scheduled job C['j] = C[/j—1]+p[j] < Clj-y+py < max{Cl_y, i1} oy =
i

resulted in Oy < Cfy) for all j = {1,2, yn}

Since weighted tardiness of job j, w;T} = w; - max{0,C; — d;}

(w;T;) = w;-max{0, Ci—d;} < w;-max{0,Cj—d;} = (w;Tj)n (j = 1,2,...,n)
results in (3" w; 1)1 < (O w,; ;) .0

The linear lower bound is originally obtained by Potts and Van Wassenhove
[38] by using the Lagrangian relaxation. Abdul-razaq et al. [1] show that it
may also be derived by reducing the objective (total weighted tardiness) to a

linear function. For job i (¢ = 1,...,n), we have
w;T; = w; max{C; — d;,0} > u; max{C; — d;,0} > w;(C; — d;)

where w; > u; > 0 and C; is the completion time of job i. Let u = (wq,...,u,)
be a vector of linear weights, i.e. weights for the linear function C; — d;, chosen

so that 0 < u; < w;. Then a lower bound is given by the following linear
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function

LBL[N(U) = Zuz(Cl - dz) S Zwi max{Ci _ d,‘,O}
=1 =1

This shows that the solution of total weighted completion time problem
provides a lower bound on the total weighted tardiness problem. We know
total weighted completion problem can be solved optimally by Smith’s [49]

shortest weighted processing time rule in nonincreasing order of ;—')’L
J

Ideally, nonnegative values of u would be selected to maximize the linear
lower bound, LBpn(u), subject to u; < w; for each job 7. To obtain these
best values Abdul-razaq et al. [1] suggested not to use the subgradient
optimization method suggested by Fisher [22] and Goeffrion[25], because it
is computationally expensive to apply. They used the noniterative heuristic

method of Potts and Van Wassenhove [38] to determine values for u.

To present the noniterative heuristic to obtain the linear lower bound, first,
we obtain a heuristic method to obtain job completion times C¥ (i = 1,...n).
Then the vector of linear weights u is chosen to maximize LBy y(w), subject
to the condition that the heuristic sequence is an optimal solution of total

weighted completion time. A linear programming (P) of the form
maximize LB(z) =" a;z
(P) subject to b;z; > by12i41, t=1,..,n—1
0<z2z <g¢, r=1,...,n

where a; is a constant, and b; and ¢; are nonnegative constants (z = 1,...,n),
, . | — (H — - — —
can be solved to find u. When a; = C/" —d;, b; = 1/p;, ¢; = w; and z; = u;,

the solution of the problem (P) yields the lower bound LBpin(u).

Observe that for any jobs h and ¢ where h < ¢, we get b;z; < byzp < byeyp,.
Let’s define,

1

= i bren/bi}, i =1,...
c hrrlnn.}{;ch/ },e ey T

ooyt

If we add the constraints

0<z<d, i=1,..,n
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the solution to problem (P) does not change. Since ¢; < ¢; (i = 1,...,n), these
new constraints imply the original constraints 0 < z; < ¢; (1 = 1,...,n) which
therefore may be dropped. The following algorithm is used to obtain LBy
by Potts and van Wassenhove. In the algorithm the variable LB indicates the
lower bound value.

Linear Lower Bound(L By n(u)):

Stepl. Set D=0, LB =0and k=1.

Step 2. Set D = D + ax/by. If D <0 go to Step 4.
Step 3. Set LB = LB + Dbyc), and set D = 0.
Step 4. If k = n, stop. Otherwise set £ = &k + 1 and go to Step 2.

The linear lower bound takes an initial sequence as input. It is showed by
Akturk and Yildirim [4] that the WSPT rule performs well in a reasonable

computation time. Therefore, we use the WSPT rule to determine an initial

sequence.

5.2.2 Lower Bound 2

We now derive a lower bounding procedure for 1|r;| 3" w;T}; problem, based on
the lower bound for 1|r;| 3 w;C; problem, proposed by Hariri and Potts [27].
From the definition of tardiness, tardiness of job j is

T; = max{0,C; — d;} where C} is the completion time of job j. Since

C;—d; <Tjforall j ={1,2,..,n}

wj - (Cj — dj) = w;Cj —w;d; < w;T; for all 7 = {1,2,..,n}. In sum

Y w;C; — Y wid; <Y w,T;

So for any problem, II, in a given schedule, .5, total weighted completion time

of 5, ijCj < ijTj + ijdj.
———

constant

Therefore, if [b is any lowerbound value for 1|r;| 3> w;C; problem

Ib < S w;Cj < S w;Ti+Y wid; results in (b—Y w;d; < S w;Tj. So lb—3 w;d;
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value provides a lower bound for 1|r;| > w;T; problem.

This property can be used in a lower bound scheme easily. Our next lower
bound is derived by calculating lower bound value of a partial sequence with
proposed algorithm of Hariri and Potts and by subtracting total weighted
duc dates of unscheduled jobs, we update lower hound value for 1|r;| 3 w;T;
problem. Hariri and Potts obtain a lower bound by performing a Lagrangean
relaxation of each release date constraint C; > r; + p; (¢ = 1,...,n) alter which
it is replaced by a weaker constraint C; > r! + p; for some r. < ;. This gives

the Lagrangean problem
mm{ZwL +Z)\ P —C)} (5.1)

where A = (A1, ..., A,) is a vector of non-negative multipliers; the minimization
is over all processing orders of the jobs with C; (¢ = 1,...,n) subject to machine

capacity constraints and to the constraints C; > r} + p;. We can write 5.1 as
L(A) = min{} JwiCi} + > A(ri + pi} (5.2)

where w! = w; — A; (¢ = 1,...,n). Thus, the Lagrangean problem is of the same
form as the original problem but each job has a new release date r} and a new
weight w!. The choice of multipliers is restricted to the range 0 < A; < w;
(i = 1,..,n) to ensure that L(A) does not become arbitrarily small. Original
values of the release dates, i.e. r} = r; are chosen but Hariri and Potts [27]
restrict the choice of multipliers so that the Lagrangean problem can be solved
easily. This is achieved by maximizing L()) subject to the condition that
the sequence generated by the earliest start time (EST) heuristic with job
completion times, C} = ri+py, CF = max{r;, C_, }+p; (¢ = 2,..,n), where jobs
are renumbered so that the k' scheduled job is job k, solves the Lagrangean
problem by yielding weights w! (z = 1,..,n) which satisfy the conditions of
theorem, stating that a sequence is optimum if the jobs within each block .5;

are sequenced in nonincreasing order of [27] Thus, for each block 5; that
(w; = X)) /pi < (wicy — A1) /i1, for i =u; + 1, ., v;

where job v; is the last job in a block if C’Jj <pifori=wv;+1,..,n A set
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of jobs S; = {u;,..,v;} forms a block if the following conditions are satisfied:

(Hariri and Potts [27])

(a) u; = 1 or job u; — 1 is the last job in a block;
(b) job 7 is not the last job in a block for i = u;,..,v; — 1;

(c) job v; is the last job in a block.

L()) is maximized by choosing A = A*, where

0 if © = uj, j=1,..,k

Al = (5.3)
max{0,w; + (N_; — wi_1)pi/pi-1} ifi=u; 4+ 1,..,v;

Having found C} (¢ = 1,..,n) as suggested by [27] and using 5.3, lower bound

for 1|r;| 3 w;C} can be written as

LB =L(\")= ZwiC;“ + Z/\:‘(u +pi — C)
i=1 =n

Furthermore, improvement of this bound is also possible [27]. Based on the
AZ, the jobs in the EST order are reordered within each block in nondecreasing
order of A\¥ to give the permutation 7 = {7 (1),7(2),..,7(n)} such that $; =
{m(uj), m(u; +1),.,m(v;)} and ALy < Ay S o < Agg,, for all j. Other

definitions in the lower bound calculations are as follows:
S](h) = ,S'_;h_l) —{m(uj+h—=1)} for h=1,2,..,0;,—u; j=12 .k,
S0 = g;
,ug.h) = Ao(uy+h) ~ Mn(uj+h-1) for h=1,2,.,v;, —u; j=1,2,.,k,

h .
bg- ) = Ziesj(h)(ri + pi), for h=1,2,.,v; —u; 7=12,.k

In addition, ﬂ](-h) denotes the sum of completion times for the jobs in .S'J(h)

when they are sequenced according to the SRPT rule, for A =1,2,...,v; — u;;
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7 =1,2,.., k. Improved lower bound is

k vj—uy

J
LB =LB+Y > u}")(ﬁ;ﬁ") —bgll)),

j=1 h=1

where it is assumed that any summation is zero when its lower limit exceeds

its upper limit.

Therefore,
lbz = LB, - Zw_,-dj
will give a lower bound value for 1|r;| >~ w;T; problem. At time ¢, at any node,

if partial schedule is S(t) then

by = wT(S(t))+ LB'(U(t)) — Z wjd;
JeU(Y)
will be a lower bound of the particular node, where wT'(S(¢)) is the partial total

weighted tardiness of the partial schedule and U(t) is the set of unscheduled

jobs at time ¢.

5.3 The B & B Algorithm

We now present our B & B algorithm which incorporates dominance rule
proposed in Chapter 3, and dominance properties discussed in § 5.1. In any
B & B method, there are three main components, namely a lower bounding
scheme, a branching condition and a search strategy. A node at level k of the
search tree corresponds to a partial sequence, P, in which jobs scheduled from
the beginning of the schedule up to level k and a partial sequence, @, of jobs
scheduled at the end of the schedule. Node at level k+1 of the tree is denoted
as P —1..Q), where P and @) are the defined partial sequences and job ¢ is
scheduled to k + 1®* position of the schedule. Before any new node is created,
the dominance properties of § 5.1 are checked. For each possible candidate
partial sequence, both linear lower bound ({b;) and b, are calculated. Lower

bound of the partial schedule is determined by choosing maximum of those,
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two lower bounds. If lower bound of the sequnce is larger than upper bound,

node is fathomed else it is inserted to an active stack.

By jumping all over the tree searching for a subproblem with minimum
lower bound, best first search (BFS) method keeps a good strategic
understanding of the overall decision tree. Although total number of steps
for optimum solution is relatively small, since full solution is generated at
very late steps of the algorithm, BFS requires a large storage space. Size of
active stack grows exponentially and even for small sized problems, memory
requirement is infeasible. As an alternative, depth first search (DI'S) method
looks for very quick full solution by following minimum lowerbounds right to
the bottom of the tree and then by backtracking searches that part of the tree.
For DFS memory requirement is quite small, but depending on the place of

first solution DI'S might spend a great deal of time in the wrong part of the

tree.

To take advantages of both search methods, we use a hybrid approach
of BFS and DFS as a search strategy. Maximum number of subproblems in
the active stack is limited with a predetermined number, which is determined
intuitively. Up to the certain stack size, BFS algorithm is applied to get a
general picture of solutions in all parts of the tree. Relatively bad partial
sequences are detected at BFS method. When active stack size hits the allowed
stack size, algorithm passes to DFS algorithm at lower levels of the tree, to

obtain full solution. Algorithm works as follows:

The B & B Algorithm

STEP 0 [Initialization] Set seq « 0, ub « o0, t* — ry, S — 0, P — 0, Q «

0, and last «— n. Calculate the breakpoint matrix. Determine ¢; «
maxi#eJ{tfj, t?j, t?]}
STEP 1 [Global Dominance] If any job ¢ € A(t) satisfies proposition 33 then set

Stseq) — & t° — max{t® + p;,rmin}, P — {P — i}, and seq + seq+ 1.
If seq < last then repeat Step 1. Else if wTs < ub, set § « S and
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STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

ub — wTs then goto Step 7.

[Global Dominance] If any job ¢ € U(t) satisfies proposition 34 then set
Slias) + %, last «— last — 1, and Q « {7 — Q}. If seq < last then repeat
Step 2. Else if wTs < ub, set S « S and ub — wTs then goto Step 7.

[Reduction to 1| | 3 w;C;] If ¢¢ > ¢, then schedule every unscheduled job
i € U(t) in nonincreasing order of 2 I wly < ub, set S « S and

ub — wT's then goto Step 7.

[Eliminating # of Alternatives| If either ¢ — j (from propositions 38
or 41) or ¢ < j at time t° for every unscheduled job j € U(t) (from
propositions 35, 36, 37, or 41) and ¢ # j, then set Speq — %, 1
max{t® + p;, Tmin}, P — {P — 1}, and seq « seq+ 1. If seq < last then
goto Step 1. Else if wTs < ub, set S « S and ub « wT's then goto Step
7.

[Selecting Subproblem] For every unscheduled job j € U(t) which is not
dominating Sfseq-1) at ¢¢ due to propositions 35, 36, 37, 38, and 41 such
that r; < min{t® 4+ pmin, (7% + Pk)keB(tc)}; where pmin = mingeage) {pr },
let lbp_; o «— max{lb,lb}. If lbp_; o < ub for any unscheduled job
J € U(t%), insert it to active stack, AS, then store tp_; o — max{{,r;}

and seqp_;.q < seq. Else goto step 7.

[Upper Bounding] If AS # 0 and size — AS < Maa — Stack — Size pick
partial schedule { P—j..QQ} with min (bp_; o from AS (BFS). Else if AS #
0 pick job j with LIFO rule (DFS). Set Sjseq) < 7, t° < max{t°+p;, min},
P — {P —j} and seq «— seq+ 1. if seq < last then goto step 1. Else if

wTs < ub, set S «— S and ub — wTs.

[Branching] Eliminate all subsequences with {6 > ub from AS. If AS # 0
and size — AS < Maxz — Stack — Size pick partial schedule {P — j}
with minlbp_; o from AS (BFS). Else if AS # (§ pick job j with LIFO
rule (DFS). Set ¢¢ « tp_j.q + pj, Siseq) — J, P — {P — j} and seq «
seqp—j.o + 1 then goto step 1.

[Report Optimum Solution] Else report S, « .
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Initially, there is no scheduled job and by calculating t}j, t?j, and t'?j values

for all job pairs (breakpoint matrix), the time point, ¢;, where the problem
reduces to 1| | 3> w;C;j problem is determined. First two steps searches if there is
any global domince relationship at ¢¢. If job 7 satisfies conditions of proposition
33 then we increase current time to maximum of completion time of the job :
or to the earliest release date of the unscheduled jobs, r,,;, and searches next
dominant job. Else if job 7 satisfies conditions of proposition 34, it is dominated
by all unscheduled jobs. Then, job 7 is scheduled to the last position. Counter

last is decreased by 1 and another dominated job is searched.

Otherwise, if t° t; then all unscheduled jobs are scheduled in

2

nonincreasing order of o and algorithm jumps to branching condition, Step 7
1

namely.

Else if ¢ < t;, dominance properties are checked and dominated jobs are
eliminated. For every unscheduled job two lower bounding procedures are
implemented and the lower bound (b is set to the maximum of them. If the
lower bound is less than or equal to the upper bound, that partial sequence is
inserted to active stack by recording the start time and sequence of last job. If
AS size is less than maximum allowed stack size, partial schedule with lowest
lower bound is extracted from AS, else the last inserted partial schedule is
extracted. Updating current time, ¢¢, scheduling candidate job ¢ with sequence

seqp-;.q a new subtree is grown by returning to Step 1.

If a full solution is obtained, in Step 7, weighted tardiness of the schedule is

calculated. If weighted tardiness of the schedule is less than the current upper

bound, ub, incumbent schedule, S, and upper bound, ub is updated.

Eliminating all subproblems with lower bounds larger than ub from active
stack, AS is kept active. If AS is not empty then either partial schedule with
lowest lower bound is extracted from AS, if AS size is less than predetermined
maximum stack size; or the last inserted partial schedule is extracted, if AS size
exceeds maximum stack size. Updating current time, ¢°, scheduling candidate
job @ with sequence seqp_; o a new subtree is grown by returning to Step 1. If

AS is empty the incumbent schedule S is reported as optimal.
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job 1, job 2, or job 4.

For jobs 1, 4, and 2, both lowerbounds (b, and (by give the same value. For
job 1 LBy = min{54;54} = 54, for job 2 LB, = 75, and for job 4 LBy = 84.
Active stack size is equal to 3. Since it is less than maximum stack size,
3 < 5, best-first-search (BFS) method is used. Therefore, partial sequences
{4} and {2} are added to active stack (AS). Scheduling job 1 to seq = 0, set
t¢ = max{9,6} =9, and increase seq by 1. Since there is no global dominance,
unconditional or conditional precedence relationships, we return to step 5. Jobs
2 and 4 satisfy active schedule condition (proposition 40). Lowerbound of
partial sequence {1 — 4} is LB;_4 = max{48;48} = 48 and lowerbound of
{1—-2} is LBy, = max{46.8;46.8} = 46.8. Therefore, {1 —4} is added to AS.
Schedule job 2 to seq = 1, Sjj) « 2. Set t° = max{14,6} = 14, increase seq to 2.
Since there is no global dominance and 14 < ¢; = 22, we return to step 4. Jobs
3, 4, and 5 are possible candidates. But tgA = 10/3 is valid. So for ¢t > rqy = 6,
job 4 precedes job 2, i.e. 4 < 2. Therefore, job 4 cannot be scheduled after job
2 while their processing starts at t = 9. LB;_5_3 = max{51.4;73.0} = 73 and
LB __5 = max{46;46} = 46. Partial sequence {1 — 2 — 3} is added to active

stack.

Currently active stack size (AS-size), AS — size > 5 so branching will
continue with depth-first-search (DFS) method. Update seq «— seq + 1 and
t© = max{21,6} = 21, At seq = 3 jobs 3, 0, and 4 are possible candidates.
But due to proposition 37, job 4 precedes job 5, 4 < 5 if their processing
starts at time, ¢ = 14. Therefore, job 4 cannot be scheduled as immediate
successor of job 5. LBj_3_5-3 = max{45.0;45.0} = 45.0 and LBy_3_5_9 =
max{49.0;103.0} = 103.0. Since our search strategy is DF'S, we schedule job
3 at seq 3, set t° = max{29,6} = 29 and pass to lower level, seq « seq + 1.
At t° = 29 > t;, seq = 4 problem reduces to 1| | 3" w;C'; problem and WSPT
rule gives optimum sequence for remaining unscheduled jobs. So sequence
{1-2-5-3—-0~4} gives ub=97. Since LB;_3-5-0 = 109 > 97, it is deleted

from active stack.

At step 7 with minLB = 48 partial sequence {1 — 4} is extracted from
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active stack with t© = 18 and seq = 1. Jobs 2, 5, 3, and 0 are possible
candidates. All candidates will be inserted to AS. Lower bounds are calculated
as follows: LBy_4—0 = min{68;74} = 74, LBj_4_3 = min{44;44} = 44,
LB,_4_5s = min{40.33;40.17} = 40.33, and LB;_4_, = min{44.4;44.4} = 44.4.
Partial sequence with minimum lower bound {1 —4 — 5} is picked while other
partial sequences are added to AS. t° is updated to 23 and level is increased
by 1, seq = seq + 1 = 2. Since t° > t; branch is solved using WSPT rule for
remaining unscheduled jobs, {1 —4 —5— 0 —3 — 2} and ub is set to 90.

Since AS — size = 7 > 5, last inserted partial sequence {1 — 4 — 2} is
extracted with ¢° = 23, seq = 2. This branch can be solved by using proposition
32 again, and the WSPT rule gives the objective value of 67. Setting ub =
67, all partial sequences, except {1 — 4 — 3} is deleted. Setting t¢ = 25,
seq = 2, {l —4 — 3} is extracted from active stack. t° > ¢, so problem
reduces to 1] |3 w;C;. As a result of sequencing remaining unscheduled jobs
in nonincreasing order of %JL, ub is set to 57. Since AS is empty set, there
is no other node to open. Passing to step 8, branch and bound algorithm is

terminated.

In summary, the optimum schedule is {1 —4 —3 — 0 — 2 — 5} and the

minimum value of the total weighted tardiness is 57.

In order to demonstrate the lower bound calculations, let’s calculate the
lower bound for the partial sequence of {1 —2— 3} at time ¢t = 22. The partial
total weighted tardiness of this partial sequence is equal to 1, and the set of
unscheduled jobs are S = {0,4,5}. Summary calculations of [b; is given in
Table 5.2. For calculation of (b, there is single block of jobs, 5. Calculations

for (b, are summarized in Tables 5.3 and 5.4.

So lower bound at this node is equal to LB;_,_3 = max{51.4;73.0} = 73
given by lower bound adapted from Hariri and Potts [27]. When the relative
range of release dates are rather loose, like the ones in our example, a lower
bound which considers these release dates performs hetter. As shown in Figure
5.1, the linear lower bound of Potts and van Wassenhove [38] which is expected

to provide better lower bound values in general, is not able to fathom neither
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the partial sequence {1 —2—3} nor {1—-2—5—0}. On the contrary, we expect
linear lower bound to perform better than the lower bound of Hariri and Potts,

when relative range of release dates is tight and jobs become available in a short

range.

5.5 Summary

In this chapter, we looked at how the proposed dominance rule can be
incorporated in a branch and bound algorithm in conjunction with a branching
condition, lower bounding scheme, and a search strategy. There is no lower
bounding algorithm in the literature specifically developed for 1|r;| 3 w,T}
problem. But lower bounds for 1| |3 w;T; problem can be used directly as
a lower bound for our problem when relative range of release dates are tight,
i.e. problems are "dense”. Lower bounds for 1|r;| " w;C'; problems can also be
adapted to 1|r;| ¥ w;T; problems. So we used linear lower bound developed by
Potts and Van Wassenhove for 1| |3 w; T} [38] and we adapted the lower bound
developed by Hariri and Potts for 1|r;| > w;C; problem [27] by making minor
changes in their procedure. In our algorithm we calculated both lower bounds
at each node and chose the best one as lower bound of the node. As search
strategy, we derived a hybrid approach of best first search (BFS) algorithm and
depth first search (DI'S) algorithm. At upper levels of B & B tree, we used
BFS algorithm up to a certain predetermined stack size. When active stack

size exceeded the maximum allowed size, DF'S method is applied to the set of

active subproblems.

We have already developed a set of new dominance properties that we
can utilize in any exact approach. A B & B algorithm is proposed which
incorporates our dominance rule, by implementing additional dominance
properties, a lower bounding scheme and a hybrid branching strategy. The

proposed B & B algorithm is explained step by step with a simple example.

We tested the proposed algorithm with a set of randomly generated
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problems. In the following chapter, we will describe the experimental design

and report a computational analysis of the B & B algorithm.
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Job# | 0 |12 |3 |45
pill2l6|5|7]9]6
rill22 (37 150615
di |24|9]13|22]|15]21
wi 191331

Table 5.1: Job Set Parameters for Example Problem

job# 1 2 3 0 4 5
w; = ¢ 9 1 3 1 3 1
i 6 5 7 2 9 6
%.'i - - - 105(033]0.17
d; 9 13 22 | 24 15 21
C; 9 14 1 22 | 24 | 33 39
a; - - - 0 18 18
b; 0.1770.2]0.14 0.5 0.11 | 0.17
¢ - -1 - |o4a] 18] 1
D - - -~ 0 | 162 | 108
wT 0 1 0 0 324 18

Table 5.2: A Summary of Calculations for {b; = 51.4
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Job# 1l23] 0 |4]5

7; 317 |15} 22 6 |15

P 6] 5|7 2 916

wi = ¢ ol 1|3 1 |31
d; 9113122 24 |15 21

C; 9114122 24 (33|39
C;—d; 01110 0 18 | 18
w;(Ci — d;) 01 [0] 0 |54]18
A - -1-70141 0[O0
M(Ci=ri=p) |- - | -] 0 (0[O
by initial 0110 0 5 118

Table 5.3: Summary of Initial Calculations for (b = 73

dff St | e | 05| B k(B - 0Y)
ol {0,4,5}| 0 |60 |72
1l {4,5) | o |37]36
o {5} [14l21|21
b, = lby initial +

(=2 I =l i B =)

Table 5.4: Summary of Improvement Calculations for lby = 73



Chapter 6
Computational Analysis

The branch and bound algorithm presented in the previous chapter is
implemented at Unix environment using C language. We will study the

performance of the algorithm in this chapter.

Although customer orders may not arrive simultaneously in real life
problems, to the best of our knowledge, we know of no other published exact
approach for 1|r;| > w,;T; problem. Since, there is no other exact algorithm,
currently, only way to reach an optimum solution is complete enumeration.
Even for 1|r;| > T; problem, there is only one published study of Chu [11],
where constructed B & B algorithm can solve problems with up to 30 jobs for
certain problem instances. Computational requirements for larger problems
tend to limit this approach. 1|r;|> w;T; problem is the general case of
l|r;| 3= T; problem. Therefore, it is much more difficult than equal weight

case. 30 job barrier seems an upper limit for 1|r:| > w;T; problem.
J J RN

This chapter is organized as follows: In § 6.1, the experimental design will
be described. Computational results with a set of randomly generated problems

will be presented in § 6.2. Finally, our findings will be summarized in § 6.3.

95
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6.1 Experimental Design

To test the efficiency of constructed B & B algorithm presented in Chapter 5,
it is coded in C language. The program is compiled with Gnu C compiler using

-02 optimizer option and run on a SPARC Station 10 under SunOS 4.1.3.

The proposed algorithm is tested on a series of randomly generated
problems in the same way suggested by Chu [l1]. Example problems were
generated as follows: For each job j, an integer processing time p; and an
integer weight w; were generated from a uniform distribution [1, 10]. Instead
of finding due dates directly, we generated slack times between due dates and
earliest completion times, i.e. d; —(p;+p;) from a uniform distribution between
0 and B Y7, p; where 3 different 8 values [0.05, 0.25, 0.5] are used. Release
dates, r;, are generated from a uniform distribution ranging from 0 to a 327, p;
as suggested by Chu [11], where 4 different « values [0.0, 0.5, 1.0, 1.5] are used.
As summarized in Table 6.1, a total of 12 example sets were considered and 10
replications were taken for each combination, giving 120 randomly generated

problems. Effectiveness of the proposed algorithm is tested with 10, 15, and

20 jobs case.

Any B & B algorithm has 3 main components, namely a lower bounding
scheme, a branching condition and a search strategy. In chapter § 5.2 two
different lower bounding procedures are discussed to calculate a lower bound
for total weighted tardiness criterion. These procedures are compared in terms
of number of nodes that are eliminated for each example set. As a search
strategy, a hybrid approach of best first search (BFS) method and depth first
search (DI'S) methods, which are discussed in § 5.3, is used. Although total
number of steps for optimum solution is relatively small, since full solution
is generated at very late steps of the algorithm, BF'S requires a large storage
space. On the other hand, depth first search (DFS) method looks for very
quick full solution by following minimum lowerbounds right to the bottom
of the tree and then by backtracking searches that part of the tree. For DIFS
memory requirement is quite small, but depending on the place of first solution

DFS might spend a great deal of time in the wrong part of the tree.
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To take advantages of both search methods the maximum number of
subproblems in the active stack is limited with a predetermined number. In
our implementation, maximum stack size is decided to be equal to 5000, an
average number determined after a number of test runs. When maximum stack
size is equal to 5000, BF'S algorithm is active at first 4-10 levels, depending on
the chacteristics of the problem, then B & B algorithm passes to DFS method

without causing any memory problems.

Enumerative algorithms, such as B & B, not only requires high compu-
tational effort and large memory requirement, but computation time needed
may not be practical. To prevent our algorithm to solve problems in very large

computational time, we limited maximum node size to he 4 000 000 nodes.

6.2 Computational Results

There are primarily two main performance measures for any B & B algorithm,
which are the number of nodes in the final search tree to find optimum solution
and the corresponding computation time. In Table 6.2, we present the results
of the proposed algorithm for job size equal to 10, 15, and 20. We also provide

the minimum, average, and maximum values of each measure.

For 10 job case, although it’s computationally not practical but complete
enumeration is still possible. Obviously, considering 10! = 3628800 nodes will
be both highly time consuming and computationally inefficient. Using the
proposed algorithm, number of nodes visited in the search tree ranges from
8 to 9103 nodes for 120 different random problem, where on the average of
10 replications, 4027.8 nodes is considered in the worst case, for a = 0.0 and
B = 0.50. Overall mean of number of nodes opened is 758.9. Algorithm works
very fast and computational time required for any problem does not exceed
10.36 seconds as CPU time, in the worst case, namely for a = 0.5 and g = 0.5.

CPU times for 10 job is less than 1 second for all instances except the cases

(a = 0.0, #=0.5) and (e = 0.5, A = 0.5).
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For 15 job case, complete enumeration requires 15! = 1.3 - 10'% nodes. It is
unpractical to try to get optimum solution by visiting all possible sequences.
Even for 10 jobs, commercial optimization software packages, like CPLEX, fail
to give optimum solution with its node and time limits. Therefore, any method
to solve even 15 job problems will be a contribution to the literature. By the
way, our algorithm solves problems with 15 jobs, visiting maximum 2332666
nodes, for the hardest case, namely o = 0 and # = 0.50. For the same («, /3)
combination average number of nodes considered is 882934.2, which is 1.5 - 10°
times less than the node number in complete enumeration. For simpler cases,
number of nodes needed to find an optimum solution decreases down to 14 for
15 job case, for a = 0.0, # = 0.05. Overall average number of nodes considered
is 205272. Computational time required for optimum solution depends on the
number nodes visited. For harder problem instances, CPU times are on the
average 1615.68 ~ 27 minutes. Problem set with (o = 0.5, # = 0.5), where

CPU time is around an hour, is the worst case.

For 20 jobs case, for simple problem examples with loose due dates and
loose release dates, (4 = 0.50, @ > 1.0), which usually resulted in nontardy
schedules, algorithm performs very fast with visiting quite less number of nodes.
In the same way, at problem instances with tight release dates and due dates
(B = 0.05, a« = 0.0), after scheduling first few jobs, all jobs become tardy
and problem reduces to 1| |3 w;C;. Algorithm finds optimum solution using
the WSPT rule, in short time. When a = 1.5, algorithm finds an optimum
solution at 37.83 seconds for # = 0.25 and for # = 0.5 the maximum time
required for optimum solution is 0.08 seconds. On the other hand, limiting
cases are occured when release dates or due dates are not so tight or loose,
namely, a = 0.5 or f = 0.25. For (o = 0.0, # = 0.5) or (e = 0.5, f = 0.5)
cases, algorithm exceeded the maximum node limit of 4 million and failed to
find an optimum solution 5 and 3 times, out of 10 replications, respectively.
These two cases are our limiting cases, where both computational times and
number of nodes considered in the search tree reached at an unpractical point.

For the abandoned cases computational time exceeded 10 000 seconds.

Any B & B algorithm has three main components, namely a lower bounding
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scheme, a branching condition and a search strategy. In § 5.2, two different
bounding procedures are discussed to calculate a lower bound for total weighted
tardiness criterion. These procedures are compared in Table 6.3, in terms of
number of nodes that are eliminated for each example set, with the minimum,
average and the maximum values. The number of nodes considered is also

provided in the table.

a value indicates the tightness of relative range of release dates. Since linear
lower bound of Potts and van Wassenhove is originally designed for 1| |3 w,;T;
problem, we expect lb, to perform better when « value is rather low. When
a = 0.0, all release dates are equal to zero, in other words, 1|r;| > w;7} problem
reduces to 1| |3 w;1} problem. For those cases, linear lower bound performs
quite efficiently, eliminating 6722.8 nodes on the average for g = 0.25, for
20 jobs, and the average number of nodes considered is 1977373.2. For this
particular instance, {b; can eliminate at most 1188 nodes. For 3 = 0.25, due
date values are spreaded on the time horizon, which prevents problem to reduce
to 1| | 3> w;C; problem. So we can conjecture that node elimination would occur
at upper levels of tree. For a = 0.5, again linear lower bound performs better
than by, when # = 0.25 or # = 0.50. Number of nodes fathomed from the
search tree increases up to 835307 for 15 job. But these problem instances are
the most difficult ones, where only local dominance properties can be applied.
Therefore, resulting node size in the B & B tree is also large. When « = 1.0
or a = 1.5, a lower bound algorithm, which does not consider the release dates

=
.)’

of jobs, produces very weak bounds. Therefore, when o = 1.0 and o = 1.
lb, performs better than [b;. For (o = 1.0, 8 = 0.05) b, fathoms 5432 nodes
on the average for 20 jobs problem, while linear lower bound can fathom only
695.1 nodes on the average, resulting in 115840.5 nodes visited on the tree for

searching an optimum solution.

p value of the problem instance also affects the performance of lower
bounds. When 3 = 0.05 slack time between due dates and earliest completion
time will be so tight that after first few levels of scheduling in the search tree,
all jobs become available, consequently problem reduces to 1| | 3= w;T; problem.

Therefore, [by, derived from the algorithm of Hariri and Potts performs quite
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well. Whatever, the « value is for § = 0.05, (b, performs better than linear
lower bound. For (a = 0.5, # = 0.05) for all job sizes, number of nodes

fathomed by [b; is more than the number of nodes fathomed by [b,.

Although none of the lower bounding algorithms is dominating, linear lower
bound seems more efficient. Especially, when relative range of due dates is
large, i.e. due dates are loose (# = 0.25 or 0.5), lb; provides very weak bound
because of subtraction of weighted due dates. Therefore, it fails to eliminate
nodes from the search tree, even the relative range of release dates are also
loose, @ = 1.0 or 1.5. For example for 20 job case, when # = 0.25 and o = 1.5,
by can eliminate maximum 774 nodes and 151.4 nodes on the average, while
linear lower bound eliminates 3017 nodes on the average and number of nodes
eliminated rises up to 15370 for the same case. Notice that, linear lower bound
does not consider unequal release dates, therefore it is expected to be very weak
when « is large. From these results, we can conjecture that lower bounding

scheme used is very weak and better lower bounding procedures would improve

the algorithm, considerably.

When we look at the efficiency of dominance properties, that are proposed
in Chapter 5, most frequently used property is getting use of the WSPT rule
to find an optimum sequence for remaining jobs, whenever partial schedule
satisfies propositions 32 or 39. Since in general, sooner or later, at lower levels of
tree, all remaining jobs become tardy, problem reduces to 1| | ¥ w;C; problem
and the WSPT rule gives optimum sequence for remaining unscheduled jobs.
Especially, for f = 0.05, where due dates are tight, the WSPT rule seems to
be the most efficient dominance property to eliminate number of alternatives
in the search tree. For greater B values, i.e. f = 0.25 and # = 0.5, impact of
this property decreases gradually. Although for 15 jobs case, average number
of nodes fathomed using proposition 32 is 605379.1, total number of visited
nodes is also very high, 882934.2 on the average. This indicates that although
proposition 32 is used frequently in the search tree, the WSPT rule becomes
active at lower branches of the tree. To give an idea about how effective
dominance properties in the algorithm, the average number of nodes fathomed

using dominance properties proposed in § 5.1, are summarized in Table 6.4
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and 6.5 for 10 and 15 jobs case, respectively. Since Proposition 32 covers and
extends WSPT region defined by Proposition 39, nodes are fathomed using
Proposition 32 before Proposition 39 becomes effective, these two propositions

are compared together.

Proposition 37, which states that any job z, with greater processing time,
greater weight, earlier due date but smaller earliest completion time than job
J, precedes 7 at time t, is also quite effective to fathom nodes in the algorithm.
Especially for « = 0.5, where most of dominance rules and lower bounding
schemes perform weak, proposition 37 eliminates jobs with small processing
times but greater earliest completion times due to their release date. For (a =
0.5, 8 = 0.5) average number of nodes fathomed by proposition 37 is 550728.5,
where other dominance properties eliminates around 150000 nodes and lower

bounding schemes eliminates 9466.7 and 15901.4 nodes on the average by (b,

and [b,, respectively.

Dominance rule, proposed in Chapter 3, is also used frequently to fathom
nodes in the B & B tree. Although average number of nodes fathomed by
dominance rule is rather low for § = 0.05 in general, effect of dominance
rule increases for larger § values. For = 0.5, where due dates are loose,
proposition 32 starts to operate at lower levels of tree. But proposed dominance
rule operates quite efficient such that it fathoms 233 nodes on the average for 15
jobs problem when « = 1.0, while number of nodes eliminated by proposition
32 is equal to 38.2 and number of nodes fathomed by proposition 37 is equal

to 278.9.

We also compare efficiency of proposed dominance rule, comparing number
of nodes eliminated by the proposed rule with number of nodes eliminated using
Emmons global dominance properties [16], including Akturk and Yildirim’s

extention [4] in Proposition 38. Results are summarized in Table 6.6.

Since the environment is dynamic, Emmons dominance properties fail to
fathom nodes at almost all problem instances. Because, at particular time
t, the dominance rule, proposed at Chapter 3, together with propositions

33 and 34 of Chapter 5 covers Emmons global domince rule and eliminates
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the node, before Emmons rules become active. For a = 0.0 case, when jobs
become available simultaneously at time zero, global dominance relationships
are possible. Therefore, Emmons dominance theorem operates quite well. For
(a = 0.0, # = 0.5), Emmons global dominance rules fathom 3676 nodes on the
average for 15 jobs case and 9420 nodes on the average for 20 jobs case. But

our proposed dominance rule still performs better.

6.3 Summary

In this chapter, we tested the B & B algorithm constructed at Chapter
5. Currently, there is no other exact algorithm for optimum solution of
Lr;| ¥ w;T; problem. It is unpractical to try to find an optimum solution
by complete enumeration. Even for 10 jobs, commercial optimization software
packages fail to find an optimum solution, therefore, any method to solve even
15 job problems will be a contribution to the literature. By the way, our
algorithm solves problems with 15 jobs, visiting maximum 2332666 nodes, for
the hardest case. Proposed algorithm employed two different lower bounding
procedures, one is the linear lower bound for 1| |3 w;T} [38], and other one
is a modification of lower bounding procedure of Hariri and Potts [27] for
Lrj| ¥ w;C; by subtracting weighted due dates of unscheduled jobs. These
procedures are compared in terms of number of nodes that are eliminated
for each example set. Although none of the lower bounding algorithm is
dominating, the linear lower bound seems to be more eflicient. Especially,
when relative range of due dates is large, 1.e. due dates are loose (# = 0.25
or 0.5), procedure modified from Hariri and Potts provides very weak bound
values. Therefore, it fails to eliminate nodes from the search tree, even the
relative range of release dates are also loose, o« = 1.0 or 1.5. Linear lower
bound does not consider unequal release dates, therefore it is expected to be
very weak when a is large. From these results, we can conjecture that lower

bounding scheme used is very weak and better lower bounding procedures

would improve the algorithm, considerably.
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When the efficiency of proposed dominance properties are analyzed,
reducing problem to 1| | ¥ w;C; problem and finding an optimum sequence
for remaining jobs using WSPT rule is the most eflicient way to decrease the
number of nodes visited. For the instances where this rule does not work
effectively, proposition 37 and dominance rule proposed at Chapter 3, perform

relatively better than the other properties.
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FACTORS # of LEVELS SETTINGS
Number of Jobs 3 10,15,20
Processing time variability 1 (1,10]
Weight variability 1 [1,10]
Release Date Range, a 4 0.0, 0.5, 1.0, 1.5
Due Date Range, 3 0.05, 0.25, 0.5

Table 6.1: Experimental Design for B & B Algorithm
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# OF NODES CPU TIMES
o J£] n min avg max min avg max
10 10 17.6 35 0 0.01 0.02
0.05 { 15 14 52.4 123 0.05 0.15 0.43
20 144 352.7 892 0.22 0.65 1.6
10 110 352.5 1083 0.08 0.27 0.43
0.0 | 0.25 | 15 5812 28275 110256 8.4 45.97 111.34
20 508709 1977373.2 3997319 | 181.78 1569.33  5377.5
10 249 4027.8 8467 0.25 2.83 6.51
0.50 | 15 44605 552206.9 1929861 70.91 569.45  2151.05
20 2317148 2902084 4000000* | 2050.8 3071.33 4548.42
10 51 198 560 0.02 0.13 0.37
0.05 | 15 1166 27818.5 110942 0.77 18.34 77.34
20 58074 712961.4 1646857 71.85 386.97 738.63
10 98 1224.8 3433 0.06 1.07 3.28
0.5 | 0.25 | 15 67604 882934.2 2332666 29.09 365.86 869.46
20 111179 1129594 3191291 | 337.05 1765.66 4920.73
10 122 1833.9 9103 0.1 2.09 10.36
0.50 | 15 11264 772334.9 2022782 50.60 1615.68 3728.18
20 42 1107718.1  4000000* 0.08 1348.15  4811.51
10 64 649.1 4405 0.02 0.26 1.7
0.05 | 15 1075 3684.6 6976 0.95 4.97 12.18
20 6029 115840.5 766128 9.11 160.92 822.83
10 44 315.6 1318 0.03 0.23 1.15
1.0 | 0.25 | 15 434 182145.8 1603228 0.63 535.92 3463.32
20 48 593646.4 3062195 0.03 1107.02 3452.31
10 9 292.3 2251 0 0.26 1.88
0.50 | 15 17 946.8 5031 0.02 2.74 17.73
20 18 443117 1449397 0.02 1336.74  3679.33
10 18 102.3 625 0.02 0.05 0.30
0.05 | 15 81 410.6 939 0.04 0.23 0.77
20 551 66543.1 323115 2.4 54.07 113.04
10 12 68 134 0.02 0.05 0.10
1.5 ] 0.25 | 15 78 8620.9 66380 0.06 30.26 293.01
20 20 6781.5 50538 0.03 37.83 248.90
10 8 25.2 64 0 0.02 0.03
0.50 | 15 16 3833.6 33997 0 10.33 100.60
20 19 61.1 148 0.02 0.05 0.08

Table 6.2: Results of Computational Experiments
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# OF NODES # of Nodes Elim. LB1 # of Nodes Elim. LB2
o 15} n min avg max min avg max min avg max
10 10 17.6 35 0.3 3 0 0 0
0.05 15 14 52.4 123 4.1 29 0 0.1 1
20 144 352.7 892 0 7.8 17 0 0.2 2
10 110 352.5 1083 29.6 80 0 0.2 2
0.0 ] 0.25 | 15 5812 28275 110256 22 392.3 1270 0 0.5 3
20 508709 1977373.2 3997319 0 6722.8 48047 0 124.4 1188
10 249 4027.8 8467 51 259 712 0 0.05 4
0.50 | 15 44605 552206.9 1929861 196 1168.8 5288 0 29.9 215
20 2317148 2902084 4000000* 0 3871.4 11673 0 292.2 647
10 51 198 560 1 5.3 12 6 29.8 106
0.05 | 15 1166 27818.5 110942 0 35.3 228 3 744.8 2269
20 58074 712961.4 1646857 0 159.5 655 416 5440.1 13525
10 98 1224.8 3433 3 30 95 0 24.4 66
0.5 ) 025|156 67604 882934.2 2332666 0 4244.1 14877 4985.6 20778
20 111179 1129594 3191291 0 7954 65950 1282 6999
10 122 1833.9 9103 36 458.4 1271 2 48.3 144
0.50 | 15 11264 772334.9 2022782 0 9466.7 835307 22 15901.4 74902
20 42 1107718.1  4000000* 0 67127.42 219602 0 8543.71 34415
10 64 649.1 4405 0 3.3 9 6 28.5 61
0.05 | 15 1075 3684.6 6976 0 171.4 1461 215 715.9 1783
20 6029 115840.5 766128 0 695.1 4437 13 5432 28473
10 44 315.6 1318 14 38.7 86 1 26 79
1.0 | 0.25 | 15 434 182145.8 1603228 72 6460.2 25332 53 20124 5736
20 48 593646.4 3062195 0 78999.5 292332 0 15535 58342
10 9 292.3 2251 0 38.1 207 0 45.9 280
0.50 | 15 17 946.8 5031 0 773.7 4462 0 108.4 852
20 18 443117 1449397 0 92902.5 343297 0 27116 77965
10 18 102.3 625 0 1 3 0 8 18
0.05 | 15 81 410.6 939 0 31.7 132 1 66.2 173
20 551 66543.1 323115 0 852.5 7938 93 1153.7 6954
10 12 68 134 0 10.8 69 0 10.4 11
1.5 | 0.25 | 15 78 8620.9 66380 0 2323.1 20909 0 2679.8 25890
20 20 6781.5 50538 0 3017 15370 0 151.4 774
10 8 25.2 64 0 3 10 0 0.8 6
0.50 | 15 16 3833.6 33997 0 1919.3 18993 0 1110.6 11040
20 19 61.1 148 0 2.2 12 0 0.7 4
Table 6.3: Comparison of Lower Bounding Procedures
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NUMBER OF NODES ELIMINATED
al| Prop. 33 | Prop. 34 | Prop. 35 | Prop. 37 | Prop. 32 & 39
0.05 0.4 0.4 0 0 14.8
0.0 | 0.25 7.7 17.5 30.7 83.9 281.8
0.50 281.6 159.9 329.8 1315 2842.9
0.05 1.3 0.7 14.5 45.1 133
0.510.25 152.2 34.2 70.1 457.6 726.4
0.50 379.1 61.8 61.3 767.9 630.7
0.05 97.6 3.1 21.5 221.3 305.9
1.0 [ 0.25 75.1 15.2 14.1 43.2 103.4
0.50 122.7 3.5 17.2 98.1 3.8
0.05 40.4 5.5 5.3 13.4 11.3
1.5 | 0.25 19.9 0.2 2 6 2.7
0.50 6.6 3.2 0.9 2.3 0

Table 6.4: Comparison of Propositions for n = 10
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NUMBER OF NODES ELIMINATED
« Prop. 33 | Prop. 34 | Prop. 35 | Prop. 37 | Prop. 32 & 39
0.05 0.6 0.2 0.6 2.9 47.7
0.0 { 0.25 326.9 121 4095 16308.3 24232.6
0.50 || 56444.8 224.7 82113 731882.2 287373.1
0.05 369.7 9.1 10026.5 | 12572.1 20305.6
0.50.25 | 415104 33.5 79044.4 | 431632.8 605379.1
0.50 || 148071.8 173 18744.7 | 550728.5 180714.3
0.05 383.3 65.8 608 829.5 1501.1
1.0 | 0.25 47347 443.9 2728.3 172280.2 18278.3
0.50 233 3 43 278.9 38.2
0.05 85.1 52.3 18 70.9 21.9
1.5 10.25 1751.6 0.8 412.3 2051.7 139.3
0.50 808.5 13.4 783.7 838.1 0

Table 6.5: Comparison of Propositions for n = 15
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NUMBER OF NODES ELIMINATED

JOB SIZE = 10 JOB SIZE = 15 JOB SIZE = 20
al Prop. Rule Emmons’ | Prop. Rule Emmons’ | Prop. Rule Emmons’
0.05 0 0 2.3 0 24.4 0
0.0 | 0.25 16.6 0.5 5351.8 0 1618986 9.1
0.50 234.6 24.3 145782.8 3676 970258 9420
0.05 23.6 0 29674.9 0.8 638953.5 0
0.5 0.25 116.7 0 359225.3 0 542673.7 0
0.50 148.5 0 366717.8 0 108321.4 404.8
0.05 83.4 0 904.1 0 32097.2 0
1.0 ] 0.25 15.3 0 82449.8 0 61199.3 0
0.50 14.8 0 22 0 760003.7 0
0.05 11.4 0 56.9 0 21329.2 0
1.5 0.25 1.4 0 1325.9 0 495.2 0
0.50 0 0 106.3 0 0.8 0

Table 6.6: Comparison of Proposed and Emmons’ Dominance Rule




Chapter 7

Conclusion

This chapter provides a brief summary of the contributions of this study and
addresses wide range of directions for future research. In this thesis, we have
considered dynamic single machine total weighted tardiness problem such that

release dates are unequal. The assumptions that we have made throughout
this study were:
o There is a set of n independent, single operation jobs.

e Jobs are available for processing at predetermined times, i.e. release

dates.
o The starting time of each job cannot be before its release date, r;.

o The setup times for the jobs are independent of job sequence and included

in processing times.

e The machine is continuously available but machine may or may not be

left idle while there are available jobs in the queue.
e Once an operation begins, it proceeds without interruption.

e The job descriptors such as release dates, r;, due dates, d;, processing

times, p;, and weights, w;, are deterministic and known in advance.
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e Fach job has an integer release date, due date, processing time and a

positive weight.

7.1 Contributions

We showed that for any pair of jobs, ¢ and 7, that are adjacent in a schedule,
there are certain time points, called as breakpoints, in which the ordering
might change for adjacent jobs. In other words, the arrangement of adjacent
jobs 1n an optimal schedule depends on start times of the pair. When all
the possible cases are analyzed, it is seen that there are at most seven
possible critical time points. But in some cases, critical point occurs at
a point that one of jobs is not available, then release date of the second
job is denoted as a breakpoint. We showed that at most three breakpoints
can be valid at a time. Based on these results, we have developed new
dominance properties. Dominance properties provide conditions under which
certain potential solutions can be ignored. By exploiting dominance properties,
the extensive calculations required by exact solution methodologies can be
curtailed considerably. Restricting attention to the dominant set reduces the
number of alternatives, therefore the computational effort involved in searching
for an optimal solution reduces substantially. The proposed dominance rule
provides a sufficient condition for local optimality. We have shown that if any
sequence violates the dominance rule, then switching the violating jobs either

lowers the total weighted tardiness value or leaves it unchanged.

We have developed an algorithm based on the dominance rule, which was
compared to a number of competing heuristics for a set of randomly generated
problems. The proposed algorithm was implemented on a set of heuristics
including the X-RM and KZRM rules that different combinations of ATC
rule with the decision theory approach of Kanet and Zhou [30] to implement
principles of ATC to dynamic environment. Our computational experiments
indicated that the amount of improvement was statistically significant for all

heuristics and the proposed algorithm dominated the competing rules in all
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runs. Therefore it can improve upper bounding scheme and can be used to

reduce number of alternatives for finding the optimum solution in any exact

approach.

We also looked at how the proposed dominance rule can be incorporated
in a B & B algorithm in conjunction with a branching condition, a lower
bounding scheme and a search strategy. There is no lower bound algorithm in
the literature designed for 1|r;| 3= w;T; problem. So we adapted lower bounding
procedure of Hariri and Potts for 1|rj|> w;C; problem by making minor
modifications in the procedure. We also used linear lower hound developed
by Potts and van Wassenhove for 1| |3 w;T; problem to get a lower bound

value for 1|r;| > w;T; problem.

Almost all of the studies mentioned earlier in the literature review use a
best first enumeration scheme (BFS) as a search strategy. As a search strategy,
we derived a hybrid approach of best first search (BFS) and depth first search
(DFS) enumeration schemes. At the upper levels of B & B tree, we used
BFS algorithm up to a certain predetermined stack size. When active stack
size exceeded the maximum allowed size, DF'S method is applied to the set of

active subproblems.

We proposed additional dominance properties and all proposed dominance
properties are embedded in the B & B algorithm. We tested the proposed
algorithm with a series of randomly generated problems. The algorithm can
solve problems with up to 20 jobs. Computational requirements for larger

problems tend to limit this approach.

Although customer orders may not arrive simultaneously in real-life
problems, to the best of our knowledge, the authors knows of no other published

exact approach for 1|r;| > w;T; problem. This enhances contribution of our

study in the literature.
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7.2 Future Research Directions

There are several future research directions emanating from this research study:

o The proposed dominance rule may be extended to more complicated

scheduling environments such as flow shops, open shops, and job shops.

e The lower bounding scheme that is used in the B & B algorithm is very
weak. Concentrating on lower bounds, new lower bound procedures may
be proposed. More efficient lower bounding schemes may be incorporated

to the algorithm.

e The proposed algorithm is based on an adjacent pairwise interchange
method. Investigating non adjacent pairs or adjacent triples of jobs,

different dominance properties may be detected and dominance rule may

be extended.

e The results found may be incorporated to local search approaches for

scheduling problems.

e Total weighted tardiness scheduling problem with stochastic job descrip-
tors, such as release dates and due dates in time windows, can also be

examined.
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